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problems arising in the stability analysis of (incomplete) classes of motion when the 
most popular polar form is used. The final section discusses the reconstitution method, 
consisting in alternative techniques that can be used to combine the amplitude equations 
on different scales into a unique equation on a single scale. Four classes of method are 
considered, based on the consistency or inconsistency of the approach and on the 
completeness or incompleteness of the terms retained in the analysis. The four methods 
are critically compared and general conclusions drawn. Examples are given to clarify 
all the procedures discussed. 
 
1.  Introduction 

The multiple scale method [1] is a powerful tool for dealing with nonlinear dynamic 
problems. It has been widely used in recent decades to study free and forced oscillatory 
phenomena [2] and latterly to describe nonlinear normal modes [3]−[6] and postcritical 
behavior in bifurcation problems [7]−[11]. It has also been applied to discrete-time 
dynamical systems [12].  

As is well known, the method consists in solving a chain of ordinary differential 
perturbative equations in which the state-variables are assumed to depend on different 
independent time-scales. The solvability conditions enforced at each step furnish a set of 
equations governing the evolution of the unknown complex amplitudes on each time-
scale. Finally, the solvability equations are combined in a single equation (the so-called 
amplitude equation), according to the reconstitution method [13]. The multiple scale 
method thus transforms the original multidimensional dynamic system into a smaller 
equivalent problem.  

In spite of the wide use of the method, some computational aspects are still 
unresolved, and have been addressed in the literature over the last few years. The first 
question that arises concerns the technique of combining the various solvability 
conditions. It has been proposed [14]−[21] that some terms can be omitted and that the 
perturbation parameter can be reabsorbed in the amplitude equation in order to obtain a 
simpler equation. The consequence of these choices are analyzed in detail and critically 
discussed in [22].  

A second computational problem regards the transformation of the complex 
amplitudes into real quantities. The most meaningful transformation uses of the polar 
amplitude-phase representation. However, this leads to real equations that are not in 
standard form, giving rise to problems in analyzing the stability of the fixed points at 
which some real amplitudes vanish (incomplete motions). Alternative representations to 
overcome the problem have been proposed in literature, in particular a purely Cartesian 
or mixed polar-Cartesian representation, mostly with reference to specific problems [18], 
[23]−[27]. It is shown in [28], where general systems are instead considered, that the 
mixed representation leads to standard form equations if certain hypotheses are satisfied, 
thus avoiding the problem previously illustrated.  

As a further algorithmic problem, one may wish to know in advance (i.e. before 
transforming the complex amplitude equations) whether incomplete motions are 
admitted by the system and whether or not a standard form of the equations exists. The 
problem is addressed in [29], where tools for performing qualitative analysis are 
implemented. Two different analytical or geometrical approaches have been developed, 
able to furnish a complete description of all the existing classes of motion (i.e. of the 
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invariant subspaces of the amplitude space). The method does not require the elaboration 
of the perturbation equations, but only consideration of the resonance conditions; it also 
furnishes information on the structure of the Jacobian matrix governing the stability of 
each class of motion. It therefore has an intrinsic value beyond merely checking the 
existence of a standard form.  

The above problems do not of course exhaust the scenario of computational 
problems linked to the use of the multiple scale method (or, perhaps, of other asymptotic 
methods). For instance, in [30]−[31], the derivation of amplitude equations preserving 
the original conservative nature of the system is discussed, in connection with the use of 
first- (state-variable) or second-order (mechanical) forms of the differential equations of 
motion. They will not, however, be discussed here.  

This paper addresses the problems illustrated above and reviews the existing 
literature. The paper is organized as follows. In Sect. 2 the fundamental steps of the 
multiple scale method are summarized and the amplitude equations derived, according to 
both the analytical procedure and a purely qualitative investigation. In Sect. 3 a 
qualitative analysis of the classes of motion is first performed, since it does not require 
introducing real amplitudes or discussing reconstitution procedures. These aspects are 
instead analyzed in Sect. 4 and 5, respectively. Illustrative examples are given in each 
section. Finally some conclusions are drawn in Sect. 6.  
 
