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Multiple-Timescale Analysis for Bifurcation
from a Multiple-Zero Eigenvalue

Angelo Luongo' and Angelo Di Egidio®
Universita di L' Aquila, 67040 L' Aquila, Iraly

and

Achille Paolone?
University of Rome “La Sapienza,” 00184 Rome, Italy

Multiple-zers bifurcation of a general multiparameter dynamic system is analyzed vsing the multiple-scale
method and exploiting the close similarities with eigensolution analysis for defective systems. Because of the
coalescence of the eigenvalues, the Jacobian matrix at the bifureation i& nilpolent. This entails uging timeseales
with fractional powers ofthe perturbation parameter. The reconstitution method is employed to obtainanordinary
differential equation of order equal to the algebraic multiplicity of the zere eigenvalue, in the unigue unknown
amplitvde, When the algorithm is applied to a double-zers eigenvalue, Bogdanova-Arnold s normal form for the
biforeation equation is recovered, A detailed step-by-step algorithm is deseribed for a general svstem to obtain
the numerical coefficients of the relevant bifurcation equation. The mechanical behavior of a nonconservative
two-degree-of-freed om system is studied as an example.
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differentiation with respect lo x
differentiationwith respect o g
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Superscripis
0

n

evaloation at {x, g) = {0, 0}
differentiation with respectto ¢

I. Introduction

HE mnltiple-timescalemethod has been widely used to anal yze

the dynamic response of weak nonlinear mechanical systems
in both free and forced oscillation regimes.! As in other reduc-
tion methods, the multiple-timescalemethod transforms analysis of
the evolution of a multidimensional dynamic system into that of
an equivalent system of a dimension smaller than the original one
and equal to its codimension” The multiple-timescalemethod often
implies a smaller computational effort than other reduction meth-
ods, Within bifurcation analysis, the main advantage of the method
is the possibility of obtaining reduced equations without describing
the center manifold in advance or expressing the Jacobian matrix at
thecritical statein Jordan form. Asa result, bifurcation equations are
obtained directly in normal form. Their coefficients are expressed
in closed form in terms of the derivatives of the original vector field
evaluated at the critical state, in a manner similar to the theory of
static bifurcation of conservatlive systems.?*

In the past, the method has been successfully applied by the au-
thors to analyvze nonresonant codimension-two bifurcations of the
Hopf-Hopf and Hopf-divergence types (see Refs. 7and 8) and the
resonant codimension-threebifurcationof the Hopf-Hopf type (see
Ref. 9). However, problems arise when the system’s Jacobian ma-
trix is nilpotentat the bifurcation point, In these cases, the classical
method fails, and a nonstandard analysis must be performed, This
requires the use of timescales with suitable fractional powers of
the perturbation parameter, similar to the procedure :mPloy:d in
the eigenvalue sensitivity analysis of nilpotent matrices.!"~'* The
method is illustrated here with reference to a general dynamic sys-
tem undergoing a static bifurcation of codimension m for which,
in the generic case, the Jacobian matrix contains a Jordan block of
dimension i, The problem is believed to be new because methods
in the literature typically refer to m =2 or 3. The algorithm is suc-
cessivelyadapted form = 2, for which preliminaryresults were pre-
sented in Ref. 13. This codimension-two problem has already been



studiedin the literature but only for a specific system'*!%; the analy-
sis was, moreover, limited to the first-order approximation, whereas
the presentpaperconsidershigher-orderapproximations.The objec-
tive is achieved in two steps: first, several timescales with fractional
powers of the perturbation parameter are introduced and solvability
equationsare obtainedfor the differentorders. Subsequently,the real
timescale and solvability equations are reconstituted.!® When the
proposed perturbative procedureis applied to the codimension-two
problem, the resulting bifurcation equations are expressed directly
in Bogdanova—Arnold’s normal form (see Ref. 17).

An applicationof the procedureis finally presented to analyze the
postcritical behavior of a double pendulum with elastic supports,
loaded by a follower force.

II. Multiple-Zero Eigenvalue Analysis

A dynamic system is considered, having equations of motion
x=F(x, p) @)

where x e R and p € R™. It is assumed that Eqs. (1) have been
reduced to the so-called local form, so that they admit the trivial
solution x =0, Y. Let us further assume that O:= (x, u) = (0, 0)
is a codimension-n bifurcation point, at which the Jacobian
F°:=F (0, 0) admits one eigenvalue Ay =0 with algebraic mul-
tiplicity m > 1, whereas the remaining eigenvaluesare stable. In the
generic case, only one critical eigenvector u exists associated with
o, so that the matrix F° has an incomplete set of eigenvectors (de-
fectivematrix). A chainof m generalized(right) eigenvectorscan be
built up to complete the base, by recursively solving the following
equations:

(FO = rol)u = uy k=2,3,....m )
where u; =u. A complete base of generalized left eigenvectorscan
also be found by recursively solving the following equations:

