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1144 LUONGO, DI EGIDIO, AND PAOLONE

studied in the literaturebut only for a speci� c system14;15; the analy-
sis was, moreover, limited to the � rst-order approximation,whereas
the presentpaperconsidershigher-orderapproximations.The objec-
tive is achieved in two steps: � rst, several timescaleswith fractional
powers of the perturbationparameter are introducedand solvability
equationsareobtainedfor thedifferentorders.Subsequently,the real
timescale and solvability equations are reconstituted.16 When the
proposed perturbativeprocedure is applied to the codimension-two
problem, the resulting bifurcation equations are expressed directly
in Bogdanova–Arnold’s normal form (see Ref. 17).

An applicationof the procedure is � nally presented to analyze the
postcritical behavior of a double pendulum with elastic supports,
loaded by a follower force.

II. Multiple-Zero Eigenvalue Analysis
A dynamic system is considered, having equations of motion

Px D F.x; ¹/ (1)

where x 2 RN and ¹ 2 Rm . It is assumed that Eqs. (1) have been
reduced to the so-called local form, so that they admit the trivial
solution x D 0; 8¹. Let us further assume that O :D .x; ¹/ D .0; 0/
is a codimension-m bifurcation point, at which the Jacobian
F0

x :D Fx .0; 0/ admits one eigenvalue ¸0 D 0 with algebraic mul-
tiplicitym > 1, whereas the remainingeigenvaluesare stable. In the
generic case, only one critical eigenvector u exists associated with
¸0, so that the matrix F0

x has an incomplete set of eigenvectors (de-
fectivematrix).A chainof m generalized(right) eigenvectorscan be
built up to complete the base, by recursively solving the following
equations:

¡
F0

x ¡ ¸0I
¢
uk D uk ¡ 1; k D 2; 3; : : : ; m (2)

where u1 ´ u. A complete base of generalized left eigenvectorscan
also be found by recursively solving the following equations:

¡
F0

x ¡ ¸0I
¢T

v j ¡ 1 D v j ; j D m; m ¡ 1; : : : ; 2 (3)

The left and righteigenvectorssatisfy the followingorthonormaliza-
tion properties: vT

j uk D ± j k . This means that all of the eigenvectors
uk of the chain, except the higher-order eigenvector um , belong to
the range of the operator F0

x ¡ ¸0I, whereas um is external to it.
The aim of the analysis is to investigate the dynamics of the non-

linearsystemaroundthebifurcationpointbyapplyinga perturbation
method. However, the orthogonalityproperties just recalled are re-
sponsible for the failure of the standard perturbationmethod, based
on integer power series expansion of the perturbation parameter.
The problem is addressed in the framework of eigenvalue sensi-
tivity analysis,10;11 which has strong analogies with the bifurcation
analysis performed here. Therefore, it is worth summarizing the
main steps of that procedure.

A. Eigenpair Sensitivity Analysis
Let xE D xE .¹/ be an equilibriumpath (not necessarilythe trivial

one) passing through the bifurcation point. Let us determine an
asymptoticexpressionfor the eigensolutions[¸ D ¸.¹/; w D w.¹/]
along the path, that is, let us solve the followingeigenvalueproblem:

fFx [xE .¹/; ¹] ¡ ¸.¹/gw.¹/ D 0 (4)

asymptotically for ¹ ! 0. Let us decide to vary the control
parameters ¹ proportionally to ", namely, ¹ D " O¹, with O¹ D O.1/,
so that Fx D Fx ."/; ¸ D ¸."/, and w D w."/. From a geometric point
of view, the choice correspondsto spanning the neighborhoodof the
bifurcationpoint by straight lines. When Fx ."/ is expandedin series
about the bifurcation point, Eq. (4) is

[.A0 C "A1 C ¢ ¢ ¢/ ¡ ¸."/]w."/ D 0 (5)

in which A0:D F0
x and A1:D F0

x x .dxE =d¹/0 C F0
x¹. When the

fractional power series expansion in Eqs. (A1a) and (A1b) of
Appendix A are used, the perturbation equations in Eqs. (A2a–
A2e) are then drawn. Equation (A2a) admits the eigenpair

.¸0; w0/ D .0; u1/; Eq. (A2b) can be solved for any ¸1 because its
known term u1 belongs to the range of the operator [see Eq. (A3b)]
with ¸1 still being indeterminate. Similarly, Eq. (A2c) admits so-
lution (A3c), with arbitrary ¸1 and ¸2, and so on. In proceeding
to higher orders, a solvability condition is � rst required at the "
order, where the highest element of the chain um appears together
with the perturbation A1u1 . When orthogonality to vm is required,
the nonlinear equation (A4a) is drawn, from which m roots are
found (� rst-order sensitivities of the m coincident eigenvalues ¸0).
At higher orders, in contrast, linear equations of the type (A4b) and
(A4c) are found, from which one value of ¸2; ¸3; : : : is drawn for
each of the m � rst-order sensitivities.The coef� cientsof series (A1)
are thus evaluated.

It can be seen that the left members of the solvability equations
(A4) are monomials resulting from the expansionof the mth power
of ¸ ¡ ¸0 ´ ¸. Therefore, it seems convenient to combine all of the
solvability conditions in a single algebraic equation of degree m
[Eq. (A5)]. This equation can be referred to as the reconstituted
sensitivity equation, according to the procedure commonly used in
the multiple-scale method.2;16 The sensitivity of the m-zero eigen-
value is, thus, governed by an algebraic equation of the mth degree.
The reconstitutedequationmakes it possiblt to avoid the drawbacks
that occur when ¸1 ! 0 for which the ordering in Eqs. (A1) is in-
correct. These singular perturbationsare always encountered if the
whole neighborhood of the bifurcation point has to be spanned.11

In contrast, the reconstitutedsensitivityequationcorrectlyfurnishes
¸ D O."1=m /, if cm D O."/ and ¸ > O."1=m /, if cm < O."/.

