
HAL Id: hal-00795206
https://hal.science/hal-00795206v1

Submitted on 27 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partitioned EDF Scheduling in Multicore systems with
Quality of Service constraints

Nadine Abdallah, Audrey Queudet, Maryline Chetto, Rafic Hage Chehade

To cite this version:
Nadine Abdallah, Audrey Queudet, Maryline Chetto, Rafic Hage Chehade. Partitioned EDF Schedul-
ing in Multicore systems with Quality of Service constraints. 18th IEEE International Conference
onElectronics, Circuits and Systems (ICECS), 2011, Dec 2011, beirut, Lebanon. pp.764 - 767,
�10.1109/ICECS.2011.6122386�. �hal-00795206�

https://hal.science/hal-00795206v1
https://hal.archives-ouvertes.fr


Partitioned EDF Scheduling in Multicore systems
with Quality of Service constraints

Nadine Abdallah∗, Audrey Queudet†, Maryline Chetto∗, Rafic Hage Chehade§
∗IRCCyN

University of Nantes, Nantes, France
Email: firstname.lastname@irccyn.ec-nantes.fr

†LINA
University of Nantes, Nantes, France
Email: audrey.queudet@univ-nantes.fr

§IUT Saida
Lebanese University, Saida, Lebanon

Email: rhagechehade@ul.edu.lb

Abstract— In this paper we study the partitioned EDF schedul-
ing in a homogeneous multiprocessor environment with Quality
of Service (QoS) constraints. The system considered here is
a real-time multiprocessor system assumed to be powered by
rechargeable batteries. We address the issue of how to best
partition a set of firm real-time tasks that can occasionally skip
one instance according to a predefined QoS threshold. The main
goal is to minimize the energy consumption of the system while
offering solutions with respect to transient energy starvation
situations the system can experiment. The contribution of the
paper is twofold. First, we present a schedulability analysis of
firm multiprocessor task sets under QoS constraints. Second
we propose new partitionning heuristics integrating skips. The
evaluation is conducted from several points of view (minimization
of the total processor number, maximization of the spare capacity
on each processor).

I. INTRODUCTION

The computer science literature generally divides real-time
systems in three main categories: soft, hard and firm [10].
Soft real-time systems allow some jobs to miss their deadlines
in order to improve resource usage or average performance.
Hard real-time systems embody guaranteed timing and cannot
miss deadlines. A single failure in one timing constraint can
cause an intolerable cost (in terms of human lives, equipment
damage or economic loss). Firm real-time systems instead
allow some of their constraints to be occasionally lost, the
performance being then quantified in terms of Quality of
Service (QoS).

In recent years, there has been increasing interest to
incorporate real-time scheduling techniques that deal with
power/energy conservation. Many energy-oriented real-time
scheduling techniques have been proposed to reduce energy
consumption. Among them, Dynamic Voltage and Frequency
Scaling (DVFS) algorithms [5] reduce energy consumption by
changing processor speed and voltage at run-time depending
on the needs of the applications running. Another trend is
based upon Dynamic Power Management (DPM) policies [3]
which trade off the performance for the power consumption
by selectively placing components into low-power states. All

these techniques have been proposed for uniprocessor real-
time systems. However, with todays computational demands
and as the miniaturization of integrated circuits reaches its
physical limits, a valid solution to supply sufficient resources
is to use multicore platforms, but actually, much less work has
been done for power awareness in multicore systems.

In our research we consider multicore real-time systems
with both QoS and energy constraints. The objective is to
exploit the flexibility offered by QoS-based real-time tasks to
face both processor overload and energy starvation situations,
skipping the execution of some task instances. For that pur-
pose, we propose to tackle the problem of the repartition of
QoS-constrained tasks over such platforms. Our contribution
is twofold. First, we design a schedulability test for firm
multiprocessor task sets under QoS constraints. Second, based
on this test, we propose new partitioned scheduling heuristics
to assign tasks with QoS constraints to processors, so as
to minimize the number of processors, thus minimizing the
energy consumption. To the best of our knowledge, this paper
is the first to introduced QoS contraints into partitioning
heuristics.

