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Hybrid Finite Volume Discretization of Linear
Elasticity M odels on General Meshes

Daniele A. Di Pietro, Robert Eymard, Simon Lemaire and Rdl&fasson

Abstract This paper presents a new discretization scheme for linastigity mod-
els using only one degree of freedom per face correspondiriget normal com-
ponent of the displacement. The scheme is based on a piecesristant gradient
construction and a discrete variational formulation fag tlisplacement field. The
tangential components of the displacement field are elitathasing a second order
linear interpolation. Our main motivation is the couplinggg@omechanical models
and porous media flows arising in reservoir or CO2 storagelsitions. Our scheme
guarantees by construction the compatibility conditiohneen the displacement
discretization and the usual cell centered finite volumerdigzation of the Darcy
flow model. In addition it applies on general meshes possibly conforming such
as Corner Point Geometries commonly used in reservoir angl §&rage simula-
tions.
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1 Introduction

The oil production in unconsolidated, highly compactingqus media (such as
Ekofisk or Bachaquero) induces a deformation of the poremelwhich (i) modi-
fies significantly the production, and (ii) may have severmseguences such as sur-
face subsidence or damage of well equipments. This explh@égrowing interest
in reservoir modeling for simulations coupling the resér@arcy multiphase flow
with the geomechanical deformation of the porous media$&hilarly, porome-
chanical models are also used in CO2 storage simulationsethagb the over pres-
sure induced by the injection of CO2 in order to assess théamécal integrity of
the storage in the injection phase.

D.A. DiPietro, S. Lemaire, R. Masson
IFP Energies nouvelles, FRANCE, e-mail: dipietrd, simon.lemaokgd.masson@ifpen.fr

R. Eymard
Universi€ Paris-Est Marne-la-Va@k, FRANCE, e-mail: robert.eymard@univ-mlv.fr



2 Daniele A. Di Pietro, Robert Eymard, Simon Lemaire and Rolag$én

The most commonly used geometry in reservoir and CO2 staragiels is the
so called Corner Point Geometry or CPG [7]. Although the CiB@rdtization is ini-
tially a structured hexahedral grid, vertical edges of tbkksanay typically collapse
to account for the erosion of the geological layers and eestimay be dedoubled
and slide along the coordlineisq| straight lines orthogonal to the geological layers)
to model faults. In addition non conforming local grid refinent is used in near
well regions. The resulting mesh is unstructured, non conifeg, it includes all the
degenerate cells obtained from hexahedra by collapsingse@d hence it is not
adapted to conforming finite element discretizations.

The objective of this paper is to introduce a new discreitimascheme for linear
elasticity equations which should

e apply on general meshes possibly non conforming;
e guarantee the stability of the coupling with Darcy flow madesing cell centered
finite volume discretization for the Darcy equation [1].

Our discretization is based on the family of Hybrid FinitelMme schemes in-
troduced for diffusion problems on general meshes in [5] alsd closely related
to Mimetic Finite Difference schemes [6] as shown in [4]. THegrees of freedom
are defined by the displacement veatigrat the center of gravity of each faceof
the mesh as well as the displacement veajoiat a given poiniy of each celK
of the mesh. Following [5], a piecewise constant gradietiigt and can be read-
ily used to define the discrete variational formulation vhiaimics the continuous
variational formulation for the displacement vector fielld.order to stabilize this
formulation and to reduce the degrees of freedom, the taiayeomponents of the
displacement are interpolated in terms of the neighbourorghal components. Nu-
merical experiments on two dimensional and three dimemsioreshes show that
the resulting discretization is stable and convergentduit&on, this discretization
satisfies by construction the compatibility condition orB Bsee [2], [1]) condition
for poroelastic models when coupled with a cell centereddinblume scheme for
the Darcy flow equation.