B. Bifurcation Analysis
The bifurcationanalysis is formally similar to the sensitivityanal-

ysis. Indeed, if the equationsof motion (4) are expandedand written
in the form
£
F0

x C 1
2

¡
F0

x x Ox C F0
x¹¹

¢
" C 1

6

¡
F0

xx x Ox2 C ¢ ¢ ¢
¢
"2 ¡ D

¤
Ox D 0 (6)

where the change of variable x ! " Ox has been introduced and
D D d=dt is posed, then Eq. (6) is formally equal to the perturbed
eigenvalue problem (5) in which ¸ is substituted by the operator
D. The analogy suggests the expedience of introducing fractional
power expansion of "1=m for both the eigenvector x and the eigen-
value D, given in Appendix A by Eqs. (A1a0) and (A1b0), where a
return to x is made. The formal series expansionof d=dt corresponds
to the introductionof the following fractional timescales:

t0 D t ; t1 D "1=m t; t2 D "2=m t; : : : (7)

with dk :D @=@tk; k D 1; 2; : : : : The bifurcation parameters are
scaled as ¹ D " O¹, so that the lowest-order derivative F0

x¹x0 O¹ ap-
pears at the same level as the resonant term F0

x x x2
0 . The perturbation

equations (A2a0–A2e0) are obtained. Because a unique real criti-
cal eigenvector exists, the nondivergingand undamped (on the fast
scale) solution to Eq. (A2a0) is given by Eq. (A3a0), where a is the
unknown time-dependent real amplitude. The perturbation equa-
tions of orders lower than "2 can be solved without requiring any
solvabilityconditionsbecauseall of their known terms belong to the
range of the operator [see Eqs. (A3b0) and (A3c0)]. However, at the
"2 order, terms dm

1 aum and d2dm ¡ 2
1 aum ¡ 1 appear in the equation,to-

getherwith F0
x x x2

0 and F0
x¹x0 O¹, which are proportionalto a2 and a O¹,

respectively.When solvability is enforced,a differentialequationof
orderm is drawn, of the type given in Eq. (A4a0). When the "2-order
equation is solved, xm is found. It contains the term d2d

m ¡ 2
1 aum ,

which, at the "2 C 1=m order, enters the solvability condition given by
Eq. (A4b0) because F0

x x x0x1 and F0
x¹x1 O¹ are proportional to ad1a

and O¹d1a, respectively.By proceeding to higher orders, other solv-
ability conditions involving combinations of derivatives, such as
Eq. (A4c0) are found, that is, terms of the mth derivative of a:

dma

dtm
D "

µ
dm

1 C m"1=m dm ¡ 1
1 d2

C "2=m

³
m dm ¡ 1

1 d3 C 1

2
m.m ¡ 1/ dm ¡ 2

1 d2
2

´
C ¢ ¢ ¢

¶
a (8)
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Therefore, by combiningall of the solvability conditionsin a single
equation, a reconstitutedbifurcation equation is obtained, given by
Eq. (A50), comprisinga differentialequationof the mth order,where
the parameter " has been reabsorbedaccording to the rules "a ! a,
" O¹ ! ¹, and "1=m d=dt ! d=dt . In Eq. (A50) Dm a is a term of the
"2 order, whereas the right-hand member contains (separated by
semicolons) all of the terms of the order "2; "2 C 1=m; "2 C 2=m; : : : ;
up to the highest order accounted for in the analysis. For example,
if m D 3, the bifurcation equation at the "3 order reads

RaPD .a¹; a2I Pa¹; a PaI Ra¹; a Ra; Pa2I ¹3; a2¹; a3; Pa Ra/ (9)

whereas at the "10=3 order, that is, one step further, it becomes

RaPD .: : : I Pa¹2; a2 Pa; a Pa¹; Ra2/ (10)

where only additional terms are displayed. Equation (A50) could
be referred to as a generalized Bogdanova–Arnold normal form
bifurcation equation for the multiple-zero bifurcation.

III. Double-Zero Bifurcation
The multiple-scale procedure developed in the preceding sec-

tion is adopted for a system that exhibits a double-zero eigenvalue
(m D 2).

Let .u1; u2/ be the chain of the generalized right eigenvectorand
v2 the proper left eigenvector. It is further assumed that at least
one of the two coef� cients vT

2 F0
x¹u1 is different from zero, that is,

the singular case discussed in Sec. II.A is excluded. This property
ensures that a divergenceboundary D and a Hopf boundaryH orig-
inate from O , as assumed in the Takens–Bogdanova bifurcation. If
this hypothesis is removed, other mechanisms leading to the dou-
ble zero bifurcation can exist, namely, the double divergence, the
double divergence-Hopf, and the degenerate Hopf bifurcation, not
analyzed here.11

When m D 2 is assumed in the series expansion (A10) of
Appendix A, the following perturbation equations are drawn:

":
¡
d0 ¡ F0

x

¢
x0 D 0; "

3
2 :

