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Abstract
Given a meromorphic linear differential system with an arbitrary

single level r ≥ 1, we build a regular holomorphic perturbation which
preserves the single level and we show that the Stokes-Ramis matrices
of the initial system are limits of convenient products of the perturbed
ones. As an application, we provide an alternative method for the
effective calculation of the Stokes multipliers of the initial system il-
lustrated on two examples. No assumption of genericity is made on
the initial system.
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Introduction

Throughout the paper, we are given a positive integer r ≥ 1 and we consider
a linear differential system (in short, a differential system or a system) of
dimension n ≥ 2 with meromorphic coeffi cients of order r + 1 at the origin
0 ∈ C of the form

(A) xr+1
dY

dx
= A(x)Y , A(x) ∈Mn(C{x}), A(0) 6= 0

together with a formal fundamental solution at 0

Ỹ (x) = F̃ (x)xLeQ(1/x)

where

1
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• F̃ (x) ∈ GLn(C[[x]][x−1]) is an invertible matrix with formal mero-
morphic entries in x,

• L =

J⊕
j=1

(λjInj +Jnj) where J is an integer ≥ 2, Inj denotes the identity

matrix of size nj and where

Jnj =



0 if nj = 1


0 1 · · · 0
...

. . .
. . .

...
...

. . . 1
0 · · · · · · 0

 if nj ≥ 2

is an irreductible Jordan block of size nj,

• Q
(

1

x

)
=

J⊕
j=1

qj

(
1

x

)
Inj where the qj(1/x)’s are polynomials of max-

imal degree equal to r with respect to 1/x.

In a very general system (A), the qj(1/x)’s may be polynomials in a frac-
tional power in 1/x. However, they can always be changed into polynomials
in the variable 1/x itself by means of an adequate finite algebraic extension
x 7−→ xν , ν ∈ N∗, of the variable x. The properties in view in this paper
being preserved under such algebraic extensions, we may assume, without
any loss of generality, that the qj(1/x)’s read as

qj

(
1

x

)
= −aj,r

xr
− aj,r−1

xr−1
− ...− aj,1

x
∈ x−1C

[
x−1
]
.

In addition, we suppose

(0.1) F̃ (x) ∈Mn(C[[x]]) is a formal power series in x satisfying

F̃ (x) = In +O(xr),

(0.2) the eigenvalues λj satisfy 0 ≤ Re(λj) < 1 for all j = 1, ..., J ,

(0.3) λ1 = 0 and q1 ≡ 0.
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Such conditions are not restrictive since they can always be fulfilled by means
of a meromorphic gauge transformation Y 7−→ T (x)x−λ1e−q1(1/x)Y where
T (x) has explicit computable polynomial entries in x and 1/x (cf. [1]). Recall
that conditions F̃ (0) = In and 0 ≤ Re(λj) < 1 guarantee the unicity of F̃ (x)
as formal series solution of the homological system associated with system
(A) (cf. [1]). Conditions λ1 = 0 and q1 ≡ 0 are for notational convenience.

The assumption “system (A) has the unique level r”is equivalent to the
conditions

(0.4)
1. qj − q` ≡ 0 or with degree r for all j, `

2. there exists j such that aj,r 6= 0
.

Observe that, all over the article, no restrictive assumption is made except
the assumption that the given system (A) has a unique level. In particular,
we never assume that the formal monodromy L is diagonal or the Stokes
values aj,r are distinct.

In this paper, we are interested in regular perturbations of system (A) of
the form

(Aε) xr+1
dY

dx
= Aε(x)Y with A1(x) = A(x),

where ε is a holomorphic multi-parameter lying in a polydisc centered at
the unit 1 := (1, ..., 1) of the C-vector space Cp+1 for a convenient p ≥ 1.
Besides, we suppose that, for any value of ε, system (Aε) has, like initial
system (A), the unique level r too.

The main goal of this article is to prove that the Stokes-Ramis matrices1

of initial system (A) are limits of convenient products of the Stokes-Ramis
matrices of perturbed systems (Aε).
In a second time, we show how this result allows to build a method for

the effective calculation of the Stokes multipliers of initial system (A) and
we illustrate it on some examples.

1In the whole paper, we call Stokes matrices all the matrices providing the transition
between any two asymptotic solutions whose domains of definition overlap. The name
“Stokes-Ramis matrix”used here is reserved, according to the custom initiated by J.-P.
Ramis ([5]) in the spirit of Stokes’work, to the matrices providing the transition between
the sums on each side of a same anti-Stokes direction. Thereby, a Stokes-Ramis matrix is
a Stokes matrix, but the converse is false in general.
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The organization of the paper is as follows:
In section 1, we recall some basic definitions about the notions of the

theory of summation, such as anti-Stokes directions, Stokes-Ramis matrices,
etc..., which are needed.
In section 2, based on the geometry of the anti-Stokes directions of per-

turbed system (Aε), we select some Stokes matrices−defined as finite product
of Stokes-Ramis matrices− which are proved to depend holomorphically on
the parameter ε (theorem 2.14) and to converge to the Stokes-Ramis matrices
of initial system (A) when ε goes to 1 (corollary 2.15). Let us point out that
such results were already obtained by the author in the case r = 1 with a
more specific perturbation (cf. [6]).
The central point of the proof of theorem 2.14 is proved in section 3.

This one is based, after rank reduction, on an adequate variant of the proof
of summable-resurgence theorem for single-level systems following classical
Écalle’s method by regular perturbation and majorant series which was given
by the author in [7].
In section 4, we combine the general results obtained in section 2 with the

results of [4,7] to build an alternative method for the effective calculation of
the Stokes multipliers of F̃ (x). As an illustration, we develop two examples.

Acknowledgement I would like here to thank Professor M. Loday-Richaud
for all her comments and advice which enabled me to finalize this article.

1 Some definitions and notations

For the convenience of the reader, we recall here below some definitions about
the notions of summation theory which are needed in this paper.

• Anti-Stokes directions

The anti-Stokes directions (i.e., the singular directions) of system (A) (or
of the full matrix F̃ (x)) are the directions of maximal decay of exponentials
e(qj−q`)(1/x) with qj−q` 6≡ 0. More precisely, these directions are the directions
determined from 0 by the rth roots of the nonzero elements of

Ω := {aj,r − a`,r ; 1 ≤ j, ` ≤ J}.

Indeed, according to our hypothesis (0.4) of “single level equal to r”, any
polynomial qj − q` 6≡ 0 is of degree r and reads

(qj − q`)
(

1

x

)
= −aj,r − a`,r

xr
+ o

(
1

xr

)
with aj,r − a`,r 6= 0.
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Recall that the elements aj,r−a`,r of Ω are called Stokes values of system
(A). Notice that condition a1,r = 0 implies aj,r ∈ Ω for all j = 1, ..., J .
Throughout the article, we refer as a collection of anti-Stokes directions

of system (A) any set (θk)k=0,...,r−1 ∈ (R/2πZ)r formed by the r directions
generated by a nonzero Stokes values of Ω (i.e., determined by its rth roots).

• Summation

Given a non anti-Stokes direction θ ∈ R/2πZ of system (A) and a choice of
an argument of θ, say its principal determination θ? ∈]−2π, 0] 2, we consider
the sum of Ỹ in the direction θ given by

Yθ(x) = sr;θ(F̃ )(x)Y0,θ?(x)

where sr;θ(F̃ )(x) denotes the uniquely determined r-sum of F̃ at θ and where
Y0,θ?(x) is the actual analytic function Y0,θ?(x) := xLeQ(1/x) defined by the
choice arg(x) close to θ? (denoted below arg(x) ' θ?).
Recall that sr;θ(F̃ ) is an analytic function defined and 1/r-Gevrey asymp-

totic to F̃ on a germ of sector bisected by θ and opening larger than π/r.

For both practical and theoretical reasons, it is worth noting that it is
often useful to rewrite sr;θ(F̃ ) in terms of 1-sums (or Borel-Laplace sums):
let us denote by F̃ [u](t) ∈Mn(C[[t]]) with u = 0, ..., r−1 the r-reduced series
of F̃ (x), i.e., the formal series which are uniquely determined by the relation

F̃ (x) = F̃ [0](xr) + xF̃ [1](xr) + ...+ xr−1F̃ [r−1](xr).

Then, all the F̃ [u]’s are 1-summable in the direction θ := rθ and the r-sum
sr;θ(F̃ ) is related to the 1-sums s1;θ(F̃ [u]) by the relation

sr;θ(F̃ )(x) =

r−1∑
u=0

xus1;θ(F̃
[u])(xr).

Recall that the 1-sum s1;θ(F̃
[u])(t) is given by the Borel-Laplace integral∫ ∞eiθ

0

F̂ [u](τ)e−τ/tdτ

where F̂ [u](τ) denotes the Borel transform of F̃ [u](t).

2Any choice is convenient. However, to be compatible, on the Riemann sphere, with
the usual choice 0 ≤ arg(z = 1/x) < 2π of the principal determination at infinity, we
suggest to choose −2π < arg(x) ≤ 0 as principal determination about 0.
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• Stokes phenomenon and Stokes-Ramis matrices
When θ ∈ R/2πZ is an anti-Stokes direction of system (A), we consider the
two lateral sums sr;θ−(F̃ ) and sr;θ+(F̃ ) of F̃ at θ respectively obtained as
analytic continuations of sr;θ−η(F̃ ) and sr;θ+η(F̃ ) to a sector with vertex 0,
bisected by θ and opening π/r. Notice that such analytic continuations exist
without ambiguity when η > 0 is small enough.
The Stokes phenomenon of system (A) stems from the fact that the sums

sr;θ−(F̃ ) and sr;θ+(F̃ ) of F̃ are not analytic continuations from each other in
general. This defect of analyticity is quantified by the collection of Stokes-
Ramis automorphisms

Stθ? : Yθ+ 7−→ Yθ−

for all the anti-Stokes directions θ ∈ R/2πZ of system (A), where Yθ+ and
Yθ− respectively denote the sums of Ỹ defined for arg(x) ' θ? by

Yθ+(x) := sr;θ+(F̃ )(x)Y0,θ?(x) and Yθ−(x) := sr;θ−(F̃ )(x)Y0,θ?(x).

The Stokes-Ramis matrices are defined as matrix representations of the
Stθ?’s in GLn(C).

Definition 1.1 (Stokes-Ramis matrices)
One calls Stokes-Ramis matrix associated with Ỹ in the direction θ the mat-
rix of Stθ? in the basis Yθ+. We still denote it Stθ?.

Notice that the matrix Stθ? is uniquely determined by the relation

Yθ−(x) = Yθ+(x)Stθ? for arg(x) ' θ? .

2 A holomorphic perturbation

In this section, we build a regular holomorphic perturbation of system (A)
which preserves the single level r ≥ 1; then, based on the geometry of
the anti-Stokes directions of the perturbed system, we select some Stokes
matrices −defined as convenient finite products of Stokes-Ramis matrices−
and we show, on one hand, that they depend holomorphically on the para-
meter and, on the other hand, that they converge to the Stokes-Ramis
matrices of initial system (A).

According to the normalization F̃ (x) = In + O(xr), the matrix A(x) of
system (A) reads

A(x) =

J⊕
j=1

[(
raj,r +

r−1∑
k=1

kaj,kx
r−k

)
Inj + xrLj

]
+B(x)
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where Lj := λjInj + Jnj denotes the j
th Jordan block of the matrix L of

exponents of formal monodromy and where B(x) is analytic at the origin
0 ∈ C. More precisely, splitting B(x) = [Bj;`(x)] into blocks fitting the
Jordan structure of L, one has

(2.1) Bj;`(x) =

{
O(xr) if aj,r 6= a`,r
O(x2r) if aj,r = a`,r

.

The holomorphic perturbation of system (A) considered below acts both
on the Stokes values aj,r 6= 0 (hence, a fortiori, on the set Ω of all the Stokes
values of system (A) and on the anti-Stokes directions of system (A) too)
and on the analytic part B(x).

Recall that a1,r = 0 and the nonzero aj,r’s are not supposed distinct.
Henceforth, we denote below by ω1, ..., ωp with p ≥ 1 the distinct values of
the aj,r 6= 0 and we rewrite Ω as

Ω = {ω0 := 0} ∪ {ωk − ω` ; k, ` = 0, ..., p and k 6= `}.

Notice that ωk −ω` 6= 0 for all k 6= `; hence, their rth roots determine all the
anti-Stokes directions of system (A).