We rely on previous partitioning results [12][9][13] to pre-
select which partitioning heuristic and which task set sorting
criterion can best fit both QoS and energy constraints. The
performance of each heuristic is analyzed according to the
success ratio (i.e. the number of schedulable task sets among
the total number of generated task sets). We also study the
influence of the task sorting criteria on the schedulability of
each heuristic so as to underline the impact of task sorting
criterion on the performance of the heuristics chosen.

The remainder of this paper is organized as follows: in
Section 2, we describe some background material. Section 3
presents the models and definitions considered in this paper.
Section 4, 5 and 6 presents the main contribution which begins
with a schedulability analysis under QoS constraints and then
relies on the partitioning under QoS contraints to end with
performance evaluation. In Section 7, we conclude and give
some future lines of investigation.



II. BACKGROUND MATERIAL

A. EDF Scheduling

Earliest Deadline First (EDF) scheduling algorithm [6] is
an algorithm in which jobs with earliest deadlines have higher
priority. EDF is an optimal scheduling algorithm on preemp-
tive uniprocessors, in the following sense: if a collection of
independent jobs can be scheduled (by any algorithm) such
that all the jobs complete by their deadlines, EDF will schedule
this collection of jobs such that they all complete by their
deadlines.

B. Skip-Over model

We consider a uniprocessor system consisting of firm peri-
odic and preemptable tasks. Tasks are assumed to be indepen-
dent. Each task is divided into instances where each instance
occurs during a single period of the task. The possibility of
skipping task instances was introduced by Koren and Shasha
[8]. In their model, a task is characterized by its worst case
execution time, its period, its deadline and a skip parameter s
(2 ≤ s ≤ ∞). This parameter gives the tolerance of a task to
miss deadlines. The higher s is, better is the QoS. It represents
the minimum QoS required by a task. Every instance of the
task can be red or blue. Red instances must complete before
their deadline but blue instances can be skipped or aborted at
any time. A task set is deeply-red when all tasks instances are
initially activated at the same time and are red. The distance
between two consecutive skips must be at least s periods. After
missing a deadline, the next s − 1 instances must complete
before their deadlines. On the contrary, if a blue instance
completes within its deadline, the next instance is still blue.

Here are two algorithms based on the Skip-Over model:
• RTO (Red Tasks Only): this algorithm never tries to

execute blue instances. Red instances only are scheduled
according to EDF. In the deeply-red model, this algorithm
is optimal which means that all feasible task sets will be
schedulable using RTO.

• BWP (Blue When Possible): this algorithm is more flexi-
ble in the sense that it schedules red instances according
to EDF and tries to schedule blue instances when there
are no ready red instances.

C. Partitioning

Partitioning a task set is equivalent to the Bin-Packing
problem: how to place n objects of different sizes in m
identical boxes. This problem is known to be NP-hard. The
only known solution for this kind of problem is to enumerate
all possible configurations and verify their correctness one by
one. Some heuristics [12][9][13] have been proposed in the
literature in order to solve it. All of them imply a sequential
assignment of tasks to processors: a task is assigned on a
processor if it verifies the schedulability test after assignment.
According to First Fit (FF) a task is assigned to the first
possible processor, starting from π1 (the first processor). Best
Fit (BF) assigns a task τi to the processor which minimizes the
remaining processor capacity. According to Worst Fit (WF)

a task is assigned to the processor which maximizes the
remaining processor capacity. Next Fit (NF) assigns a task
τi to the first possible processor in the range πj , ..., πm (πj
being the current processor). The procedure starts from π1 .

III. MODELS AND DEFINITIONS

A. System and task model

In this paper, we consider π a platform with m identical
processors: π = {π1, ..., πm}. We refer to the Skip-Over
periodic task model. A periodic task τi is defined by a 4-tuple
(Ci, Pi, Di, si) where Ci is the worst-case execution time
(WCET), Pi the period, Di the relative deadline and si the
skip parameter. A task can be instantiated an infinite number of
times. The task set τ = {τ1, ..., τn} is composed of n periodic
tasks with constrained deadline (Di ≤ Pi). Tasks are assumed
to be independent and preemptable. The system is considered
deeply-red.