¡
d0 ¡ F0

x

¢
x1 D ¡d1x0

"2:
¡
d0 ¡ F0

x

¢
x2 D ¡d1x1 ¡ d2x0 C 1

2
F0

x x x2
0 C F0

x¹x0 O¹

"
5
2 :

¡
d0 ¡ F0

x

¢
x3 D ¡d1x2 ¡ d2x1 ¡ d3x0 C F0

x x x0x1 C F0
x¹x1 O¹

"3:
¡
d0 ¡ F0

x

¢
x4 D ¡d1x3 ¡ d2x2 ¡ d3x1 ¡ d4x0 C F0

x x x0x2

C 1
2
F0

x x x2
1 C F0

x¹x2 O¹ C 1
6
F0

x x x x3
0 C 1

2
F0

x x¹x2
0 O¹ C 1

2
F0

x¹¹x0 O¹2

"
7
2 :

¡
d0 ¡ F0

x

¢
x5 D ¡d1x4 ¡ d2x3 ¡ d3x2 ¡ d4x1 ¡ d5x0

C F0
x x x0x3 C F0

x x x1x2 C F0
x¹x3 O¹ C 1

2
F0

x x x x2
0x1

C F0
x x¹x0x1 O¹ C 1

2 F0
x¹¹x1 O¹2 (11)

Note that, if only steady-state solutions are sought, dk ´ 0 8k must
beposedin Eq. (11), so thatxk ´ 0, k D 1; 3; : : : ; follows.Therefore,
all fractional powers of x vanish, and Eq. (11) coincides with the
classical perturbation equations of the buckling analysis.18

When the same steps as in Appendix A are followed, solutions
are found:

x0 D au1; x1 D d1au2; x2 D d2au2 C 1
2
a2z2 C aZ2 O¹

x3 D d3au2 C a d1az 5
2

C d1aZ 5
2

O¹

x4 D .d1a/2z31 C d2
1a.az32 C Z31 O¹/ C d2a

¡
az 5

2
C Z 5

2
O¹
¢

C a3z33 C a2Z32 O¹ C aZ33 O¹2 (12)

where z2 2 <n andZ2 2 <n £ <2; : : : are solutionsof linear algebraic
equations reported in Appendix B.

Similarly, the following solvability conditions are found at the
various orders:

"2: d2
1a D ak1 O¹ C 1

2
a2k2; "

5
2 : 2 d1 d2a D d1a.k3 O¹ C k4a/

"3: 2 d1 d3a C d2
2a D d2a.k3 O¹ C k4a/ C k5.d1a/2 C k6 a3

C k7 O¹a2 C k8 O¹2a C d2
1a.h1a C h2 O¹/

"
7
2 : 2 d2 d3a C 2 d1 d4a D d3a.k3 O¹ C k4a/ C k5.2 d1a d2a/2

C d1a
£
k9a

2 C k10 O¹a C k11 O¹2 C .h3 C h4/ d2
1a

¤

C d1

¡
d2

1a
¢
.h4a C h5 O¹/ C 2 d1 d2a.h6a C h7 O¹/ (13)

where the coef� cients ki and hi are de� ned in Appendix C.
Equations (13), after using Eq. (8) (with m D 2), lead to

Ra D
¡
¡k1¹ C k8¹2

¢
a C

¡
¡k3¹ C k11¹2

¢
Pa C .k2 C k7¹/a2

C .k4 C k10¹/a Pa C k5 Pa2 C k6a3 C k9a
2 Pa (14)

in which the coef� cient k1¹ is not identically zero, by virtue of
the hypothesis assumed. In Eq. (4), the parameter " has been re-
absorbed in accordance with the position ¹ D " O¹ and the rules
"a ! a; "1=2 d=dt ! d=dt . Equation (14) is Bogdanova–Arnold’s,
improved up to the order "7=2. It is the equation of motion of a non-
linear single-degree-of-freedom system with quadratic and cubic
nonlinearities.

IV. Steady-State Solutions and Stability
From the bifurcation equation (14), steady solutions a D as D

const are drawn, and their stability investigated through a straight-
forward perturbation analysis, as will be described.

The linear parts of the coef� cients of a and Pa in Eq. (14), namely,
· :D k1¹ and » :D k3¹, are taken as unfolding parameters and are
assumed to be of order ". By the vanishing of time derivatives
( Pas D Ras D 0/ and the expandingof as as as D "a1 C "2a2 C ¢ ¢ ¢, per-
turbation equations of the following type are drawn at the leading
orders:

"2: .· C k2a1/a1 D 0 (15a)

"3: .· C k2a1/a2 D h.a1; ·; »/ (15b)

From Eq. (15a) both trivial (T) and nontrivial (NT) solutions are
found, depending only on ·; from Eq. (15b), higher-order correc-
tions to the NT solution are drawn, also depending on » .

