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Hybrid Finite Volume Discretization of Linear
Elasticity Models on General Meshes

Daniele A. Di Pietro, Robert Eymard, Simon Lemaire and Roland Masson

Abstract This paper presents a new discretization scheme for linear elasticity mod-
els using only one degree of freedom per face corresponding to the normal com-
ponent of the displacement. The scheme is based on a piecewise constant gradient
construction and a discrete variational formulation for the displacement field. The
tangential components of the displacement field are eliminated using a second order
linear interpolation. Our main motivation is the coupling of geomechanical models
and porous media flows arising in reservoir or CO2 storage simulations. Our scheme
guarantees by construction the compatibility condition between the displacement
discretization and the usual cell centered finite volume discretization of the Darcy
flow model. In addition it applies on general meshes possiblynon conforming such
as Corner Point Geometries commonly used in reservoir and CO2 storage simula-
tions.
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1 Introduction

The oil production in unconsolidated, highly compacting porous media (such as
Ekofisk or Bachaquero) induces a deformation of the pore volume which (i) modi-
fies significantly the production, and (ii) may have severe consequences such as sur-
face subsidence or damage of well equipments. This explainsthe growing interest
in reservoir modeling for simulations coupling the reservoir Darcy multiphase flow
with the geomechanical deformation of the porous media [3].Similarly, porome-
chanical models are also used in CO2 storage simulations to predict the over pres-
sure induced by the injection of CO2 in order to assess the mechanical integrity of
the storage in the injection phase.
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The most commonly used geometry in reservoir and CO2 storagemodels is the
so called Corner Point Geometry or CPG [7]. Although the CPG discretization is ini-
tially a structured hexahedral grid, vertical edges of the cells may typically collapse
to account for the erosion of the geological layers and vertices may be dedoubled
and slide along the coordlines (i.e.straight lines orthogonal to the geological layers)
to model faults. In addition non conforming local grid refinement is used in near
well regions. The resulting mesh is unstructured, non conforming, it includes all the
degenerate cells obtained from hexahedra by collapsing edges, and hence it is not
adapted to conforming finite element discretizations.

The objective of this paper is to introduce a new discretization scheme for linear
elasticity equations which should

• apply on general meshes possibly non conforming;
• guarantee the stability of the coupling with Darcy flow models using cell centered

finite volume discretization for the Darcy equation [1].

Our discretization is based on the family of Hybrid Finite Volume schemes in-
troduced for diffusion problems on general meshes in [5] andalso closely related
to Mimetic Finite Difference schemes [6] as shown in [4]. Thedegrees of freedom
are defined by the displacement vectoruσ at the center of gravity of each faceσ of
the mesh as well as the displacement vectoruK at a given pointxK of each cellK
of the mesh. Following [5], a piecewise constant gradient isbuilt and can be read-
ily used to define the discrete variational formulation which mimics the continuous
variational formulation for the displacement vector field.In order to stabilize this
formulation and to reduce the degrees of freedom, the tangential components of the
displacement are interpolated in terms of the neighbouringnormal components. Nu-
merical experiments on two dimensional and three dimensional meshes show that
the resulting discretization is stable and convergent. In addition, this discretization
satisfies by construction the compatibility condition or LBB (see [2], [1]) condition
for poroelastic models when coupled with a cell centered finite volume scheme for
the Darcy flow equation.

2 Discretization of Linear Elasticity Models

Let Ω be ad-dimensional polygonal or polyhedral domain (d = 2 or 3) and let us
consider the following linear elasticity problem in infinitesimal strain theory:







div(σ(u)) + f = 0 on Ω ,

u = uD on ∂ΩD
,

σ(u) ·n = g on ∂Ω N
,

(1)

whereu ∈ R
d is the unknown displacement field andD andN the two exponents

standing respectively for Dirichlet and Neumann boundary conditions.σ(u) is the
Cauchy stress tensor and is given by Hooke’s lawσ(u) = 2µε(u) + λ tr(ε(u))1,
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whereµ , λ are the Laḿe parameters andε(u) = 1
2

(

∇u+∇uT) is the infinitesimal
strain tensor.

