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Given a meromorphic linear di¤erential system with an arbitrary single level r 1, we build a regular holomorphic perturbation which preserves the single level and we show that the Stokes-Ramis matrices of the initial system are limits of convenient products of the perturbed ones. As an application, we provide an alternative method for the e¤ective calculation of the Stokes multipliers of the initial system illustrated on two examples. No assumption of genericity is made on the initial system.

Introduction

Throughout the paper, we are given a positive integer r 1 and we consider a linear di¤erential system (in short, a di¤erential system or a system) of dimension n 2 with meromorphic coe¢ cients of order r + 1 at the origin 0 2 C of the form ( j I n j + J n j ) where J is an integer 2, I n j denotes the identity matrix of size n j and where if n j 2 is an irreductible Jordan block of size n j ,

J n j = 8 > > > > > > < > > > > > > : 0 if n j = 1
Q 1 x = J M j=1
q j 1 x I n j where the q j (1=x)'s are polynomials of maximal degree equal to r with respect to 1=x.

In a very general system (A), the q j (1=x)'s may be polynomials in a fractional power in 1=x. However, they can always be changed into polynomials in the variable 1=x itself by means of an adequate …nite algebraic extension x 7 ! x , 2 N , of the variable x. The properties in view in this paper being preserved under such algebraic extensions, we may assume, without any loss of generality, that the q j (1=x)'s read as q j 1 x = a j;r x r a j;r 1 x r 1 ::: a j;1 x 2 x 1 C x 1 :

In addition, we suppose

(0:1) e F (x) 2 M n (C[[x]]
) is a formal power series in x satisfying e F (x) = I n + O(x r );

(0:2) the eigenvalues j satisfy 0 Re( j ) < 1 for all j = 1; :::; J, (0:3) 1 = 0 and q 1 0.

Such conditions are not restrictive since they can always be ful…lled by means of a meromorphic gauge transformation Y 7 ! T (x)x 1 e q 1 (1=x) Y where T (x) has explicit computable polynomial entries in x and 1=x (cf. [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations; Part I, formal invariants[END_REF]). Recall that conditions e F (0) = I n and 0 Re( j ) < 1 guarantee the unicity of e F (x) as formal series solution of the homological system associated with system (A) (cf. [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations; Part I, formal invariants[END_REF]). Conditions 1 = 0 and q 1 0 are for notational convenience.

The assumption "system (A) has the unique level r"is equivalent to the conditions (0.4) 1: q j q ` 0 or with degree r for all j;

2:

there exists j such that a j;r 6 = 0

:

Observe that, all over the article, no restrictive assumption is made except the assumption that the given system (A) has a unique level. In particular, we never assume that the formal monodromy L is diagonal or the Stokes values a j;r are distinct.

In this paper, we are interested in regular perturbations of system (A) of the form (A " )

x r+1 dY dx = A " (x)Y with A 1 (x) = A(x);

where " is a holomorphic multi-parameter lying in a polydisc centered at the unit 1 := (1; :::; 1) of the C-vector space C p+1 for a convenient p 1. Besides, we suppose that, for any value of ", system (A " ) has, like initial system (A), the unique level r too.

The main goal of this article is to prove that the Stokes-Ramis matrices 1 of initial system (A) are limits of convenient products of the Stokes-Ramis matrices of perturbed systems (A " ).

In a second time, we show how this result allows to build a method for the e¤ective calculation of the Stokes multipliers of initial system (A) and we illustrate it on some examples. 1 In the whole paper, we call Stokes matrices all the matrices providing the transition between any two asymptotic solutions whose domains of de…nition overlap. The name "Stokes-Ramis matrix " used here is reserved, according to the custom initiated by J.-P. Ramis ([5]) in the spirit of Stokes'work, to the matrices providing the transition between the sums on each side of a same anti-Stokes direction. Thereby, a Stokes-Ramis matrix is a Stokes matrix, but the converse is false in general.

The organization of the paper is as follows:

In section 1, we recall some basic de…nitions about the notions of the theory of summation, such as anti-Stokes directions, Stokes-Ramis matrices, etc..., which are needed.

In section 2, based on the geometry of the anti-Stokes directions of perturbed system (A " ), we select some Stokes matrices de…ned as …nite product of Stokes-Ramis matrices which are proved to depend holomorphically on the parameter " (theorem 2.14) and to converge to the Stokes-Ramis matrices of initial system (A) when " goes to 1 (corollary 2.15). Let us point out that such results were already obtained by the author in the case r = 1 with a more speci…c perturbation (cf. [START_REF] Remy | On the Stokes phenomenon of a family of multi-perturbed level-one meromorphic linear di¤erential systems[END_REF]).

The central point of the proof of theorem 2.14 is proved in section 3. This one is based, after rank reduction, on an adequate variant of the proof of summable-resurgence theorem for single-level systems following classical Écalle's method by regular perturbation and majorant series which was given by the author in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF].

In section 4, we combine the general results obtained in section 2 with the results of [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] to build an alternative method for the e¤ective calculation of the Stokes multipliers of e F (x). As an illustration, we develop two examples.

Acknowledgement I would like here to thank Professor M. Loday-Richaud for all her comments and advice which enabled me to …nalize this article.

Some de…nitions and notations

For the convenience of the reader, we recall here below some de…nitions about the notions of summation theory which are needed in this paper.

Anti-Stokes directions

The anti-Stokes directions (i.e., the singular directions) of system (A) (or of the full matrix e F (x)) are the directions of maximal decay of exponentials e (q j q `)(1=x) with q j q `6 0. More precisely, these directions are the directions determined from 0 by the r th roots of the nonzero elements of := fa j;r a `;r ; 1 j; ` Jg: Indeed, according to our hypothesis (0.4) of "single level equal to r", any polynomial q j q `6 0 is of degree r and reads (q j q `) 1 x = a j;r a `;r x r + o 1

x r with a j;r a `;r 6 = 0:

Recall that the elements a j;r a `;r of are called Stokes values of system (A). Notice that condition a 1;r = 0 implies a j;r 2 for all j = 1; :::; J.

Throughout the article, we refer as a collection of anti-Stokes directions of system (A) any set ( k ) k=0;:::;r 1 2 (R=2 Z) r formed by the r directions generated by a nonzero Stokes values of (i.e., determined by its r th roots).

Summation

Given a non anti-Stokes direction 2 R=2 Z of system (A) and a choice of an argument of , say its principal determination ? 2] 2 ; 0]2 , we consider the sum of e Y in the direction given by

Y (x) = s r; ( e F )(x)Y 0; ? (x)
where s r; ( e F )(x) denotes the uniquely determined r-sum of e F at and where Y 0; ? (x) is the actual analytic function Y 0; ? (x) := x L e Q(1=x) de…ned by the choice arg(x) close to ? (denoted below arg(x) ' ? ).

Recall that s r; ( e F ) is an analytic function de…ned and 1=r-Gevrey asymptotic to e F on a germ of sector bisected by and opening larger than =r.

For both practical and theoretical reasons, it is worth noting that it is often useful to rewrite s r; ( e F ) in terms of 1-sums (or Borel-Laplace sums): let us denote by e

F [u] (t) 2 M n (C[[t]]
) with u = 0; :::; r 1 the r-reduced series of e F (x), i.e., the formal series which are uniquely determined by the relation e F (x) = e F [0] (x r ) + x e F [1] (x r ) + :::

+ x r 1 e F [r 1] (x r ):
Then, all the e F [u] 's are 1-summable in the direction := r and the r-sum s r; ( e F ) is related to the 1-sums s 1; ( e F [u] ) by the relation

s r; ( e F )(x) = r 1 X u=0 x u s 1; ( e F [u] )(x r ):
Recall that the 1-sum s 1; ( e F [u] )(t) is given by the Borel-Laplace integral

Z 1e i 0 b F [u] ( )e =t d
where b F [u] ( ) denotes the Borel transform of e F [u] (t).

Stokes phenomenon and Stokes-Ramis matrices

When 2 R=2 Z is an anti-Stokes direction of system (A), we consider the two lateral sums s r; ( e F ) and s r; + ( e F ) of e F at respectively obtained as analytic continuations of s r; ( e F ) and s r; + ( e F ) to a sector with vertex 0, bisected by and opening =r. Notice that such analytic continuations exist without ambiguity when > 0 is small enough.

The Stokes phenomenon of system (A) stems from the fact that the sums The Stokes-Ramis matrices are de…ned as matrix representations of the St ? 's in GL n (C). Notice that the matrix St ? is uniquely determined by the relation

Y (x) = Y + (x)St ?
for arg(x) ' ? :

A holomorphic perturbation

In this section, we build a regular holomorphic perturbation of system (A) which preserves the single level r 1; then, based on the geometry of the anti-Stokes directions of the perturbed system, we select some Stokes matrices de…ned as convenient …nite products of Stokes-Ramis matrices and we show, on one hand, that they depend holomorphically on the parameter and, on the other hand, that they converge to the Stokes-Ramis matrices of initial system (A).

