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Exact marginals and normalizing constant for Gibbs distributions

We present a recursive algorithm for the calculation of the marginal of a Gibbs distribution π. A direct consequence is the calculation of the normalizing constant of π.

Résumé

Récurrences et constante de normalisation pour des modèles de Gibbs. Nous proposons dans ce travail une récurrence sur les lois marginales d'une distribution de Gibbs π. Une conséquence directe est le calcul exact de la constante de normalisation de π.

Introduction

Usually, obtaining the marginals and/or the normalizing constant C of a discrete probability distribution π involves high dimensional summation : for example, for the binary Ising model on a simple grid 10 × 10, the calculation of C involves 2 100 terms. One way to prevent this problem is to change distribution of interest for an alternative as, for example in spatial statistics, replacing the likelihood for the conditional pseudo likelihood ( [START_REF] Besag | Spatial interactions and the statistical analysis of lattice systems[END_REF]). Another solution consists of estimating the normalizing constant; see for example Pettitt & al ([8]) and Moeller & al ([7]) for efficient Monte Carlo methods, Bartolucci and Besag ([2]) for a recursive algorithm computing the exact likelihood of a Markov random field, Reeves and Pettitt ([9]) for an efficient computation of the normalizing constant for a factorisable model.

We present specific results for a Gibbs distribution π. We derive results of Khaled ([5,[START_REF] Khaled | Estimation bayésienne de modèles espace-état non linéaires[END_REF]) who gives an original linear recursion on the marginals of π, the law of Z = (Z 1 , Z 2 , • • • , Z T ) ∈ E T ; this result eases the calculation of π's normalizing constant. We generalize Khaled results noticing that if π is a Gibbs distribution on T = {1, 2, • • • , T }, then π is a Markov field on T , so it is easy to manipulate its conditional distributions that are the basic tools of our forward recursions.

Markov representations of a Gibbs field

Let T > 0 be a fix positive integer,

E = {e 1 , e 2 , • • • , e N } a finite state space, Z = (Z 1 , Z 2 , • • • , Z T ) ∈ E T a temporal sequence with distribution π. Let us denote z(t) = (z 1 , z 2 , • • • , z t ).
We assume that π is a Gibbs distribution with energy and potentials:

π(z(T )) = C exp U T (z(T )) with C -1 = z(T )∈E T exp U T (z(T ))
where

(1)

U t (z(t)) = s=1,t θ s (z s ) + s=2,t Ψ s (z s-1 , z s ) for 2 ≤ t ≤ T , and U 1 (z 1 ) = θ 1 (z 1 ).
So, π is a bilateral 2 nearest neighbours Markov field ( [START_REF] Kindermann | Markov random fields and their applications[END_REF][START_REF] Guyon | Random Fields on a Network: Modeling, Statistics, and Applications[END_REF])

π(z t | z s , 1 ≤ s ≤ T and s = t) = π(z t | z t-1 , z t+1 ) ( 2 
)
but Z is also a Markov chain :

π(z t | z s , s ≤ t -1) = π(z t | z t-1 ) if 1 < t ≤ T. ( 3 
)
An important difference appears between formulas (3) and ( 2): indeed, ( 2) is computationnally feasible, when (3) is not.

Recursion over marginal distributions

3.1. Future-conditional contribution Γ t (z(t)) For t ≤ T -1, the distribution π(z 1 , z 2 , • • • , z t | z t+1 , z t+2 , • • • , z T ) conditionally to the future, depends only on z t+1 : π(z 1 , z 2 , • • • , z t | z t+1 , z t+2 , • • • , z T ) = π(z 1 , z 2 , • • • , z T ) u t 1 ∈E t π(u t 1 , z t+1 , ..z T ) = π(z 1 , z 2 , • • • , z t | z t+1 ).
We can also write π(z

1 , z 2 , • • • , z t | z t+1 ) = C t (z t+1 ) exp U * t (z 1 , z 2 , • • • , z t ; z t+1 )
where U * t is the futureconditional energ :

U * t (z 1 , z 2 , • • • , z t ; z t+1 ) = U t (z 1 , z 2 , • • • , z t ) + Ψ t+1 (z t , z t+1 ), (4) 
and

C t+1 (z t+1 ) -1 = u t 1 ∈E t exp {U * t (u 1 , ..., u t ; z t+1 )}. Then, for i = 1, N : π(z 1 , z 2 , • • • , z t | z t+1 = e i ) = C t (e i )γ t (z 1 , z 2 , • • • , z t ; e i ) where γ t (z(t); e i ) = exp U * t (z(t); e i ).
With the convention Ψ T +1 ≡ 0, we define for t ≤ T , the vector Γ t (z(t)) ∈ R N of the future-conditional contributions as (Γ t (z(t))) i = γ t (z(t); e i ), 1 ≤ i ≤ N . and the recursion matrix A t by A t (i, j) = exp{θ t (e j ) + Ψ t+1 (e j , e i )}, i, j = 1, N.

(
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Then we get the following fundamental recurrence.