2.  Amplitude equations  
2.1 Analytical derivation 

Let us consider a discrete dynamical system, depending on a set of control 
parameters µ and harmonically driven. The equations of motion, expanded around the 
equilibrium position (q, µ) = (0, 0), read: 
 

             (1) 
 
In Equation (1) q are Lagrangian coordinates, C and K the (generally non-symmetric) 
damping and stiffness matrices, respectively; E0, g and ω0 are respectively the amplitude, 
shape and frequency of the harmonic excitation; F is the vector collecting the nonlinear 
forces and the increments in damping and elastic forces due to modifications of 
parameters µµ (i.e. F(0, 0) = F,q(0, 0) = F,µµ(0, 0) = 0); finally the dot denotes 
differentation with respect the time t.  

The eigenvalue problem associated with the linear homogeneous part of Equation 
(1), evaluated at µ = 0, reads:  
 

                                                                                                             (2) 
 

in which E is the identity matrix. The following hypotheses are assumed to hold:  
 
(1) Equation (2) admits N couples of purely immaginary eigenvalues λk = iωk, associated 

with 2N linearly independent eigenvectors uk. Cases of nilpotent matrices are thus 
excluded; moreover, the occurrence of zero frequencies (divergence instability) is 
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not taken into account. The N eigenvalues of interest are referred to as active 
eigenvalues; the remaining ones, which are assumed to have no positive real part, 
are considered as passive eigenvalues.  

(2) The N active immaginary eigenvalues, together with the external frequency ω0, are 
involved in S resonance conditions, namely:  

 

                                                             
(3)

 
 

where σs ≪ 1 are small detuning parameters and  Generally the S 
Equations (3) are not all independent, but some of them are linear combinations of 
R ≤ S independent conditions [28]−[29]. If ks0 = 0 the resonance is called internal, if 

ks0  ≠ 0 it is called external. If S = 1 the resonance is said to be simple, if S > 1 it is 
said to be multiple.  

(3) The amplitude E0 of  the  external  excitation is  assumed to be of order 1 if ω0 ≠ ωk 
(k = 1, 2, …, N) (hard resonant excitation); otherwise it is assumed to be small, of 
the order of a perturbation parameter ε, if it is equal to one of the active frequencies 
(soft resonant excitation).  
 
The integer M := N + R, equal to the number of critical eigenvalues, counted in 

pairs, plus the number of independent resonance conditions, is referred to as the linear 
codimension of the problem, as is usual in bifurcation problems [32]. It is equal to the 
number of degeneracy conditions of the linear operator of Equations (1) (see e.g. [22]); 
therefore, in the control parameter space, M is the codimension of the manifold on which 
the assumed spectral properties (1) and (2) are satisfied.  

A solution to Equation (1) is sought for (q, µ) → (0, 0). To this end, an ordering of 
the (small) parameters µ  is made:  
 

                                                                                                     (4) 
 
and the Lagrangian b coordinates are expanded in series of ε around ε = 0 :  
 

                                                                                                             (5) 
 

Several  temporal scales tk = ε kt (k = 0, 1, …) are introduced, so that d/dt = d0 +εd1 + 
ε2d2 +…, with dk := ∂/∂tk. By substituting Equations (4, 5) in Equation (1), expanding it 
and separately vanishing terms with the same powers of ε, the perturbative equations are 
obtained. In the hard esonant case they read:  
 

                                                             (6) 
                 … 
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where  and  denotes the j th-order terms in the Mac Laurin series 
expansion of F in terms of q and µ. Equations (61) admit the (so-called generating) 
solution 
 

                                                                         
(7)

 
 
where A0 is the (constant) amplitude of the forced response, u0 the shape, and An (n = 1, 
2, …, N) are complex functions of the slow times; moreover, c.c. stands for complex 
conjugate and i is the imaginary unit. In the soft resonance case the external excitation 
must be shifted to a higher perturbative equation in order to prevent q1 growing to 
infinity.  