According to the normalization e F (x) = I n + O(x r ), the matrix A(x) of system (A) reads

A(x) = J M j=1 " ra j;r + r 1 X k=1 ka j;k x r k ! I n j + x r L j # + B(x)
where L j := j I n j + J n j denotes the j th Jordan block of the matrix L of exponents of formal monodromy and where B(x) is analytic at the origin 0 2 C. More precisely, splitting B(x) = [B j;`( x)] into blocks …tting the Jordan structure of L, one has (2.1)

B j;`( x) = O(x r ) if a j;r 6 = a `;r O(x 2r ) if a j;r = a `;r :
The holomorphic perturbation of system (A) considered below acts both on the Stokes values a j;r 6 = 0 (hence, a fortiori, on the set of all the Stokes values of system (A) and on the anti-Stokes directions of system (A) too) and on the analytic part B(x).

Recall that a 1;r = 0 and the nonzero a j;r 's are not supposed distinct. Henceforth, we denote below by ! 1 ; :::; ! p with p 1 the distinct values of the a j;r 6 = 0 and we rewrite as 

= f! 0 := 0g [ f! k ! `; k; `=

A perturbed system

We consider below a perturbation of system (A) of the form

(A " ) x r+1 dY dx = A " (x)Y
where (1) the parameter " := (" 1 ; :::; " p ; " p+1 ) lies in a polydisc

D p := p+1 Y k=1 D(1; k )
of C p+1 ; precise conditions on the k 's are given below,

(2) for all " 2 D p , the matrix A " (x) reads

A " (x) = J M j=1 " ra " j;r + r 1 X k=1 ka j;k x r k ! I n j + x r L j # + " p+1 B(x) with a " j;r := ! 0 = 0 if a j;r = ! 0 ! k " k if a j;r = ! k
and k 2 f1; :::; pg :

Notice that systems (A " ) depend holomorphically on the parameter " and coincide with system (A) for " = 1 := (1; :::; 1) the unit of C p+1 .

Notice also that

! k " k 2 D(! k ; j! k j k
) for all k = 1; :::; p:

Consequently, the radius k 's, k = 1; :::; p, being chosen so that conditions (C1) D(! k ; j! k j k ) \ D(! `; j! `j `) = ; for all k; `= 1; :::; p and k 6 = `,

(C2) 0 = 2 D(! k ; j! k j k
) for all k = 1; :::; p, be veri…ed (such choices exist since the ! k 's are distinct in Cnf0g for all k), system (A " ) has, for all " 2 D p , the unique level r and has for formal fundamental solution the matrix e

Y " (x) = e F " (x)x L e Q " (1=x) where e F " (x) 2 M n (C[[x]]
) is a formal power series in x satisfying e F " (0) = I n , L is the matrix of exponents of formal monodromy of initial system (A),

Q " 1 x = J M j=1 q " j 1 x I n j with q " j 1 x = a " j;r
x r a j;r 1 x r 1 :::

a j;1 x 2 x 1 C[x 1 ].
In other words, q " j (1=x) is equal to 8 > < > :

0 if a j;r = ! 0 ! k " k x r
a j;r 1 x r 1 ::: a j;1 x if a j;r = ! k and k 2 f1; :::; pg :

Observe that, like systems (A " ) and (A), the two formal fundamental solutions e Y " (x) and e Y (x) coincide for " = 1. Observe also that, for any " 2 D p , e Y " (x) has the same normalizations as e Y (x). In particular, its formal series factor e F " (x) is uniquely determined, for all " 2 D p , by the homological system associated with system (A " ) jointly with the initial condition e F " (0) = I n . Furthermore, the following condition holds for all " 2 D p :

(2.2) a j;r = 0 , a " j;r = 0 , q " j 0 a j;r = a `;r , a " j;r = a " `;r , q " j q " `:

Remark 2.2 Unlike the radius k , k = 1; :::; p, which must be chosen so that conditions (C1) and (C2) hold, no condition on the radius p+1 is imposed.

In particular, we can choose it as we want.

Remark 2.3 Conclusions above on systems (A " ) are preserved when we replace in conditions (C1) and (C2) the closed discs D(! k ; j! k j k ) by the open discs D(! k ; j! k j k ). Actually, the choice of the closed discs is to guarantee here that 0 is not an accumulation point for the set of nonzero Stokes values of systems (A " ) when " runs in D p . As we shall see below, this point will play an essential role.

Let us now denote by " the set of Stokes values of system (A " ). By construction, the set " is deduced from the set of Stokes values of initial system (A) by replacing each nonzero Stokes value ! k ! `with the nonzero element ! k " k ! `"`( we set " 0 := 1). Hence, for all " 2 D p , Lemma 2.4 Let ( k ) k=0;:::;r 1 2 (R=2 Z) r be a collection of anti-Stokes directions of initial system (A). Let G(( k )) be the set of Stokes values of generating the collection ( k ). Then, the image of ( k ) by the perturbation is the set of all the anti-Stokes directions of systems (A " ), " running in D p , generated by all the Stokes values

" = f! 0 = 0g [ f! k " k ! `
! k " k ! `"`2 " while ! k ! `2 G(( k )).
A more precise version of lemma 2.4 is given in section 2.3, proposition 2.9. Before, we need some geometric features of the set of perturbed Stokes values.

Singular discs and singular sectors

Let us denote by

(D p ) := [ "2Dp
" the set of all the Stokes values of all systems (A " ) when " runs in D p . The goal of this section is to describe some of its geometric features.

1: Singular discs of (D p )

As seen before, the perturbation changes, for all " 2 D p , the nonzero Stokes value ! k ! `2 of initial system (A) into the nonzero Stokes value ! k " k ! `"`2 " of system (A " ). This brings us to the following de…nition.

De…nition 2.5 (Singular disc of (D p )) Given a nonzero Stokes value ! k ! `2 of initial system (A) (hence, k 6 = `), we call singular disc of (D p ) associated with

! k ! `the subset D ! k ! ` (D p ) of all the Stokes values ! k " k ! `"`2
" of all systems (A " ) when " runs in D p .

Notice that the set (D p ) can be rewritten as

(D p ) = f0g [ 0 @ [ !2 nf0g D ! 1 A
Notice also that the choice of closed discs in conditions (C1) and (C2) Then,

(cf. remark 2.3) implies 0 = 2 D ! (= the closure of D ! in C)
D ! k ! `= D(! k ! `; j! k j k + j! `j `)
(we set 0 := 0).

Observe that, contrary to the discs D(! k ; j! k j k ) (cf. condition (C1)), some of singular discs may overlap. According to proposition 2.8 (b) and calculations below, we suppose, from now on, that the radius k , k = 1; :::; p, are chosen so that the following conditions be veri…ed: (C3) for all 2 , ( ) < 2 , (C4) for all 2 , the principal determination ? of and the principal determination ( ( )=2) ? of ( )=2 satisfy

0 ? > ( ( )=2) ? > 2 ; (C5) ; ( ) \ 0 ; ( 0 ) = ; for all ; 0 2 , 6 = 0 .
Notice that, once again (cf. remark 2.2), no condition is imposed on the last radius p+1 .

We are now able to describe the action of the perturbation on the anti-Stokes directions of initial system (A).

Perturbation and anti-Stokes directions

The goal of this section is to give a precise description of the image of any collection ( k ) k=0;:::;r 1 2 (R=2 Z) r of anti-Stokes directions of initial system (A) by the perturbation. To this end, we base on lemma 2.4 and on the geometric features of the set (D p ) stated in the previous section.

The main result of this section is the following proposition. Proposition 2.9 Let ( k ) k=0;:::;r 1 2 (R=2 Z) r be a collection of anti-Stokes directions of initial system (A). Let := r 0 (hence, = r k for all k). Then, 1. 2 , 2. the image of the collection ( k ) k=0;:::;r 1 by the perturbation is the collection (D k ; ( )=r ) k=0;:::;r 1 .

Recall (cf. de…nition 2.7) that ( ) denotes the opening of the singular sector of (D p ) associated with .

Recall also (cf. lemma 2.4) that, for all k = 0; :::; r 1, the directions of the set D k ; ( )=r are anti-Stokes directions of systems (A " ), " running in D p .

Proof. Obviously, is the direction determined by the Stokes values of generating the collection ( k ); hence, 2 and the set G(( k )) of lemma 2.4 coincides with the set of section 2.2. Thereby, the image of ( k ) is equal to the set of directions determined by the r th roots of the elements of (D p ) (cf. lemma 2.4). Proposition 2.8 (c) ends the proof.

Observe that, like directions k 's, the sets D k ; ( )=r 's are regularly distribued around the origin 0 2 C. Conditions (C3) (C5) imply some obvious properties on sectors k ; ( )=r which will be useful in the following calculations.

Proposition 2.10 With notations as above, the following properties hold: (a) For any collection ( k ) of anti-Stokes directions of initial system (A), k ; ( )=r \ `; ( )=r = ; for all k 6 = `:

(b) For any collection ( k ) of anti-Stokes directions of initial system (A), the principal determination ? k of k and the principal determination 

( k ( )=(2r)) ? of k ( )=(2r) satisfy 0 ? k > ( k ( )=( 2r 

Initial vs perturbed Stokes-Ramis matrices

In this section, we consider a collection ( k ) k=0;:::;r 1 of anti-Stokes directions of initial system (A). Let (D k ; ( )=r ) k=0;:::;r 1 be its image by the perturbation. Recall that = r k for any k (cf. proposition 2.9).