2 Discretization of Linear Elasticity Models

Let Q be ad-dimensional polygonal or polyhedral domaih=€ 2 or 3) and let us
consider the following linear elasticity problem in infiegimal strain theory:

div(o(u)) +f =0 onQ,
u=uP onaQP®, (1)
ou)-n=g ondQ",

whereu € RY is the unknown displacement field aidandN the two exponents
standing respectively for Dirichlet and Neumann boundanyditions.o(u) is the
Cauchy stress tensor and is given by Hooke’s am) = 2ue(u) + Atr(g(u)) 1,
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wherep, A are the Lard parameters ang{u) = 3 (Ou+ Ou') is the infinitesimal
strain tensor.

2.1 Hybrid Finite Volume Discretization

The simulation domai is discretized by a set of polygonal or polyhedral control
volumeskK € %/, such thatQ = |Jx. K. The set of faces of the mesh is denoted
by & and splits into boundary interfaceégy and inner interfaceg;,;. Among the
boundary interfaces, we denote &%, and&)), the subsets of boundary faces verify-
ing Dirichlet or Neumann conditions. The center of gravifyle faceo is denoted
by X5 and itsd — 1 dimensional measure bg|. A pointxk is defined inside each
cellK of the mesh. The set of faces of each &els denoted byk, and the distance
betweerxk ando by dk . The cone of base € &k and topxk is denoted by .

Brief reminder of the hybrid finite volume discretizatioreafcalar diffusion
problem (see [5]):

We first define the discrete hybrid spadés= {(vk € R)x. 4, (Vo € R)ger | and
VO={veV |v; =0Vo € &}. VO is endowed with the discretdj, () norm

;
||v||vo=<z 5 o |vo—vK|2> | @

Kex ocdx ~K.0

Then, following [5], a discrete gradient is defined on eachedd, which only
depends ok andv, for o’ € &k. This gradient is exact on linear functions and
satisfies a weak convergence property. According to [Shiit loe written

DKUVz z (VU'_VK)yEU/ VVEV, (3)
o’edk

wherey‘K"" € RY only depends on the geometry.

Hybrid finite volume discretization of the linear elastycihodel:

As we did above, we introdudé= { (vk € RY), . -, (Vg € RY) .} asthe discrete
hybrid space. With an equivalent definition #?, the discrete norm is now defined
as|v[[go = 3%, [vill50. Let us also introduce the spawé = {(wik € RY), .

(Wg € Rd)oegeoxl, (wj e R)Gegﬁmug&t} and the following projection operat®ty :

VoW, Vv— ((VK)K61/7 (Vo)gesn,: (Vo na)o_egimuge%) , Wwhereng is a unit vector
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normal too which orientation is fixed once and for all. Let us finally defthe space
WO = Ry (V?) endowed with the discrete norfiw||y,0 = inf,cyo g, (v)=w IV[Ivo-

The main novelty of our discretization lies in the definitioha linear interpo-
lation operatott : W — V. This linear interpolation operator must be second order
accurate to preserve the order of approximation of the setamd interpolant in the
sense thaBy (I (w)) =w for all w € W. It must also be local in the sense that it com-
putes the displacement vectgy at a given facer € & U @”’e")‘d in terms of a given
number of normal components, - n,s taken on a stenciV’; C & of neighbouring
faceso’ of o (with o € .7;). An example of construction of such an interpolator is
given in subsection 2.3.

The use of the interpolation operatioill bring two crucial improvements to
the discretization: first a drastic reduction of the degiadseedom and secondly a
stabilization of the discretization.

Finally, generalizing the scalar framework to the vectar@se of the linear elas-
ticity model, we introduce a piecewise constant discredelignt for each conk,:

Okv=Y (Vor—Vk)®YEZ Vvev. (4)

a
o’edk

2.2 Discrete Variational Formulation

Starting from (1), we deduce a discrete weak formulatiorhefgroblem inw?e.
Settingek,, (V) = % (OkeV+ DKUVT) andok, (V) = 2k, (V) +Atr (&, (v)) 1 for
all v e V, we introduce the discrete bilinear form & x W

auVv)= 5 3 Kol (H(u): &, (1(v). (5)
Kex oedk

Then, the discrete variational formulation reads: find W such thatug = u2 for
all o € &2, and such that, for alt € W0,

a_@(U,V)Z Z ‘K|fK'VK+ Z |U|gg~|(V)G, (6)
Kex oesd

whereu = . f,uPdo, fk = ¢ Jx fdx andgo = 3 [, gdo are average values.