To solve higher-order perturbation equations, solvability conditions must be 
imposed at each step, requiring the resonant terms on the right side (i.e. terms that, 
according to Equations (3) are of frequencies ωk) to be orthogonal to the N left 
eigenvectors vk dual of uk. The solvability conditions lead to sets of N non-autonomous 
first-order differential equations on scales t1, t2, … in N unknowns A : = {A1, A2, …, An}T. 
They assume the following form:  
 

     
                        (8) 

                  … 
 

where β2 , β3 are matrices and Fi (i = 1, 2) vectors.  
The solvability Equations (8) govern the evolution of amplitudes A on different 

slow time-scales. However, they can be combined in a single equation by returning to 
the true time t, according to the reconstitution method [13]. By accounting for dA/dt = 
+εd1A + ε2d2A +…, and using Equation (81) in Equation (82), it follows that  
 

                         
(9) 

 

where an index after a comma denotes differentiation. Equations (9) are known as 
reconstituted amplitude equations; they constitute a (generally) small set of differential 
equations able to capture the asymptotic dynamics of the original larger system. In this 
respect the MSM works as a reduction method, similarly, for instance, to the Center 
Manifold Method. Equations (9), however, still contain the perturbation parameter ε, so 
that they are an asymptotic representation of a reduced dynamical system:  
 

                                                                                                                       
(10) 

 
which is not known in closed form. It is customary to eliminate the parameter ε by 
reabsorbing it into the amplitudes and control parameters (i.e., by formally puting ε = 1). 
The consequence of this choice will be discussed in Sect. 5. 
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2.2 Qualitative derivation 
Since the amplitude equations are obtained by zeroing resonant terms at each step, 

they depend only on the resonance conditions in Equations (3). Therefore, the form of 
the amplitude equations (i.e. to within the coefficients) can be predicted before 
expanding and solving the perturbation equations. The procedure is useful both to check 
the analytical results, and in view of a subsequent qualitative analysis.  

The m-th amplitude equation obeys the following simple rule: it contains all the 
products (up to the higher nonlinearity accounted for in the analysis) of amplitudes An 
and their complex conjugate nA so that the sum of the associated frequencies ±ωn is equal 

to ωm, according to all the Equations (3). It therefore has the following form [29]:   
 

           

(11)
 

 
in which the parameter ε has been reabsorbed,  is a complex linear operator with 
constant coefficients (depending on µ̂), A−n := nA (n = 0, 1,…, N) and 

 by formally distinguishing ± 0. The exponents lsmn ∈ ℕ are 
obtained by solving simple algebraic problems [28] − [29].   

As an example, if the resonance condition ωi = 2ωj is considered, the Ai-equation 

contains terms such as 2
jA , 2

jA (Ai iA ), 2
jA (Aj jA ) and so on. Since ωj = ωi − ωj, the Aj -

equation contains terms as Ai jA , Ai jA  (Ai iA ), Ai jA  (Aj jA ),  and so on. All these terms 
will be referred to as proper resonant terms, since they are associated with the resonance 
conditions (3); terms independent of Equations (3), such as Am, Am  (An nA ),…, in Equation 
(11) will instead be referred to as improper resonant terms. The proper terms of lower 
order will be called primary resonant terms (e.g. 2

jA and Ai jA  in the example), while 
terms of higher orders will be named secondary resonant terms (which are drawn by the 
former by simple rules, as the example has shown).  

In Table 1 the explicit form (truncated at the ε3-order terms) of Equation (11) is 
given for a number of simple (S = 1) resonances, with the primary resonant terms typed 
in bold. The rules for assembling such equations for multiple (S > 1) resonances are 
given in [28]−[29].  

 

3. Qualitative analysis of classes of motion  
The form (11) of the amplitude equations is sufficient to perform the following 

qualitative analysis.  
When a system oscillates at a steady or unsteady state, all the resonant modes 

generally contribute to the motion, i.e. all the amplitudes An are different from zero. 
However, depending on the type of resonance (and on the initial conditions) some 
amplitudes  are  allowed  to  vanish, so  that the system oscillates in a  smaller number of  
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Table 1.  Amplitude equations for simple resonances 
 

 
 
modes. Such motions are referred to as (incomplete) classes of motion. From a 
geometrical point of view, the trajectories of complete motions belong to the whole 2N-
dimensional state-space  whereas incomplete motions only belong to 
subspaces.  