According to condition (C3) and proposition 2.10 above, there exists 2 ] ( ); =2[ such that, for all k = 0; :::; r 1,

1. k ; ( )=r & k ; =r & k ;( )=r & k ; =r ; 2. the principal determination ( k =(2r)) ? of k =(2r) satis…es 0 ? k > ( k ( )=(2r)) ? > ( k =(2r)) ? > 2 ;

3.

k ; =r \ `; =r = ; for all `6 = k; 4. for any collection ( 0 `) of anti-Stokes directions of initial system (A) distinct of ( k ), k ; =r \ 0 `; ( 0 )=r = ; for all `= 0; :::; r 1: Let k 2 f0; :::; r 1g and …x, for now, " 2 D p . According to points 1.-4. above, the directions k =(2r) are not anti-Stokes directions of system (A " ). Thereby, (cf. section 1, page 5), the r-sums s r; k =(2r) ( e F " ) are de…ned and analytic on a same germ of sector k ;( )=r . Consequently, the sums

Y " k =(2r) (x) := s r; k =(2r) ( e F " )(x)x L e Q " (1=x)
are related, for arg(x) 2 k 2r ?

; k ( ) 2r

? and x close enough to 0 2 C, by the relation

(2.3) Y " k =(2r) (x) = Y " k + =(2r) (x)S " ? k : The matrix S " ? k 2 GL n (C) denotes the (perturbed) connection matrix between Y " k + =(2r) and Y " k =(2r)
; it is uniquely determined by identity (2.3). Furthermore, remark 2.11 and points 1. and 3.-4. above imply that the Stokes matrix3 S " ? k is de…ned as a (…nite) product of Stokes-Ramis matrices associated with e Y " in the anti-Stokes directions of system (A " ) contained in D k ; ( )=r . In particular, for " = 1, we have S 1 ? k

St ?

k the Stokes-Ramis matrix of initial system (A) associated with e Y in the direction k . Indeed,

Y 1 k =(2r) (x) = Y k =(2r) (x) = Y k (x).
The aim of this section (and of this article) is to study the holomorphic dependence in " of the Stokes matrices S " ? k (see theorem 2.14 below). To this end, we must, …rst of all, answer the following questions: As seen in section 1, page 5, we write the r-sums s r; k =(2r) ( e F " )(x) as

(2.4) s r; k =(2r) ( e F " )(x) = r 1 X u=0 x u s 1; =2 ( e F "[u] )(x r )
where the e F "[u] 's denote the r-reduced series of e F " . Let us admit for the moment the following lemma which yields some properties on Borel transforms of the e =2). Suppose that the closures 

F "[u] 's. Lemma 2.12 Let b F "[u] ( ) denote the Borel transform of e F "[u] (t) with respect to t. Let V + (resp. V ) be
V + of V + and V of V in C satisfy V + \ D ! = ; and V \ D ! = ;
; ") 7 ! b F "[u] ( ) is holo- morphic on V + D p . (b) There exist C + ; K + > 0 such that inequality b F "[u] ( ) C + e K + j j
holds for all u = 0; :::; r 1, all 2 V + and all " 2 D p .

Domain V

(a) For all u = 0; :::; r 1, the function

( ; ") 7 ! b F "[u] ( ) is holo- morphic on V D p . (b) There exist C ; K > 0 such that inequality b F "[u] ( ) C e K j j
holds for all u = 0; :::; r 1, all 2 V and all " 2 D p .

Observe that the existence of domains V + and V is guaranteed, on one hand, by the fact that 0 = 2 D ! for all ! 2 nf0g (cf. page 10) and, on the other hand, by the fact that the choice of implies =2 = 2 D 0 ; ( 0 ) for all 0 2 (cf. points 1.-4. above).

We will prove lemma 2.12 (in fact, a stronger statement) in section 3.

The following proposition gives a positive answer to questions (a) and (b) previously given. Proposition 2.13 Let k 2 f0; :::; r 1g.

1. For all " 2 D p , the functions x 7 ! s r; k =(2r) ( e F " )(x) are all de…ned and holomorphic on the sector

k := x 2 C ; jxj < K r and k 2r ? < arg(x) < k ( ) 2r ? where K r := min r r 1 K ; r r 1 K + ! .
2. For all x 2 k , the functions " 7 ! s r; k =(2r) ( e F " )(x) are holomorphic on D p . Proof. 1. Let " 2 D p . According to lemma 2.12, the 1-sum

s 1; + =2 ( e F "[u] )(t) (resp. s 1; =2 ( e F "[u] )(t)
) is de…ned and holomorphic, for all u = 0; :::; r 1, on the sector

+ =2 1 K + := t 2 C ; jtj < 1 K + and arg(t) 2 < 2 (resp. =2 1 K := t 2 C ; jtj < 1 K and arg(t) + 2 < 2 ).
Thereby, the choice of (cf. points 1.-4. page 15) implies that the 1-sums

s 1; =2 ( e F "[u]
)(t) are de…ned and holomorphic, for all u = 0; :::; r 1, on the same sector

:= t 2 C ; jtj < K and 2 ? < arg(t) < ( ) 2 
?
where

K = min 1 K ; 1 K + :
Observe that, since constants K + and K are independent of ", sector is independent of " too. Point 1. follows from identity (2.4).

2. Fix now x 2 k . According to identity (2.4), it is su¢ cient to show that, for any u = 0; :::; r 1, the functions " 7 ! s 1; =2 ( e F " [u] )(x r ) are holomorphic on D p . For all " 2 D p , the 1-sums s 1; =2 ( e F " [u] )(x r ) are given by the Borel-Laplace integrals

s 1; =2 ( e F "[u] )(x r ) = Z 1e i( =2) 0 b F "[u] ( )e =x r d = Z +1 0 b G "[u] ( )d where b G "[u] ( ) = b F "[u] ( e i( =2) )e exp(i( =2))=x r :
Since e i( =2) 2 V for all 0, lemma 2.12 applies: for all 0, the functions

" 7 ! b G "[u] ( ) are holomorphic on D p , for all 0 and all " 2 D p , b G "[u] ( ) b F "[u] ( e i( =2) ) e Re(exp(i( =2))=x r )
C e (Re(exp(i( =2))=x r ) K ) := M ( ):

Obviously, M does not depend on ". Furthermore, the choice "x 2 k " implying x r 2 , the functions 7 ! M ( ) are integrable on [0; +1[. Then, from Lebesgues dominated convergence theorem, the functions " 7 ! s 1; =2 ( e F "[u] )(x r ) are holomorphic on D p .

We are now able to state the two main theoretical results of this paper.

Theorem 2.14 Let k 2 f0; :::; r 1g. Then, the function

" 7 ! S " ? k is holomorphic on D p .
Proof. Let k 2 f0; :::; r 1g and x 2 k . According to proposition 2.13, 1., the Stokes matrices S " ? k are uniquely determined, for all " 2 D p , by the relation

(2.3) Y " k =(2r) (x) = Y " k + =(2r) (x)S " ? k where Y " k =(2r) (x) = s r; k =(2r) ( e F " )(x)x L e Q " (1=x) : Since " 7 ! Q " (1=x
) is obvious holomorphic on D p , proposition 2.13, 2., implies that the functions " 7 ! Y " k =(2r) (x) are also holomorphic on D p . On the other hand, for any " 2 D p , the matrix Y " k =(2r) is a formal fundamental solution of system (A " ). Thereby, Y " k =(2r) (x) 6 = 0 for all " 2 D p and, consequently, the functions

" 7 ! Y " k =(2r) (x) 1 are again holomorphic on D p . Identity S " ? k = Y " k + =(2r) (x) 1 Y " k =(2r) (x) ends the proof.
Theorem 2.14 obviously leads to the following result which tells us that the Stokes-Ramis matrices St ? k of initial system (A) are limits of the Stokes matrices S " ? k .

Corollary 2.15 Let k 2 f0; :::; r 1g. Then,

(2.5) lim "!1 S " ? k = St ? k :
Relations (2.5) will be applied in section 4 with a more speci…c perturbation in order to provide a method of e¤ective calculation of the Stokes multipliers of e F (x). Before, let us end the proof of theorem 2.14 by proving lemma 2.12. 

; ") 7 ! b F "[u] ( ) is holomorphic on V D p , 2. there exist C; K > 0 such that inequality b F "[u] ( ) Ce Kj j
holds for all u = 0; :::; r 1, all 2 V and all " 2 D p .

Notice that the existence of domain V is guaranteed by the fact that 0 = 2 D ! for all ! 2 nf0g (cf. page 10). The proof of theorem 3.1 is based, after rank reduction, on an adequate variant of the proof of summable-resurgence theorem for single-level systems following classical Écalle's method by regular perturbation and majorant series which was given by the author in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF].

Remark 3.2 Since any of the column-blocks of e

F " (x) associated with the Jordan structure of L (matrix of exponents of formal monodromy of system (A) and, by construction, matrix of exponents of formal monodromy of any system (A " ) too) can be positionned at the …rst place by means of a same permutation P (hence, independent of ") acting on the columns of e Y " (x) 4 , relation e F " (x) = e F "[0] (x r ) + x e F " [1] (x r ) + :::

+ x r 1 e F "[r 1] (x r )
shows that it is su¢ cient to prove theorem 3.1 in restriction to the columnblocks e f " [u] formed by the …rst n 1 (= dimension of the …rst Jordan block of L) columns of the e F "[u] 's.

Rank reduction

Let e f " (t) be the rn n Observe that condition e F " (x) = I n + O(x r ) implies e f " (t) = I rn;n 1 + O(t) where I rn;n 1 denotes the …rst n 1 columns of the identity matrix of size rn.