The stabilityof both theT solutionand theNT solutionis analyzed
by taking the variation of the bifurcation equation (14). This leads
to a second-degree algebraic equation in the eigenvalue ¾ , which
governs the evolution of the perturbation,

¾ 2 C I1¾ C I2 D 0 (16)

where Ik D Ik [as.·; »/; ·; » ] are the invariantsof the variationalma-
trix. It is well known that this equationadmits the following critical
boundarieson the invariant .I1; I2/ plane: a divergence locus D, of
equation I2 D 0; a Hopf locus H, of equation I1 D 0; and a nilpotent
locus N , of equation I 2

1 ¡ 4I2 D 0. To map the loci on the unfolding
.·; »/ plane, the parameters are expanded as · D "·1 C "2·2 C ¢ ¢ ¢
and » D "»1 C "2»2 C ¢ ¢ ¢ and substitutedin the loci equations.When
terms with the same power of " are zeroed, "2- and "3-order pertur-
bation equationsare drawn. From the � rst set of equations, relation-
shipsof the type f .·1; »1/ D 0 are obtained,which describethe criti-
cal boundariesat the � rst order.From the secondset of equations,re-
lationshipsof the type g.·2; »2; ·2

1 ; » 2
1 ; ·1»1/ D 0 are derived.When

these are recombined according to "2 f .¢/ C "3g.¢/ D 0, and the pa-
rameters are reconstituted, a second-order approximation of the
boundariesis � nally obtained.The results are illustrated in detail in
Appendix D.
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V. Numerical Evaluation of the Bifurcation
Equation Coef� cients

To show the effectiveness of the proposed method, an algorithm
is described for numerically evaluating the coef� cients of the bi-
furcation equation (14) for a class of systems. The method does
not require the repetition of the whole procedure for the speci� c
system at hand, but only evaluation of the numerical coef� cients
by performing elementary operations. In this respect the method
is user oriented, different from other methods, such as the center
manifold method, which have not yet been implemented to furnish
ready-to-use formulas.

A broad class of N -dimensional mechanical systems is consid-
ered, having equations

Px D .A C ¹B/x C c.x/ (17)

where the matrices A and B are constant and the vector c.x/ collects
quadratic and cubic nonlinearitiesindependentof ¹. Therefore, the
i th equation (17) is

Pxi D
X

i

ai j x j C
X

j;k

¹ j bi j k xk C 1
2

X

j;k

ci jk x j xk

C 1
6

X

j;k;l

ci jkl x j xk xl (18)

where coef� cients c are symmetrical with respect to indices j , k,
and l. For this class, F0

x D A, F0
x x¹ D 0, and F0

x¹¹ D 0. The following
functions are de� ned:

f .v; u; ¹/ :D vT F0
x¹u¹ D

X

i; j;k

bi jk vi u j ¹k

g.v; u; w/ :D vT F0
x x uw D

X

i; j;k

ci j kvi u j wk

h.v; u; w; y/ :D vT F0
x x x uwy D

X

i; j;k;l

ci jkl vi u j wk yl (19)

The preceding functions associate a real number with the dummy
vectors v; u;¹; w, and y. When the arguments are chosen appropri-
ately, the functions (19) furnish all of the quantities necessary to
evaluate the coef� cients appearing in the bifurcationequation (14).
In particular, by taking v equal to the canonical vector e j D f±i j g,
j D 1; 2; : : : ; N , they also make it possible to build up the vector
equations in Appendix B.

The following step-by-step algorithm is applied:
1) Proper and generalized right eigenvectors are evalu-

ated at the bifurcation point ¹ D 0 by solving the equations
Au1 D 0; Au2 D u1; AT v2 D 0, and AT v1 D v2 and normalizing the
solutions according to vT

j uk D ± j k .
2) The known terms of Eqs. (B1a) are built up as

F0
x x u2

1 D fg.e j ; u1; u1/g;
¡
vT

2 F0
x x u2

1

¢
u2 D fg.v2; u1; u1/u2g

(20)

where braces collect the vector coef� cients for j running from 1
to N . Then z2 is evaluated by solving the singular equation (B1a)
under the constraint condition vT

1 z2 D 0.
3) To solve Eq. (B1b), ¹ is � rst set equal to the canonical vector

ek . The known terms then are

F0
x¹u1ek D f f .e j ; u1; ek /g

¡
vT

2 F0
x¹u1ek

¢
u2 D f f .v2; u1; ek /u2g (21)

When the relevant equation is solved, the kth column of the matrix
Z2 is evaluated, provided it is orthogonal to v1. When k is allowed
to run from 1 to m, the whole matrix Z2 is obtained.

4) When arguments similar to steps 2 and 3 are used, all
Eqs. (B2) and (B3) are solved and (z5=2; z31;z32; z33/ as well as
(Z5=2; Z31; Z32; Z33/ are sequentially evaluated.

5) Constants h1; h3; h4; h6; and h8 and vectors h2 and h5 in
Eqs. (C1) are straigthforwardly calculated; vectors h7 and h9 in-
stead call for use of the functions (19) with canonical vectors, for
example,

h7 D f f .v2; u1; ek /g (22)

6) Coef� cients k in Eqs. (14) are � nally evaluated by Eqs. (C2),
for example,

k3 D
©
¡ f .v2; u2; ek/ C vT

2 Z2ek

ª
(23)

7) After the bifurcation equation (14) has been numerically in-
tegrated for a given set of parameters and given initial conditions,
and the amplitude a.t/ and its derivatives have been evaluated, the
state x.t/ is obtained by Eqs. (A1a0) in Appendix A and Eqs. (12),
where all of the quantities are now known.

Note that the described procedure makes it possible to obtain a
bifurcation equation that is parametric in ¹, so that the procedure
does not have to be repeatedfor any choiceof ¹. Once the algorithm
has been implemented, only the coef� cients ai j ; bi jk ; ci jk , and ci j kl

in Eqs. (19) must be given for any speci� c system.