It is important to keep in mind that numerical experimentevgtihat without
interpolation, the bilinear forma,; on the spac® x V leads to an unstable scheme
with vanishing eigenvalues on triangular or tetrahedradines with mixed Neumann
Dirichlet boundary conditions.

Note also that for the solution of the linear system (6), thknownsux can
easily be eliminated without any fill in, reducing the degreéfreedom to the face
normal components of the displacement.
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2.3 Interpolation of the tangential components of the displacement

Given a faceo € &n U &, for each componerite [1,d] of the displacement field
Ug, we look for a linear interpolation of the form

d .
U5(x) = agxj+By. (7)
=1

In order to determine thd(d + 1) coefficients(a('})ue[[l‘d]], (B},)ie[[l_d]] as linear
combinations of normal components, - n,/, ¢’ € .74, we look for a set¥, of
d(d+ 1) neighbouring faces’ of the faceo, with o € ., and such that the system
of equationsiy(Xy/) - Ngr = Uy - Ny is NON singular. The se¥y is built using the
following greedy algorithm:

1. Initialization: for a given numbet> d(d+ 1), we select thé closest neighbour-
ing faces of the face which are sorted from the closest to the farthest using the
distance between the face center apdop = 0,01, ,0k_1. We sets = {0}
andq=1,1 =0;

2. whileg<d(d+1) andl < k—1:

o |=1+1;

o if the equatiorly(Xg; ) - Ng, = Ug; - Ng, is linearly independent with the set of
equationsug (Xy/) - Ngr = Uy - Ny for all o’ € S, then. = {01} U S,
g=0q-+1,

3. ifq<d(d+1), the algorithm is rerun with a larger value lof

Note that sincer € .7, the interpolation operator satisfies as required the ptppe
Ry (I(u)) =uforallueW.

2.4 Compatibility condition with cellwise constant pressure for
poroelastic models

Let L3(Q) be the subspace of functions bf(Q) with vanishing mean values.
For the sake of simplicity but without any loss of generalitye consider here
QP = 9Q anduP = 0. It is well known (see [1]) that the well-posedness of lin-
ear poroelasticity models relies on the well-posedneskefdllowing saddle point

problem: find(u, p) € H2(Q)® x L2(Q) such that

{ a(u,v) +b(v,p) = (f,v)LZ(Q)d forallv e H(}(Q)d, ®)

b(u.q) = (h,a)2(q) forallge LG(Q),

whereais the bilinear form of the linear elasticity model ab@, p) = —(divv, p) 2 ).
The stability of this saddle point problem results from tleivity of a and the
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following LBB condition (see [2]) which guarantees the ¢gixe and uniqueness

ane i b(v.p) >
of the solution: InEEL%<Q)SUR/€H&(Q)d Moo Plza) — y > 0.
0

The following theorem states that the LBB condition holdgtendiscrete spaces
WO x Mg, whereM is the space of cellwise constant functions on the m#sh
with vanishing mean values endowed with & Q) norm, and for the discrete
divergence operator defined by:

by (W, p) = —(divow, p) 2y == > Pk éz lo|lwg (Ng-Nk,g),  (9)
Keo ek Néint

for all (w,p) € WO x Mg, and whereng ¢ is the normal to the face outwardK.

It implies that, assuming the coercivity af,, the coupling of our discretization for
the elasticity model with a cell centered finite volume schdan the Darcy pressure
equation will lead to a convergent and stable scheme fordhegtastic model.