0 & ;

(FX—AUI) vi_ = v, j=mm—1,...,2 3)
The leftandrighteigenvectorssatisfy the following orthonormaliza-
tion properties: va. u; = §;;. This means that all of the eigenvectors
u, of the chain, except the higher-order eigenvector u,,, belong to
the range of the operator F;’ — Aol, whereas u,, is external to it.
The aim of the analysis is to investigate the dynamics of the non-
linearsystemaround the bifurcationpointby applyinga perturbation
method. However, the orthogonality properties just recalled are re-
sponsible for the failure of the standard perturbation method, based
on integer power series expansion of the perturbation parameter.
The problem is addressed in the framework of eigenvalue sensi-
tivity analysis,!®!! which has strong analogies with the bifurcation
analysis performed here. Therefore, it is worth summarizing the
main steps of that procedure.

A. Eigenpair Sensitivity Analysis

Letxz =xg (p) be an equilibrium path (notnecessarilythe trivial
one) passing through the bifurcation point. Let us determine an
asymptoticexpressionfor the eigensolutions[A = A(p), w =w(u)]
along the path, thatis, let us solve the following eigenvalue problem:

{Felxg (), p] — A(u)w(p) =0 “4)

asymptotically for g — 0. Let us decide to vary the control
parameters g proportionallyto ¢, namely, g = e 1, with 1= O(1),
sothat F, =F,(¢), . = i(¢), and w =w(e). From a geometric point
of view, the choice correspondsto spanning the neighborhoodof the
bifurcationpoint by straightlines. When F', (¢) is expandedin series
about the bifurcation point, Eq. (4) is

[Ao+ €A +--) —A(e)Iw(e) =0 &)

in which Ag:=F) and A;:=F) (dxg/dp)o+F),. When the
fractional power series expansion in Eqgs. (Ala) and (Alb) of
Appendix A are used, the perturbation equations in Eqs. (A2a—
A2e) are then drawn. Equation (A2a) admits the eigenpair

(o, wo) = (0, u,); Eq. (A2b) can be solved for any A, because its
known term u; belongs to the range of the operator [see Eq. (A3b)]
with A; still being indeterminate. Similarly, Eq. (A2c) admits so-
lution (A3c), with arbitrary A; and X,, and so on. In proceeding
to higher orders, a solvability condition is first required at the ¢
order, where the highest element of the chain u,, appears together
with the perturbationA,u,. When orthogonality to v, is required,
the nonlinear equation (A4a) is drawn, from which m roots are
found (first-order sensitivities of the m coincident eigenvalues o).
At higher orders, in contrast, linear equations of the type (A4b) and
(A4c) are found, from which one value of A,, A3, ... is drawn for
each of the m first-order sensitivities. The coefficients of series (A1)
are thus evaluated.

It can be seen that the left members of the solvability equations
(A4) are monomials resulting from the expansion of the mth power
of A — Ag = A. Therefore, it seems convenient to combine all of the
solvability conditions in a single algebraic equation of degree m
[Eq. (AS)]. This equation can be referred to as the reconstituted
sensitivity equation, according to the procedure commonly used in
the multiple-scale method.> !¢ The sensitivity of the m-zero eigen-
valueis, thus, governed by an algebraic equation of the mth degree.
The reconstituted equation makes it possibltto avoid the drawbacks
that occur when A; — 0O for which the ordering in Eqgs. (Al) is in-
correct. These singular perturbations are always encountered if the
whole neighborhood of the bifurcation point has to be spanned.!!
In contrast, the reconstituted sensitivity equation correctly furnishes
A=0(EY™),if ¢,, =O(e) and A > O(eV/™), if ¢c,, < O(e).

B. Bifurcation Analysis
The bifurcationanalysisis formally similar to the sensitivity anal-

ysis. Indeed, if the equations of motion (4) are expanded and written
in the form

[F2+ 1 (i + F)e + (P8 +- ) = D]E =0 ©)
where the change of variable x — X has been introduced and
D =d/dt is posed, then Eq. (6) is formally equal to the perturbed
eigenvalue problem (5) in which A is substituted by the operator
D. The analogy suggests the expedience of introducing fractional
power expansion of £/ for both the eigenvectorx and the eigen-
value D, given in Appendix A by Egs. (Ala’) and (A1b’), where a
returntox is made. The formal series expansionof d/df corresponds
to the introduction of the following fractional timescales:

ty =1, t, = gl/m¢, t,=¢8""t, ... )