VI. Sample Mechanical System
In this section, the structure shown in Fig. 1 is studied. It consists

of a double pendulum with two concentrated masses m1 and m2

loaded by a follower force F applied at the end. The rods are rigid
and massless; the elastic springs are nonlinear and produce restor-
ing forces fi D fi .ei /; i D 1; 2, where ei are the strains. Finally, the
viscous devices are linear, of coef� cients ci . If the constitutivenon-
linearities of the springs are neglected, the structure reduces to that
studied in Ref. 19. When rotationsqi ; i D 1; 2, in Fig. 1 are assumed
as Lagrangian parameters, the dimensional nonlinear equations of
motion are

.m1 C m2/l
2 Rq1 C m2l

2
£

cos.q1 ¡ q2/ Rq2 ¡ sin.q2 ¡ q1/ Pq2
2

¤

C
¡
c1 C c2 C 2c3l

2 cos2 q1

¢
Pq1 C

¡
c3l

2 cos q1 cosq2 ¡ c2

¢
Pq2

C f1.e1/ ¡ f2.e2/ C f3.e3/l cos q1 C Fl sin.q2 ¡ q1/ D 0

m2l
2 Rq2 C m2l

2
£

cos.q1 ¡ q2/ Rq1 ¡ sin.q1 ¡ q2/ Pq2
1

¤

C
¡
c2 C c3l

2 cos2 q2

¢
Pq2 C

¡
c3l

2 cosq1 cos q2 ¡ c2

¢
Pq1

C f2.e2/ C f3.e3/l
2 cos q2 D 0 (24)

where e1 D q1; e2 D q2 ¡ q1 , and e3 D l.sin q1 C sin q2/. It is as-
sumed, for simplicity, that f2 D f1; c2 D c1; m1 D 2m, and m2 D m.
WhenEqs. (24) are expandedin Mac Laurin seriesup to cubic terms,
and the followingnondimensionalquantitiesare taken into account:

O® D k.1/

3

¯
m!2; a2 D k.2/

3 l
¯

m!2; a3 D k.3/

3 l2
¯

m!2

b1 D k.1/

1

¯
ml2!2; b2 D k.2/

1

¯
ml2!2; b3 D k.3/

1

¯
ml2!2

Ō D F
¯

ml!2; c D c1

¯
ml2!; d D .c3=c1/l2 (25)

Fig. 1 Doublependulumload-
ed by a follower force F.
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the nondimensional equation of motion are put in the form
given by Eqs. (17) and (18), where now x D .x1; x2; x3; x4/T D
.q1; Pq1; q2; Pq2/T and c.x/ D [0; c1.x/; 0; c2.x/]T . In Eqs. (25), k.1/

i is
the linear stiffness of the springs, and k.2/

i and k.3/

i are the quadratic
and cubic stiffnesses, that is, fi D k.1/

i ei C k.2/

i e2
i =2 C k.3/

i e3
i =6.

Moreover, ! is a scaling factor having the dimension of a
frequency, and ¿ D !t is a nondimensional time. The parame-
ters . O®; Ō/ are assumed as control parameters, representing the
nondimensional stiffness of the extensional spring and the load,
respectively. In addition .®; ¯/ D ¹ are their increments from the
bifurcation values .®0; ¯0/ D .0:150; 5:827/, where the system ex-
ibits a double-zero eigenvalue, that is, .®; ¯/ D . O®; Ō/ ¡ .®0; ¯0/
(Fig. 2). The values of the remaining auxiliary parameters are
� xed at b1 D 1; c D 1:5, and d D 0:5, that is, the same values as-
sumed in Ref. 19. In addition, a2 D 1; a3 D 1; b2 D 1, and b3 D 1
are taken. Numerical values of nonvanishing coef� cients in the
equations of motion (18) are a12 D 1, a21 D 1:41, a22 D ¡2:63,
a23 D ¡1:91,a24 D 1:5,a34 D 1, a41 D ¡0:56,a42 D 3:37,a43 D 0:76,
a44 D ¡3:75; b221 D 0:5, b411 D ¡0:5, b421 D ¡0:5, b413 D ¡1,
b423 D 0:5; c211 D 0:25,c213 D ¡1, c233 D 0:5, c411 D ¡1:25,c413 D 1,
c433 D ¡1:5, c2111 D 0:75, c2112 D 1:88, c2122 D ¡0:5, c2113 D ¡2:25,
c2123 D ¡3, c2223 D 0:5, c2133 D 2, c2233 D 1:31, c2333 D ¡0:58,
c2114 D ¡1:13, c2134 D 2:63, c2334 D ¡2:25, c2144 D ¡0:5, c2344 D
0:5, c4111 D ¡1:5, c4112 D ¡3, c4122 D 1:5, c4113 D 3:25, c4123 D

Fig. 2 Linear stability diagram.

a)

b)

Fig. 3 Nontrivial bifurcated steady-state solution.

5:63, c4223 D ¡1:5, c4133 D ¡3:75, c4233 D ¡2:25, c4333 D 0:75,
c4114 D 1:88, c4134 D ¡4:13, c4334 D 3, c4144 D 0:5, and c4344 D ¡0:5.