2.1 Hybrid Finite Volume Discretization

The simulation domainΩ is discretized by a set of polygonal or polyhedral control
volumesK ∈ K , such thatΩ =

⋃

K∈K K. The set of faces of the mesh is denoted
by E and splits into boundary interfacesEext and inner interfacesEint . Among the
boundary interfaces, we denote byE D

ext andE N
ext the subsets of boundary faces verify-

ing Dirichlet or Neumann conditions. The center of gravity of the faceσ is denoted
by xσ and itsd−1 dimensional measure by|σ |. A point xK is defined inside each
cell K of the mesh. The set of faces of each cellK is denoted byEK , and the distance
betweenxK andσ by dK,σ . The cone of baseσ ∈ EK and topxK is denoted byKσ .

Brief reminder of the hybrid finite volume discretization ofa scalar diffusion
problem (see [5]):

We first define the discrete hybrid spacesV =
{

(vK ∈ R)K∈K
,(vσ ∈ R)σ∈E

}

and
V0 =

{

v∈V | vσ = 0 ∀σ ∈ E D
ext

}

. V0 is endowed with the discreteH1
0,D(Ω) norm

‖v‖V0 =

(

∑
K∈K

∑
σ∈EK

|σ |

dK,σ
|vσ −vK |

2

) 1
2

. (2)

Then, following [5], a discrete gradient is defined on each cone Kσ which only
depends onvK andvσ ′ for σ ′ ∈ EK . This gradient is exact on linear functions and
satisfies a weak convergence property. According to [5], it can be written

∇Kσ v = ∑
σ ′∈EK

(vσ ′ −vK)yσσ ′

K ∀v∈V, (3)

whereyσσ ′

K ∈ R
d only depends on the geometry.

Hybrid finite volume discretization of the linear elasticity model:

As we did above, we introduceV =
{

(vK ∈ R
d)K∈K

,(vσ ∈ R
d)σ∈E

}

as the discrete
hybrid space. With an equivalent definition forV0, the discrete norm is now defined
as‖v‖2

V0 = ∑d
i=1‖vi‖

2
V0. Let us also introduce the spaceW =

{

(wK ∈ R
d)K∈K

,

(wσ ∈ R
d)σ∈E D

ext
,(wn

σ ∈ R)σ∈Eint∪E N
ext

}

and the following projection operatorPW :

V → W, v 7→
(

(vK)K∈K
,(vσ )σ∈E D

ext
,(vσ ·nσ )σ∈Eint∪E N

ext

)

, wherenσ is a unit vector
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normal toσ which orientation is fixed once and for all. Let us finally define the space
W0 = PW(V0) endowed with the discrete norm‖w‖W0 = infv∈V0 |PW(v)=w ‖v‖V0.

The main novelty of our discretization lies in the definitionof a linear interpo-
lation operatorI : W → V. This linear interpolation operator must be second order
accurate to preserve the order of approximation of the scheme and interpolant in the
sense thatPW (I(w)) = w for all w∈W. It must also be local in the sense that it com-
putes the displacement vectorvσ at a given faceσ ∈ Eint ∪E N

ext in terms of a given
number of normal componentsvσ ′ ·nσ ′ taken on a stencilSσ ⊂ E of neighbouring
facesσ ′ of σ (with σ ∈ Sσ ). An example of construction of such an interpolator is
given in subsection 2.3.

The use of the interpolation operatorI will bring two crucial improvements to
the discretization: first a drastic reduction of the degreesof freedom and secondly a
stabilization of the discretization.

Finally, generalizing the scalar framework to the vectorial case of the linear elas-
ticity model, we introduce a piecewise constant discrete gradient for each coneKσ :

∇Kσ v = ∑
σ ′∈EK

(vσ ′ −vK)⊗yσσ ′

K ∀v ∈ V. (4)

2.2 Discrete Variational Formulation

Starting from (1), we deduce a discrete weak formulation of the problem inW0.
SettingεKσ (v) = 1

2

(

∇Kσ v+∇Kσ vT) andσKσ (v) = 2µεKσ (v)+λ tr(εKσ (v))1 for
all v ∈ V, we introduce the discrete bilinear form onW×W

aD (u,v) = ∑
K∈K

∑
σ∈EK

|Kσ |σKσ (I(u)) : εKσ (I(v)) . (5)