Each task is characterized by:
• an utilization factor: ui = Ci

Pi

• an equivalent utilization factor integrating skips:
u∗i =

Ci

Pi
× si−1

si

• a density: δi = Ci

min{Di,T i} .
• an equivalent density integrating skips:
δ∗i = Ci

min{Di,Pi} ×
si−1
si

B. Known results

1) Processor utilization factor: Given a set τ =
{τi(Pi, Di, Ci)} of n periodic tasks scheduled on a processor,
the processor utilization factor is defined as [11]:

Uτ =

n∑
i=1

Ci
Pi

(1)

2) Equivalent processor utilization factor: Given a set τ =
{τi(Pi, Di, Ci, si)} of n periodic tasks with implicit deadline
that allow skips, the equivalent processor utilization factor
integrating skips is defined as [8]:

U∗τ = maxL≥0{
∑
iD(i, [0, L])

L
} (2)

where D(i, [0, L]) = b LPi
c − b L

Pisi
c.

3) Load factor: Given a set τ = {τi(Pi, Di, Ci)} of n
periodic tasks with arbitrary deadlines, the load factor is
defined as [7]:

Load(τ) = max{Uτ , supL∈[Dmin,P )
DBF (τ, L)

L
} (3)

where Dmin = min{D1, ..., Dn} and P = lcm{P1, ..., Pn}.
For a given t, the Demand Bound Function (DBF) represents
the upper bound of the workload generated by all tasks with
activation times and absolute deadlines in the same interval
[0, t]:

DBF (τ, [0, L]) =

n∑
i=1

(
1 + bL−Di

Pi
c
)
× Ci (4)



DBF will be computed for L corresponding to absolute task
deadlines between 0 and Dmin.

4) Exact schedulability test: A necessary and sufficient (i.e.
exact) schedulability test for EDF for arbitrary deadlines on
uniprocessor systems is given by [11]:

Load(τ) ≤ 1 (5)

IV. SCHEDULABILITY ANALYSIS UNDER QOS
CONSTRAINTS

5) New equivalent load factor: Given a set τ =
{τi(Pi, Di, Ci, si)} of n periodic tasks with arbitrary deadlines
that allow skips, we define the equivalent load factor as:

LoadQoS(τ) = max{U∗τ , supL∈[Dmin,P )
DBFQoS(τ, L)

L
}
(6)

where Dmin = min{D1, ..., Dn} and P =
lcm{s1P1, ..., snPn}. According to the RTO algorithm,
the DBF changes. Its new equation is :

DBFQoS(τ, [0, L]) =

n∑
i=1

(
1 + bL−Di

Pi
c−

b 1
si

(
1 + bL−Di

Pi
c
)
c

)
× Ci

(7)

As the DBFQoS changes its value only at instants
corresponding to absolute deadlines, DBFQoS will be
computed for L corresponding to absolute tasks deadlines
between 0 and Dmin. The equivalent processor utilization
factor U∗τ integrating skips is defined as it previously appears
in equation (2).

6) New exact schedulability test: A necessary and sufficient
(i.e., exact) schedulability test for EDF for arbitrary deadlines
QoS-constrained tasks on uniprocessor systems is given by :

LoadQoS(τ) ≤ 1 (8)

V. PARTITIONING UNDER QOS CONSTRAINTS

A. Identification of suitable heuristics

As mentioned previously, partitioning, which reduces to a
bin-packing problem, is known to be NP-Hard. According to
previous results in [12], we will use two heuristics :
• First Fit (FF) because it minimizes the number of pro-

cessors used (in our case, it will minimize the energy
consumption);

• Worst Fit (WF) because it maximizes the remaining
processor capacity, thus offering more flexibility for
recharging the system in case of energy starvation.