Throughout section 2, we shall use the following notations:

Notation 2.1 For any α ∈ C, ρ > 0, θ ∈ R/2πZ and η > 0, we denote
below by

• D(α, ρ) := {x ∈ C ; |x− α| < ρ} the open disc in C with midpoint α
and radius ρ,

• D(α, ρ) := {x ∈ C ; |x− α| ≤ ρ} the closed disc in C with midpoint α
and radius ρ (= the closure in C of D(α, ρ)),

• Σθ,η := {x ∈ C\{0} ; |arg(x)− θ| < η/2} the open sector with vertex
0, bisected by direction θ and opening η,

• DΣθ,η the set of directions determined from 0 by all the points of Σθ,η,

• Σθ,η = {x ∈ C\{0} ; |arg(x)− θ| ≤ η/2} the closure of Σθ,η in C\{0},

• DΣθ,η the set of directions determined from 0 by all the points of Σθ,η.
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2.1 A perturbed system

We consider below a perturbation of system (A) of the form

(Aε) xr+1
dY

dx
= Aε(x)Y

where

(1) the parameter ε := (ε1, ..., εp, εp+1) lies in a polydisc Dp :=

p+1∏
k=1

D(1, ρk)

of Cp+1; precise conditions on the ρk’s are given below,

(2) for all ε ∈ Dp, the matrix Aε(x) reads

Aε(x) =
J⊕
j=1

[(
raεj,r +

r−1∑
k=1

kaj,kx
r−k

)
Inj + xrLj

]
+ εp+1B(x)

with

aεj,r :=

{
ω0 = 0 if aj,r = ω0
ωkεk if aj,r = ωk and k ∈ {1, ..., p}

.

Notice that systems (Aε) depend holomorphically on the parameter ε and
coincide with system (A) for ε = 1 := (1, ..., 1) the unit of Cp+1.
Notice also that

ωkεk ∈ D(ωk, |ωk| ρk) for all k = 1, ..., p.

Consequently, the radius ρk’s, k = 1, ..., p, being chosen so that conditions

(C1) D(ωk, |ωk| ρk) ∩D(ω`, |ω`| ρ`) = ∅ for all k, ` = 1, ..., p and k 6= `,

(C2) 0 /∈ D(ωk, |ωk| ρk) for all k = 1, ..., p,

be verified (such choices exist since the ωk’s are distinct in C\{0} for all
k), system (Aε) has, for all ε ∈ Dp, the unique level r and has for formal
fundamental solution the matrix Ỹ ε(x) = F̃ ε(x)xLeQ

ε(1/x) where

• F̃ ε(x) ∈Mn(C[[x]]) is a formal power series in x satisfying F̃ ε(0) = In,

• L is the matrix of exponents of formal monodromy of initial system
(A),
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• Qε
(

1

x

)
=

J⊕
j=1

qεj

(
1

x

)
Inj with

qεj

(
1

x

)
= −

aεj,r
xr
− aj,r−1

xr−1
− ...− aj,1

x
∈ x−1C[x−1].

In other words, qεj (1/x) is equal to
0 if aj,r = ω0

−ωkεk
xr
− aj,r−1

xr−1
− ...− aj,1

x
if aj,r = ωk and k ∈ {1, ..., p}

.

Observe that, like systems (Aε) and (A), the two formal fundamental solu-
tions Ỹ ε(x) and Ỹ (x) coincide for ε = 1. Observe also that, for any ε ∈ Dp,
Ỹ ε(x) has the same normalizations as Ỹ (x). In particular, its formal series
factor F̃ ε(x) is uniquely determined, for all ε ∈ Dp, by the homological sys-
tem associated with system (Aε) jointly with the initial condition F̃ ε(0) = In.
Furthermore, the following condition holds for all ε ∈ Dp:

(2.2)
{
aj,r = 0⇔ aεj,r = 0⇔ qεj ≡ 0
aj,r = a`,r ⇔ aεj,r = aε`,r ⇔ qεj ≡ qε`

.

Remark 2.2 Unlike the radius ρk, k = 1, ..., p, which must be chosen so that
conditions (C1) and (C2) hold, no condition on the radius ρp+1 is imposed.
In particular, we can choose it as we want.

Remark 2.3 Conclusions above on systems (Aε) are preserved when we re-
place in conditions (C1) and (C2) the closed discs D(ωk, |ωk| ρk) by the open
discs D(ωk, |ωk|ρk). Actually, the choice of the closed discs is to guarantee
here that 0 is not an accumulation point for the set of nonzero Stokes values
of systems (Aε) when ε runs in Dp. As we shall see below, this point will
play an essential role.

Let us now denote by Ωε the set of Stokes values of system (Aε). By
construction, the set Ωε is deduced from the set Ω of Stokes values of initial
system (A) by replacing each nonzero Stokes value ωk −ω` with the nonzero
element ωkεk − ω`ε` (we set ε0 := 1). Hence, for all ε ∈ Dp,

Ωε = {ω0 = 0} ∪ {ωkεk − ω`ε` ; k, ` = 0, ..., p and k 6= `}.

This relation between initial Stokes values and perturbed Stokes values
has a translation in terms of anti-Stokes directions.
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Lemma 2.4 Let (θk)k=0,...,r−1 ∈ (R/2πZ)r be a collection of anti-Stokes dir-
ections of initial system (A).
Let G((θk)) be the set of Stokes values of Ω generating the collection (θk).
Then, the image of (θk) by the perturbation is the set of all the anti-Stokes
directions of systems (Aε), ε running in Dp, generated by all the Stokes values
ωkεk − ω`ε` ∈ Ωε while ωk − ω` ∈ G((θk)).

A more precise version of lemma 2.4 is given in section 2.3, proposition
2.9. Before, we need some geometric features of the set of perturbed Stokes
values.

2.2 Singular discs and singular sectors

Let us denote by
Ω(Dp) :=

⋃
ε∈Dp

Ωε

the set of all the Stokes values of all systems (Aε) when ε runs in Dp. The
goal of this section is to describe some of its geometric features.

1. Singular discs of Ω(Dp)

As seen before, the perturbation changes, for all ε ∈ Dp, the nonzero Stokes
value ωk−ω` ∈ Ω of initial system (A) into the nonzero Stokes value ωkεk−
ω`ε` ∈ Ωε of system (Aε). This brings us to the following definition.

Definition 2.5 (Singular disc of Ω(Dp))
Given a nonzero Stokes value ωk − ω` ∈ Ω of initial system (A) (hence,
k 6= `), we call singular disc of Ω(Dp) associated with ωk − ω` the subset
Dωk−ω` ⊂ Ω(Dp) of all the Stokes values ωkεk − ω`ε` ∈ Ωε of all systems
(Aε) when ε runs in Dp.

Notice that the set Ω(Dp) can be rewritten as

Ω(Dp) = {0} ∪

 ⋃
ω∈Ω\{0}

Dω


Notice also that the choice of closed discs in conditions (C1) and (C2) (cf.

remark 2.3) implies 0 /∈ Dω (= the closure of Dω in C) for all ω ∈ Ω\{0}.

Proposition 2.6 below gives us an explicit form of the singular discs Dω.
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Proposition 2.6 (Description of singular discs of Ω(Dp))
Let ωk − ω` ∈ Ω be a nonzero Stokes value of initial system (A). Let Dωk−ω`
be the singular disc of Ω(Dp) associated with ωk − ω`.
Then,

Dωk−ω` = D(ωk − ω`, |ωk| ρk + |ω`| ρ`)
(we set ρ0 := 0).

Observe that, contrary to the discs D(ωk, |ωk| ρk) (cf. condition (C1)),
some of singular discs may overlap.

2. Singular sectors of Ω(Dp)

We denote below by

• Θ the set of all the directions determined from 0 by all the nonzero
Stokes values of Ω,

and, for all θ ∈ Θ,

• Ωθ the set of all the nonzero Stokes values of Ω with argument θ,

• Ωθ(Dp) :=
⋃
ω∈Ωθ

Dω the set of all the singular discs of Ω(Dp) associ-

ated with ω ∈ Ωθ. In other words, Ωθ(Dp) collects all the perturbed
Stokes values of Ω(Dp) associated with all the initial Stokes values of
Ω determining the given direction θ ∈ Θ.

Figure 2.1 A set Ωθ(Dp)

According to proposition 2.6, all the singular discs Dω with ω ∈ Ωθ are
centered on θ. Then, the set Ωθ(Dp) is symmetrical about θ. This motivates
the following definition.
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Definition 2.7 (Singular sectors of Ω(Dp))
Given a direction θ ∈ Θ, we call singular sector of Ω(Dp) associated with
θ the sector with minimal opening among all the sectors Σθ,η containing
Ωθ(Dp). We denote it Σθ,η(θ).

Figure 2.2 A sector Σθ,η(θ)

Proposition 2.8 below, which states some features of Σθ,η(θ), stems from prop-
erty “0 /∈ Dω for all ω ∈ Ω\{0}”.

Proposition 2.8 Given a direction θ ∈ Θ, the following properties hold:

(a) η(θ) < π, i.e., Σθ,η(θ) is smaller than a half-plane.

(b) η(θ) only depends on the radius ρ1, ..., ρp associated with the initial
Stokes values ω1, ..., ωp. In particular, η(θ) tends to 0 when the ρk’s go
to 0.

(c) The set DΣθ,η(θ) is the set of directions determined from 0 by all the
points of Ωθ(Dp).

According to proposition 2.8 (b) and calculations below, we suppose,
from now on, that the radius ρk, k = 1, ..., p, are chosen so that the following
conditions be verified:

(C3) for all θ ∈ Θ, η(θ) <
π

2
,

(C4) for all θ ∈ Θ, the principal determination θ? of θ and the principal
determination (θ − η(θ)/2)? of θ − η(θ)/2 satisfy

0 ≥ θ? > (θ − η(θ)/2)? > −2π,
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(C5) Σθ,η(θ) ∩ Σθ′,η(θ′) = ∅ for all θ,θ′ ∈ Θ, θ 6= θ′.

Notice that, once again (cf. remark 2.2), no condition is imposed on the last
radius ρp+1.

We are now able to describe the action of the perturbation on the anti-
Stokes directions of initial system (A).

2.3 Perturbation and anti-Stokes directions

The goal of this section is to give a precise description of the image of any
collection (θk)k=0,...,r−1 ∈ (R/2πZ)r of anti-Stokes directions of initial system
(A) by the perturbation. To this end, we base on lemma 2.4 and on the
geometric features of the set Ω(Dp) stated in the previous section.

The main result of this section is the following proposition.

Proposition 2.9 Let (θk)k=0,...,r−1 ∈ (R/2πZ)r be a collection of anti-Stokes
directions of initial system (A).
Let θ := rθ0 (hence, θ = rθk for all k). Then,

1. θ ∈ Θ,

2. the image of the collection (θk)k=0,...,r−1 by the perturbation is the col-
lection (DΣθk,η(θ)/r)k=0,...,r−1.

Recall (cf. definition 2.7) that η(θ) denotes the opening of the singular sector
of Ω(Dp) associated with θ.
Recall also (cf. lemma 2.4) that, for all k = 0, ..., r − 1, the directions of the
set DΣθk,η(θ)/r are anti-Stokes directions of systems (A

ε), ε running in Dp.

Proof. Obviously, θ is the direction determined by the Stokes values of Ω
generating the collection (θk); hence, θ ∈ Θ and the set G((θk)) of lemma
2.4 coincides with the set Ωθ of section 2.2. Thereby, the image of (θk) is
equal to the set of directions determined by the rth roots of the elements of
Ωθ(Dp) (cf. lemma 2.4). Proposition 2.8 (c) ends the proof.

Observe that, like directions θk’s, the sets DΣθk,η(θ)/r’s are regularly dis-
tribued around the origin 0 ∈ C.

Conditions (C3)−(C5) imply some obvious properties on sectors Σθk,η(θ)/r

which will be useful in the following calculations.

Proposition 2.10 With notations as above, the following properties hold:
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(a) For any collection (θk) of anti-Stokes directions of initial system (A),

Σθk,η(θ)/r ∩ Σθ`,η(θ)/r = ∅ for all k 6= `.

(b) For any collection (θk) of anti-Stokes directions of initial system (A),
the principal determination θ?k of θk and the principal determination
(θk − η(θ)/(2r))? of θk − η(θ)/(2r) satisfy

0 ≥ θ?k > (θk − η(θ)/(2r))? > −2π for all k.

(c) For any two distinct collections (θk) and (θ′`) of anti-Stokes directions
of initial system (A),

Σθk,η(θ)/r ∩ Σθ′`,η(θ
′)/r = ∅ for all k and `.