By de…nition of rank reduction, the r-reduced system (A " ) associated with system (A " ) admits, for all " 2 D p , a formal fundamental solution whose the …rst n 1 columns of its formal series factor are equal to the n 1 columns of e f " (t) (cf. [START_REF] Loday-Richaud | Rank reduction, normal forms and Stokes matrices[END_REF]). Thereby, normalizations of e Y " (x) (= formal fundamental solution of (A " )) implies that e f " (t) is uniquely determined by the …rst n 1 columns of the homological system associated with system (A " ) jointly with the initial condition e f " (0) = I rn;n 1 . This brings us to proposition 3.3 below.

Before to state it, recall that the matrix A " (x) of system (A " ) reads

A " (x) = J M j=1 " ra " j;r + r 1 X k=1 ka j;k x r k ! I n j + x r L j # + " p+1 B(x)
where L j = j I n j + J n j denotes the j th Jordan block of L and where

B(x) = [B j;`( x)] 2 M n (Cfxg) satis…es normalizations (2.1) B j;`( x) = O(x r ) if a " j;r 6 = a " `;r O(x 2r ) if a " j;r = a " `;r
for all j; `= 1; :::; J and all " 2 D p . Recall also that 1 = a " 1;r = 0 and a 1;k = 0 for all k = 1; :::; r 1.

Proposition 3.3 Let us denote by

A "[u] (t) (resp. B [u] (t)) with u = 0; :::; r 1 the r-reduced series of A " (x) (resp. B(x)). Then, for all " 2 D p , the formal series e f " (t) 2

M rn;n 1 (C[[t]]
) is uniquely determined by the system

(3.1) rt 2 df dt = A " (t)f tf J n 1
jointly with the initial condition e f " (0) = I rn;n 1 , where the matrix A " (t) 2 M rn (Cftg) is de…ned by

A " (t) = 2 6 6 6 6 6 6 4 A "[0] (t) tA "[r 1] (t)
tA " [1] (t)

A " [1] (t)

A "[0] (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . A "[0] (t) tA "[r 1] (t) A "[r 1] (t) A "[1] (t) A "[0] (t) 3 7 7 7 7 7 7 5 r 1 M u=0 utI n with A "[0] (t) = J M j=1 ra " j;r I n j + tL j + " p+1 B [0] (t)
and

A "[u] (t) = J M j=1
(r u)a j;r u I n j + " p+1 B [u] (t) for all u = 1; :::; r 1.

Furthermore, splitting the matrix B [u] (t) = [B [u]j;`( t)] 2 M n (Cftg) into blocks …tting the Jordan structure of L, normalizations (2.1) imply

(3.2) B [u]j;`( t) = O(t) if a " j;r 6 = a " `;r O(t 2 ) if a " j;r = a " `;r
for all u = 0; :::; r 1 and all j; `= 1; :::; J.

Let us now denote by b f " ( ) the Borel transform of e f " (t) with respect to t. In sections below, we shall prove, by applying Écalle's method to system (3.1), that, for any domain V as in theorem 3.1, (a) the function ( ; ") 7 ! b f " ( ) is well-de…ned and holomorphic on V D p , (b) there exist C; K > 0 such that inequality b f " ( ) Ce Kj j holds for all 2 V and " 2 D p .

Observe that those two points obviously lead to theorem 3.1.

Calculations below are rather similar to those detailed in [7, § 3.2] to prove the summable-resurgence theorem for single-level systems. Furthermore, they generalize calculations made in [START_REF] Remy | On the Stokes phenomenon of a family of multi-perturbed level-one meromorphic linear di¤erential systems[END_REF] in the case of perturbed levelone systems.

Throughout the rest of the paper, we use the following notation. Notation 3.4 Given a matrix M split into blocks …tting the Jordan structure of L, we denote by M j; the j th row-block of M . Thereby, M j; is a n j p-matrix when M is a n p-matrix.

Regular perturbation

Following J. Écalle ([2]), we consider, instead of system (3.1), the regularly perturbed system

(3.3) rt 2 df dt = A " (t; )f tf J n 1
obtained by substituting B [u] for B [u] for all u = 0; :::; r 1 in the matrix A " (t) of system (3.1).

Like in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF], an identi…cation of equal powers in shows that system (3.3) admits, for all " 2 D p , a unique formal solution of the form

e f " (t; ) = X m 0 e f " m (t) m satisfying e f " 0 (t) = I rn;n 1 and e f " m (t) 2 M rn;n 1 (C[[t]]
) for all m 1. The following lemma yields some precisions on the e f " m 's. Then, the components e f " m;j (t) 2 M rn j ;n 1 (C[[t]]) are uniquely determined, for all m 1 and j = 1; :::; J, as formal solutions of systems

Lemma 3.5 Let " 2 D p . Split e f " m (t) = h e f "[0] m ( 
(3.4) rt 2 d e f " m;j dt A " j e f " m;j tA j e f " m;j = " p+1 B j (t) e f " m 1 t e f " m;j J n 1
where

B j (t) := 2 6 6 6 6 6 6 4 
B [0]j; (t) tB [r 1]j; (t) tB [1]j; (t) B [1]j; (t) B [0]j; (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . B [0]j; (t) tB [r 1]j; (t) B [r 1]j; (t) B [1]j; (t) B [0]j; (t) 3 7 7 7 7 7 7 5
is a rn j rn-matrix with analytic entries at 0 2 C and where the matrices A " j and A j are the rn j rn j -constant matrices de…ned by A " j := Furthermore, according to normalizations (3.2), the following relations

(3.5) e f " 2m 1;j (t) = O(t m ) and e f " 2m;j (t) = O(t m ) if a " j;r = 0 O(t m+1 ) if a " j;r 6 = 0
hold for all m 1 and j = 1; :::; J.

Notice that the matrix A " j is invertible when a " j;r 6 = 0. Notice also that relation (2.2) implies A " j = 0 and A j = r 1 L u=0 L j uI n j when a " j;r = 0.

As a result of relations (3.5), the series e f " (t; ) can be rewritten as a series in t with polynomial coe¢ cients in . Consequently, e f " (t) = e f " (t; 1)

(by unicity of e f " (t) and e f " (t; 1)) and, for all , the series e f " (t; ) admits a formal Borel transform ' " ( ; ) with respect to t of the form

' " ( ; ) = I rn;n 1 + X m 1 ' " m ( ) m where ' " m ( ) 2 M rn;n 1 (C[[ ]]
) denotes, for all m 1, the Borel transform of e f " m (t). In particular, the Borel transform b f " ( ) reads formally as

b f " ( ) = ' " ( ; 1) = X m 1
' " m ( ) for all " 2 D p :

The two following results give us some properties of the ' " m 's. The …rst one obviously stems from lemma 3.5. '

"[0]j; m ( ) . . . ' "[r 1]j; m ( ) 3 7
5 for all j = 1; :::; J the rn j n 1 -matrix formed by all the j th row-blocks of the '

"[u] m ( )'s.
Then, for all m 1, the components ' " m;j ( ) 2 M rn j ;n 1 (C[[ ]]) are iteratively determined, for all j = 1; :::; J, as solutions of systems

(3.6) R " j d' " m;j d = S j ' " m;j + d d c B j ' " m 1 ' " m;j J n 1
where ' " 0 := I rn;n 1 , c B j denotes the Borel transform of B j and where the rn j rn j -matrices R " j and S j are de…ned by 

R " j = 2 
I n j + r 1 M u=0 (L j (u + r)I n j ).
Lemma 3.6 implies the following proposition.

Proposition 3.7 Let V a domain as in theorem 3.1.

Then, the function ( ; ") 7 ! ' " m ( ) is holomorphic on V D p for all m 1.

Proof. Since the B j 's are analytic at 0 2 C, their Borel transforms c B j are entire functions on all C. Consequently, normalizations (3.2) imply that the only singularities in C of systems (3.6) are the Stokes values a " j;r 6 = 0 of (D p ). Proposition 3.7 follows from the fact that domain V never meets (D p )nf0g.

To prove theorem 3.1, we are left to show that (a) the function

( ; ") 7 ! b f " ( ) = ' " ( ; 1) = X m 1
' " m ( ) is well-de…ned and holomorphic on V D p , (b) there exist C; K > 0 such that inequality b f " ( ) Ce Kj j holds for all 2 V and " 2 D p . These two points are proved below by using a technique of majorant series satisfying a convenient system. Of course, there exist many possible majorant systems. Here, we make explicit a possible one.

Majorant series

Let denote the minimal distance between the elements of V and the elements of (D p )nf0g (cf. …gure 3.1). According to condition "V \ D ! = ; for all ! 2 nf0g"(cf. theorem 3.1), we have > 0.

Let g = g [0] ; :::; g [r 1] be a rn n 1 -matrix split as previously into r blocks of size n n 1 . Let g j denote the rn j n 1 -matrix formed by all the j th row-blocks of the g [u] 's:

g j := 2 6 4 g [0]j;
. . .

g [r 1]j; 3 7 
5 for all j = 1; :::; J:

In the case where g = I rn;n 1 , we simply denote by I j rn;n 1 in place of g j .