These heuristics have been adapted in our case. We system-
atically apply a schedulability test (see equation (8)) before
assigning a task to a processor. If the test is not verified we
continue testing on others processors until we find the good
one able to accept the task. If a task is not assigned to any
processor, it means that the task set is not schedulable.

B. New task sorting criteria

All the partitioning algorithms proposed in the literature
often include task sorting criteria with the purpose of increas-
ing their success ratio (i.e. ratio of schedulable task sets).
A task sorting criteria consists in ordering the tasks before
assigning them to a processor. It has an influence on the tasks
assignment on processors. For instance, sorting tasks in order
of decreasing density will force to first assign heaviest tasks
on the processors.
Based on the observation of previous results in the literature
[12], we retained three criteria: the density, the utilization
factor and the period. We adapted them to QoS constraints,
analyzing the general influence of the 4 following criteria in
increasing/decreasing order: equivalent density δ∗i , equivalent
utilization factor u∗i , period multiplied by skip parameter Pisi
and the skip parameter itself si

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of all possible
combinations between a series of 2 partitioning heuristics
(adapted FF and WF) and 8 task sorting criteria (δ∗i , u∗i , Pisi,
si considered in increasing/decreasing order).

A. Task generation methodology

In our task generation methodology we consider tasks
with constrained deadlines (Di ≤ Ti) which is the hardest
assumption to take.

• Pi is uniformly chosen from [20, 40];
• Ci is set to provide a task utilization factor equal to the

one given in input;
• Di is uniformly chosen between Ci and Pi;
• si is uniformly chosen from [smin, smax] where smin

and smax are input parameters;
• m is the number of processors used and is given as a

parameter.

We consider m-identical processor platforms. For m pro-
cessors, we generate a system that contains 2×m tasks. ∀i ∈
[1, n], δi ≤ 1, which means that task density doesn’t exceed
the utilization capacity of a processor. For our simulations, we
generated 1000 different task sets.

B. Performance criteria

We evaluate each combination of the previously mentioned
parameters according to a performance parameter named Suc-
cess Ratio which is defined by:

Success ratio =
Nsuccess
Ngenerated

(9)

where Nsuccess denotes the number of task sets successfully
scheduled and Ngenerated the total number of task sets gen-
erated. This criteria helps us to determine which combination
schedules the largest number of task sets.



C. Experimental results
In this section, we present an initial empirical investigation

for QoS-constrained tasks defined according to the Skip-Over
model, examining the effectiveness of our heuristics on 4
processors. This section deals with the impact of a task sorting
criterion on the success ratio of schedulability tests.
In the corresponding graphs, D means “decreasing”, I means
“increasing” and E means “equivalent”.

Fig. 1. EDF-based sorting criteria with WF heuristic

Fig. 2. EDF-based sorting criteria with FF heuristic with si in [2, 10]

The simulation results depicted in Figure 1 and 2 show
that, taking all heuristics together, the sorting criteria which
maximize the success ratio are: Decreasing Equivalent Uti-
lization and Decreasing Equivalent Density. Figure 1 shows
that for task sets with a total utilization factor less than 25%
of the platform capacity, all sorting criteria give the same
performance. However, for task sets with total density greater
than 25% of the platform capacity, Decreasing Equivalent
Utilization factor and Decreasing Equivalent Density exhibit
the best behavior. Decreasing Equivalent Utilization factor is
slightly more efficient than Decreasing Equivalent Density.
Figure 2 shows that for task sets with the total utilization factor
less than 75% of the platform capacity, all sorting criteria
give the same performance. However, for task sets with total
density greater than 75% of the platform capacity, Decreasing
Equivalent Utilization factor and Decreasing Density exhibit
the best behavior. In fact, for a total utilization factor equals
to 3.2, at most 99% of task sets are schedulable with First
Fit Decreasing Equivalent Utilization and 84% with Worst Fit
Decreasing Equivalent Utilization and Density. In Figure 1,
we also notice for Decreasing Equivalent Utilization that when
skips are comprised in [2, 4] we have a better success ratio than
when skips are comprised in [2, 10]. In fact, the skip parameter
has also an influence on schedulability: the more we authorize
skips higher is the success ratio.