with dy:=09/9t,k=1,2,.... The bifurcation parameters are
scaled as g = e[, so that the lowest-order derivative F?,ngl’)/ ap-
pears at the same level as the resonantterm F° x?2. The perturbation
equations (A2a’'—A2e’) are obtained. Because a unique real criti-
cal eigenvector exists, the nondiverging and undamped (on the fast
scale) solution to Eq. (A2a’) is given by Eq. (A3a’), where a is the
unknown time-dependent real amplitude. The perturbation equa-
tions of orders lower than &? can be solved without requiring any
solvability conditionsbecauseall of their known terms belong to the
range of the operator [see Eqs. (A3b') and (A3c’)]. However, at the
&2 order, terms d'au,, andd,d{'~ %au,, _, appearin the equation, to-
gether with F xf and F{, xo /1, which are proportionalto a* and a i,
respectively. When solvability is enforced, a differentialequation of
orderm is drawn, of the type givenin Eq. (A4a’). When the s2-order
equation is solved, x,, is found. It contains the term d,d;" ~2au,,
which, at the 2+ /™ order, enters the solvability condition given by
Eq. (A4b') because ngxgxl and Fgﬂxlﬂ are proportional to ad,a
and [1d, a, respectively. By proceeding to higher orders, other solv-
ability conditions involving combinations of derivatives, such as
Eq. (A4c’) are found, that is, terms of the mth derivative of a:

d"a

drm

= £|:d'1" + mel/m dy - 'd,

1
+em (m d'td; + Fmim = 1)d7’—2d§> S ~i|a ®)



Therefore, by combiningall of the solvability conditionsin a single
equation, a reconstituted bifurcation equation is obtained, given by
Eq. (AS'), comprising a differentialequation of the mth order, where
the parameter ¢ has been reabsorbed according to the rules ea — a,
eft — w, and /™ d/dt — d/dt. In Eq. (A5") D™a is a term of the
&? order, whereas the right-hand member contains (separated by
semicolons) all of the terms of the order g2, g2+1/™m g2+2/m |
up to the highest order accounted for in the analysis. For example,
if m = 3, the bifurcation equation at the £* order reads

i=%(ap,a% ap, ad; ip, ad,a’; @, a’p, a*,ad)  (9)

10/3

whereas at the & order, that is, one step further, it becomes

a=2%(..;au?, a*a,aap, %) (10)

where only additional terms are displayed. Equation (A5’) could
be referred to as a generalized Bogdanova—-Arnold normal form
bifurcation equation for the multiple-zero bifurcation.

III. Double-Zero Bifurcation

The multiple-scale procedure developed in the preceding sec-
tion is adopted for a system that exhibits a double-zero eigenvalue
(m=2).

Let (u,, u,) be the chain of the generalizedright eigenvectorand
v, the proper left eigenvector. It is further assumed that at least
one of the two coefficients vaFf:Mul is different from zero, that is,
the singular case discussed in Sec. II.A is excluded. This property
ensures that a divergenceboundary D and a Hopf boundary H orig-
inate from O, as assumed in the Takens—Bogdanova bifurcation. If
this hypothesis is removed, other mechanisms leading to the dou-
ble zero bifurcation can exist, namely, the double divergence, the
double divergence-Hopf, and the degenerate Hopf bifurcation, not
analyzed here.!!

When m =2 is assumed in the series expansion (Al’) of
Appendix A, the following perturbation equations are drawn:

e: (dg = Fg)xg =0, E%Z (dg —Fg)xl = —dixg

&% (dg = Ffj)xz = —dix; —dyxo + %F,?xxg + Fguxﬂﬂ
3 (do — F)x3 = —dyx, — dox; —d P F x\[i
£2:\dy )X3 = 1X2 2X1 3X( + xX0X1 + xﬂxlll/

&% (dg — Fg)x4 = —d;x3 — dyx, —d3x; — dyxg + ngx()xz

+1F X+ F) o i+ 1F) x) + 1F0 xof+ 1F), xofi’
,
e7: (dg - F?,)xj = _d1X4 - d2x3 - d3x2 - d4x1 - d5x0
+F2xx0x3 + ngxlxz + Fgﬂx3ﬂ + %Fgmxgxl
+F xox o+ 3F), x0 1 (11)

Note that, if only steady-state solutions are sought, d; =0 Yk must
beposedinEq. (11),sothatx; =0,k =1, 3, ..., follows. Therefore,
all fractional powers of x vanish, and Eq. (11) coincides with the
classical perturbation equations of the buckling analysis.!®

When the same steps as in Appendix A are followed, solutions
are found:

L2 N
Xg = au,, x; =d,au,, x; = dyau, + 507z +aZyp

x; = dzau, +ad1aZ% + dlaZ%;}
)

+ a3z33 + aZZ32ﬂ + aZ33ﬂ2 (12)

x4 = (dia)’zs + dfa(azn +Z50) + dzfl(flzg +Z

ok

wherez, € " andZ, € " x N2, ... are solutionsof linear algebraic
equations reported in Appendix B.