Figure 3 below illustrates proposition 2.10 for two collections (θk) and
(θ′`) in the case r = 3:

Figure 2.3

Remark 2.11 Proposition 2.10, (c) shows that the set (DΣθk,η(θ)/r)k=0,...,r−1
contains no other anti-Stokes directions of systems (Aε), ε running in Dp,
except those issuing from collection (θk) under the action of the perturba-
tion. In particular, since systems (A) and (Aε) coincide for ε = 1, the set
DΣθk,η(θ)/r just contains, for all k = 0, ..., r−1, the direction θk as anti-Stokes
directions of initial system (A).
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2.4 Initial vs perturbed Stokes-Ramis matrices

In this section, we consider a collection (θk)k=0,...,r−1 of anti-Stokes directions
of initial system (A). Let (DΣθk,η(θ)/r)k=0,...,r−1 be its image by the perturb-
ation. Recall that θ = rθk for any k (cf. proposition 2.9).

According to condition (C3) and proposition 2.10 above, there exists
η ∈ ]η(θ), π/2[ such that, for all k = 0, ..., r − 1,

1. Σθk,η(θ)/r & Σθk,η/r & Σθk,(π−η)/r & Σθk,π/r,

2. the principal determination (θk − η/(2r))? of θk − η/(2r) satisfies

0 ≥ θ?k > (θk − η(θ)/(2r))? > (θk − η/(2r))? > −2π,

3. Σθk,η/r ∩ Σθ`,η/r = ∅ for all ` 6= k,

4. for any collection (θ′`) of anti-Stokes directions of initial system (A)
distinct of (θk),

Σθk,η/r ∩ Σθ′`,η(θ
′)/r = ∅ for all ` = 0, ..., r − 1.

Figure 2.4 Sector Σθk,η(θ)/r and
associated directions

Notice that point 1. results from the choice η in ]η(θ), π/2[ and that
points 2.—4. hold as soon as η is close enough to η(θ). Notice also that
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points 3.—4. guarantee that the set DΣθk,η/r contains no other anti-Stokes
directions of systems (Aε), ε running in Dp, except those of DΣθk,η(θ)/r.

Let k ∈ {0, ..., r − 1} and fix, for now, ε ∈ Dp. According to points 1.—4.
above, the directions θk ± η/(2r) are not anti-Stokes directions of system
(Aε). Thereby, (cf. section 1, page 5), the r-sums sr;θk±η/(2r)(F̃

ε) are defined
and analytic on a same germ of sector Σθk,(π−η)/r. Consequently, the sums

Y εθk±η/(2r)(x) := sr;θk±η/(2r)(F̃
ε)(x)xLeQ

ε(1/x)

are related, for arg(x) ∈
](
θk −

η

2r

)?
,

(
θk −

η(θ)

2r

)?[
and x close enough to

0 ∈ C, by the relation

(2.3) Y εθk−η/(2r)(x) = Y εθk+η/(2r)(x)Sεθ?k .

The matrixSεθ?k ∈ GLn(C) denotes the (perturbed) connection matrix between
Y εθk+η/(2r) and Y

ε
θk−η/(2r); it is uniquely determined by identity (2.3). Further-

more, remark 2.11 and points 1. and 3.—4. above imply that the Stokes
matrix3 Sεθ?k is defined as a (finite) product of Stokes-Ramis matrices as-

sociated with Ỹ ε in the anti-Stokes directions of system (Aε) contained in
DΣθk,η(θ)/r. In particular, for ε = 1, we have S1

θ?k
≡ Stθ?k the Stokes-Ramis

matrix of initial system (A) associated with Ỹ in the direction θk. Indeed,
Y 1
θk±η/(2r)(x) = Yθk±η/(2r)(x) = Yθ±k

(x).

The aim of this section (and of this article) is to study the holomorphic
dependence in ε of the Stokes matrices Sεθ?k (see theorem 2.14 below). To
this end, we must, first of all, answer the following questions:

(a) Is there a germ Σk of sector{
x ∈ C∗ such that

(
θk −

η

2r

)?
< arg(x) <

(
θk −

η(θ)

2r

)?}
on which the r-sums sr;θk±η/(2r)(F̃

ε) are defined for all ε ∈ Dp?

(b) If such a Σk exists, what can be said about the holomorphy of functions
ε 7−→ sr;θk±η/(2r)(F̃

ε)(x), x fixed in Σk? More precisely, are those
functions holomorphic on all Dp?

3cf. note 1.
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As seen in section 1, page 5, we write the r-sums sr;θk±η/(2r)(F̃
ε)(x) as

(2.4) sr;θk±η/(2r)(F̃
ε)(x) =

r−1∑
u=0

xus1;θ±η/2(F̃
ε[u])(xr)

where the F̃ ε[u]’s denote the r-reduced series of F̃ ε. Let us admit for the mo-
ment the following lemma which yields some properties on Borel transforms
of the F̃ ε[u]’s.

Lemma 2.12 Let F̂ ε[u](τ) denote the Borel transform of F̃ ε[u](t) with respect
to t.
Let V + (resp. V −) be a domain in C defined by the data of an open disc
centered at 0 ∈ C and an open sector in C with vertex 0 and bisected by
direction θ + η/2 (resp. θ − η/2).
Suppose that the closures V + of V + and V − of V − in C satisfy

V + ∩Dω = ∅ and V − ∩Dω = ∅

for all the nonzero Stokes values ω ∈ Ω (recall that Dω denotes the closure
in C of the singular disc Dω).
Then,

1. Domain V +

(a) For all u = 0, ..., r − 1, the function (τ, ε) 7−→ F̂ ε[u](τ) is holo-
morphic on V + ×Dp.

(b) There exist C+, K+ > 0 such that inequality∣∣∣F̂ ε[u](τ)
∣∣∣ ≤ C+eK

+|τ |

holds for all u = 0, ..., r − 1, all τ ∈ V + and all ε ∈ Dp.

2. Domain V −

(a) For all u = 0, ..., r − 1, the function (τ, ε) 7−→ F̂ ε[u](τ) is holo-
morphic on V − ×Dp.

(b) There exist C−, K− > 0 such that inequality∣∣∣F̂ ε[u](τ)
∣∣∣ ≤ C−eK

−|τ |

holds for all u = 0, ..., r − 1, all τ ∈ V − and all ε ∈ Dp.
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Observe that the existence of domains V + and V − is guaranteed, on one
hand, by the fact that 0 /∈ Dω for all ω ∈ Ω\{0} (cf. page 10) and, on the
other hand, by the fact that the choice of η implies θ ± η/2 /∈ DΣθ′,η(θ′) for
all θ′ ∈ Θ (cf. points 1.—4. above).
We will prove lemma 2.12 (in fact, a stronger statement) in section 3.

The following proposition gives a positive answer to questions (a) and (b)
previously given.

Proposition 2.13 Let k ∈ {0, ..., r − 1}.

1. For all ε ∈ Dp, the functions x 7−→ sr;θk±η/(2r)(F̃
ε)(x) are all defined

and holomorphic on the sector

Σk :=

{
x ∈ C∗; |x| < Kr and

(
θk −

η

2r

)?
< arg(x) <

(
θk −

η(θ)

2r

)?}

where Kr := min

(
r

√
1

K−
, r

√
1

K+

)
.

2. For all x ∈ Σk, the functions ε 7−→ sr;θk±η/(2r)(F̃
ε)(x) are holomorphic

on Dp.

Proof. 1. Let ε ∈ Dp. According to lemma 2.12, the 1-sum s1;θ+η/2(F̃
ε[u])(t)

(resp. s1;θ−η/2(F̃ ε[u])(t)) is defined and holomorphic, for all u = 0, ..., r − 1,
on the sector

Σθ+η/2

(
1

K+

)
:=

{
t ∈ C∗; |t| < 1

K+
and

∣∣∣arg(t)− θ − η

2

∣∣∣ < π

2

}

(resp. Σθ−η/2

(
1

K−

)
:=

{
t ∈ C∗; |t| < 1

K−
and

∣∣∣arg(t)− θ +
η

2

∣∣∣ < π

2

}
).

Thereby, the choice of η (cf. points 1.—4. page 15) implies that the 1-sums
s1;θ±η/2(F̃

ε[u])(t) are defined and holomorphic, for all u = 0, ..., r− 1, on the
same sector

Σ :=

{
t ∈ C∗; |t| < K and

(
θ − η

2

)?
< arg(t) <

(
θ − η(θ)

2

)?}
where

K = min

(
1

K−
,

1

K+

)
.
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Observe that, since constants K+ and K− are independent of ε, sector Σ is
independent of ε too. Point 1. follows from identity (2.4).

2. Fix now x ∈ Σk. According to identity (2.4), it is suffi cient to show
that, for any u = 0, ..., r − 1, the functions ε 7−→ s1;θ±η/2(F̃

ε[u])(xr) are
holomorphic on Dp.
For all ε ∈ Dp, the 1-sums s1;θ±η/2(F̃ ε[u])(xr) are given by the Borel-Laplace
integrals

s1;θ±η/2(F̃
ε[u])(xr) =

∫ ∞ei(θ±η/2)
0

F̂ ε[u](τ)e−τ/x
r

dτ =

∫ +∞

0

Ĝ
ε[u]
± (τ)dτ

where
Ĝ
ε[u]
± (τ) = F̂ ε[u](τei(θ±η/2))e−τ exp(i(θ±η/2))/x

r

.

Since τei(θ±η/2) ∈ V ± for all τ ≥ 0, lemma 2.12 applies:

• for all τ ≥ 0, the functions ε 7−→ Ĝ
ε[u]
± (τ) are holomorphic on Dp,

• for all τ ≥ 0 and all ε ∈ Dp,∣∣∣Ĝε[u]
± (τ)

∣∣∣ ≤ ∣∣∣F̂ ε[u](τei(θ±η/2))
∣∣∣ e−τ Re(exp(i(θ±η/2))/xr)

≤ C±e−τ(Re(exp(i(θ±η/2))/x
r)−K±) := M±(τ).

Obviously, M± does not depend on ε. Furthermore, the choice “x ∈ Σk”
implying xr ∈ Σ, the functions τ 7−→ M±(τ) are integrable on [0; +∞[.
Then, from Lebesgues dominated convergence theorem, the functions ε 7−→
s1;θ±η/2(F̃

ε[u])(xr) are holomorphic on Dp.

We are now able to state the two main theoretical results of this paper.

Theorem 2.14 Let k ∈ {0, ..., r − 1}.
Then, the function ε 7−→ Sεθ?k

is holomorphic on Dp.

Proof. Let k ∈ {0, ..., r − 1} and x ∈ Σk. According to proposition 2.13,
1., the Stokes matrices Sεθ?k are uniquely determined, for all ε ∈ Dp, by the
relation

(2.3) Y εθk−η/(2r)(x) = Y εθk+η/(2r)(x)Sεθ?k

where
Y εθk±η/(2r)(x) = sr;θk±η/(2r)(F̃

ε)(x)xLeQ
ε(1/x).
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Since ε 7−→ Qε(1/x) is obvious holomorphic on Dp, proposition 2.13, 2., im-
plies that the functions ε 7−→ Y εθk±η/(2r)(x) are also holomorphic on Dp.
On the other hand, for any ε ∈ Dp, the matrix Y εθk±η/(2r) is a formal funda-
mental solution of system (Aε). Thereby, Y εθk±η/(2r)(x) 6= 0 for all ε ∈ Dp
and, consequently, the functions ε 7−→ Y εθk±η/(2r)(x)−1 are again holomorphic
on Dp. Identity

Sεθ?k
= Y εθk+η/(2r)(x)−1Y εθk−η/(2r)(x)

ends the proof.

Theorem 2.14 obviously leads to the following result which tells us that
the Stokes-Ramis matrices Stθ?k of initial system (A) are limits of the Stokes
matrices Sεθ?k .

Corollary 2.15 Let k ∈ {0, ..., r − 1}. Then,

(2.5) lim
ε→1
Sεθ?k

= Stθ?k .

Relations (2.5) will be applied in section 4 with a more specific perturb-
ation in order to provide a method of effective calculation of the Stokes
multipliers of F̃ (x). Before, let us end the proof of theorem 2.14 by proving
lemma 2.12.

3 Proof of lemma 2.12

Recall that the formal Borel transformation is an isomorphism from the
C-differential algebra

(
C[[t]],+, ·, t2 d

dt

)
to the C-differential algebra (δC ⊕

C[[τ ]],+, ∗, τ ·) that changes ordinary product · into convolution product ∗
and changes derivation t2 d

dt
into multiplication by τ . It also changes multi-

plication by 1
t
into derivation d

dτ
.

Recall also that the formal Borel transform ĝ(τ) of an analytic function
g(t) ∈ C{t} at 0 defines an entire function on all C with exponential growth
at infinity.