Formally, a class of motion  is defined as follows:  
 

                                                           
(12)

 
 
In other words: class  is a set of amplitudes Ai  such that, by zeroing in Equation (11) all 
the amplitudes Aj not included in the set, the associated right-hand members  
identically vanish for all values of the amplitudes of the class. Therefore, if non-trivial 
initial conditions are imposed only on the amplitudes of the class, then only these 
amplitudes participate in the motion. In other words, the amplitudes of a class span an 
invariant subspace of the state-space. In the following the locution M-class will be used 
to describe a class of M amplitudes. If the system is forced, since A0 cannot be made 
equal to zero by initial conditions, then A0 necessarily belongs to all the existing classes.  
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Classes of (periodic) motions comprising a unique amplitude (the so-called 
monomodal solutions) are also known as nonlinear normal modes and have been 
extensively studied for nonresonant systems [33]. Classes comprising one or more 
amplitudes (multimode solutions) could be considered as generalizations for resonant 
systems of such nonlinear modes.  

In order to analyze the behavior of a system, it is helpful to determine all the 
existing classes of motion. A procedure is illustrated here to address this problem 
qualitatively.  
 
3.1  An analytical method 

In order to simplify the search for the classes of motion of a resonant system, the 
role of the different terms entering Equation (11) is studied. The objective of the analysis 
is to ascertain the existence of reduced equations in which some terms are omitted, and 
which are still able to give all the qualitative information concerning the complete system.  

First of all, the role of the improper resonant terms (i.e. terms not associated with 
any resonance conditions) is examined. It is interesting to note that if S = 0, i.e. if the 
system is non-resonant, all subsets of  {An} are classes of motion. This follows from the 
fact that the m-th Equation (11) contains in this case only the improper terms, which are 
all proportional to Am; therefore, the definition (Equation (12)) holds for any choice of 

. This circumstance corroborates the hypothesis that the classes of motion are 
intrinsically connected to the resonance conditions. However, when a resonant system is 
considered (i.e. S ≠ 0), the role of the improper terms is stated by the following [29]:  
 
Theorem 1 The improper resonant terms are unessential for evaluating classes of 
motion.  

It should be noted that although improper terms are unessential to the existence of 
classes of motion, they generally affect the motion itself. Improper terms thus have a 
quantitative rather than a qualitative influence on the motion.  

By focusing on proper resonant terms, the role of primary and secondary terms is 
now examined. The following Theorem [29], holds:  

 
Theorem 2 The secondary resonant terms are unessential for evaluating classes of 
motion.  

Comments similar to those for relevant improper terms hold for secondary terms; in 
particular, it follows from Theorem 2 that [29]:  
 
Corollary 1 Asymptotic approximations of an order higher than the order at which all 
the primary terms have appearead do not modify the classes of motion of a resonant 
system unless new resonances emerge.  

Therefore, higher-order approximations only modify the quantitative characters of 
motion if no new resonances are encountered. In contrast, if higher-order resonances 
arise in the given set of frequencies, then some of the lower-order classes could 
disappear. If this happens the effects of the higher-order resonance terms manifest 
themselves after a very long time. This means that the lower-order classes of motion 
remain virtually unchanged for a long time until higher-order resonance terms become 
meaningful and destroy them [29].  
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From Theorems 1 and 2 it ensues that the classes of motion of a system   
can be determined by reduced equations  in which only primary resonant 
terms are retained (i.e. only bold terms in Table 1 should be taken into account in the 
examples shown there). Therefore, in the following, reference will be made to the 
reduced system, and the asterisk will be dropped. A practical method to evaluate all the 
classes of motion admitted by a multiresonant system is now illustrated. It is based on 
the following [29]:  

 
Theorem 3 A set of amplitudes  (necessarily including A0, if it is 
different from zero) is a class of motion for the multiresonant system (11) if and only if  
 

                                                                                                                   
(13)

 
 

Theorem 3 holds for generic systems. However, when nonlinearities are lacking, 
some classes of motion can exist in addition to those admitted by Equation (13) even if 
the condition is violated.  