Properand generalizedeigenvectorsassume the values in Table 1.
When the algorithmdevelopedin Sec. V is applied, the following

bifurcation equation is obtained:

Ra D .1:277® C 0:058¯ C 13:601®2 C 1:002®¯ C 0:0002¯2/a

C .¡4:709® C 0:147¯ ¡ 81:129®2 ¡ 0:870®¯ ¡ 0:003¯2/ Pa

C .27:700® C 1:131¯ C 0:837/a2 ¡ .444:871® C 11:480¯

C 6:445/a Pa C 19:912Pa2 C 12:733a3 ¡ 300:393a2 Pa (26)

where ·:D ¡.1:277® C 0:058¯/ and » :D ¡.¡4:709® C 0:147¯/
are unfolding parameters, whose geometric meaning is shown in
Fig. 2. The straight lines · D 0 and » D 0 represent, on the (®, ¯)

Table 1 Proper and generalized eigenvectors of the sample system

u1 u2 v1 v2

0.804 1 1 2.126
0 0.804 1.947 ¡0.364
0.594 0.101 0.329 ¡2.878
0 0.594 1.110 ¡0.913

Fig. 4 Comparison among different approximations of the critical
boundaries: ——, "2 order and – – – , "3 order.

a)

b)

Fig. 5 Critical boundaries and quality of the motion (S, saddle; SN,
stable node; SF, stable focus; UN: unstable node; and UF, unstable
focus): a) trivial steady-state solution and b) nontrivial steady-state
solution.
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plane, the � rst-order approximationsof the divergenceD and Hopf
H boundaries, respectively.

When the results of Sec. IV are used, the NT steady solutions at
the "2 or "3 order are obtained; they are represented in Fig. 3 on the
.a; ·/ plane for positive (Fig. 3a) and negative (Fig. 3b) values of » .
It is seen that the amplitude mainly depends on ·; it is independent
of » at the "2-order, whereas it is weakly dependent on it at the "3

order. Accordingly, the bifurcation point depends on » .
Figure 4 shows a comparison among different order approxima-

tions of the critical boundaries. In Fig. 4, continuouslines represent

Fig. 6 Phase portraits in the (·, »)-parameter plane.

a) Path 1

b) Path 2

c) Path 3

d) Path 4

Fig. 7 Bifurcation diagrams along the path shown in Fig. 6: ————, stable and ——, unstable.

the � rst approximation ("2 order) of the divergence D and Hopf H
boundaries(coincidentwith the unfoldingparameter axes) whereas
dashed lines describe an improved ("3-order) approximation of the
boundaries for both T and NT stationary solutions. Moreover, the
N -labeledcurvesrepresenta manifoldof nilpotentsystemsto which
the critical system belongs, that is, the locus of systems having two
coincident eigenvalues.11 In Fig. 5, the quality of motion in dif-
ferent regions bounded by the critical boundaries is shown, for T
(Fig. 5a) and NT (Fig. 5b) stationarysolutions.The C -labeledcurves
represent the locus in which a homoclinic bifurcation occurs and
the periodic solution collides with a saddle. They have been ob-
tained numerically by varying the parameter · and determining the
corresponding value of the parameter » for which the limit cycle
disappears.

To sum up, the T solution loses stability along the Hopf boundary
HT , where a Hopf bifurcation manifests itself, and along the di-
vergence boundary D, where a transcritical bifurcation takes place,
fromwhich a NT solutionemerges.This loses stabilityat the bound-
ary HNT , where a new Hopf bifurcation manifests itself. Moreover,
the two further curves N T and N NT organize the parameter plane,
being the loci of systems having two coincident eigenvalues. Fi-
nally, along the two homoclinic boundaries C T and C NT, a collision
between a limit cycle and a saddle point occurs. The scenario is
better representedin Fig. 6, where the phase portraitsof each region
of the parameter plane are shown. From regions 1 to 5 or, similarly,
fromregions6 to 10, theequilibriumpoints(E0 and E1, respectively,
T and NT solutions) are � rst a stable node and a saddle; the node
then modi� es to become a focus; after a Hopf bifurcation, the focus
becomes unstable and a limit cycle p arises; after collidingwith the
saddle, the limit cycle disappears; � nally, the focus becomes an un-
stable node. Thus, in regions 1–3 and 6–8, there exists an attractor:
mainly an equilibrium point because a periodic motion only occurs
in a narrow region. In contrast, no attractors exist in regions 4, 5, 9,
and 10.

Figure 7 shows the bifurcation diagrams along the paths repre-
sented in Fig. 6. Along path 1 (Fig. 7a), stable limit cycles are born
at point A (intersection with the Hopf boundary HT from the T
solution, which loses stability. The boundaries of the gray region
represent the maximun and minimum values of the amplitude a as-
sumed in the periodic motion. At point B, a homoclinic bifurcation
occurs, and the stable limit cycles disappear. The NT solution is
always unstable.Along path 2 (Fig. 7b), stable limit cycles are born
at point C (intersectionwith the Hopf boundary HNT) from the NT
solutionbranch, but disappearat D due to a homoclinicbifurcation;
the T solution is always unstable. Along path 3 (Fig. 7c), a NT so-
lution branch bifurcates at point E (intersectionwith the divergence
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boundariesD) from the T solution.Both the T and NT solutionsare
always unstable. Finally, along path 4 (Fig. 7d), a stable NT solu-
tion branch bifurcates at point F (intersection with the divergence
boundary D from the T solution, whereas stable limit cycles are
born at point G (intersectionwith the Hopf boundaryHNT) from the
NT solution branch; at point H, the limit cycles disappear due to a
homoclinic bifurcation.