Lemma 2.12 obviously stems from the following theorem.

Theorem 3.1 Let F̂ ε[u](τ) denote the Borel transform of F̃ ε[u](t) with re-
spect to t.
Let V be a domain in C defined by the data of an open disc centered at 0 ∈ C
and an open sector in C with vertex 0.
Suppose that the closure V of V in C satisfies V ∩Dω = ∅ for all the nonzero
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Stokes values ω of Ω (recall that Dω denotes the closure in C of the singular
disc Dω of Ω(Dp), see section 2.2, point 1).
Then,

1. for all u = 0, ..., r − 1, the function (τ, ε) 7−→ F̂ ε[u](τ) is holomorphic
on V ×Dp,

2. there exist C,K > 0 such that inequality∣∣∣F̂ ε[u](τ)
∣∣∣ ≤ CeK|τ |

holds for all u = 0, ..., r − 1, all τ ∈ V and all ε ∈ Dp.

Notice that the existence of domain V is guaranteed by the fact that
0 /∈ Dω for all ω ∈ Ω\{0} (cf. page 10).

Figure 3.1 A domain V and the set of
singular discs of Ω(Dp)

The proof of theorem 3.1 is based, after rank reduction, on an adequate
variant of the proof of summable-resurgence theorem for single-level systems
following classical Écalle’s method by regular perturbation and majorant
series which was given by the author in [7].

Remark 3.2 Since any of the column-blocks of F̃ ε(x) associated with the
Jordan structure of L (matrix of exponents of formal monodromy of system
(A) and, by construction, matrix of exponents of formal monodromy of any
system (Aε) too) can be positionned at the first place by means of a same
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permutation P (hence, independent of ε) acting on the columns of Ỹ ε(x) 4,
relation

F̃ ε(x) = F̃ ε[0](xr) + xF̃ ε[1](xr) + ...+ xr−1F̃ ε[r−1](xr)

shows that it is suffi cient to prove theorem 3.1 in restriction to the column-
blocks f̃ ε[u] formed by the first n1 (= dimension of the first Jordan block of
L) columns of the F̃ ε[u]’s.

3.1 Rank reduction

Let f̃ ε(t) be the rn× n1-matrix of Mrn,n1(C[[t]]) defined, for any ε ∈ Dp, by

f̃ ε(t) :=

 f̃
ε[0](t)
...

f̃ ε[r−1](t)

 .
Observe that condition F̃ ε(x) = In + O(xr) implies f̃ ε(t) = Irn,n1 + O(t)
where Irn,n1 denotes the first n1 columns of the identity matrix of size rn.

By definition of rank reduction, the r-reduced system (Aε) associated
with system (Aε) admits, for all ε ∈ Dp, a formal fundamental solution whose
the first n1 columns of its formal series factor are equal to the n1 columns
of f̃ ε(t) (cf. [3]). Thereby, normalizations of Ỹ ε(x) (= formal fundamental
solution of (Aε)) implies that f̃ ε(t) is uniquely determined by the first n1
columns of the homological system associated with system (Aε) jointly with
the initial condition f̃ ε(0) = Irn,n1 . This brings us to proposition 3.3 below.

Before to state it, recall that the matrix Aε(x) of system (Aε) reads

Aε(x) =

J⊕
j=1

[(
raεj,r +

r−1∑
k=1

kaj,kx
r−k

)
Inj + xrLj

]
+ εp+1B(x)

where Lj = λjInj + Jnj denotes the j
th Jordan block of L and where B(x) =

[Bj;`(x)] ∈Mn(C{x}) satisfies normalizations

(2.1) Bj;`(x) =

{
O(xr) if aεj,r 6= aε`,r
O(x2r) if aεj,r = aε`,r

for all j, ` = 1, ..., J and all ε ∈ Dp. Recall also that λ1 = aε1,r = 0 and
a1,k = 0 for all k = 1, ..., r − 1.

4The new formal fundamental solution reads Ỹ ε(x)P = F̃ ε(x)PxP
−1LP eP

−1Qε(1/x)P .
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Proposition 3.3 Let us denote by Aε[u](t) (resp. B[u](t)) with u = 0, ..., r−
1 the r-reduced series of Aε(x) (resp. B(x)).
Then, for all ε ∈ Dp, the formal series f̃ ε(t) ∈ Mrn,n1(C[[t]]) is uniquely
determined by the system

(3.1) rt2
df

dt
= Aε(t)f − tfJn1

jointly with the initial condition f̃ ε(0) = Irn,n1, where the matrix A
ε(t) ∈

Mrn(C{t}) is defined by

Aε(t) =


Aε[0](t) tAε[r−1](t) · · · · · · tAε[1](t)

Aε[1](t) Aε[0](t)
. . .

...
...

. . . . . . . . .
...

...
. . . Aε[0](t) tAε[r−1](t)

Aε[r−1](t) · · · · · · Aε[1](t) Aε[0](t)

−
r−1⊕
u=0

utIn

with

Aε[0](t) =
J⊕
j=1

(
raεj,rInj + tLj

)
+ εp+1B

[0](t)

and

Aε[u](t) =
J⊕
j=1

(r − u)aj,r−uInj + εp+1B
[u](t) for all u = 1, ..., r − 1.

Furthermore, splitting the matrix B[u](t) = [B[u]j;`(t)] ∈ Mn(C{t}) into
blocks fitting the Jordan structure of L, normalizations (2.1) imply

(3.2) B[u]j;`(t) =

{
O(t) if aεj,r 6= aε`,r
O(t2) if aεj,r = aε`,r

for all u = 0, ..., r − 1 and all j, ` = 1, ..., J .

Let us now denote by f̂ ε(τ) the Borel transform of f̃ ε(t) with respect to
t. In sections below, we shall prove, by applying Écalle’s method to system
(3.1), that, for any domain V as in theorem 3.1,

(a) the function (τ, ε) 7−→ f̂ε(τ) is well-defined and holomorphic on V ×Dp,

(b) there exist C,K > 0 such that inequality
∣∣∣f̂ ε(τ)

∣∣∣ ≤ CeK|τ | holds for
all τ ∈ V and ε ∈ Dp.
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Observe that those two points obviously lead to theorem 3.1.
Calculations below are rather similar to those detailed in [7, § 3.2] to

prove the summable-resurgence theorem for single-level systems. Further-
more, they generalize calculations made in [6] in the case of perturbed level-
one systems.

Throughout the rest of the paper, we use the following notation.

Notation 3.4 Given a matrix M split into blocks fitting the Jordan struc-
ture of L, we denote by M j;• the jth row-block of M . Thereby, M j;• is a
nj × p-matrix when M is a n× p-matrix.

3.2 Regular perturbation

Following J. Écalle ([2]), we consider, instead of system (3.1), the regularly
perturbed system

(3.3) rt2
df

dt
= Aε(t, α)f − tfJn1

obtained by substituting αB[u] for B[u] for all u = 0, ..., r − 1 in the matrix
Aε(t) of system (3.1).

Like in [7], an identification of equal powers in α shows that system (3.3)
admits, for all ε ∈ Dp, a unique formal solution of the form

f̃ ε(t, α) =
∑
m≥0

f̃ εm(t)αm

satisfying f̃ ε
0(t) = Irn,n1 and f̃

ε
m(t) ∈ Mrn,n1(C[[t]]) for all m ≥ 1. The

following lemma yields some precisions on the f̃ εm’s.

Lemma 3.5 Let ε ∈ Dp. Split f̃ εm(t) =
[
f̃
ε[0]
m (t), ..., f̃

ε[r−1]
m (t)

]
into r blocks

of size n× n1 like f̃ ε(t) and denote by

f̃ εm,j(t) :=

 f̃
ε[0]j;•
m (t)
...

f̃
ε[r−1]j;•
m (t)

 for all j = 1, ..., J

the rnj × n1-matrix formed by all the jth row-blocks of the f̃
ε[u]
m (t)’s (see

notation 3.4).
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Then, the components f̃ εm,j(t) ∈Mrnj ,n1(C[[t]]) are uniquely determined, for
all m ≥ 1 and j = 1, ..., J , as formal solutions of systems

(3.4) rt2
df̃ εm,j
dt
−Aε

j f̃
ε
m,j − tAjf̃

ε
m,j = εp+1Bj(t)f̃

ε
m−1 − tf̃ εm,jJn1

where

Bj(t) :=


B[0]j;•(t) tB[r−1]j;•(t) · · · · · · tB[1]j;•(t)

B[1]j;•(t) B[0]j;•(t)
. . .

...
...

. . . . . . . . .
...

...
. . . B[0]j;•(t) tB[r−1]j;•(t)

B[r−1]j;•(t) · · · · · · B[1]j;•(t) B[0]j;•(t)


is a rnj × rn-matrix with analytic entries at 0 ∈ C and where the matrices
Aε
j and Aj are the rnj × rnj-constant matrices defined by

• Aε
j :=


raεj,r 0 · · · 0

(r − 1)aj,r−1
. . . . . .

...
...

. . . . . . 0
aj,1 · · · (r − 1)aj,r−1 raεj,r

⊗ Inj and

• Aj :=


0 aj,1 · · · (r − 1)aj,r−1
...
. . . . . .

...
...

. . . aj,1
0 · · · · · · 0

⊗ Inj +
r−1⊕
u=0

(Lj − uInj).

Furthermore, according to normalizations (3.2), the following relations

(3.5) f̃ ε2m−1,j(t) = O(tm) and f̃ ε2m,j(t) =

{
O(tm) if aεj,r = 0
O(tm+1) if aεj,r 6= 0

hold for all m ≥ 1 and j = 1, ..., J .

Notice that the matrix Aε
j is invertible when a

ε
j,r 6= 0. Notice also that

relation (2.2) implies Aε
j = 0 and Aj =

r−1⊕
u=0

(
Lj − uInj

)
when aεj,r = 0.

As a result of relations (3.5), the series f̃ ε(t, α) can be rewritten as a
series in t with polynomial coeffi cients in α. Consequently, f̃ ε(t) = f̃ ε(t, 1)
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(by unicity of f̃ ε(t) and f̃ ε(t, 1)) and, for all α, the series f̃ ε(t, α) admits a
formal Borel transform ϕε(τ, α) with respect to t of the form

ϕε(τ, α) = δIrn,n1 +
∑
m≥1

ϕεm(τ)αm

where ϕεm(τ) ∈Mrn,n1(C[[τ ]]) denotes, for all m ≥ 1, the Borel transform of
f̃ εm(t). In particular, the Borel transform f̂ ε(τ) reads formally as

f̂ ε(τ) = ϕε(τ, 1) =
∑
m≥1

ϕεm(τ) for all ε ∈ Dp.

The two following results give us some properties of the ϕεm’s. The first
one obviously stems from lemma 3.5.

Lemma 3.6 Let ε ∈ Dp. Split as before ϕεm(τ) =
[
ϕ
ε[0]
m (τ), ...,ϕ

ε[r−1]
m (τ)

]
into r blocks of size n× n1 and denote by

ϕεm,j(τ) :=

 ϕ
ε[0]j;•
m (τ)
...

ϕ
ε[r−1]j;•
m (τ)

 for all j = 1, ..., J

the rnj × n1-matrix formed by all the jth row-blocks of the ϕε[u]m (τ)’s.
Then, for all m ≥ 1, the components ϕεm,j(τ) ∈Mrnj ,n1(C[[τ ]]) are iteratively
determined, for all j = 1, ..., J , as solutions of systems

(3.6) Rεj
dϕεm,j
dτ

= Sjϕ
ε
m,j +

d

dτ

(
B̂j ∗ϕεm−1

)
−ϕεm,jJn1

where ϕε0 := δIrn,n1, B̂j denotes the Borel transform of Bj and where the
rnj × rnj-matrices Rεj and Sj are defined by

• Rεj =


r(τ − aεj,r) 0 · · · 0

(r − 1)aj,r−1
. . . . . .

...
...

. . . . . . 0
aj,1 · · · (r − 1)aj,r−1 r(τ − aεj,r)

⊗ Inj and

• Sj =


0 aj,1 · · · (r − 1)aj,r−1
...
. . . . . .

...
...

. . . aj,1
0 · · · · · · 0

⊗ Inj +
r−1⊕
u=0

(Lj − (u+ r)Inj).



27

Lemma 3.6 implies the following proposition.

Proposition 3.7 Let V a domain as in theorem 3.1.
Then, the function (τ, ε) 7−→ ϕεm(τ) is holomorphic on V ×Dp for all m ≥ 1.