Let us now consider, for j = 1; :::; J, the regularly perturbed linear system (3.7)

8 > > > > > < > > > > > :
C j (g j I j rn;n 1 ) = (I r J n j )g j + g j J n 1 2I j rn;n 1 J n 1 + ( p+1 + 1) jB j j (t) t g if a j;r = 0 (R j tS j )g j = tg j J n 1 + ( p+1 + 1) jB j j (t)g if a j;r 6 = 0 where jB j j (t) denotes the series B j (t) in which the coe¢ cients of the powers of t are replaced by their module, C j is an invertible constant rn j rn j -diagonal matrix with positive entries which will be adequatly chosen below (see proposition 3.9), R j and S j are the rn j rn j -constant matrices de…ned by Recall that j denotes the eigenvalue of the j th Jordan block L j of L.

R j := 2 
Notice that the constant p+1 + 1 satis…es j" p+1 j p+1 + 1 for all " 2 D p . Notice also that system (3.7) depends on the domain V but not on the parameter ".

Up to the constant p+1 + 1, system (3.7) is the majorant system used in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] to prove summable-resurgence theorem for single-level systems. Hence, by adapting calculations made in [7, § 3.2.2], we can prove the following lemma. Lemma 3.8 The Borel transformed system of system (3.7) admits, for = 1, a unique solution of the form

b g( ) = I rn;n 1 + X m 1 m ( ) 2 M rn;n 1 (C[[ ]])
which is entire on all C with exponential growth at in…nity. Furthermore, using notations as above, the components m;j ( ) 2 M rn j ;n 1 (C[[ ]]) of m ( ) are iteratively determined, for all m 1 and j = 1; :::; J, as solutions of systems: Case a j;r = 0:

C j m;j = (I r J n j ) m;j + m;j J n 1 + ( p+1 + 1) d d d jB j j m 1 :
Case a j;r 6 = 0:

R j d m;j d = S j m;j + m;j J n 1 + ( p+1 + 1) d d d jB j j m 1 :
We set 0 := I rn;n 1 .

In particular, m ( ) is an entire function on all C and lies in M rn;n 1 (R + f g) for all m 1.

The following proposition shows that b g de…nes a convenient majorant series of the b f " 's.

Proposition 3.9 Let a be a constant such that jarg( )j a for all 2 V . Let

C j = 1 max 1 j J exp(2a jIm j j) r 1 M u=0 1 Re j r u r I n j :
Then, for all m 1, 2 V , " 2 D p and j = 1; :::; J, the following inequalities hold:

(3.8) ' " m;j ( ) m;j (j j)

In particular, the series

b g(j j) = X m 1 m (j j)
is a majorant series of b f " ( ) for any " 2 D p .

Proposition 3.9 is proved by applying Grönwall lemma to systems de…ning the ' " m;j 's and the m;j 's. Calculations are similar to those detailed in [7, § 3.2.2] and are left to the reader. However, note that the constant K which appears in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] is equal to 1 in our case. Indeed, according to the de…nition of domain V , the "optimal" path from 0 to any 2 V is here the straigth line [0; ]. Remark 3.10 Like system (3.7), the majorant series b g(j j) depends on domain V but not on the parameter ". This is the key point of the proof of theorem 3.1 as we shall see in the next section 3.4.

We are now able to prove theorem 3.1.

Proof of theorem 3.1

Recall that we must prove the two following points:

(a) the function ( ; ") 7 ! b f " ( ) = X m 1
' " m ( ) is well-de…ned and holomorphic on V D p , (b) there exist C; K > 0 such that inequality b f " ( ) Ce Kj j holds for all 2 V and " 2 D p .

According to propositions 3.7 and 3.9 and remark 3.10, the series

( ; ") 7 ! b f " ( ) = X m 1 ' " m ( )
is a series of holomorphic functions on V D p which normally converges on all the compact sets of V D p . Hence, point (a).

As for point (b), it stems from inequality b f " ( ) b g(j j) (proposition 3.9) and from the fact that b g has exponential growth at in…nity (lemma 3.8).

This ends the proof of theorem 3.1.

E¤ective calculation of Stokes multipliers

In this section, we are given a collection ( k ) k=0;:::;r 1 2 (R=2 Z) r of anti-Stokes directions of system (A) and we consider, for all k, the Stokes- ] into blocks …tting the Jordan structure of the matrix L of exponents of formal monodromy (hence, St j;` ? k is a n j n `-matrix). Split e F (x) in the same way and denote by e F ;`( x) its `th column-block (recall that e F ;1 (x) = e f (x)).

The matrix St j;j ? k is the identity matrix I n j of size n j and, for j 6 = `, the matrix St j;` ? k is zero as soon as k is not a direction of maximal decay of exponential e (q j q `)(1=x) . When k is a direction of maximal decay of exponential e (q j q `)(1=x) (hence, j 6 = `and the Stokes value a j;r a `;r generates the collection ( k )), the entries of St j;` ? k are called Stokes multipliers of e F ;`( x) in the direction k .

The goal of this section is to build a method for the e¤ective calculation of the Stokes multipliers of e F (x) based on the results of the holomorphic perturbation of system (A) stated in section 2.

As in section 3 (cf. remark 3.2), we restrict our study to the calculation of the Stokes multipliers of the …rst column-block e f (x) of e F (x). Henceforth, we denote by st j; ? k in place of St j;1

? k and we suppose that ( k ) is a collection of anti-Stokes directions of system (A) associated with e f (x) (otherwise, st j;

? k

= 0 for all k and j). Recall that such a collection ( k ) is generated by (at least) one of the Stokes values ! 1 ; :::; ! p (= the distinct values of the a j;r 6 = 0, cf. the beginning of section 2).

Stokes multipliers and connection constants

Let denote the set of Stokes values ! 1 ; :::; ! p . For any ! 2 , we call front of ! the set of polynomials q j (1=x) with leading term !=x r . According to the hypothesis (0.4) of single level equal to r, the front of ! is a singleton

! x r + _ q ! 1 x
where _ q ! 0 or _ q ! (1=x) is a polynomial in 1=x of degree r 1 and with no constant term. When _ q ! 0, the Stokes value ! 2 is said to be with monomial front. Notice that, in the case r = 1, all the Stokes values of are with monomial front.

In the two previous papers [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF] (case r = 1) and [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] (case r 2), M. Loday-Richaud and the author displayed explicit formulae between the Stokes multipliers of e f (x) associated with the Stokes values ! 25 with monomial front (hence, all the Stokes multipliers of e f (x) when r = 1) and the connection constants given, in the Borel plane, by the right analytic continuation (see [4, § 3.4] for a precise de…nition) of the Borel transforms b f [u] ( ) at = !. Recall that such formulae exist too when ! has a non-monomial front, but require to …rst reduce ! into a Stokes value with monomial front by means of a convenient change of the variable x in initial system (A) (cf. [7, § 4.3.2]).

Thereby, the e¤ective calculation of the Stokes multipliers of e f (x) can be reduced to the e¤ective calculation of the connection constants of the b f [u] ( ). As an illustration, we develop below three typical examples. (1=x) where 

Q 1 x = diag 0; 1 x ; 3 x , L = diag 0; 1 4 ; 0 , e F (x) = 2 
st 2 0 = (1 + i) p 2 3 4 k 2 1;+ (resp. st 3 0 = 2i k 3 3;+ ).
Since the formal series e f 2 (x) and e f 3 (x) satisfy the equations 8 > > > > < > > > > :

x 2 d e f 2 dx 1 + x 4 e f 2 = x 2 x 2 d e f 3 dx 3 e f 3 = 2x 3 + x e f 2
, their Borel transforms b f 2 ( ) and b f 3 ( ) are the unique solutions of the system 8 > > < > > :

( 1) d b f 2 dx + 3 4 b f 2 = 1 ; b f 2 (0) = 0 ( 3) b f 3 = 2 + 1 b f 2 .
Hence, for all j j < 1,

8 > > > < > > > : b f 2 ( ) = 4 3 4 3 (1 ) 3=4 b f 3 ( ) = 3 2 + 4 12 + 12(1 ) 1=4 3( 3) 
(we chose a determination of the logarithm such that ln( ) 2 R for > 0). Thereby, the connection matrices K 1;+ and K 3;+ of b f ( ) at the points = 1 and = 3 are given by

K 1;+ = 2 6 6 4 0 k 2 1;+ = 2 p 2 3 (1 + i) 0 3 7 7 5 and K 3;+ = 2 4 0 0 k 3 3;+ = 9 + 2 7=4 (1 + i) 3 5 : 
Then, identities (4.2) imply

(4.3) st 2 0 = 8i 3 3 4 
st 3 0 = 2i (2 7=4 9 + 2 7=4 i) :
Observe that, in this example, the choice of a triangular matrix for system (4.1) allows us to explicitly write the Borel transform b f ( ) and, consequently, to calculate the exact values of the Stokes multipliers st 2 0 and st 3 0 . Of course, such a case is anecdotal and, in a more general situation, i.e., for systems for which the matrices are not triangular, such exact calculations are not possible anymore. Nevertheless, we can always determine an approximation of the connection constants hence, of the Stokes multipliers by using a technique of successive analytic continuations like shown below. (1=x) where

Q 1 x = diag 0; 1 x ; 2 x , L = diag 0; 1 2 ; 1 3 , e F (x) 2 M 3 (C[[x]]) satis…es e F (x) = I 3 + O(x).
As in example 4.1, system (4.4) is a level-one system and = 0 is its unique anti-Stokes direction associated with the …rst column e f (x) of e 

st 2 0 = 2 p k 2 1;+ (resp. st 3 0 = ( p 3 + i) 2 3 k 3 2;+ ). Let e f (x) = 2 6 4 e f 1 (x) e f 2 (x) e f 3 (x) 3 7 5 .
Since the e f j 's are formal series solutions of the system