Theorem 1. The bilinear form b, defined oW©° x My satisfies the LBB condition

inf sup by (W, p)

>y > 0, (10)
pebo oo TWIyolIPl 2

with a constant/; depending only on usual regularity parameters of the mesh.

Proof. From the continuous LBB condition, for gl € Mo, there exists a displace-
ment fieldv € H(}(Q)d such thab(v,p) >y ||v||H1(Q)de||,_2(Q). Letu be the ele-
0

ment ofV® such thatik = ¢ i v dx for K € ¢ andug = 1, [, v do for o € &.
Then,w = Ry (u) € WO satisfiesh, (w, p) = b(v, p).
Since it is shown in [9] thaffu|,o < K ||VHH1(Q>d, with a constank depending
0
on usual regularity parameters of the mesh, and since we yawefinition the
inequality ||wl|yo < |/ullyo, the discrete LBB condition holds witjpy, = £. 0

3 Numerical experiments

In this section, the convergence of the scheme is testecedm#rar elasticity model
with exact solution

b= ) g g (11)

The right hand side and the Dirichlet boundary conditioresdefined by the exact
solution. The Laré parameterd andyu are set to 1.

The tests have been held using an object oriented C++ impltien which
original approach is described in [8]. The relati¢eerror on the displacement and
on the gradient of the displacement are plotted functionhef number of inner
faces. In the computation of these errors, the cellwiseteonsliscrete solution and
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discrete gradient are used. We first consider the triangu&shes (mesh family 1),
the Cartesian grids (mesh family 2), the local grid refinen{eresh family 3) and
the Kershaw meshes (mesh family 4) from the FVCAS5 2D benchn¥dre exact

solution is defined by
(11
X=\2-1)

The results presented on figure 1 show the good convergerfwviber of the

scheme. The expected order of convergence is reached fibreatheshes (for the
solution and its gradient) and is even exceeded for the gnadin Cartesian grids.
Next, let us consider the Cartesian grids (mesh family A, tdindomly distorted

—+— Triangular meshes
—+— Carts

12 error for the displacement

10°

12 error for the gradient of the displacement

d

10° 10 10" 10° 10

10° 10°
Number of inner faces Number of inner faces

Fig. 1 12 error for the displacement and for the gradient of the displacefaection of the number
of inner faces for the triangular meshes, the Cartesian gridslotta grid refinement and the
Kershaw meshes.

grids (mesh family AA), and the tetrahedral meshes (mesthilyaB) from the
FVCAG 3D benchmark. The exact solution is defined by

111
x=| 2 1-1
-11 2
The results exhibited on figure 2 show again the good conuergbehaviour of the

scheme with the expected order on the three meshes for bettiigbrete solution
and its gradient.

4 Conclusion

In this paper, a new discretization method has been intedifer linear elasticity
using only one degree of freedom per face. It applies to geépetygonal and poly-
hedral meshes possibly non conforming. In addition thisréiszation satisfies the
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—+— Cartesian grids T T —+— Cartesian grids
—— Tetrahedral meshes —+— Tetrahedral meshes
—+— Randomly distorted grids —+— Randomly distorted grids

Theoretical slope chalslupe

12 error for the displacement

2/d

12 error for the gradient of the displacement

10" 10 10° 10° 10

10" 10 10° 10 10° 10 i
Number of inner faces

2
Number of inner faces

Fig. 2 12 error for the displacement and for the gradient of the displaceéfo@ction of the number
of inner faces for the Cartesian grids, the randomly distorté@tbgnd the tetrahedral meshes.

compatibility condition when coupled with cell centeredtirvolume schemes for
the Darcy equation in poroelastic models.

First numerical experiments in 2D and 3D exhibit the stap#ind convergence
of the scheme. In the near future, further testings will béqgrened on CPG grids
with erosions, local grid refinement and faults, to assesgttential of this scheme
for reservoir and CO2 storage simulations.
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