Proof. Since the Bj’s are analytic at 0 ∈ C, their Borel transforms B̂j

are entire functions on all C. Consequently, normalizations (3.2) imply that
the only singularities in C of systems (3.6) are the Stokes values aεj,r 6= 0
of Ω(Dp). Proposition 3.7 follows from the fact that domain V never meets
Ω(Dp)\{0}.

To prove theorem 3.1, we are left to show that

(a) the function (τ, ε) 7−→ f̂ ε(τ) = ϕε(τ, 1) =
∑
m≥1

ϕεm(τ) is well-defined

and holomorphic on V ×Dp,

(b) there exist C,K > 0 such that inequality
∣∣∣f̂ ε(τ)

∣∣∣ ≤ CeK|τ | holds for
all τ ∈ V and ε ∈ Dp.

These two points are proved below by using a technique of majorant series
satisfying a convenient system. Of course, there exist many possible majorant
systems. Here, we make explicit a possible one.

3.3 Majorant series

Let ν denote the minimal distance between the elements of V and the ele-
ments of Ω(Dp)\{0} (cf. figure 3.1). According to condition “V ∩ Dω = ∅
for all ω ∈ Ω\{0}”(cf. theorem 3.1), we have ν > 0.

Let g =
[
g[0], ..., g[r−1]

]
be a rn × n1-matrix split as previously into r

blocks of size n × n1. Let gj denote the rnj × n1-matrix formed by all the
jth row-blocks of the g [u]’s:

gj :=

 g
[0]j;•

...
g[r−1]j;•

 for all j = 1, ..., J.

In the case where g = Irn,n1 , we simply denote by I
j
rn,n1

in place of gj.
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Let us now consider, for j = 1, ..., J , the regularly perturbed linear system

(3.7)



Cj(gj − Ijrn,n1) = (Ir ⊗ Jnj)gj + gjJn1 − 2Ijrn,n1Jn1

+α(ρp+1 + 1)
|Bj| (t)

t
g if aj,r = 0

(Rj − tSj)gj = tgjJn1 + α(ρp+1 + 1) |Bj| (t)g if aj,r 6= 0

where

• |Bj| (t) denotes the series Bj(t) in which the coeffi cients of the powers
of t are replaced by their module,

• Cj is an invertible constant rnj × rnj-diagonal matrix with positive
entries which will be adequatly chosen below (see proposition 3.9),

• Rj and Sj are the rnj × rnj-constant matrices defined by

Rj :=


ν 0 · · · 0

− |aj,r−1|
. . . . . .

...
...

. . . . . . 0
− |aj,1| · · · − |aj,r−1| ν

⊗ Inj
and

Sj :=


0 |aj,1| · · · |aj,r−1|
...

. . . . . .
...

...
. . . |aj,1|

0 · · · · · · 0

⊗ Inj +
r−1⊕
u=0

(∣∣∣∣λjr − u

r
− 1

∣∣∣∣ Inj + Jnj

)
.

Recall that λj denotes the eigenvalue of the jth Jordan block Lj of L.

Notice that the constant ρp+1 + 1 satisfies |εp+1| ≤ ρp+1 + 1 for all ε ∈ Dp.
Notice also that system (3.7) depends on the domain V but not on the
parameter ε.

Up to the constant ρp+1 + 1, system (3.7) is the majorant system used in
[7] to prove summable-resurgence theorem for single-level systems. Hence, by
adapting calculations made in [7, § 3.2.2], we can prove the following lemma.

Lemma 3.8 The Borel transformed system of system (3.7) admits, for α =
1, a unique solution of the form

ĝ(τ) = δIrn,n1 +
∑
m≥1

Φm(τ) ∈Mrn,n1(C[[τ ]])
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which is entire on all C with exponential growth at infinity. Furthermore,
using notations as above, the components Φm,j(τ) ∈Mrnj ,n1(C[[τ ]]) of Φm(τ)
are iteratively determined, for all m ≥ 1 and j = 1, ..., J , as solutions of
systems:

• Case aj,r = 0:

CjΦm,j = (Ir ⊗ Jnj)Φm,j + Φm,jJn1 + (ρp+1 + 1)
d

dτ

(
|̂Bj| ∗Φm−1

)
.

• Case aj,r 6= 0:

Rj
dΦm,j

dτ
= SjΦm,j + Φm,jJn1 + (ρp+1 + 1)

d

dτ

(
|̂Bj| ∗Φm−1

)
.

We set Φ0 := δIrn,n1.
In particular, Φm(τ) is an entire function on all C and lies inMrn,n1(R+{τ})
for all m ≥ 1.

The following proposition shows that ĝ defines a convenient majorant
series of the f̂ ε’s.

Proposition 3.9 Let a be a constant such that |arg(τ)| ≤ a for all τ ∈ V .
Let

Cj =
1

max
1≤j≤J

exp(2a |Imλj|)

r−1⊕
u=0

(
1− Re

(
λj
r
− u

r

))
Inj .

Then, for all m ≥ 1, τ ∈ V , ε ∈ Dp and j = 1, ..., J , the following inequalities
hold:

(3.8)
∣∣ϕεm,j(τ)

∣∣ ≤ Φm,j(|τ |)

In particular, the series

ĝ(|τ |) =
∑
m≥1

Φm(|τ |)

is a majorant series of f̂ ε(τ) for any ε ∈ Dp.

Proposition 3.9 is proved by applying Grönwall lemma to systems defining
the ϕεm,j’s and the Φm,j’s. Calculations are similar to those detailed in [7, §
3.2.2] and are left to the reader. However, note that the constant K which
appears in [7] is equal to 1 in our case. Indeed, according to the definition of
domain V , the “optimal”path γτ from 0 to any τ ∈ V is here the straigth
line [0, τ ].
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Remark 3.10 Like system (3.7), the majorant series ĝ(|τ |) depends on do-
main V but not on the parameter ε. This is the key point of the proof of
theorem 3.1 as we shall see in the next section 3.4.

We are now able to prove theorem 3.1.

3.4 Proof of theorem 3.1

Recall that we must prove the two following points:

(a) the function (τ, ε) 7−→ f̂ ε(τ) =
∑
m≥1

ϕεm(τ) is well-defined and holo-

morphic on V ×Dp,

(b) there exist C,K > 0 such that inequality
∣∣∣f̂ ε(τ)

∣∣∣ ≤ CeK|τ | holds for
all τ ∈ V and ε ∈ Dp.

According to propositions 3.7 and 3.9 and remark 3.10, the series

(τ, ε) 7−→ f̂ ε(τ) =
∑
m≥1

ϕεm(τ)

is a series of holomorphic functions on V ×Dp which normally converges on
all the compact sets of V ×Dp. Hence, point (a).
As for point (b), it stems from inequality

∣∣∣f̂ ε(τ)
∣∣∣ ≤ ĝ(|τ |) (proposition

3.9) and from the fact that ĝ has exponential growth at infinity (lemma 3.8).

This ends the proof of theorem 3.1.

4 Effective calculation of Stokes multipliers

In this section, we are given a collection (θk)k=0,...,r−1 ∈ (R/2πZ)r of anti-
Stokes directions of system (A) and we consider, for all k, the Stokes-Ramis
matrix Stθ?k associated with Ỹ (x) in the direction θk (cf. definition 1.1).
Split Stθ?k = [Stj;`θ?k

] into blocks fitting the Jordan structure of the matrix L

of exponents of formal monodromy (hence, Stj;`θ?k is a nj × n`-matrix). Split
F̃ (x) in the same way and denote by F̃ •;`(x) its `th column-block (recall that
F̃ •;1(x) = f̃(x)).
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The matrix Stj;jθ?k is the identity matrix Inj of size nj and, for j 6= `, the

matrix Stj;`θ?k is zero as soon as θk is not a direction of maximal decay of expo-

nential e(qj−q`)(1/x). When θk is a direction of maximal decay of exponential
e(qj−q`)(1/x) (hence, j 6= ` and the Stokes value aj,r− a`,r generates the collec-
tion (θk)), the entries of St

j;`
θ?k
are called Stokes multipliers of F̃ •;`(x) in the

direction θk.
The goal of this section is to build a method for the effective calculation

of the Stokes multipliers of F̃ (x) based on the results of the holomorphic
perturbation of system (A) stated in section 2.
As in section 3 (cf. remark 3.2), we restrict our study to the calculation

of the Stokes multipliers of the first column-block f̃(x) of F̃ (x). Henceforth,
we denote by stj;•θ?k in place of St

j;1
θ?k
and we suppose that (θk) is a collection of

anti-Stokes directions of system (A) associated with f̃(x) (otherwise, stj;•θ?k = 0

for all k and j). Recall that such a collection (θk) is generated by (at least)
one of the Stokes values ω1, ..., ωp (= the distinct values of the aj,r 6= 0, cf.
the beginning of section 2).

4.1 Stokes multipliers and connection constants

Let Ω denote the set of Stokes values ω1, ..., ωp. For any ω ∈ Ω, we call front
of ω the set of polynomials qj(1/x) with leading term −ω/xr. According to
the hypothesis (0.4) of single level equal to r, the front of ω is a singleton{

− ω
xr

+ q̇ω

(
1

x

)}
where q̇ω ≡ 0 or q̇ω(1/x) is a polynomial in 1/x of degree ≤ r − 1 and with
no constant term. When q̇ω ≡ 0, the Stokes value ω ∈ Ω is said to be with
monomial front. Notice that, in the case r = 1, all the Stokes values of Ω
are with monomial front.

In the two previous papers [4] (case r = 1) and [7] (case r ≥ 2), M. Loday-
Richaud and the author displayed explicit formulæ between the Stokes multi-
pliers of f̃(x) associated with the Stokes values ω ∈ Ω 5 with monomial front
(hence, all the Stokes multipliers of f̃(x) when r = 1) and the connection
constants given, in the Borel plane, by the right analytic continuation (see
[4, § 3.4] for a precise definition) of the Borel transforms f̂ [u](τ) at τ = ω.
Recall that such formulæ exist too when ω has a non-monomial front, but

5 i.e., in the directions generated by the Stokes values ω ∈ Ω.
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require to first reduce ω into a Stokes value with monomial front by means of
a convenient change of the variable x in initial system (A) (cf. [7, § 4.3.2]).
Thereby, the effective calculation of the Stokes multipliers of f̃(x) can be

reduced to the effective calculation of the connection constants of the f̂ [u](τ).
As an illustration, we develop below three typical examples.

Example 4.1 Let us consider the system

(4.1) x2
dY

dx
=

 0 0 0

x2 1 +
x

4
0

−2x3 x 3

Y
together with the formal fundamental solution Ỹ (x) = F̃ (x)xLeQ(1/x) where

• Q
(

1

x

)
= diag

(
0,−1

x
,−3

x

)
,

• L = diag

(
0,

1

4
, 0

)
,

• F̃ (x) =

 1 0 0

f̃2(x) 1 0

f̃3(x) ∗ 1

 ∈M3(C[[x]]) satisfies F̃ (0) = I3,

f̃2(x) = −x2 − 7

4
x3 +O(x3) and f̃3(x) = x3 +O(x3).

System (4.1) has the unique level 1 and Ω = {1, 3}. Then, the direction θ = 0
is the unique anti-Stokes direction of system (4.1) associated with the first
column f̃(x) of F̃ (x). The Stokes-Ramis matrix St0 in this direction reads

St0 =

 1 0 0
st20 1 0
st30 ∗ 1

 .
Furthermore, according to [4, thm. 4.3], the Stokes multiplier st20 (resp. st

3
0)

is related to the connection constant k21,+ (resp. k
3
3,+) of f̂(ξ) at the point

ξ = 1 (resp. ξ = 3) by the relation

(4.2) st20 =
(1 + i)π

√
2

Γ

(
3

4

) k21,+ (resp. st30 = 2iπk33,+).
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Since the formal series f̃2(x) and f̃3(x) satisfy the equations
x2
df̃2
dx
−
(

1 +
x

4

)
f̃2 = x2

x2
df̃3
dx
− 3f̃3 = −2x3 + xf̃2

,

their Borel transforms f̂2(ξ) and f̂3(ξ) are the unique solutions of the system
(ξ − 1)

df̂2
dx

+
3

4
f̂2 = 1 , f̂2(0) = 0

(ξ − 3)f̂3 = −ξ2 + 1 ∗ f̂2

.