Similarly, the following solvability conditions are found at the
various orders:

g*:d2a =ak1ﬂ+%a2k2, 8%22(11 dya = dyalks i + kya)

£%:2d, dsa + dda = dya(ks i + kya) + ks(dya)® + ke a’
+kofra* + kgfi*a + dra(hya + hyfi)

e3:2dy dsa + 2d; dua = dsalsfo + kaa) + ks (2 dya dra)?
+dialkoa® + kiofsa + ki i + (hs + hy) d2a)

+di(d}a)(hsa + hsfp) +2d; dya(hea + b ) (13)

where the coefficients k; and h; are defined in Appendix C.
Equations (13), after using Eq. (8) (with m =2), lead to

= (—klu +k8u2)a + (—k3u +k11u2)d + (ky + k;p)a®

+ (ks + kyop)aa + ksa® + kea® + koa*a (14)

in which the coefficient k;p is not identically zero, by virtue of
the hypothesis assumed. In Eq. (4), the parameter ¢ has been re-
absorbed in accordance with the position u=¢f and the rules
ea—a, '*d/dt — d/dt. Equation (14) is Bogdanova-Arnold’s,
improved up to the order £”/2. It is the equation of motion of a non-
linear single-degree-of-freedm system with quadratic and cubic
nonlinearities.

IV. Steady-State Solutions and Stability

From the bifurcation equation (14), steady solutions a =a; =
const are drawn, and their stability investigated through a straight-
forward perturbation analysis, as will be described.

The linear parts of the coefficients of @ and a in Eq. (14), namely,
k:=kp and &:=ksp, are taken as unfolding parameters and are
assumed to be of order ¢. By the vanishing of time derivatives
(¢, = d, = 0) and the expandingof a, as a, = ea, + &%a, + - - -, per-
turbation equations of the following type are drawn at the leading
orders:

ex (k + kya))a; =0 (15a)
& (k + kya))a, = h(a,, k, ) (15b)

From Eq. (15a) both trivial (T) and nontrivial (NT) solutions are
found, depending only on «; from Eq. (15b), higher-order correc-
tions to the NT solution are drawn, also depending on &.

The stability of boththe T solutionand the NT solutionis analyzed
by taking the variation of the bifurcation equation (14). This leads
to a second-degree algebraic equation in the eigenvalue o, which
governs the evolution of the perturbation,

o’+Lo+5L=0 (16)

where [, = I;[a,(k, £), k, €] are the invariants of the variational ma-
trix. It is well known that this equation admits the following critical
boundaries on the invariant (/,, ;) plane: a divergence locus D, of
equation I, = 0; a Hopf locus H, of equation /; = 0; and a nilpotent
locus \V, of equation I7 — 41, = 0. To map the loci on the unfolding
(x, &) plane, the parameters are expanded as k =€k + ley + -
and & = g€, + 2§, + - - - and substitutedin the loci equations. When
terms with the same power of ¢ are zeroed, £2- and &*-order pertur-
bation equations are drawn. From the first set of equations, relation-
shipsof the type f (1, &) = 0 are obtained, which describe the criti-
cal boundariesat the first order. From the second set of equations, re-
lationshipsof the type g(k2, &, k7, €7, k1£,) =0 are derived. When
these are recombined according to & f(-) + &*g(-) =0, and the pa-
rameters are reconstituted, a second-order approximation of the
boundariesis finally obtained. The results are illustrated in detail in
Appendix D.



V. Numerical Evaluation of the Bifurcation
Equation Coefficients

To show the effectiveness of the proposed method, an algorithm
is described for numerically evaluating the coefficients of the bi-
furcation equation (14) for a class of systems. The method does
not require the repetition of the whole procedure for the specific
system at hand, but only evaluation of the numerical coefficients
by performing elementary operations. In this respect the method
is user oriented, different from other methods, such as the center
manifold method, which have not yet been implemented to furnish
ready-to-use formulas.

A broad class of N-dimensional mechanical systems is consid-
ered, having equations

¥= A+ pB)x +c@) (17)

where the matrices A and B are constantand the vector ¢(x) collects
quadratic and cubic nonlinearitiesindependentof p. Therefore, the
ith equation (17) is

. 1
Xi = Zaijxj + Zﬂjbijkxk + D) Zcijkxjxk
i ik Jk

1
+g Zcijk[xjxkxl (18)

ok,

where coefficients ¢ are symmetrical with respect to indices j, &,
and /. For this class, F{ =A, F{,, =0,and F}, , =0. The following
functions are defined:

f,u, p) = UTFSM”N = sz‘jkvi”jﬂk

i, jk

e TR0 — §
g, u,w):=v F  uw = Cijr ViU j Wy
ijk

h(v,u,w,y) := UTF,?XX”WJ’ = Z Cijki Vil j Wy Yy (19)

i,j.k,l

The preceding functions associate a real number with the dummy
vectors v, u, pu, w, and y. When the arguments are chosen appropri-
ately, the functions (19) furnish all of the quantities necessary to
evaluate the coefficients appearing in the bifurcationequation (14).
In particular, by taking v equal to the canonical vector e; = {§;;},
j=1,2,..., N, they also make it possible to build up the vector
equations in Appendix B.