Theorem 3 suggests the following algorithm to evaluate all the classes of motion of 
a (generic) multiresonant system.  

 
Algorithm 1 (RCM, Resonant Coefficients Method): (1) The table [ksn] (n = 0, 1, …, N) 
of the resonance coefficients is built up; (2) a set of M columns (always including 
column ks0) is canceled: if the remaining part of the table deos not contain the string 
(0,…, 0,  ±1, 0, …, 0) on any row, then the amplitudes associated with those columns are 
an M-class of motion for the system; (3) all the combinations of M columns are tried and 
step (2) is repeated.   
 
An Example of the RCM is given in Section 3.3.  

The RCM shows that any resonance condition works as a constraint on classes by 
inhibiting some of them and allowing others. Only classes that are not constrained by 
any resonance condition are admitted by the multiresonant system. Therefore, the higher 
the number of resonance conditions, the lower the number of classes of motion admitted. 
A degree of constraint can be attributed to each resonance, equal to the number of 
classes it inhibits. The index allows the resonances to be ordered hierarchically: 
resonances with a lower degree of constraint are usually unessential to the evaluation of 
the classes, but general rules are not yet available [29]. 
 
3.2 A geometrical method 

Here, a geometrical approach is instead followed, based on a set representation of 
the classes. Some definitions are preliminarily given.  

The set  of all the amplitudes involved in the S resonances (3) is 
called the state-space of the dynamical system  (Equation (11)). The set 

  of  the  amplitudes  An  associated  with  the  frequencies  ωn  involved  in  the 
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s-th resonance  is  called  the  elementary  s-th  space, or  the  s-th  resonance  space;  by 
rememebering Equations (3) it is  A set  
is an M-class of motion for the system if it is an invariant subspace of  (see Equation 
12). If the forcing amplitude A0 ∈  then necessarily  since it cannot vanish. As 
particular cases, the null set {0} and the state space S are classes of motion, containing 
no components or all the components, respectively. The classes of motion admitted by 
the s-th resonance (i.e. the invariant subspaces of   are called the elementary classes 
of motion  of the s-th resonance. The set of all the elementary classes of 
motion  is called the family of classes of motion of the s-th resonance 

 the family contains the null-set. The classes of motion admitted by 
two (or more) resonances, e.g. the r-th and the s-th, are the invariant subspaces of 

 they are referred to as multiple classes of motion  and their totality 
as the multiple family  

The elementary classes of motion of the most common resonances are obtained for 
inspection of the reduced equation of motion in Table 1.  They are represented in Table 2 
by closed curves (sets) surrounding the amplitudes, or by lines, to make the diagram 
more clear.  For  instance, in  the ωi = 2ωj case only one 1-class exists, while in the ωi = 
ωi ± ωj case all the three 1-classes are admitted, but no 2-classes exist. If one of the 
frequencies in the Table is the external frequency (i.e. ωj  ≡ ω0, Aj ≡ A0), the elementary 
classes not containing Aj disappear. 

  
Table 2. Elementary classes of motion 
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The general case of multiple (S > 1) resonance is now analyzed. Each of the S 
resonance conditions (3) entails the existence of some elementary classes of motion, 
according to the results previously discussed. The question is to evaluate how these 
elementary  classes  interact, in  order  to  furnish  new  multiple  classes.   To  solve  this 
problem the following strategy is adopted. First, the interaction between two families of 
classes of motion,  and  associated with s = 1 and s = 2 respectively, is studied and 
a new (multiple) family,  is determined. The latter is combined with the family 
associated with s = 3 and the multiple family is up-dated to  The process is stopped 
when the last family s = S has been considered, namely  The task thus essentially 
consists in analyzing the simplest problem  = 2. Reference will initially be made to 
internally resonant systems.  