Then, the discrete variational formulation reads: findu ∈ W such thatuσ = uD
σ for

all σ ∈ E D
ext and such that, for allv ∈ W0,

aD (u,v) = ∑
K∈K

|K| fK ·vK + ∑
σ∈E N

ext

|σ |gσ · I(v)σ , (6)

whereuD
σ = 1

|σ |

∫

σ uDdσ , fK = 1
|K|

∫

K fdx andgσ = 1
|σ |

∫

σ gdσ are average values.
It is important to keep in mind that numerical experiments show that without

interpolation, the bilinear formaD on the spaceV×V leads to an unstable scheme
with vanishing eigenvalues on triangular or tetrahedral meshes with mixed Neumann
Dirichlet boundary conditions.

Note also that for the solution of the linear system (6), the unknownsuK can
easily be eliminated without any fill in, reducing the degrees of freedom to the face
normal components of the displacement.
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2.3 Interpolation of the tangential components of the displacement

Given a faceσ ∈ Eint ∪E N
ext, for each componenti ∈ J1,dK of the displacement field

uσ , we look for a linear interpolation of the form

ū i
σ (x) =

d

∑
j=1

α i j
σ x j +β i

σ . (7)

In order to determine thed(d + 1) coefficients(α i j
σ )i, j∈J1,dK, (β i

σ )i∈J1,dK as linear
combinations of normal componentsuσ ′ · nσ ′ , σ ′ ∈ Sσ , we look for a setSσ of
d(d+1) neighbouring facesσ ′ of the faceσ , with σ ∈Sσ and such that the system
of equations̄uσ (xσ ′) ·nσ ′ = uσ ′ ·nσ ′ is non singular. The setSσ is built using the
following greedy algorithm:

1. Initialization: for a given numberk > d(d+1), we select thek closest neighbour-
ing faces of the faceσ which are sorted from the closest to the farthest using the
distance between the face center andxσ : σ0 = σ ,σ1, · · · ,σk−1. We setSσ = {σ}
andq = 1, l = 0;

2. whileq < d(d+1) andl < k−1:

• l = l +1;
• if the equationūσ (xσl ) ·nσl = uσl ·nσl is linearly independent with the set of

equationsūσ (xσ ′) · nσ ′ = uσ ′ · nσ ′ for all σ ′ ∈ Sσ , thenSσ = {σl}∪Sσ ,
q = q+1;

3. if q < d(d+1), the algorithm is rerun with a larger value ofk.

Note that sinceσ ∈ Sσ , the interpolation operator satisfies as required the property
PW (I(u)) = u for all u ∈ W.

2.4 Compatibility condition with cellwise constant pressure for
poroelastic models

Let L2
0(Ω) be the subspace of functions ofL2(Ω) with vanishing mean values.

For the sake of simplicity but without any loss of generality, we consider here
∂ΩD = ∂Ω anduD = 0. It is well known (see [1]) that the well-posedness of lin-
ear poroelasticity models relies on the well-posedness of the following saddle point

problem: find(u, p) ∈ H1
0(Ω)

d
×L2

0(Ω) such that

{

a(u,v)+b(v, p) = (f,v)
L2(Ω)

d for all v ∈ H1
0(Ω)

d
,

b(u,q) = (h,q)L2(Ω) for all q∈ L2
0(Ω),

(8)

wherea is the bilinear form of the linear elasticity model andb(v, p)=−(divv, p)L2(Ω).
The stability of this saddle point problem results from the coercivity of a and the
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following LBB condition (see [2]) which guarantees the existence and uniqueness
of the solution: infp∈L2

0(Ω) sup
v∈H1

0(Ω)
d

b(v,p)
‖v‖

H1
0 (Ω)

d‖p‖L2(Ω)
≥ γ > 0.