Hence, for all |ξ| < 1,
f̂2(ξ) =

4

3
− 4

3
(1− ξ)−3/4

f̂3(ξ) =
−3ξ2 + 4ξ − 12 + 12(1− ξ)1/4

3(ξ − 3)

(we chose a determination of the logarithm such that ln(ξ) ∈ R for ξ > 0).
Thereby, the connection matrices K1,+ and K3,+ of f̂(ξ) at the points ξ = 1
and ξ = 3 are given by

K1,+ =


0

k21,+ =
2
√

2

3
(1 + i)

0

 and K3,+ =

 0
0

k33,+ = −9 + 27/4(1 + i)

 .
Then, identities (4.2) imply

(4.3)
st20 =

8iπ

3Γ

(
3

4

) st30 = 2iπ(27/4 − 9 + 27/4i)
.

Observe that, in this example, the choice of a triangular matrix for system
(4.1) allows us to explicitly write the Borel transform f̂(ξ) and, consequently,
to calculate the exact values of the Stokes multipliers st20 and st

3
0. Of course,

such a case is anecdotal and, in a more general situation, i.e., for systems
for which the matrices are not triangular, such exact calculations are not
possible anymore. Nevertheless, we can always determine an approximation
of the connection constants −hence, of the Stokes multipliers− by using a
technique of successive analytic continuations like shown below.
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Example 4.2 Let us now consider the system

(4.4) x2
dY

dx
=


0 0 x

x 1 +
x

2
0

0 −x 2 +
x

3

Y
together with the formal fundamental solution Ỹ (x) = F̃ (x)xLeQ(1/x) where

• Q
(

1

x

)
= diag

(
0,−1

x
,−2

x

)
,

• L = diag

(
0,

1

2
,
1

3

)
,

• F̃ (x) ∈M3(C[[x]]) satisfies F̃ (x) = I3 +O(x).

As in example 4.1, system (4.4) is a level-one system and θ = 0 is its unique
anti-Stokes direction associated with the first column f̃(x) of F̃ (x) (we have
Ω = {1, 2}). The Stokes-Ramis matrix St0 reads

St0 =

 1 0 0
st20 1 0
st30 ∗ 1


and, according to [4, thm. 4.3], the Stokes multiplier st20 (resp. st

3
0) is related

to the connection constant k21,+ (resp. k
3
2,+) of f̂(ξ) at the point ξ = 1 (resp.

ξ = 2) by the relation

(4.5) st20 = 2
√
πk21,+ (resp. st30 =

π(
√

3 + i)

Γ

(
2

3

) k32,+).

Let f̃(x) =

f̃1(x)

f̃2(x)

f̃3(x)

. Since the f̃j’s are formal series solutions of the system


x2
df̃1
dx

= xf̃3

x2
df̃2
dx
−
(

1 +
x

2

)
f̃2 = xf̃1

x2
df̃3
dx
−
(

2 +
x

3

)
f̃3 = −xf̃2

,
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their Borel transforms f̂j’s satisfy the differential equations

ξ
df̂1
dξ

= −f̂1 + f̂3

(ξ − 1)
df̂2
dξ

= f̂1 −
1

2
f̂2

(ξ − 2)
df̂3
dξ

= −f̂2 −
2

3
f̂3

.

Consequently, the Borel transform f̂(ξ) =

f̂1(ξ)f̂2(ξ)

f̂3(ξ)

 of f̃(x) is an analytic

solution on the open disc D(0, 1) of the system

(4.6)
dZ

dξ
=

−
1
ξ

0 1
ξ

1
ξ−1 −

1
2(ξ−1) 0

0 − 1
ξ−2 − 2

3(ξ−2)

Z
which has two regular singular points at ξ = 1 and ξ = 2. More precisely,
system (4.6) reads near ξ = 1 as

(4.7) (ξ − 1)
dZ

dξ
= C1(ξ − 1)Z with C1(ξ) :=

−
ξ
ξ+1

0 ξ
ξ+1

1 −1
2

0

0 − ξ
ξ−1 −

2ξ
3(ξ−1)


and near ξ = 2 as

(4.8) (ξ − 2)
dZ

dξ
= C2(ξ − 2)Z with C2(ξ) :=

−
ξ
ξ+2

0 ξ
ξ+2

ξ
ξ+1

− ξ
2(ξ+1)

0

0 −1 −2
3

 .
Notice that C1(ξ − 1) is analytic on the open disc D(1, 1) and C2(ξ − 2) is
analytic on the open disc D(2, 1). Following Wasow ([8]), we consider the
two matrices

D1 :=

1 0 0
2 1 0
0 0 1

 and D2 :=

1 0 0
0 1 0
0 −3

2
1


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so that

M1 := D−11 C1(0)D1 = diag

(
0,−1

2
, 0

)
and

M2 := D−12 C2(0)D2 = diag

(
0, 0,−2

3

)
.

Hence, choosing as before a determination of the logarithm such that ln(ξ) ∈
R for ξ > 0, system (4.7) (resp. system (4.8)) has for fundamental solution
at ξ = 1 (resp. ξ = 2) a matrix of the form

Z1(ξ − 1) = D1G1(ξ − 1)(ξ − 1)M1

(resp. Z2(ξ − 2) = D2G2(ξ − 2)(ξ − 2)M2)

where G1(ξ − 1) ∈ M3(C{ξ − 1}) (resp. G2(ξ − 2) ∈ M3(C{ξ − 2})) is
analytic on the open disc D(1, 1) (resp. D(2, 1)) and satisfies G1(0) = I3
(resp. G2(0) = I3). More precisely,

• the first and the third columns of Z1(ξ−1) are analytic on D(1, 1); the
second column of Z1(ξ − 1) reads as 0

(ξ − 1)−1/2

0

+ (ξ − 1)1/2g1(ξ − 1)

with g1(ξ − 1) analytic on D(1, 1),

• the two first columns of Z2(ξ − 2) are analytic on D(2, 1); the third
column of Z2(ξ − 2) reads as 0

0
(ξ − 2)−2/3

+ (ξ − 2)1/3g2(ξ − 2)

with g2(ξ − 2) analytic on D(2, 1).

Following Cauchy’s theorem, the right analytic continuation of f̂ (still de-
noted f̂) at the point ξ = 1 (resp. ξ = 2) is a solution of system (4.7) (resp.
system (4.8)). Thereby, there exists a unique matrix

S1 :=

σ11σ21
σ31

 ∈M3,1(C) (resp. S2 :=

σ12σ22
σ32

 ∈M3,1(C))
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such that f̂(ξ) = Z1(ξ − 1)S1 for all ξ ∈ D(1, 1)\{1} (resp. f̂(ξ) = Z2(ξ −
2)S2 for all ξ ∈ D(2, 1)\{2}). In particular, calculations above shows that
the connection constant k21,+ (resp. k32,+) is equal to σ

2
1 (resp. σ32), and,

consequently, identities (4.5) imply

st20 = 2
√
πσ21 and st30 =

π(
√

3 + i)

Γ

(
2

3

) σ32.

We are left to evaluate σ21 and σ
3
2. According to the geometry of the “conver-

gence discs”D(0, 1), D(1, 1) and D(2, 1) (see figure 4.1 below), we evaluate,
on one hand, f̂(ξ) and Z1(ξ−1) at the point ξ = 1/2 and, on the other hand,
Z1(ξ − 1) and Z2(ξ − 2) at the point ξ = 3/2.

Figure 4.1

Then,

S1 = Z1

(
−1

2

)−1
f̂

(
1

2

)
and S2 = Z2

(
−1

2

)−1
Z1

(
1

2

)
S1.

Observe that, by definition of the right analytic continuation, Z1(−1/2) and
Z2(−1/2) are evaluate at the point −1/2 such that arg(−1/2) = −π. Hence,
one can check that

σ21 ≈ 0.46823766i

σ32 ≈ 3.05123307 + 2.39083857i

and, consequently,

st20 ≈ 1.6598593i
st30 ≈ 6.714284368 + 16.68631306i

.
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This method by successive analytic continuations still holds for systems
with a single arbitrary level r ≥ 2. However, the calculations may be much
more diffi cult when one of the singular points of Ω generating the collection
(θk) is with non-monomial front.

Example 4.3 Here below, we consider the system

(4.9) x3
dY

dx
=

 0 0 x2

x2 1 + x 0

0 x2 2 +
x2

2

Y
together with the formal fundamental solution Ỹ (x) = F̃ (x)xLeQ(1/x) where

• Q
(

1

x

)
= diag

(
0,− 1

2x2
− 1

x
,− 1

x2

)
(hence, the system has the unique

level 2, Ω = {1/2, 1} and the front of 1/2 (resp. 1) is non-monomial
(resp. monomial)),

• L = diag

(
0, 0,

1

2

)
,

• F̃ (x) ∈M3(C[[x]]) satisfies F̃ (x) = I3 +O(x2).

As before, we denote by f̃(x) the first column of F̃ (x). We also denote by
f̃ [u](t) with u = 0, 1 the 2-reduced series of f̃(x).
Let (θ0 = 0, θ1 = −π) be the unique collection of anti-Stokes directions of
system (4.9) associated with f̃(x). For all k ∈ {0, 1}, the corresponding
Stokes-Ramis matrix Stθk reads

Stθk =

 1 0 0
st2θk 1 0
st3θk ∗ 1

 .
We are just interested below in the calculation of the Stokes multipliers st3θk’s
associated with the Stokes value with monomial front 1. According to [7, cor.
4.5], the st3θk’s are related to the connection constants k

[u]
1,+ of f̂

[u](τ) at the
point τ = 1 by the relations

st30 =
(1 + i)π

√
2

Γ

(
3

4

) k
[0]
1,+ − (4− 4i)Γ

(
3

4

)
k
[1]
1,+

st3−π =
(−1 + i)π

√
2

Γ

(
3

4

) k
[0]
1,+ + (4 + 4i)Γ

(
3

4

)
k
[1]
1,+

.
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To determine an approximation of the k[u]1,+’s, we can proceed, like in ex-
ample 4.2, by a method of successive analytic continuations. According to
proposition 3.3,

f̃(t) :=

[
f̃ [0](t)

f̃ [1](t)

]
∈M6,1(C[[t]])

is a formal series solution of the system

2t2
dY

dt
=


0 0 t 0 0 0
t 1 0 0 t 0
0 t 2 + t

2
0 0 0

0 0 0 −t 0 t
0 1 0 t 1− t 0
0 0 0 0 t 2− t

2

Y .

By adapting calculations of previous example 4.2, one can check that the
Borel transform f̂(τ) of f̃(t) is an analytic solution on the open discD(0, 1/2)
of the system

(4.10)
dZ

dτ
=



− 1
τ

0 1
2τ

0 0 0
1

2τ−1 − 2
2τ−1 0 0 1

2τ−1 0

0 1
2(τ−1) − 3

4(τ−1) 0 0 0

0 0 0 − 3
2τ

0 1
2τ

1
(2τ−1)2 −

2
(2τ−1)2 0 1

2τ−1 −
2(3τ−2)
(2τ−1)2 0

0 0 0 0 1
2(τ−1) − 5

4(τ−1)


Z

which has an irregular singular point at the Stokes value with non-monomial
front τ = 1/2 and a regular singular point at the Stokes value with monomial
front τ = 1. More precisely, system (4.10) reads near τ = 1 as

(4.11) (τ − 1)
dZ

dτ
= C1(τ − 1)Z

where C1(τ − 1) is the analytic matrix on the open disc D(1, 1/2) defined by

C1(τ) :=



− τ
τ+1

0 τ
2(τ+1)

0 0 0
τ

2τ+1
− 2τ
2τ+1

0 0 τ
2τ+1

0

0 1
2

−3
4

0 0 0
0 0 0 − 3τ

2(τ+1)
0 τ

2(τ+1)
τ

(2τ+1)2
− 2τ
(2τ+1)2

0 τ
2τ+1

−2τ(3τ+1)
(2τ+1)2

0

0 0 0 0 1
2

−5
4


.



40

As in example 4.2, we consider the matrix

D1 :=


1 0 0 0 0 0
0 1 0 0 0 0
0 2

3
1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 2

5
1


so that

M1 := D−11 C1(0)D1 = diag

(
0, 0,−3

4
, 0, 0,−5

4

)
.

Then, system (4.11) has a fundamental solution of the form Z1(τ − 1) =
D1G1(τ − 1)(τ − 1)M1 where G1(τ − 1) ∈ M6(C{τ − 1}) is analytic on the
open disc D(1, 1/2) and satisfies G1(0) = I6 (cf. [8]). More precisely,

• the third column of Z1(τ − 1) reads
0
0

(τ − 1)−3/4

0
0
0

+ (τ − 1)1/4g1,3(τ − 1)

where g1,3(τ − 1) is analytic on D(1, 1/2),

• the sixth column of Z1(τ − 1) reads
0
0
0
0
0

(τ − 1)−5/4

+ (τ − 1)−1/4g1,6(τ − 1)

where g1,6(τ − 1) is analytic on D(1, 1/2),

• the four other columns of Z1(τ − 1) are analytic on D(1, 1/2).