The following step-by-step algorithm is applied:

1) Proper and generalized right eigenvectors are evalu-
ated at the bifurcation point g =0 by solving the equations
Au; =0,Au, =u;,A"v, =0, and ATv, = v, and normalizing the
solutions according to v u;, = k.

2) The known terms of Eqs. (Bla) are built up as

(vaF,?x”%)uz = {g(va, w1, u)uy}

(20

F(\{\'u% = {g(eh u, ul)}»

where braces collect the vector coefficients for j running from 1
to N. Then z, is evaluated by solving the singular equation (B1la)
under the constraint condition vszz =0.

3) To solve Eq. (B1b), p is first set equal to the canonical vector
e;. The known terms then are

Fgﬂulek ={f(e;,u,e)}
(vaFSM”Iek)uz = {f(v2, uy, e)u,} 21)
When the relevant equation is solved, the kth column of the matrix

Z, is evaluated, provided it is orthogonal to v;. When £ is allowed
to run from 1 to m, the whole matrix Z, is obtained.

4) When arguments similar to steps 2 and 3 are used, all
Egs. (B2) and (B3) are solved and (252,231,232, 233) as well as
(Zs)2, Z31, Z3,, Z33) are sequentially evaluated.

5) Constants h;, hs, hy, hg, and hg and vectors h, and hs in
Egs. (C1) are straigthforwardly calculated; vectors h; and hg in-
stead call for use of the functions (19) with canonical vectors, for
example,

h; = {f (v, u1, &)} (22)

6) Coefficients k in Eqs. (14) are finally evaluated by Egs. (C2),
for example,

ky = {—f(vz,uz,ek) +’U2TZ2ek} (23)

7) After the bifurcation equation (14) has been numerically in-
tegrated for a given set of parameters and given initial conditions,
and the amplitude a(¢) and its derivatives have been evaluated, the
state x(¢) is obtained by Eqs. (Ala’) in Appendix A and Egs. (12),
where all of the quantities are now known.

Note that the described procedure makes it possible to obtain a
bifurcation equation that is parametric in g, so that the procedure
doesnothave to be repeated for any choice of . Once the algorithm
has been implemented, only the coefficients a;;, b; i, ¢;jx, and ¢;jy
in Eqs. (19) must be given for any specific system.

VI. Sample Mechanical System

In this section, the structure shown in Fig. 1 is studied. It consists
of a double pendulum with two concentrated masses m; and m,
loaded by a follower force F applied at the end. The rods are rigid
and massless; the elastic springs are nonlinear and produce restor-
ing forces f; = fi(e;), i =1, 2, where e; are the strains. Finally, the
viscous devices are linear, of coefficients c;. If the constitutive non-
linearities of the springs are neglected, the structure reduces to that
studiedin Ref. 19. When rotations¢q;, i =1, 2, in Fig. | are assumed
as Lagrangian parameters, the dimensional nonlinear equations of
motion are

(m, + mz)lqu + mle[COS(% — ¢2)qs — sin(g; — 41)422]

+ (cl + ¢ + 2¢31% cos? ql)ql + (6‘312 COS ¢ COSqr — cz)qz

+ fi(e1) — fa(e2) + fi(es)lcosqr + Flsin(qa —q1) =0
mzlz% + mle[COS(% — ¢q2)q) — sin(q, — 42)412]

+ (c2 + ;1% cos? qz)q'z + (6‘312 COSq; COS gy — cz)q'l

+ faler) + f3(e3)l* cosg, =0 (24)

where e, =¢q,,e,=¢, —q,, and e; =I[(sing, + sing,). It is as-
sumed, for simplicity, that f, = f, ¢, =c;, m; =2m, and m, =m.
WhenEgs. (24) areexpandedin Mac Laurin series up to cubic terms,
and the following nondimensionalquantities are taken into account:

a= k;l) / mw?,

a, = k;z)l/ma)z, az = k§3)12/ma)2

by =k [ml*o?, by =k [ml*o?, by =k [ml*o?

B =F/[mlo?, c=c /mlPo, d = (c;/c)l*> (25)
P .
=+ n,
C3
!
Fig. 1 Double pendulumload- c G
ed by a follower force F. +7 km =
“ 1
!
4]
—+4 k'