Proposition 3.1 For all 2 ≤ t ≤ T , z(t) = (z 1 , z 2 , • • • , z t ) ∈ E
t and e i ∈ E, we have:

γ t (z(t -1), e j ; e i ) = A t (i, j) × γ t-1 (z(t -1); e j ) , (6) 
and

zt∈E Γ t (z(t -1), z t ) = A t Γ t-1 (z(t -1)). (7) 

Forward recursions on marginals and normalization constant

Let us define the following 1 × N row vectors :

E 1 = B T = (1, 0, • • • , 0)
, and the (B t ) t=T,2 defined by the forward recursion

B t-1 = B t A t if t ≤ T ; we also denote K 1 = z 1 ∈E Γ 1 (z 1 ) ∈ R N .
We give below the main result of this work.

Proposition 3.2 Marginal distributions π t and calculation of the normalization constant C.

(1) For 1 ≤ t ≤ T :

π t (z(t)) = C × B t Γ t (z(t)). ( 8 
)
(2) The normalization constant C of the joint distribution π verifies:

C -1 = E 1 A T A T -1 • • • A 2 K 1 . ( 9 
)
The formula ( 9) reduces to

C -1 = E 1 A T A T -2 K 1 for time invariant potentials.
As a basic example, let us consider E = {0, 1}, θ t (z t ) = αz t , and Ψ t+1 (z t , z t+1 ) = βz t z t+1 ; the analytic expressions of A, K 1 are trivially derived. We computed

C -1 = E 1 A T A T -2 K 1
for increasing values of T ; the computing time is always negligible for T ≤ 700, whereas computing C -1 by direct summation needs 750 seconds for T = 20, 6 hours for T = 25, and the method becoming ineffectual for T > 25.

Extensions to general Gibbs fields

There are various generalisations of the preceeding results.

Temporal Gibbs model

Let us give the following example as an illustration to possible extensions. Coming back to the previous model (1), we add the interaction potentials Ψ 2,s (z s-2 , z s ). Then π is a 4 nearest neighbours Markov field but also a Markov chain of order 2. Conditionally to the future, we get

π(z 1 , z 2 , • • • , z t | z t+1 , z t+2 , • • • , z T ) = π(z(t) | z t+1 , z t+2 ) = C t (z t+1 , z t+2 ) exp U * t (z(t); z t+1 , z t+2 ), with U * t (z(t); z t+1 , z t+2 ) = U t (z(t)) + Ψ 1,t+1 (z t , z t+1 ) + Ψ 2,t+1 (z t-1 , z t+1 ) + Ψ 2,t+2 (z t , z t+2 ), Then, for a, b and c ∈ E, U * t (z(t -1), a; (b, c)) = U * t-1 (z(t -1); (a, b)) + θ t (a) + Ψ 1,t+1 (a, b) + Ψ 2,t+2 ( 
a, c); analogously to the previous example, we define the future-conditional contributions and the N 2 × N 2 matrices A t by γ t (z(t); (z t+1 , z t+2 )) = exp U * t (z(t); (z t+1 , z t+2 ) A t ((i, j), (k, i)) = exp{θ t (e k ) + Ψ 1,t+1 (e k , e i ) + Ψ 2,t+2 (e k , e j )} Similarly as 3.1, we get the following recursion: γ t (z(t -1), e k ; (e i , e j )) = A t ((i, j), (k, i)) × γ t-1 (z(t -1); (e k , e i ))

We thus obtain a recurrence [START_REF] Moeller | An efficient Markov chain Monte Carlo method for distributions with intractable normalizing constants[END_REF] on the contributions Γ t (z(t)) and analogous results as ( 8) and ( 9) for the bivariate Markov chain (Z t-1 , Z t ), t = 1, T .

Spatial Gibbs fields

For t ∈ T ={1, 2, ...T }, let us consider Z t = (Z (t,i) , i ∈ I), where

I = {1, 2, • • • , m}, Z (t,i) ∈ F . Then Z = (Z s , s = (t, i) ∈ S
) is a spatial field on S = T ×I. We note again z t = (z (t,i) , i ∈ I), z(t) = (z 1 , .., z t ), z = z(T ) and we suppose that the distribution π of Z is a Gibbs distribution with translation invariant potentials Φ A k (•), k = 1, K associated to a family of subsets {A k , k = 1, K} of S. For A ⊆ S, let us define H(A) = sup{|u -v| , ∃(u, i) and (v, j) ∈ A}, and H = sup{H(A k ), k = 1, K}. With this notation, we write the Gibbs-energy

U (z) = H h=0 T t=h+1 Ψ(z t-h , • • • , z t ) with Ψ(z t-h , • • • , z t ) = k:H(A k )=h s∈St(k) Φ A k +s (z)
where S t (k) = {s = (u, i) : A k + s ⊆ S and t -H(A k ) ≤ u ≤ t}. Then (Z t ) is a Markov process of order H and Y t = (Z t-H , Z t-H+1 , • • • Z t ), t > H a Markov chain on E H for which we get the results ( 8) and [START_REF] Reeves | Efficient recursions for general factorisable models[END_REF].

We applied the result to the calculation of the normalization constant for an Ising model. For m = 10 and T = 100, the computing time is less than 20 seconds.