VII. CONCLUSION

While low-power uniprocessor real-time systems have fue-
led much recent work on energy-aware scheduling, the same
issue upon multicore platforms has been somewhat neglected.
Motivated by this, we proposed a flexible solution based
on QoS-constrained real-time tasks, allowing to skip some
task instances in case of either processor overload or energy
starvation.

The major contributions of our study are as follows: (i)
we provide a schedulability test for multiprocessor task sets
under QoS contraints, (ii) we propose and evaluate two new
partitionning heuristics (First Fist variant that minimizes the
energy consumption, and Worst Fist variant that leaves maxi-
mum spare capacity on processors in order to allow the battery
to charge). From the simulations, we showed that the best
task sorting criterion are equivalent decreasing density and
equivalent decreasing utilization. In the future, we want to
extend this study to semi-partitioning algorithms, providing
a complete analysis with new evaluation criteria such as the
number of migrations and preemptions.

ACKNOWLEDGMENT

The work presented in this paper is sponsored by a CE-
DRE project, namely GreenEmbedded, which is a bilateral
collaboration between University of Nantes and the Lebanese
University.

REFERENCES

[1] S. Baruah and N. Fisher, The partitioned multiprocessor scheduling
of deadline-constrained sporadic task systems, IEEE Transactions on
Computers, Vol.55, No.7, pp. 918-923, 2006.

[2] S. Baruah, R. Howell, and L. Rosier, Algorithms and complexity con-
cerning the preemptive scheduling of periodic real-time tasks on one
processor, Journal of Real-Time Systems, Vol. 2, pp. 301-324, 1990.

[3] L. Benini, A. Bogliolo, and G. De Micheli, A Survey of Design Tech-
niques for System-Level Dynamic Power Management, IEEE Trans. VLSI
Systems, Vol. 8, No.3, pp. 299-316, 2000

[4] M. Caccamo, G. C. Buttazzo, Optimal Scheduling for Fault-Tolerant and
Firm Real-Time Systems, Proceedings of the IEEE Real-Time Computing
Systems and Applications, 1998.

[5] J.-J. Chen and T.-W. Kuo. Energy-efficient scheduling for real-time
systems on dynamic voltage scaling (DVS) platforms. In 13th IEEE In-
ternational Conference on Embedded and Real-Time Computing Systems
and Applications, pages 28-38. IEEE Computer Society, August 2007.

[6] M.-L. Dertouzos. Control Robotics: The Procedural Control of Physical
Processes, Proceedings of International Federation for Information Pro-
cessing Congress, pp. 807-813, 1974.

[7] L. George and J. Hermant, A norm approach for Partitioned EDF
Scheduling of Sporadic Task Systems. Proceedings of the 21st Euromicro
Conference on Real-Time Systems, Dublin, Ireland, July 2009.

[8] G. Koren , D. Shasha Skip-over: Algorithms and Complexity for Over-
loaded Real-Time Systems, Proceedings of the IEEE Real Time Systems,
1995.

[9] C.-L. Liu Scheduling algorithms for multiprocessors in a hard real-time
environment, JPL Space Programs Summary, Vol. 37-60, pp. 28-31, 1969.

[10] J.-W.-S. Liu, Real Time Systems, Prentice Hall, 2000.
[11] C.-L. Liu and W. Layland, Scheduling algorithms for multi-programming

in a hard real time environment, Journal of ACM, Vol.20, No.1, pp. 46-61,
1973.

[12] I. Lupu, P. Courbin, L. George and J. Goossens, Multi-Criteria Evalu-
ation of Partitioning Schemes for Real-Time Systems, IEEE Conference
on Emerging Technologies and Factory Automation (ETFA), 2010.

[13] O. U. Peirera Zapata and P. Mejia-Alvarez, Analysis of Real-Time
Multiprocessors Scheduling Algorithms, Proceedings of the RTSS, 2003.