the nondimensional equation of motion are put in the form
given by Egs. (17) and (18), where now x = (x|, x,, x3, x4)7 =
(@1, 41, 42.42)" ande(x) = [0, ¢ (x), 0, c,(x)]”. In Eqgs. (25), k" is
the linear stiffness of the springs, and k[.(z) and k,'(3) are the quadratic
and cubic stiffnesses, that is, f; =kl.(1)ei + kfz)e[.z/Z +kl.(3)e?/6.
Moreover, w is a scaling factor having the dimension of a
frequency, and T =wt is a nondimensional time. The parame-
ters (@, B) are assumed as control parameters, representing the
nondimensional stiffness of the extensional spring and the load,
respectively. In addition («, B) = p are their increments from the
bifurcation values (ay, Bo) = (0.150, 5.827), where the system ex-
ibits a double-zero eigenvalue, that is, (o, B) = (&, B) — (a0, Bo)
(Fig. 2). The values of the remaining auxiliary parameters are
fixed at by =1,c=1.5, and d =0.5, that is, the same values as-
sumed in Ref. 19. In addition, a, =1,a3;=1,b,=1, and b;=1
are taken. Numerical values of nonvanishing coefficients in the
equations of motion (18) are ajp, =1, ay =141, a,, =—2.63,
ary3 = —1.91,(124 = 1.5,(134 = 1,(141 = —0.56,(142 = 3.37,(143 =076,
ay =—3.75; by =0.5, by =-0.5, by =-0.5, by3=-1,

b423 =0.5;C211 =0.25,C213 =—1,C233 =0.5,C411 = —1.25,C413 = 1,

Ccy33=—1.5,¢3111 =0.75, ¢311o =1.88, 2190 = —0.5, ¢33 = —2.25,

3 =—3, ¢03=0.5, cu33=2, cym33 =131, c333=-0.58,

Ca14 = — 113, €134 =2.63, 334 =—2.25, ¢y =—0.5, crapa =

0.5, csin=-15, csiin=-3, caip=1.5, cu113=3.25, cuz=
8.0

6.0

4.0

2.0 |
0.0 0.1 0.2 0.3 0.4

Fig. 2 Linear stability diagram.
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Fig. 3 Nontrivial bifurcated steady-state solution.

563, Cy223 = —15, Cyq133 = —375, Cy233 = —225, Cy333 = 075,
Ca114 = 1.88, Cy130 = —4.13, 334 =3, C4144 = 0.5, and c4344 = —0.5.
Properand generalizedeigenvectorsassume the valuesin Table 1.
When the algorithm developedin Sec. V is applied, the following
bifurcation equation is obtained:

i = (1.277a + 0.0588 + 13.601a> + 1.00208 + 0.00028%)a
+ (—4.709¢ + 0.1478 — 81.129¢2 — 0.8708 — 0.0038%)a
+(27.700 + 1.1318 + 0.837)a — (444.871a + 11.480p

+6.445)aa + 19.9124% + 12.733a® — 300.393a% (26)

where «:=—(1.277a¢ 4+ 0.0588) and &:=—(—4.709« 4 0.1478)
are unfolding parameters, whose geometric meaning is shown in
Fig. 2. The straight lines x =0 and & =0 represent, on the (o, f)

Table 1 Proper and generalized eigenvectors of the sample system

U u (X (%]
0.804 1 1 2.126
0 0.804 1.947 —0.364
0.594 0.101 0.329 —2.878
0 0.594 1.110 —0.913
0.10
00547 ~=0
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Fig. 4 Comparison among different approximations of the critical
boundaries: ——, €2 order and - - -, €3 order.
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Fig. 5 Critical boundaries and quality of the motion (S, saddle; SN,
stable node; SF, stable focus; UN: unstable node; and UF, unstable
focus): a) trivial steady-state solution and b) nontrivial steady-state
solution.



plane, the first-order approximations of the divergence D and Hopf
‘H boundaries, respectively.

When the results of Sec. IV are used, the NT steady solutions at
the &? or &* order are obtained; they are representedin Fig. 3 on the
(a, k) plane for positive (Fig. 3a) and negative (Fig. 3b) values of £.
Itis seen that the amplitude mainly depends on «; it is independent
of £ at the g2-order, whereas it is weakly dependent on it at the &*
order. Accordingly, the bifurcation point depends on &.

Figure 4 shows a comparison among different order approxima-
tions of the critical boundaries. In Fig. 4, continuouslines represent
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Fig. 6 Phase portraits in the (k, £)-parameter plane.
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the first approximation (¢ order) of the divergence D and Hopf H
boundaries (coincidentwith the unfolding parameter axes) whereas
dashed lines describe an improved (&*-order) approximation of the
boundaries for both T and NT stationary solutions. Moreover, the
N-labeledcurvesrepresenta manifold of nilpotentsystems to which
the critical system belongs, that is, the locus of systems having two
coincident eigenvalues!' In Fig. 5, the quality of motion in dif-
ferent regions bounded by the critical boundaries is shown, for T
(Fig. 5a) and NT (Fig. 5b) stationary solutions. The C-labeledcurves
represent the locus in which a homoclinic bifurcation occurs and
the periodic solution collides with a saddle. They have been ob-
tained numerically by varying the parameter « and determining the
corresponding value of the parameter £ for which the limit cycle
disappears.