8 > > > > > > > > > > < > > > > > > > > > > : x 2 d e f 1 dx = x e f 3 x 2 d e f 2 dx 1 + x 2 e f 2 = x e f 1 x 2 d e f 3 dx 2 + x 3 e f 3 = x e f 2 ,
their Borel transforms b f j 's satisfy the di¤erential equations 

8 > > > > > > > > > > > < > > > > > > > > > > > : d b f 1 d = b f 1 + b f 3 ( 1) d b f 2 d = b f 1 1 2 b f 2 ( 2) d b f 3 d = b f 2 2 3 b f 3 . Consequently, the Borel transform b f ( ) = 2 6 4 b f 1 ( ) b f 2 ( ) b f 3 ( ) 3 
f ( ) = Z 1 ( 1)S 1 for all 2 D(1; 1)nf1g (resp. b f ( ) = Z 2 ( 2)
S 2 for all 2 D(2; 1)nf2g). In particular, calculations above shows that the connection constant k 2 1;+ (resp. k 3 2;+ ) is equal to 2 1 (resp. 3 2 ), and, consequently, identities (4.5) imply

st 2 0 = 2 p 2 1 and st 3 0 = ( p 3 + i) 2 3 3 2 : 
We are left to evaluate 2 1 and 3 2 . According to the geometry of the "convergence discs"D(0; 1), D(1; 1) and D(2; 1) (see …gure 4.1 below), we evaluate, on one hand, b f ( ) and Z 1 ( 1) at the point = 1=2 and, on the other hand, Z 1 ( 1) and Z 2 ( 2) at the point = 3=2. Then,

S 1 = Z 1 1 2 1 b f 1 2 and S 2 = Z 2 1 2 1 Z 1 1 2 S 1 :
Observe that, by de…nition of the right analytic continuation, Z 1 ( 1=2) and Z 2 ( 1=2) are evaluate at the point 1=2 such that arg( 1=2) = . Hence, one can check that This method by successive analytic continuations still holds for systems with a single arbitrary level r 2. However, the calculations may be much more di¢ cult when one of the singular points of generating the collection ( k ) is with non-monomial front.

Example 4.3 Here below, we consider the system (4.9)

x 3 dY dx = 2 6 4 0 0 x 2 x 2 1 + x 0 0 x 2 2 + x 2 2 3 7 5 Y
together with the formal fundamental solution e

Y (x) = e F (x)x L e Q(1=x)
where

Q 1 x = diag 0; 1 2x 2 1 x ; 1 
x 2 (hence, the system has the unique level 2, = f1=2; 1g and the front of 1=2 (resp. 1) is non-monomial (resp. monomial)),

L = diag 0; 0; 1 2 , e F (x) 2 M 3 (C[[x]]) satis…es e F (x) = I 3 + O(x 2 ).
As before, we denote by e f (x) the …rst column of e F (x). We also denote by e f [u] (t) with u = 0; 1 the 2-reduced series of e f (x). Let ( 0 = 0; 1 = ) be the unique collection of anti-Stokes directions of system (4.9) associated with e f (x). For all k 2 f0; 1g, the corresponding Stokes-Ramis matrix St k reads

St k = 2 4 1 0 0 st 2 k 1 0 st 3 k 1 3 5 :
We are just interested below in the calculation of the Stokes multipliers st 3 k 's associated with the Stokes value with monomial front 1. According to [7, cor. 4.5], the st 3 k 's are related to the connection constants k

[u] 1;+ of b f [u] ( ) at the point = 1 by the relations 8 > > > > > > > > > < > > > > > > > > > : st 3 0 = (1 + i) p 2 3 4 k [0] 1;+ (4 4i) 3 4 k [1] 1;+ st 3 = ( 1 + i) p 2 3 4 k [0] 1;+ + (4 + 4i) 3 4 k [1] 1;+ :
To determine an approximation of the k 1 0 0 0 0 0 0 1 0 0 0 0 0 2 3 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 Remark 4.4 Let ( k ) be a collection of anti-Stokes directions of system (A) associated with the …rst column-block e f (x) of e F (x). Let us assume that this collection is generated by s 2 Stokes values of , say ! 1 ; ! 2 ; :::; ! s with j! 1 j < j! 2 j < ::: < j! s j. Fix `2 f2; :::; sg and suppose that ! `has a monomial front (recall that such a condition can always be ful…lled by means of a convenient change of the variable x in system (A)). Then, as shown in examples 4. With a numerical point of view, these two methods pose some problems. Indeed, point (a) requires to handle fundamental solutions at regular singular points (see example 4.2) and their numerical evaluations are much more di¢ cult than those of fundamental solutions at ordinary points. As for point (b), if it allows to avoid handling fundamental solutions at regular singular points as point (a) by focusing on fundamental solutions at ordinary points, it signi…cantly increases the number of intermediate numerical evaluations which can degrade the precision of the results obtained (see example 4.3).
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In section 4.2 below, we build an alternative method for the e¤ective calculation of Stokes multipliers in order to get around all these di¢ cults. This method is based on a perturbation of system (A) in which each perturbed Stokes value generates its own collection of anti-Stokes directions.

E¤ective calculation and perturbation

We consider here below a collection ( k ) of anti-Stokes directions of system (A) associated with the …rst column-block e f (x) of e F (x). As previously, we denote by the set of nonzero Stokes values ! 1 ; :::; ! p of system (A) associated with e f (x). We also denote by ( k ) the set of Stokes values of generating the collection ( k ).

The goal of this section is to build a method for e¤ective calculation of the Stokes multipliers of e f (x) in the directions k , k = 0; :::; r 1, when the cardinal ] ( k ) of ( k ) is 2 (hence, p 2 too).

Case of two Stokes values 1. Setting the problem

In this section, we suppose ] ( k ) = 2, i.e., just two Stokes values of , say ! 1 and ! 2 , generate the collection ( k ). We also suppose, without loss of generality, that j! 1 j < j! 2 j.

Then, as collection of anti-Stokes directions of the full matrix e F (x), the collection ( k ) is generated by the three Stokes values ! 1 , ! 2 and ! 2 ! 1 and possibly by the Stokes values of the form

! j ! k with ! j 2 ( k ) , ! k = 2 ( k ) and arg(! k ) = r 0
or of the form

! j ! k with ! j ; ! k = 2 ( k ) , i.e., distinct of ! 1 and ! 2
if they exist.

A perturbed system

Let us now …x > 0 and let us consider, for all " 2 [0; ], the system (A " ) in which the initial Stokes value ! 2 of system (A) is replaced by ! 2 e ir" . Let " denote the set deduced from by replacing ! 2 by ! 2 e ir" too. Then, for all " 2 [0; ], " is the set of nonzero Stokes values of system (A " ) associated with the …rst column-block e f " (x) of e F " (x) (we resume the perturbed notations as section 2).

Observe that, for small enough, the set of systems (A " ) "2[0; ] de…nes a sub-perturbation P (A) of the holomorphic perturbation of system (A) studied in section 2. In particular, the image of ( k ) by P (A) is a subset of (D k ; ( )=r ) k=0;:::;r 1 (cf. proposition 2.9) and corollay 2.15 tells us that the corresponding Stokes matrices S " ? k (see page 16) tend, for all k = 0; :::; r 1, to the initial Stokes-Ramis matrices St ? k when " goes to 0. Lemmas 4.5 and 4.6 below allow us to precise this last result by making explicit the image of ( k ) by P (A) as well as the form of the matrices S " ? k .

Lemma 4.5 (Action of P (A) on the collection ( k )) Given " 2 [0; ], the collection ( k ) of initial system (A) splits into the following collections of anti-Stokes directions of system (A " ): ? k : St "j;j ? k = I n j for all j, St "j;1 ? k = 0 as soon as j 6 = 1 and a j;r 6 = ! 1 , St "j;` ? k = 0 as soon as j 6 = `and a `;r = ! 2 .

Stokes-Ramis matrix St "

( k ") ? :

St "j;j ( k ") ? = I n j for all j, for j 6 = `, St "j;( k ") ? = 0 as soon as a j;r 6 = ! 2 or `6 = 1.

Stokes-Ramis matrix St "

? k;" : St "j;j ? k;" = I n j for all j, for j 6 = `, St "j;` ? k;" = 0 as soon as a j;r 6 = ! 2 or a `;r 6 = ! 1 . Let us now denote by st "j; ? k (resp. st "j;

Stokes-Ramis matrices St

( k ") ? ) in place of St "j;1 ? k (resp.

St "j;1 ( k ") ? ). The entries of st "j;

? k (resp. st "j;

( k ") ? ) for j such that a j;r = ! 1 (resp. a j;r = ! 2 ) are the perturbed Stokes multipliers of e f " (x) in the direction k (resp. k ").

As a result of the various structures of the Stokes- Those two examples illustrate the two situations that may occur with our perturbative method (see remark 4.9). In the …rst one, we are able to calculate the exact values of the perturbed Stokes multipliers for any value of "; hence, we can apply relations (4.13) as they are. As before, this case is, of course, anecdotal but it is worth to be treated. In the second one, such exact calculations are not possible anymore. In that case, we have to calculate an approximate value of the perturbed Stokes multipliers for some small values of ", say of the form " = 10 m with m 1.