Since the right analytic continuation of f̂(τ) (still denoted f̂(τ)) at the point
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τ = 1 is a solution of system (4.11), there exists a unique matrix

S1 =


σ11
σ21
σ31
σ41
σ51
σ61

 ∈M6,1(C)

such that f̂(τ) = Z1(τ − 1)S1 for all τ ∈ D(1, 1/2)\{1}. Thereby, the
connection constants k[0]31,+ and k

[1]3
1,+ are given by

k
[0]3
1,+ = σ31 and k

[1]3
1,+ = σ61.

The two constants σ31 and σ
6
1 can be numerically evaluate in a similar way

as example 4.2 by considering the analytic continuation of f̂ from the disc
D(0, 1/2) (= the disc of convergence of f̂(τ)) to the disc D(1, 1/2) (= the
disc of “convergence”of Z1(τ−1)) through any disc of the formD(1/2−ia, a)
with a > 0.

Figure 4.2

Notice that, for any a > 0, the point α = 1/2 − ia is an ordinary point of
system (4.10); hence, any of its fundamental solution is analytic on the disc
D(α, a). Notice also that the choice of such a disc is due to the fact that
we must bypass the irregular singular point τ = 1/2 of system (4.10) to the
right to connect D(0, 1/2) and D(1, 1/2).

The two previous examples 4.2 and 4.3 bring us to the following general
remark.
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Remark 4.4 Let (θk) be a collection of anti-Stokes directions of system (A)
associated with the first column-block f̃(x) of F̃ (x). Let us assume that this
collection is generated by s ≥ 2 Stokes values of Ω, say ω1, ω2, ..., ωs with
|ω1| < |ω2| < ... < |ωs|.
Fix ` ∈ {2, ..., s} and suppose that ω` has a monomial front (recall that such
a condition can always be fulfilled by means of a convenient change of the
variable x in system (A)). Then, as shown in examples 4.2 and 4.3 above,
the connection constants of the f̂ [u](τ)’s at ω` can be evaluate as follows:

(a) evaluate all or part of the connection constants at the intermediate
Stokes values ω1, ..., ω`−1 who have a monomial front,

(b) bypass all or part of the intermediate Stokes values ω1, ..., ω`−1 to the
right (always those with a non-monomial front and possibly the others).

With a numerical point of view, these two methods pose some problems.
Indeed, point (a) requires to handle fundamental solutions at regular singular
points (see example 4.2) and their numerical evaluations are much more
diffi cult than those of fundamental solutions at ordinary points. As for point
(b), if it allows to avoid handling fundamental solutions at regular singular
points as point (a) by focusing on fundamental solutions at ordinary points,
it significantly increases the number of intermediate numerical evaluations
which can degrade the precision of the results obtained (see example 4.3).

In section 4.2 below, we build an alternative method for the effective cal-
culation of Stokes multipliers in order to get around all these diffi cults. This
method is based on a perturbation of system (A) in which each perturbed
Stokes value generates its own collection of anti-Stokes directions.

4.2 Effective calculation and perturbation

We consider here below a collection (θk) of anti-Stokes directions of system
(A) associated with the first column-block f̃(x) of F̃ (x). As previously,
we denote by Ω the set of nonzero Stokes values ω1, ..., ωp of system (A)
associated with f̃(x). We also denote by Ω(θk) the set of Stokes values of Ω
generating the collection (θk).
The goal of this section is to build a method for effective calculation of

the Stokes multipliers of f̃(x) in the directions θk, k = 0, ..., r − 1, when the
cardinal ]Ω(θk) of Ω(θk) is ≥ 2 (hence, p ≥ 2 too).
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4.2.1 Case of two Stokes values

1. Setting the problem

In this section, we suppose ]Ω(θk) = 2, i.e., just two Stokes values of Ω, say
ω1 and ω2, generate the collection (θk). We also suppose, without loss of
generality, that |ω1| < |ω2|.
Then, as collection of anti-Stokes directions of the full matrix F̃ (x), the

collection (θk) is generated by the three Stokes values ω1, ω2 and ω2−ω1 and
possibly by the Stokes values of the form

• ωj − ωk with ωj ∈ Ω(θk), ωk /∈ Ω(θk) and arg(ωk) = rθ0 − π

or of the form

• ωj − ωk with ωj, ωk /∈ Ω(θk), i.e., distinct of ω1 and ω2

if they exist.

2. A perturbed system

Let us now fix δ > 0 and let us consider, for all ε ∈ [0, δ], the system (Aε) in
which the initial Stokes value ω2 of system (A) is replaced by ω2e−irε. Let Ωε

denote the set deduced from Ω by replacing ω2 by ω2e−irε too. Then, for all
ε ∈ [0, δ], Ωε is the set of nonzero Stokes values of system (Aε) associated with
the first column-block f̃ ε(x) of F̃ ε(x) (we resume the perturbed notations as
section 2).
Observe that, for δ small enough, the set of systems (Aε)ε∈[0,δ] defines

a sub-perturbation Pδ(A) of the holomorphic perturbation of system (A)
studied in section 2. In particular, the image of (θk) by Pδ(A) is a subset of
(DΣθk,η(θ)/r)k=0,...,r−1 (cf. proposition 2.9) and corollay 2.15 tells us that the
corresponding Stokes matrices Sε

θ?k
(see page 16) tend, for all k = 0, ..., r− 1,

to the initial Stokes-Ramis matrices Stθ?k when ε goes to 0.
Lemmas 4.5 and 4.6 below allow us to precise this last result by making

explicit the image of (θk) by Pδ(A) as well as the form of the matrices Sε
θ?k
.

Lemma 4.5 (Action of Pδ(A) on the collection (θk))
Given ε ∈ [0, δ], the collection (θk) of initial system (A) splits into the fol-
lowing collections of anti-Stokes directions of system (Aε):

1. the collection (θk) which is generated by the Stokes value ω1 and possibly
by all the Stokes values of the form ω1 − ωk with arg(ωk) = rθ0 − π or
of the form ωj − ωk with ωj, ωk /∈ Ω(θk) if they exist,
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2. the collection (θk − ε) which is generated by the Stokes value ω2e−irε,

3. the collection (θk,ε) which is generated by the Stokes value ω2e−irε−ω1,

4. the possible ` ≥ 1 collections (θk,1,ε), ..., (θk,`,ε) which are generated by
all the Stokes values of the form ω2e

−irε− ωk with arg(ωk) = rθ0− π if
they exist.

Furthermore, for all ε 6= 0, the principal determinations θ? ∈]− 2π, 0] of all
these directions θ satisfy

(4.12) −2kπ

r
≥ θ?k > θ?k,1,ε > ... > θ?k,`,ε > (θk − ε)? > θ?k,ε > −

2(k + 1)π

r

for all k = 0, ..., r − 1 (the chosen order on the θ?k,s,ε is to fix ideas).

Observe that, among all the collections above, collections (θk) and (θk−ε)
are, for all ε ∈ [0, δ], the unique collections of anti-Stokes directions of system
(Aε) associated with f̃ ε(x). Moreover, for ε 6= 0, they are both generated by
just one Stokes value of Ωε.
For any direction ∗ of lemma 4.5, we denote by Stε∗? the corresponding

Stokes-Ramis matrix. Then, according to inequalities (4.12), the following
lemma holds.

Lemma 4.6 (Description of the Stokes matrices Sε
θ?k
)

Let k ∈ {0, ..., r − 1} and ε ∈ [0, δ], ε 6= 0.
Let M ε

k be the matrix defined by M
ε
k := Stεθ?k,1,εSt

ε
θ?k,2,ε

...Stεθ?k,`,ε when the col-
lections (θk,s,ε)’s exist and by M ε

k := In otherwise.
Then,

Sε
θ?k

= Stεθ?kM
ε
kSt

ε
(θk−ε)?St

ε
θ?k,ε

.

We shall now precise the structure of the Stokes-Ramis matrices Stε∗? of
lemma 4.6 above. As before, we split all these matrices into blocks Stεj;`∗? of
size nj × n` (recall that nj denotes the size of the jth Jordan block of the
matrix L of exponents of formal monodomy of initial system (A)). Then,
lemma 4.5 implies:

Lemma 4.7 (Structure of the Stokes-Ramis matrices Stε∗?)
Let k ∈ {0, ..., r − 1} and ε ∈ [0, δ], ε 6= 0.
Recall that the aj,r’s denote, for all j = 1, ..., J , the Stokes values of initial
system (A) associated with f̃ ε(x).
Then,
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1. Stokes-Ramis matrix Stεθ?k :

• Stεj;jθ?k
= Inj for all j,

• Stεj;1θ?k
= 0 as soon as j 6= 1 and aj,r 6= ω1,

• Stεj;`θ?k
= 0 as soon as j 6= ` and a`,r = ω2.

2. Stokes-Ramis matrix Stε(θk−ε)?:

• Stεj;j(θk−ε)? = Inj for all j,

• for j 6= `, Stεj;`(θk−ε)? = 0 as soon as aj,r 6= ω2 or ` 6= 1.

3. Stokes-Ramis matrix Stεθ?k,ε:

• Stεj;jθ?k,ε
= Inj for all j,

• for j 6= `, Stεj;`θ?k,ε
= 0 as soon as aj,r 6= ω2 or a`,r 6= ω1.

4. Stokes-Ramis matrices Stεθ?k,s,ε, s = 1, .., `:

• Stεj;jθ?k,s,ε
= Inj for all j,

• for j 6= `, Stεj;`θ?k,s,ε
= 0 as soon as ` = 1 or a`,r = ω2.

Let us now denote by stεj;•θ?k
(resp. stεj;•(θk−ε)?) in place of St

εj;1
θ?k

(resp.

Stεj;1(θk−ε)?). The entries of st
εj;•
θ?k

(resp. stεj;•(θk−ε)?) for j such that aj,r = ω1

(resp. aj,r = ω2) are the perturbed Stokes multipliers of f̃ ε(x) in the direc-
tion θk (resp. θk − ε).
As a result of the various structures of the Stokes-Ramis matrices Stε∗?

given in lemma 4.7 above, lemma 4.6 and corollary 2.15 imply the following
proposition.

Proposition 4.8 (Initial vs perturbed Stokes multipliers)
For all j ∈ {1, ..., J} such that aj,r ∈ Ω(θk) = {ω1, ω2}, the initial Stokes
multipliers stj;•θ?k of f̃(x) are related, for all k ∈ {0, ..., r− 1}, to the perturbed
Stokes multipliers stεj;•θ?k

and stεj;•(θk−ε)? of f̃
ε(x) by the relations

(4.13)

stj;•θ?k
= lim

ε→0
stεj;•θ?k

if aj,r = ω1

stj;•θ?k
= lim

ε→0
stεj;•(θk−ε)? if aj,r = ω2

.
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Remark 4.9 In practice, relations (4.13) are rather diffi cult to apply since
the perturbed Stokes multipliers, like the initial Stokes multipliers, can not
be displayed in general. Nevertheless, proposition 4.8 tells us that, for ε small
enough, the perturbed Stokes multipliers provide a “good”approximation of
the initial Stokes multipliers.

As an illustration of proposition 4.8, we shall develop below two typical
examples.

3. Examples

Here below, we revisit the two previous examples 4.1 and 4.2 with the point
of view of the perturbative method. More precisely, we perturb each of
systems (4.1) and (4.4) as above; then we “evaluate”the perturbed Stokes
multipliers and we compare the values of initial Stokes multipliers obtained
by proposition 4.8 with those previously obtained in examples 4.1 and 4.2.
Those two examples illustrate the two situations that may occur with

our perturbative method (see remark 4.9). In the first one, we are able to
calculate the exact values of the perturbed Stokes multipliers for any value of
ε; hence, we can apply relations (4.13) as they are. As before, this case is, of
course, anecdotal but it is worth to be treated. In the second one, such exact
calculations are not possible anymore. In that case, we have to calculate an
approximate value of the perturbed Stokes multipliers for some small values
of ε, say of the form ε = 10−m with m ≥ 1.