To sum up, the T solution loses stability along the Hopf boundary
‘Hr, where a Hopf bifurcation manifests itself, and along the di-
vergence boundary D, where a transcritical bifurcation takes place,
from which a NT solutionemerges. This loses stability at the bound-
ary Hnr, where a new Hopf bifurcation manifests itself. Moreover,
the two further curves Ny and Nyr organize the parameter plane,
being the loci of systems having two coincident eigenvalues. Fi-
nally, along the two homoclinic boundaries C; and Cyr, a collision
between a limit cycle and a saddle point occurs. The scenario is
better representedin Fig. 6, where the phase portraits of each region
of the parameter plane are shown. From regions 1 to 5 or, similarly,
fromregions 6 to 10, the equilibriumpoints (£, and E, respectively,
T and NT solutions) are first a stable node and a saddle; the node
then modifies to become a focus; after a Hopf bifurcation, the focus
becomes unstable and a limit cycle p arises; after colliding with the
saddle, the limit cycle disappears; finally, the focus becomes an un-
stable node. Thus, in regions 1-3 and 68, there exists an attractor:
mainly an equilibrium point because a periodic motion only occurs
in a narrow region. In contrast, no attractors exist in regions 4, 5, 9,
and 10.

Figure 7 shows the bifurcation diagrams along the paths repre-
sented in Fig. 6. Along path 1 (Fig. 7a), stable limit cycles are born
at point A (intersection with the Hopf boundary H; from the T
solution, which loses stability. The boundaries of the gray region
represent the maximun and minimum values of the amplitude a as-
sumed in the periodic motion. At point B, a homoclinic bifurcation
occurs, and the stable limit cycles disappear. The NT solution is
always unstable. Along path 2 (Fig. 7b), stable limit cycles are born
at point C (intersection with the Hopf boundary Hyr) from the NT
solution branch, but disappearat D due to a homoclinic bifurcation;
the T solution is always unstable. Along path 3 (Fig. 7c), a NT so-
lution branch bifurcates at point E (intersection with the divergence
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Fig. 7 Bifurcation diagrams along the path shown in Fig. 6: ——, stable and ——, unstable.



boundaries D) from the T solution. Both the T and NT solutions are
always unstable. Finally, along path 4 (Fig. 7d), a stable NT solu-
tion branch bifurcates at point F (intersection with the divergence
boundary D from the T solution, whereas stable limit cycles are
born at point G (intersection with the Hopf boundary Hyr) from the
NT solution branch; at point H, the limit cycles disappear due to a
homoclinic bifurcation.

VII. Conclusions

When the analogies between sensitivity and bifurcation analy-
sis in defective systems are exploited, a multiple-scale algorithm is
developed to obtain the bifurcation equation governing the dynam-
ics around an m-zero eigenvalue. The method differs from other
procedures applied in the analysis of both codimension-1 and -2
bifurcation problems, in that it uses suitable fractional powers of €.
When the reconstitution procedure is used, an mth-order ordinary
differential equation in the unique unknown amplitude is obtained,
which asymptotically governs the dynamics around the bifurcation.
It generalizes the Bogdanova-Arnold normal form equation. When
these results are used, the nonlinear behavior of general dynamic
systems in the control parameter space around a double-zeroeigen-
value is analyzed. Finally, a mechanical system is considered, and
the theory is applied to describe the nonlinear behavior around the
bifurcation.

Appendix A: Eigenpair Sensitivity and Bifurcation
Analysis for a Defective Multiple-Zero Eigenvalue

Sensitivity Analysis
w=wo+e/"w +e¥"w, + - (Ala)
A=ho+e/ma +e¥mh + 1. (Alb)
&% (A — 2oDwy =0 (A2a)
™ (Ag — o)Wy = Mwy (A2b)
2™ (Ag — o)Wy = Aawi + Aawy (A2¢)

e:(Ag —AoDwy = MWy 1 AWy 2+ - —Awy  (A2d)

El+ 1/m : (AO - )\'Ol)wm +1 = )‘-lwm + )‘-2wm—1 ShEEE (Aze)
gl Wo = U, (A3a)
/M iw = Mu, (A3b)
e¥Ym = )qu3 + Au, (A3c)
Al = nglul (A4a)
mig A~ = f(h) (A4b)
masAy " = f(hy, Ay) (Adc)
M (A" e () =0 (A3)
Bifurcation Analysis
x=c(y+e""x, +e¥"x, + ) (Ala)
d 1/m 2/m
—=dy+e/"d +e&7"dy+--- (A1Y)

dr

e:(dy—F)x =0 (A22)
el+1/m . (do _Fg)xl = —d,x, (A2b")

e! /M (do —F,?)xz = —d;x; — daxo (A2c)