Example 4.10 We consider, for " > 0 small enough, the perturbed system (4.14)

x 2 dY dx = 2 6 4

0 0 0 x 2 1 + x 4 0 2x 3 x 3e i" 3 7 5 Y
of system (4.1) (cf. example 4.1) together with the formal fundamental solution e Y " (x) = e F " (x)x L e Q " (1=x) where

Q " 1 x = diag 0; 1 x ; 3e i" x , L = diag 0; 1 4 ; 0 , e F " (x) = 2 4 1 0 0 e f " 2 (x) 1 0 e f " 3 (x) 1 3 5 2 M 3 (C[[x]]) satis…es e F " (x) = I 3 + O(x 2 ).
System (4.14) has the unique level 1 and its anti-Stokes directions associated with the …rst column e f " (x) of e F " (x) are the direction = 0 generated by the Stokes value 1 and the direction = " generated by the Stokes value 3e i" . The corresponding Stokes-Ramis matrices St " 0 and St " " read (resp. st "3 " = 2i k "3 3e i" ;+ ).

St " 0 = 2 
As in example 4.1, the connection constants k "2 1;+ and k "3 3e i" ;+ and, consequently, the Stokes multipliers st "2 0 and st "3 " , can be explicitly calculate. More precisely, by adapting the calculations made in for all j j < 1. Hence, 8 > > < > > :

k "2 1;+ = 2 p 2 3
(1 + i) k "3 3e i" ;+ = 9e 2i" + 4e i" 4 + 4(1 3e i" ) 1=4

(recall that we chose a determination of the logarithm such that ln( ) 2 R for > 0) and, consequently, System (4.15) is again a level-one system; its anti-Stokes directions associated with the …rst column e f " (x) of e F " (x) are the directions = 0 and = " (we have " = f1; 2e i" g) and the corresponding Stokes-Ramis matrices St " k "3 2e i" ;+ ).

To evaluate the connection constants k "2 1;+ and k "3 2e i" ;+ , we procceed like in example 4.2. First, we check that, for all ", the Borel transform b f " ( ) of e f " (x) is an analytic solution on the open disc D(0; 1) of the system ) is analytic on the open disc D(2e i" ; r " ) with r " := j2e i" 1j > 1 for all " > 0.

Next, we de…ne a fundamental solution Z " 1 ( 1) (resp. Z " 2 ( 2e i" )) of system (4.16) (resp. system (4.17)) in the same way as in example 4.2 (see page 35) and we consider the unique matrix S " 1 (resp. S " 2 ) of M 3;1 (C) such that the right analytic continuation of b f " ( ) (still denoted b f " ( )) at the point = 1 (resp. = 2e i" ) reads b f " ( ) = Z " 1 ( 1)S " 1 for all 2 D(1; 1)nf1g (resp. b f " ( ) = Z " 2 ( 2e i" )S " 2 for all 2 D(2e i" ; r " )nf2e i" g). Then, we

The method previously detailed in the case ] ( k ) = 2 can be extended to our present case by considering, for " > 0 small enough, the system (A " ) in which the initial Stokes value ! `of system (A) is replaced, for all `= 1; :::; s, by the perturbed Stokes value ! " `:= ! `exp ir ` 1 s 1 " :

Notice that, for all `= 1; :::; s, the Stokes value ! " `generates its own collection k ` 1 s 1 " of anti-Stokes directions of system (A " ).

Then, one can prove the following proposition which generalizes proposition 4.8. Proposition 4.12 (Initial vs perturbed Stokes multipliers) For all j 2 f1; :::; Jg such that a j;r 2 ( k ) = f! 1 ; ! 2 ; :::; ! s g, the initial Stokes multipliers st j; if a j;r = ! `:

Conclusion and directions for further research

In the two previous sections 4.2.1 and 4.2.2, we presented and illustrated an alternative method for the e¤ective calculation of the Stokes multipliers of e f (x) (hence, of the full matrix e F (x)). This method, based on a perturbation of system (A) in which each nonzero Stokes value of generates its own collection of anti-Stokes directions, has the two following main interests.

1. It allows to avoid all the di¢ cults stated in remark 4.4 which can occur with a "direct"method, i.e., without perturbation.

2. It shows that it su¢ ces to build and to develop algorithms to evaluate, in a given anti-Stokes direction associated with e f (x), the Stokes multipliers associated with the nearest (to the origin 0 2 C) Stokes values of .

The construction of such algorithms is a direction of our further researchs.

Another direction of research is related to the perturbative method presented in this paper: how choose " to guarantee that the perturbed Stokes multipliers would be approximate values of the initial Stokes multipliers with a precision set in advance?
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Figure 2 . 2 Proposition 2 . 8

 2228 Figure 2.2 A sector ; ( )

Figure 3

 3 Figure 3 below illustrates proposition 2.10 for two collections ( k ) and ( 0 `) in the case r = 3:

Figure 2 . 3 Remark 2 .

 232 Figure 2.3

Figure 2 . 4

 24 Figure 2.4 Sector k ; ( )=r and associated directions

?<

  (a) Is there a germ k of sector x 2 C such that k 2r arg(x) < k ( ) 2r ? on which the r-sums s r; k =(2r) ( e F " ) are de…ned for all " 2 D p ? (b) If such a k exists, what can be said about the holomorphy of functions " 7 ! s r; k =(2r) ( e F " )(x), x …xed in k ? More precisely, are those functions holomorphic on all D p ?

  a domain in C de…ned by the data of an open disc centered at 0 2 C and an open sector in C with vertex 0 and bisected by direction + =2 (resp.
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  j = 1; :::; J the rn j n 1 -matrix formed by all the j th row-blocks of the e f"[u]m (t)'s (see notation 3.4).
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 41 Let us consider the system (together with the formal fundamental solution e Y (x) = e F (x)x L e Q

3 5 2 e f 2 (x) = x 2 7 4 x 3 +

 3223 M 3 (C[[x]]) satis…es e F (0) = I 3 , O(x 3 ) and e f 3 (x) = x 3 + O(x 3 ). System (4.1) has the unique level 1 and = f1; 3g. Then, the direction = 0 is the unique anti-Stokes direction of system (4.1) associated with the …rst column e f (x) of e F (x). The Stokes-Ramis matrix St 0 in this direction reads Furthermore, according to [4, thm. 4.3], the Stokes multiplier st 2 0 (resp. st 3 0 ) is related to the connection constant k 2 1;+ (resp. k 3 3;+ ) of b f ( ) at the point = 1 (resp. = 3) by the relation (4.2)
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 42 Let us now consider the system (together with the formal fundamental solution e Y (x) = e F (x)x L e Q

F

  (x) (we have = f1; 2g). The Stokes-Ramis matrix St 0 reads to [4, thm. 4.3], the Stokes multiplier st 2 0 (resp. st 3 0 ) is related to the connection constant k 2 1;+ (resp. k 3 2;+ ) of b f ( ) at the point = 1 (resp. = 2) by the relation (4.5)
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 5 of e f (x) is an analytic solution on the open disc D(0; 1) of the system (

Notice that C 1 ( 1 )D 1

 111 which has two regular singular points at = 1 and = 2. More precisely, system (4.6) reads near = is analytic on the open disc D(1; 1) and C 2 (2) is analytic on the open disc D(2; 1). FollowingWasow ([8]), we consider the two matrices

Figure 4 . 1

 41 Figure 4.1

Z 4 where C 1 ( 1 )C 1 (

 4111 which has an irregular singular point at the Stokes value with non-monomial front = 1=2 and a regular singular point at the Stokes value with monomial front = 1. More precisely, system (4.10) reads near = 1 as (is the analytic matrix on the open disc D(1; 1=2) de…ned by

1

 1 can be numerically evaluate in a similar way as example 4.2 by considering the analytic continuation of b f from the disc D(0; 1=2) (= the disc of convergence of b f ( )) to the disc D(1; 1=2) (= the disc of "convergence"of Z 1 ( 1)) through any disc of the form D(1=2 ia; a) with a > 0.
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  2 and 4.3 above, the connection constants of the b f [u] ( )'s at ! `can be evaluate as follows: (a) evaluate all or part of the connection constants at the intermediate Stokes values ! 1 ; :::; ! ` 1 who have a monomial front, (b) bypass all or part of the intermediate Stokes values ! 1 ; :::; ! ` 1 to the right (always those with a non-monomial front and possibly the others).
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 1 the collection ( k ) which is generated by the Stokes value ! 1 and possibly by all the Stokes values of the form ! 1 ! k with arg(! k ) = r 0 or of the form ! j ! k with ! j ; ! k = 2 ( k ) if they exist, 1. Stokes-Ramis matrix St "

  " 
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2 ( ) of e f " 2 (x) and b f " 3 ( ) of e f " 3 (

 2233 example 4.1, one can check that the Borel transforms b f "