VII. Conclusions
When the analogies between sensitivity and bifurcation analy-

sis in defective systems are exploited, a multiple-scalealgorithm is
developed to obtain the bifurcation equation governing the dynam-
ics around an m-zero eigenvalue. The method differs from other
procedures applied in the analysis of both codimension-1 and -2
bifurcationproblems, in that it uses suitable fractional powers of ".
When the reconstitution procedure is used, an mth-order ordinary
differential equation in the unique unknown amplitude is obtained,
which asymptoticallygoverns the dynamics around the bifurcation.
It generalizes the Bogdanova–Arnold normal form equation. When
these results are used, the nonlinear behavior of general dynamic
systems in the control parameter space around a double-zeroeigen-
value is analyzed. Finally, a mechanical system is considered, and
the theory is applied to describe the nonlinear behavior around the
bifurcation.

Appendix A: Eigenpair Sensitivity and Bifurcation
Analysis for a Defective Multiple-Zero Eigenvalue

Sensitivity Analysis

w D w0 C "1=mw1 C "2=m w2 C ¢ ¢ ¢ (A1a)

¸ D ¸0 C "1=m¸1 C "2=m¸2 C ¢ ¢ ¢ (A1b)

"0 : .A0 ¡ ¸0I/w0 D 0 (A2a)

"1=m : .A0 ¡ ¸0I/w1 D ¸1w0 (A2b)

"2=m : .A0 ¡ ¸0I/w2 D ¸1w1 C ¸2w0 (A2c)

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

" : .A0 ¡ ¸0I/wm D ¸1wm ¡ 1 C ¸2wm ¡ 2 C ¢ ¢ ¢ ¡ A1w0 (A2d)

"1 C 1=m : .A0 ¡ ¸0I/wm C 1 D ¸1wm C ¸2wm ¡ 1 C ¢ ¢ ¢ (A2e)

"0 : w0 D u1 (A3a)

"1=m : w1 D ¸1u2 (A3b)

"2=m : w2 D ¸2
1u3 C ¸2u2 (A3c)

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

¸m
1 D vH

m A1u1 (A4a)

m¸2¸m ¡ 1
1 D f .¸1/ (A4b)

m¸3¸
m ¡ 1
1 D f .¸1; ¸2/ (A4c)

¸m C c1.¹/¸m ¡ 1 C ¢ ¢ ¢ C cm.¹/ D 0 (A5)

Bifurcation Analysis

x D ".x0 C "1=m x1 C "2=m x2 C ¢ ¢ ¢/ (A1a0)

d

dt
D d0 C "1=m d1 C "2=m d2 C ¢ ¢ ¢ (A1b0)

" :
¡
d0 ¡ F0

x

¢
x0 D 0 (A2a0)

"1 C 1=m :
¡
d0 ¡ F0

x

¢
x1 D ¡d1x0 (A2b0)

"1 C 2=m :
¡
d0 ¡ F0

x

¢
x2 D ¡d1x1 ¡ d2x0 (A2c0)

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

"2 :
¡
d0 ¡ F0

x

¢
xm D ¡d1xm ¡ 1 ¡ d2xm ¡ 2

C ¢ ¢ ¢ C
1

2
F0

x x x2
0 C F0

x¹x0 O¹ (A2d0)

"2 C 1=m :
¡
d0 ¡ F0

x

¢
xm C 1 D ¡d1xm ¡ d2xm ¡ 1

C ¢ ¢ ¢ C F0
x x x0x1 C F0

x¹x1 O¹ (A2e0)

" : x0 D a.t1; t2; : : :/u1 (A3a0)

"1 C 1=m : x1 D d1au2 (A3b0)

"1 C 2=m : x2 D d2
1au3 C d2au2 (A3c0)

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

dm
1 a D g.a O¹; a2/ (A4a0)

m d2 dm ¡ 1
1 a D g. O¹; a; d1a/ (A4b0)

m d3 dm ¡ 1
1 a D g. O¹; a; d1a; d2a/ (A4c0)

Dma D .a¹; a2I Pa¹; a PaI Ra¹; a Ra; Pa2I : : :/ (A50)

Appendix B: Vectors and Matrices z and Z
in Equations (12)

The vectors and matrices z and Z appearing in Eqs. (12) are ob-
tained by solving the following linear algebraic problems.

Order "2:

F0
x z2 D ¡

£
F0

x x u2
1 ¡

¡
vT

2 F0
x x u2

1

¢
u2

¤
(B1a)

F0
x Z2¹ D ¡

£
F0

x¹u1¹ ¡
¡
vT

2 F0
x¹u1¹

¢
u2

¤
(B1b)

Order "5=2:

F0
x z 5

2
D ¡

£
F0

x x u1u2 ¡
¡
vT

2 F0
x x u1u2

¢
u2

¤
C

¡
z2 ¡ vT

2 z2u2

¢

F0
x Z 5

2
¹ D ¡

£
F0

x¹u2¹ ¡
¡
vT

2 F0
x¹u2¹

¢
u2

¤
C

£
Z2¹ ¡ vT

2 .Z2¹/u2

¤

(B2)

Order "3:

F0
x z31 D ¡ 1

2

£
F0

x x u2
2 ¡

¡
vT

2 F0
x x u2

2

¢
u2

¤
C

¡
z 5

2
¡ vT

2 z 5
2
u2

¢

F0
x z32 D z 5

2
¡ vT

2 z 5
2
u2

F0
x z33 D ¡ 1

6

£
F0

x x x u3
1 ¡

¡
vT

2 F0
x x x u3

1

¢
u2

¤

C 1
2

£
F0

x x u1z2 ¡
¡
vT

2 F0
x x u1z2

¢
u2

¤

F0
x Z31¹ D Z 5

2
¹ ¡

¡
vT

2 Z 5
2
¹

¢
u2

F0
x Z32¹ D ¡

£
F0

x x u1Z2¹ ¡
¡
vT

2 F0
x x u1Z2¹

¢
u2

¤

¡ 1
2

£
F0

x¹z2¹ ¡
¡
vT

2 F0
x¹z2¹

¢
u2

¤

¡ 1
2

£
F0

x x¹u2
1¹ ¡

¡
vT

2 F0
x x¹u2

1¹
¢
u2

¤

F0
x Z33¹2 D ¡

£
F0

x¹Z2¹2 ¡
¡
vT

2 F0
x¹Z2¹2

¢
u2

¤

¡ 1
2

£
F0

x¹¹u1¹
2 ¡

¡
vT

2 F0
x¹¹u1¹2

¢
u2

¤
(B3)
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Because F0
x is singular, the solutions to Eqs. (B1–B3) are not

unique. To avoid indeterminacies, a suitable normalization condi-
tion must be enforced. If vT

1 x D a 8" is required, vT
1 xk D 0, k D 1,

2; : : : ; follows from orthonormality conditions between the left
and right eigenvectors. Therefore, when Eqs. (12) are taken into
account, vT

1 zi j D 0 and vT
1 Zi j D 0 must hold. These are constraint

conditions for the algebraic problems (B1–B3), which remove the
singularity.

Appendix C: Coef� cients h and k in Equations (13)
The following scalar quantities are introduced:

h1 D ¡vT
2 z 5

2
; h2¹ D ¡vT

2 Z 5
2
¹; h3 D ¡2vT

2 z31

h4 D ¡vT
2 z32; h5¹ D ¡vT

2 Z31¹; h6 D 1
2 vT

2 F0
x x u2

1

h7¹ D vT
2 F0

x¹u1¹; h8 D vT
2

¡
F0

x x u1u2 ¡ z2

¢

h9¹ D vT
2

¡
F0

x¹u2 ¡ vT
2 Z2

¢
¹ (C1)

where vectors z and matrices Z are de� ned in Appendix B. The
coef� cients in Eq. (14) then are

k1¹ D ¡vT
2 F0

x¹u1¹; k2 D 1
2
vT

2 F0
x x u2

1

k3¹ D ¡vT
2

¡
F0

x¹u2 ¡ Z2

¢
¹; k4 D vT

2

¡
F0

xx u1u2 ¡ z2

¢

k5 D vT
2

¡
1
2
F0

x x u2
2 ¡ z 5

2

¢
; k6 D vT

2

¡
1
2
F0

x x u1z2 C 1
6
F0

xx x u3
1 C h1h6

¢

k7¹ D vT
2

¡
F0

x x u1Z2 C 1
2 F0

x¹z2 C 1
2 F0

xx ¹u2
1 C h2h6 ¡ h1h7

¢
¹

k8¹
2 D vT

2

¡
F0

x¹Z2 C 1
2
F0

x¹¹u1 C h2h7

¢
¹2

k9 D vT
2

¡
F0

x x u1z 5
2

¡ 3z33 C 1
2 F0

x x u2z2

C 1
2
F0

x x x u2
1u2 C h3h6 C 3h4h6 C h1h8

¢

k10¹ D vT
2

¡
F0

x x u1Z 5
2

¡ 2Z32 C F0
x x u2Z2 C F0

x¹z 5
2

C F0
x x¹u1u2

C h3h7 C 2h4h7 C 2h5h6 C h2h8 C h1h9

¢
¹

k11¹2 D vT
2

¡
F0

x¹Z 5
2

¡ Z33 C 1
2 F0

x¹¹u2 C h5h7 C h2h9

¢
¹2 (C2)

Appendix D: Asymptotic Expression of the Bifurcated
Path and Critical Boundaries

Reconstituted steady solutions admitted to the bifurcation
equation (14) are

as D 0; as D .1=c2/
¡
· ¡ c8º

2 ¡ c7º· ¡ k6·2
¢

(D1)

where º D f·; » g 2 <2 , c7 D fc7· , c7»
g 2 <2, and c8 D [c8i j ] 2 <2 £

<2, .i; j/ D .·; »/, are new coef� cients resulting from those in
Eq. (14) after expressing the bifurcation equation as a function of
the unfolding parameters º.

The reconstitutedcritical boundaries for T solutions are

DT : · D ¡c8»
» 2

HT : » D ¡c11· ·2

N T : · D 1
4 » 2 C

£¡
c8·

¯
16

¢
» 4 C

¡
c8·»

¯
4
¢
» 3 C c8»

» 2
¤

¡
£¡

c11·

¯
64

¢
» 4 C

¡
c11·»

¯
16

¢
» 3 C

¡
c11»

¯
4
¢
» 2

¤2

The reconstituted critical boundaries for the NT steady solution
are

DNT : · D ¡c8»
» 2

HNT : » D ¡.c4=c2/· ¡
¡
c11·

C c4c11·»

¯
c2 C c2

4c11»

¯
c2

2

C c4c8·

¯
c2 C c2

4c8·»

¯
c2

2 C c3
4c8»

¯
c3

2 C c4c7k

¯
c2 C c4c6=c2

C c2
4c7»

¯
c2

2 ¡ c10·

¯
c2 ¡ c4c10»

¯
c2

2 C c9

¯
c2

2

¢
·2

N NT : · D ¡ 1
2 [.c4=2c2/» ¡ 1]

§ 1
2

q
[.c4=2c2/» ¡ 1]2 C

¡
c2

4

¯
4c2

2

¢
» 2 C O."3/
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