+--+ %foxg +F) xoft (A2d)
kil (d() —FS)x,,,H = —dix,, — dox,_

+ -+ Fxox, + F) xi i (A2¢)
g:xog=a(t, t,..)u (A3a")
gltlm . x =dau, (A3b)
gt tm : x, = dauy + dyau, (A3¢)
d'a = g(af, a?) (A4a")
mdyd"'a = g(fi.a,da) (A4D)
md;dy~ 'a =g(f1,a,da,da) (A4c)
D"a = $(ap, a*; ap, aa; ap, ad,a’; . ..) (AS)

Appendix B: Vectors and Matrices z and Z
in Equations (12)
The vectors and matrices z and Z appearing in Egs. (12) are ob-

tained by solving the following linear algebraic problems.
Order &%

Fiz, = —[Flu} = (o] F) 0} Jus | (Bla)
F'Zyp=—[F up— (v F uip)us | (B1b)
Order &/?
FgZ% = —[F?tuluz — (vanguluz)uz] + (z; = v;zZuz)

FSZ%M = —[Fgﬂuzu — (vaFSMuzu)uz] + [Zzu = va(Zzu)uz]
(B2)

|
(=]
N
c
8]
I
[al

Flzg = —4[F), ] — (V] F), u})us ]
+ 4Pz — (o] F iz )us
FiZyp=Zsp— (vgz%u)uz
FZop = —[FuZop — (0] F) . Zop)us |
— [P zp = (] F, zop)us]
— [P i = (o] FY i p)us]
Pz = —[F), 217 — (0] FY, 2o 2% Jus |

- %[Fgwuluz - (vaFgwuluz)uz] (B3)



Because F? is singular, the solutions to Eqs. (B1-B3) are not
unique. To avoid indeterminacies, a suitable normalization condi-
tion must be enforced. If v/ x =a Ve is required, v x, =0, k=1,
2, ..., follows from orthonormality conditions between the left
and right eigenvectors. Therefore, when Eqs. (12) are taken into
account, vszij =0 and vlTZij =0 must hold. These are constraint
conditions for the algebraic problems (B1-B3), which remove the
singularity.

Appendix C: Coefficients # and k in Equations (13)

The following scalar quantities are introduced:

hy = —UZTZ%, hzlt = —U;Z%M, hy = —202131

— T — T _ L1, TR0 2
hy = —vy23, hsp = —vy,Zy i, he = 50, F) uj

T T (10
hip = v, ULk, hg = v, (Fxxuluz - Zz)

hop = v} (FO uy — vl Z)p (C1)

where vectors z and matrices Z are defined in Appendix B. The
coefficients in Eq. (14) then are

T _ 1, TR0 2
k, = 2szxxu1

kyp=—v]F) up,

kip = —va(Fgﬂuz — Zz)u, ky = va(Ff:xuluz —zz)

A T(LF0 2 _ — T (Lp0 Lo
k5—v2(2Fxxu2 z%), k(,—vz(zFxxulzz—}—ﬁF/

XXX

ul + hih)

krp = vl (FOu,Z, + LF0 2, + 1F0, u? + hohg — hyhy )

XX L

kgp? = v (FQMZZ + %F”

XU

u + hz’h)#2
ko = vl (ngulz% — 3233 + 3FS, U2z

+LF0 wlus + hshg + 3hahe + hyhy)

Ll
2% xxx

km[,t = ’U;— (F?vull% — 2232 +F2xu222 +F2MZ% +F0 uu,

XX
+ hshy + 2hyhy + 2hshe + hohg + hiho ) p

ki’ = v} (F),Zs = Zsy + 4F0, > + hshy + Ioho) i (C2)

XHp
Appendix D: Asymptotic Expression of the Bifurcated
Path and Critical Boundaries
Reconstituted steady solutions admitted to the bifurcation

equation (14) are

a, =0, a, = (1/¢5) (i — gt — ¢vk — kek?)  (D1)

where v={k, £} € R, ¢; ={c7,, cr )€ N2, and ¢cg = [es; 1€ N2 x
R2, (i, j) = (k, £), are new coefficients resulting from those in
Eq. (14) after expressing the bifurcation equation as a function of
the unfolding parameters v.

The reconstituted critical boundaries for T solutions are

Dr ik = —c3, &

Hr:§=—cn i’

Nr i =182+ [(cs, /16)&* + (cs,, [4)E3 + 05, 67]
~[(en. /646" + (en,e /16)8° + (e, /4)6°]

The reconstituted critical boundaries for the NT steady solution
are

e = 2
Dnr ik = —0855
R 2 2
Hnr 1§ = —(ca/c)k — (Cuk +caciy, /Cz + e, /Cz
+ 2+c; L >+ +
CaCg [ C 6468,(5 Cy C4C8£ Cy C4Cq, [ C2 C4C6/C2
2 2 2 2),.2
+cier, /c2 — Cio, /cz — C4Cy; /c2 + Cg/Cz)K

Nur ik = =3[(cs/2¢2)6 — 1]

+ %\/[(64/262)5 — 12+ (2 /4c2)&2 + O(e?)
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