" 3 " 2 ( 4

 324 = 2i ( 9e 2i" + 4e i" 4 + 4(1 3e i" ) 1=4 ) : Now, we apply proposition 4.8: the Stokes multipliers st 2 7=4 9 + 2 7=4 i) which are the same values as those calculated in example 4.1.Example 4.11 Let us now consider, for " > 0 small enough, the perturbed system of system (4.4) (cf. example 4.2) together with the formal fundamental solution e Y " (x) = e F " (x)x L e Q " (1=x) where x) 2 M 3 (C[[x]]) satis…es e F " (x) = I 3 + O(x).
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 5 Furthermore, according to[4, thm. 4.3], the Stokes multiplier st "2 0 (resp. st"3 " ) is related to the connection constant k "2 1;+ (resp. k "3 2e i" ;+ ) of b f " ( ) at the point = 1 (resp. = 2e i" ) by the relation

5 :

 5 which has two regular singular points at = 1 and = 2e i" . More precisely, system (4.16) reads near = Notice that C 1 ( 1) is analytic on the open disc D(1; 1) and C 2 ( 2e i"

  f (x) are related, for all k 2 f0; :::; r 1g, to the perturbed Stokes multipliers st "j;

1 s 1

 11 ") ? , `= 1; :::; s, of e f " (x) by the relations st j;

  s r; ( e F ) and s r; + ( e F ) of e F are not analytic continuations from each other in general. This defect of analyticity is quanti…ed by the collection of Stokes-Ramis automorphisms St

? : Y + 7 ! Y for all the anti-Stokes directions 2 R=2 Z of system (A), where Y + and Y respectively denote the sums of e Y de…ned for arg(x) ' ? by Y + (x) := s r; + ( e F )(x)Y 0; ? (x) and Y (x) := s r; ( e F )(x)Y 0; ? (x):

  for all ! 2 nf0g.

	Proposition 2.6 (Description of singular discs of (D p ))
	Let ! k ! `2 be a nonzero Stokes value of initial system (A). Let D ! k ! be
	the singular disc of (D p ) associated with ! k !
	Proposition 2.6 below gives us an explicit form of the singular discs D ! .

`.

  Cftg at 0 de…nes an entire function on all C with exponential growth at in…nity. Lemma 2.12 obviously stems from the following theorem.

	3 Proof of lemma 2.12	
	Recall that the formal Borel transformation is an isomorphism from the
	C-di¤erential algebra C[[t]]; +; ; t 2 d dt	to the C-di¤erential algebra ( C
	C[[ ]]; +; ; ) that changes ordinary product into convolution product and changes derivation t 2 d dt into multiplication by . It also changes multi-plication by 1 t into derivation d d . Recall also that the formal Borel transform b g( ) of an analytic function
	g(t) 2	

  Ramis matricesSt " Jg such that a j;r 2 ( k ) = f! 1 ; ! 2 g, the initial Stokes multipliers st j; In practice, relations (4.13) are rather di¢ cult to apply since the perturbed Stokes multipliers, like the initial Stokes multipliers, can not be displayed in general. Nevertheless, proposition 4.8 tells us that, for " small enough, the perturbed Stokes multipliers provide a "good"approximation of the initial Stokes multipliers.Here below, we revisit the two previous examples 4.1 and 4.2 with the point of view of the perturbative method. More precisely, we perturb each of systems (4.1) and (4.4) as above; then we "evaluate" the perturbed Stokes multipliers and we compare the values of initial Stokes multipliers obtained by proposition 4.8 with those previously obtained in examples 4.1 and 4.2.

	Remark 4.9 As an illustration of proposition 4.8, we shall develop below two typical
	examples.			
	3. Examples			
				?
	given in lemma 4.7 above, lemma 4.6 and corollary 2.15 imply the following
	proposition.			
	Proposition 4.8 (Initial vs perturbed Stokes multipliers)
	For all j 2 f1; :::; ? k of e f (x) are related, for all k 2 f0; :::; r 1g, to the perturbed Stokes multipliers st "j; ? k and st "j; ( k ") ? of e f " (x) by the relations
	st j; ? k	= lim "!0 st "j; ? k	if a j;r = ! 1
	(4.13)			:
	st j; ? k	= lim "!0	st "j; ( k ") ?	if a j;r = ! 2

Any choice is convenient. However, to be compatible, on the Riemann sphere, with the usual choice 0 arg(z = 1=x) < 2 of the principal determination at in…nity, we suggest to choose 2 < arg(x) 0 as principal determination about 0.

cf. note 1.

The new formal fundamental solution reads e Y " (x)P = e F " (x)P x P 1 LP e P 1 Q " (1=x)P .

i.e., in the directions generated by the Stokes values ! 2 .

so that M 1 := D 1 1 C 1 (0)D 1 = diag 0; 1 2 ; 0 and

Hence, choosing as before a determination of the logarithm such that ln( ) 2 R for > 0, system (4.7) (resp. system (4.8)) has for fundamental solution at = 1 (resp. = 2) a matrix of the form

where

)) is analytic on the open disc D(1; 1) (resp. D(2; 1)) and satis…es G 1 (0) = I 3 (resp. G 2 (0) = I 3 ). More precisely, the …rst and the third columns of Z 1 ( 1) are analytic on D(1; 1); the second column of Z 1 ( 1) reads as

with g 1 ( 1) analytic on D(1; 1), the two …rst columns of Z 2 ( 2) are analytic on D(2; 1); the third column of Z 2 ( 2) reads as

with g 2 ( 2) analytic on D(2; 1). Following Cauchy's theorem, the right analytic continuation of b f (still denoted b f ) at the point = 1 (resp. = 2) is a solution of system (4.7) (resp. system (4.8)). Thereby, there exists a unique matrix

2. the collection ( k ") which is generated by the Stokes value ! 2 e ir" , 3. the collection ( k;" ) which is generated by the Stokes value ! 2 e ir" ! 1 , 4. the possible ` 1 collections ( k;1;" ), ..., ( k;`;" ) which are generated by all the Stokes values of the form ! 2 e ir" ! k with arg(! k ) = r 0 if they exist.

Furthermore, for all " 6 = 0, the principal determinations ? 2] 2 ; 0] of all these directions satisfy (4.12) 2k r ? k > ? k;1;" > ::: > ? k;`;" > ( k ") ? > ? k;" >

2(k + 1) r

for all k = 0; :::; r 1 (the chosen order on the ? k;s;" is to …x ideas).

Observe that, among all the collections above, collections ( k ) and ( k ") are, for all " 2 [0; ], the unique collections of anti-Stokes directions of system (A " ) associated with e f " (x). Moreover, for " 6 = 0, they are both generated by just one Stokes value of " .

For any direction of lemma 4.5, we denote by St " ? the corresponding Stokes-Ramis matrix. Then, according to inequalities (4.12), the following lemma holds. 

We shall now precise the structure of the Stokes-Ramis matrices St " ? of lemma 4.6 above. As before, we split all these matrices into blocks St "j;` ? of size n j n `(recall that n j denotes the size of the j th Jordan block of the matrix L of exponents of formal monodomy of initial system (A)). Then, lemma 4.5 implies: Recall that the a j;r 's denote, for all j = 1; :::; J, the Stokes values of initial system (A) associated with e f " (x). Then, can check that k "2 1;+ = "2 1 the second entry of S " 1 and k "3 2e i" ;+ = "3 2 the third entry of S " 2 . Hence,

Following table 4.1 gives us some approximations of "2 0 and st "2 0 for di¤erent values of " = 10 m . All the approximations of "2 0 are calculated, like in example 4.2, from the relation

where arg( 1=2) = (we connect the discs of "convergence"D(0; 1) of b f " ( ) and D(1; 1) of Z " 1 ( 1) to the right). Notice that the number of intermediate calculations needed for the determination of the connection matrix S "

1 is identical to the one of example 4.2 for the determination of the connection matrix S 1 . Notice also, by comparing the values of the st "2 0 's with the value of st 2 0 obtained in example 4.2, that the perturbed Stokes multiplier st "2 0 provides a "good" approximation of the initial Stokes multiplier st 2 0 as soon as " 10 6 . Let us now evaluate the constants "3 2 . For any " > 0, the radius r " = j2e i" 1j of the disc of "convergence"D(2e i" ; r " ) of Z " 2 ( 2e i" ) is > 1. Thereby, D(0; 1) \ D(2e i" ; r " ) 6 = ; and any value a " of ]2 r " ; 1[ satis…es a " e i" 2 D(0; 1) \ D(2e i" ; r " ). 2 is uniquely determined by the relation

where arg((a " 2)e i" ) = " . Let us choose for example a " as the midpoint of ]2 r " ; 1[; then one can check that the perturbed Stokes multiplier st "3 " provides a "good" approximation of the initial Stokes multiplier st 3 0 as soon as " 10 6 . Observe here that, contrary to the calculation of the connection matrix S " 1 made above, the number of intermediate calculations needed for the determination of S " 2 is much lower than the one of example 4.2 for the determination of the connection matrix S 2 .

By adapting the calculations made above to system (4.9) (cf. example 4.3), we can evidently get an approximate value of the Stokes multipliers st 3 0 and st 3 of example 4.3. In particular, note that this method allows to replace the path of right analytic continuation given in …gure 4.2 by a "simpler" path similar to the one of …gure 4.3 and, therefore, to signi…cantly reduce the number of intermediate calculations needed to determine the adequate connection matrix.

General case

Let us now suppose that ] ( k ) 2, i.e., there exist s 2 f2; :::; pg Stokes values of , say ! 1 ; ! 2 ; :::; ! s , generating the collection ( k ). Without loss of generality, we also suppose j! 1 j < j! 2 j < ::: < j! s j.