The following theorem states that the LBB condition holds onthe discrete spaces
W0 ×M0, whereM0 is the space of cellwise constant functions on the meshK

with vanishing mean values endowed with theL2(Ω) norm, and for the discrete
divergence operator defined by:

bD (w, p) = −(divDw, p)L2(Ω) = − ∑
K∈K

pK ∑
σ∈EK∩Eint

|σ |wn
σ (nσ ·nK,σ ) , (9)

for all (w, p) ∈ W0×M0, and wherenK,σ is the normal to the faceσ outwardK.
It implies that, assuming the coercivity ofaD , the coupling of our discretization for
the elasticity model with a cell centered finite volume scheme for the Darcy pressure
equation will lead to a convergent and stable scheme for the poroelastic model.

Theorem 1. The bilinear form bD defined onW0×M0 satisfies the LBB condition

inf
p∈M0

sup
w∈W0

bD (w, p)

‖w‖W0‖p‖L2(Ω)

≥ γD > 0, (10)

with a constantγD depending only on usual regularity parameters of the mesh.

Proof. From the continuous LBB condition, for allp∈ M0, there exists a displace-

ment fieldv ∈ H1
0(Ω)

d
such thatb(v, p) ≥ γ ‖v‖

H1
0 (Ω)

d‖p‖L2(Ω). Let u be the ele-

ment ofV0 such thatuK = 1
|K|

∫

K v dx for K ∈ K anduσ = 1
|σ |

∫

σ v dσ for σ ∈ E .

Then,w = PW(u) ∈ W0 satisfiesbD (w, p) = b(v, p).
Since it is shown in [9] that‖u‖V0 ≤ κ ‖v‖

H1
0(Ω)

d , with a constantκ depending

on usual regularity parameters of the mesh, and since we haveby definition the
inequality‖w‖W0 ≤ ‖u‖V0, the discrete LBB condition holds withγD = γ

κ . ⊓⊔

3 Numerical experiments

In this section, the convergence of the scheme is tested on the linear elasticity model
with exact solution

ui = e
cos
(

∑d
j=1 χ i j x j

)

, i = 1, · · · ,d. (11)

The right hand side and the Dirichlet boundary conditions are defined by the exact
solution. The Laḿe parametersλ andµ are set to 1.

The tests have been held using an object oriented C++ implementation which
original approach is described in [8]. The relativel2 error on the displacement and
on the gradient of the displacement are plotted function of the number of inner
faces. In the computation of these errors, the cellwise constant discrete solution and
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discrete gradient are used. We first consider the triangularmeshes (mesh family 1),
the Cartesian grids (mesh family 2), the local grid refinement (mesh family 3) and
the Kershaw meshes (mesh family 4) from the FVCA5 2D benchmark. The exact
solution is defined by

χ =

(

1 1
2 −1

)

.

The results presented on figure 1 show the good convergence behaviour of the
scheme. The expected order of convergence is reached for allthe meshes (for the
solution and its gradient) and is even exceeded for the gradient on Cartesian grids.
Next, let us consider the Cartesian grids (mesh family A), the randomly distorted
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Fig. 1 l2 error for the displacement and for the gradient of the displacement function of the number
of inner faces for the triangular meshes, the Cartesian grids, thelocal grid refinement and the
Kershaw meshes.

grids (mesh family AA), and the tetrahedral meshes (mesh family B) from the
FVCA6 3D benchmark. The exact solution is defined by

χ =





1 1 1
2 1−1
−1 1 2



 .

The results exhibited on figure 2 show again the good convergence behaviour of the
scheme with the expected order on the three meshes for both the discrete solution
and its gradient.

4 Conclusion

In this paper, a new discretization method has been introduced for linear elasticity
using only one degree of freedom per face. It applies to general polygonal and poly-
hedral meshes possibly non conforming. In addition this discretization satisfies the
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Fig. 2 l2 error for the displacement and for the gradient of the displacement function of the number
of inner faces for the Cartesian grids, the randomly distorted grids and the tetrahedral meshes.

compatibility condition when coupled with cell centered finite volume schemes for
the Darcy equation in poroelastic models.

First numerical experiments in 2D and 3D exhibit the stability and convergence
of the scheme. In the near future, further testings will be performed on CPG grids
with erosions, local grid refinement and faults, to assess the potential of this scheme
for reservoir and CO2 storage simulations.
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