Example 4.10 We consider, for ε > 0 small enough, the perturbed system

(4.14) x2
dY

dx
=

 0 0 0

x2 1 +
x

4
0

−2x3 x 3e−iε

Y
of system (4.1) (cf. example 4.1) together with the formal fundamental solu-
tion Ỹ ε(x) = F̃ ε(x)xLeQ

ε(1/x) where

• Qε

(
1

x

)
= diag

(
0,−1

x
,−3e−iε

x

)
,

• L = diag

(
0,

1

4
, 0

)
,

• F̃ ε(x) =

 1 0 0

f̃ ε2(x) 1 0

f̃ ε3(x) ∗ 1

 ∈M3(C[[x]]) satisfies F̃ ε(x) = I3 +O(x2).
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System (4.14) has the unique level 1 and its anti-Stokes directions associated
with the first column f̃ ε(x) of F̃ ε(x) are the direction θ = 0 generated by
the Stokes value 1 and the direction θ = −ε generated by the Stokes value
3e−iε. The corresponding Stokes-Ramis matrices Stε0 and St

ε
−ε read

Stε0 =

 1 0 0
stε20 1 0
0 0 1

 and Stε−ε =

 1 0 0
0 1 0
stε3−ε 0 1


where, according to [4, thm. 4.3], the Stokes multiplier stε20 (resp. stε3−ε) is
related to the connection constant kε21,+ (resp. k

ε3
3e−iε,+) of f̂

ε(ξ) at the point
ξ = 1 (resp. ξ = 3e−iε) by the relation

stε20 =
(1 + i)π

√
2

Γ

(
3

4

) kε21,+ (resp. stε3−ε = 2iπkε33e−iε,+).

As in example 4.1, the connection constants kε21,+ and kε33e−iε,+ and, con-
sequently, the Stokes multipliers stε20 and stε3−ε, can be explicitly calculate.
More precisely, by adapting the calculations made in example 4.1, one can
check that the Borel transforms f̂ ε2(ξ) of f̃

ε
2(x) and f̂ ε3(ξ) of f̃

ε
3(x) read

f̂ ε2(ξ) =
4

3
− 4

3
(1− ξ)−3/4

f̂ ε3(ξ) =
−3ξ2 + 4ξ − 12 + 12(1− ξ)1/4

3(ξ − 3e−iε)

for all |ξ| < 1. Hence,
kε21,+ =

2
√

2

3
(1 + i)

kε33e−iε,+ = −9e−2iε + 4e−iε − 4 + 4(1− 3e−iε)1/4

(recall that we chose a determination of the logarithm such that ln(ξ) ∈ R
for ξ > 0) and, consequently,

stε20 =
8iπ

3Γ

(
3

4

)
stε3−ε = 2iπ(−9e−2iε + 4e−iε − 4 + 4(1− 3e−iε)1/4)

.
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Now, we apply proposition 4.8: the Stokes multipliers st20 and st
3
0 of initial

system (4.1) are given by

st20 = lim
ε→0

stε20 and st30 = lim
ε→0

stε3−ε.

Then, we get

st20 =
8iπ

3Γ

(
3

4

) and st30 = 2iπ(27/4 − 9 + 27/4i)

which are the same values as those calculated in example 4.1.

Example 4.11 Let us now consider, for ε > 0 small enough, the perturbed
system

(4.15) x2
dY

dx
=


0 0 x

x 1 +
x

2
0

0 −x 2e−iε +
x

3

Y
of system (4.4) (cf. example 4.2) together with the formal fundamental solu-
tion Ỹ ε(x) = F̃ ε(x)xLeQ

ε(1/x) where

• Qε

(
1

x

)
= diag

(
0,−1

x
,−2e−iε

x

)
,

• L = diag

(
0,

1

2
,
1

3

)
,

• F̃ ε(x) ∈M3(C[[x]]) satisfies F̃ ε(x) = I3 +O(x).

System (4.15) is again a level-one system; its anti-Stokes directions associated
with the first column f̃ ε(x) of F̃ ε(x) are the directions θ = 0 and θ = −ε
(we have Ωε = {1, 2e−iε}) and the corresponding Stokes-Ramis matrices Stε0
and Stε−ε read

Stε0 =

 1 0 0
stε20 1 0
0 0 1

 and Stε−ε =

 1 0 0
0 1 0
stε3−ε 0 1

 .
Furthermore, according to [4, thm. 4.3], the Stokes multiplier stε20 (resp.
stε3−ε) is related to the connection constant k

ε2
1,+ (resp. k

ε3
2e−iε,+) of f̂

ε(ξ) at
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the point ξ = 1 (resp. ξ = 2e−iε) by the relation

stε20 = 2
√
πkε21,+ (resp. stε3−ε =

π(
√

3 + i)

Γ

(
2

3

) kε32e−iε,+).

To evaluate the connection constants kε21,+ and k
ε3
2e−iε,+, we procceed like in

example 4.2. First, we check that, for all ε, the Borel transform f̂ ε(ξ) of
f̃ ε(x) is an analytic solution on the open disc D(0, 1) of the system

(4.16)
dZ

dξ
=

−
1
ξ

0 1
ξ

1
ξ−1 −

1
2(ξ−1) 0

0 − 1
ξ−2 − 2

3(ξ−2e−iε)

Z
which has two regular singular points at ξ = 1 and ξ = 2e−iε. More precisely,
system (4.16) reads near ξ = 1 as

(4.17) (ξ − 1)
dZ

dξ
= C1(ξ − 1)Z

with C1(ξ) :=

−
ξ
ξ+1

0 ξ
ξ+1

1 −1
2

0

0 − ξ
ξ−2e−iε+1 −

2ξ
3(ξ−2e−iε+1)


and near ξ = 2e−iε as

(4.8) (ξ − 2e−iε)
dZ

dξ
= C2(ξ − 2e−iε)Z

with C2(ξ) :=

−
ξ

ξ+2e−iε 0 ξ
ξ+2e−iε

ξ
ξ−1+2e−iε −

ξ
2(ξ−1+2e−iε) 0

0 −1 −2
3

 .
Notice that C1(ξ−1) is analytic on the open disc D(1, 1) and C2(ξ−2e−iε) is
analytic on the open disc D(2e−iε, rε) with rε := |2e−iε− 1| > 1 for all ε > 0.
Next, we define a fundamental solution Zε

1(ξ − 1) (resp. Zε
2(ξ − 2e−iε)) of

system (4.16) (resp. system (4.17)) in the same way as in example 4.2 (see
page 35) and we consider the unique matrix Sε1 (resp. S

ε
2) of M3,1(C) such

that the right analytic continuation of f̂ ε(ξ) (still denoted f̂ ε(ξ)) at the point
ξ = 1 (resp. ξ = 2e−iε) reads f̂ ε(ξ) = Zε

1(ξ − 1)Sε1 for all ξ ∈ D(1, 1)\{1}
(resp. f̂ ε(ξ) = Zε

2(ξ − 2e−iε)Sε2 for all ξ ∈ D(2e−iε, rε)\{2e−iε}). Then, we
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can check that kε21,+ = σε21 the second entry of Sε1 and k
ε3
2e−iε,+ = σε32 the third

entry of Sε2. Hence,

stε20 = 2
√
πσε21 and stε3−ε =

π(
√

3 + i)

Γ

(
2

3

) σε32 .

Following table 4.1 gives us some approximations of σε20 and st
ε2
0 for different

values of ε = 10−m. All the approximations of σε20 are calculated, like in
example 4.2, from the relation

Sε1 = Zε
1

(
−1

2

)−1
f̂ ε
(

1

2

)
where arg(−1/2) = −π (we connect the discs of “convergence”D(0, 1) of
f̂ ε(ξ) and D(1, 1) of Zε

1(ξ−1) to the right). Notice that the number of inter-
mediate calculations needed for the determination of the connection matrix
Sε1 is identical to the one of example 4.2 for the determination of the connec-
tion matrix S1. Notice also, by comparing the values of the stε20 ’s with the
value of st20 obtained in example 4.2, that the perturbed Stokes multiplier
stε20 provides a “good”approximation of the initial Stokes multiplier st20 as
soon as ε ≤ 10−6.

ε σε20 stε20

10−1 0.0704 + 0.47437249i 0.2496 + 1.6816067i

10−2 0.00709 + 0.46829947i 0.0251 + 1.6600784i

10−3 7.09× 10−4 + 0.46823828i 0.00251 + 1.6598615i

10−4 7.09× 10−5 + 0.46823767i 2.51× 10−4 + 1.6598593i

10−5 7.09× 10−6 + 0.46823766i 2.51× 10−5 + 1.6598593i

10−6 7.09× 10−7 + 0.46823766i 2.51× 10−6 + 1.6598593i

10−7 7.09× 10−8 + 0.46823766i 2.51× 10−7 + 1.6598593i

10−8 7.09× 10−9 + 0.46823766i 2.51× 10−8 + 1.6598593i

10−9 7.09× 10−10 + 0.46823766i 2.51× 10−9 + 1.6598593i

10−10 7.09× 10−11 + 0.46823766i 2.51× 10−10 + 1.6598593i

Table 4.1
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Let us now evaluate the constants σε32 . For any ε > 0, the radius rε =
|2e−iε − 1| of the disc of “convergence”D(2e−iε, rε) of Zε

2(ξ − 2e−iε) is > 1.
Thereby, D(0, 1) ∩ D(2e−iε, rε) 6= ∅ and any value aε of ]2 − rε, 1[ satisfies
aεe
−iε ∈ D(0, 1) ∩D(2e−iε, rε).

Figure 4.3

Hence, the matrix Sε2 is uniquely determined by the relation

Sε2 = Zε
2((aε − 2)e−iε)−1f̂ ε

(
aεe
−iε)

where arg((aε − 2)e−iε) = −ε − π. Let us choose for example aε as the
midpoint of ]2−rε, 1[; then one can check that the perturbed Stokes multiplier
stε3−ε provides a “good”approximation of the initial Stokes multiplier st

3
0 as

soon as ε ≤ 10−6. Observe here that, contrary to the calculation of the
connection matrix Sε1 made above, the number of intermediate calculations
needed for the determination of Sε2 is much lower than the one of example
4.2 for the determination of the connection matrix S2.

By adapting the calculations made above to system (4.9) (cf. example
4.3), we can evidently get an approximate value of the Stokes multipliers st30
and st3−π of example 4.3. In particular, note that this method allows to re-
place the path of right analytic continuation given in figure 4.2 by a “simpler”
path similar to the one of figure 4.3 and, therefore, to significantly reduce
the number of intermediate calculations needed to determine the adequate
connection matrix.

4.2.2 General case

Let us now suppose that ]Ω(θk) ≥ 2, i.e., there exist s ∈ {2, ..., p} Stokes
values of Ω, say ω1, ω2, ..., ωs, generating the collection (θk). Without loss of
generality, we also suppose |ω1| < |ω2| < ... < |ωs|.
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The method previously detailed in the case ]Ω(θk) = 2 can be extended to
our present case by considering, for ε > 0 small enough, the system (Aε) in
which the initial Stokes value ω` of system (A) is replaced, for all ` = 1, ..., s,
by the perturbed Stokes value

ωε` := ω` exp

(
−ir `− 1

s− 1
ε

)
.

Notice that, for all ` = 1, ..., s, the Stokes value ωε` generates its own collection(
θk −

`− 1

s− 1
ε

)
of anti-Stokes directions of system (Aε).

Then, one can prove the following proposition which generalizes proposi-
tion 4.8.

Proposition 4.12 (Initial vs perturbed Stokes multipliers)
For all j ∈ {1, ..., J} such that aj,r ∈ Ω(θk) = {ω1, ω2, ..., ωs}, the initial
Stokes multipliers stj;•θ?k of f̃(x) are related, for all k ∈ {0, ..., r − 1}, to the
perturbed Stokes multipliers stεj;•

(θk− `−1s−1 ε)
?
, ` = 1, ..., s, of f̃ ε(x) by the relations

stj;•θ?k
= lim

ε→0
stεj;•
(θk− `−1s−1 ε)

?
if aj,r = ω` .

4.2.3 Conclusion and directions for further research

In the two previous sections 4.2.1 and 4.2.2, we presented and illustrated an
alternative method for the effective calculation of the Stokes multipliers of
f̃(x) (hence, of the full matrix F̃ (x)). This method, based on a perturbation
of system (A) in which each nonzero Stokes value of Ω generates its own
collection of anti-Stokes directions, has the two following main interests.

1. It allows to avoid all the diffi cults stated in remark 4.4 which can occur
with a “direct”method, i.e., without perturbation.

2. It shows that it suffi ces to build and to develop algorithms to evaluate,
in a given anti-Stokes direction associated with f̃(x), the Stokes mul-
tipliers associated with the nearest (to the origin 0 ∈ C) Stokes values
of Ω.

The construction of such algorithms is a direction of our further researchs.

Another direction of research is related to the perturbative method presen-
ted in this paper: how choose ε to guarantee that the perturbed Stokes mul-
tipliers would be approximate values of the initial Stokes multipliers with a
precision set in advance?
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