Let us consider two families   and   each associated 
with an internal resonance condition. Let  and  be the spaces of the two resonances. 
Moreover, let us denote by  the subsets of  
so that   and    (Fig. (1a)). The conditions under which  (Fig. 
(1b )) is a multiple class of the  resonances are stated by the following [29]: 
 
Theorem 4 Given two families of unforced classes of motion,  and  of spaces   
and  respectively, a subset,  of   is a class of the multiple  family if and 
only if   is an elementary class of and  is an elementary class of   

When an external excitation acts on the system, Theorem 4 must be slightly 
modified.  Since  forced  classes  of  motion  necessarily contain the forced amplitude A0, 
classes satisfying the conditions of Theorem 4 but not containing A0 are not forced 
multiple classes. This is stated in the following:  

 
Corollary 2 If one or both the  and  families of Theorem 4 are associated with an 
external resonance condition, then the subset   is a forced multiple class if and only 
if the conditions of Theorem 4 are satisfied and the forced amplitude A0 is contained in 

.  
 

 
 
Figure 1. Interaction between two families of elementary classes of motion: (a) dominions ,  

sub-sets  and elementary classes  (b) multiple class  



Angelo Luongo et al. 

 

12

The above results lead to the following practical method to find classes of motion:  
 
Algorithm 2 (CDM, Class Diagram Method): (1) the elementary class diagrams 

i of 
each resonance condition are drawn from Table 2; (2) multiple class diagrams are built 
up by composing in sequence diagrams , , … . To compose two diagrams, 

 ed , the following strategy is adopted: (a) the individual classes are considered 
and either Theorem 4 or its Corollary 2 is applied to verify whether they still survive as 
multiple classes; (b) the possible merging of some classes of  and  is checked by 
analyzing all the combinations among the classes.  
 
An Example of CDM is given in Section 3.3.  

The geometrical theory previously developed also permits us to gain insight into the 
structure of the Jacobian matrix J = [Jmn], by simply examining the diagram of the 
classes of motion. To this end, let us denote by X = {Xi}, Y = {Yj} and Z = {Zk} three 
subsets of the state-space  = {An} = {X, Y, Z}, having the following properties: X is 
the set of the (active) amplitudes participating in the steady (periodic or bi-periodic) 
motion 0 := {X0, 0, 0} whose stability is under analysis; Y is the set of (passive 
resonant) amplitudes present in all the elementary spaces s which contain at least one 
amplitude Xi; Z is the set of all the (passive non-resonant) remaining amplitudes. The 
following Theorem holds [29]:  

 
 

Theorem 5 The variational equation based on the steady solution 0 = {X0, 0, 0} is 
uncoupled in the variables δX, δY and δZ, namely:  
 

                                                           (14) 
 
with JZ diagonal.  

According to Theorem 5, there exist three different classes of perturbation, each of 
which is independent and which possibly lead 0 to become unstable, namely: X-
perturbations, or in-class perturbations; Y-perturbations, or out-of-class resonant 
perturbations; Z-perturbations, or out-of-class non-resonant perturbations. The three 
classes of perturbation describe different forms of instability. If JX has at least one 
unstable eigenvalue (or Floquet multiplier), the perturbed motion evolves (at least 
initially) in the same class {X ≠ 0, Y = Z = 0} . If JY is instead unstable, the perturbed 
motion leaves the class, since the amplitudes Y, directly involved in the resonances with 
X, are triggered. Finally, if the eigenvalues of JZ are unstable, the non-resonant 
perturbations Z grow in time.  

A deeper analysis of the structure of the variational equations reveals some 
additional interesting aspects. It has been observed in the literature [26], that the 
Jacobian matrix JY is often composed of diagonal blocks, i.e. there exists some 
uncoupling among the out-of-class resonant perturbations δY. General rules about such 
uncoupling are drawn directly by the geometrical method illustrated, according to the 
following Theorem [29]. The Theorem refers to the generic case in which all terms in the 
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equations are assumed not to be zero. If some terms vanish, further uncouplings can be 
present.  

 
Theorem 6 Given two subsets Y1 and Y2 of Y, such that Y = {Y1, Y2}, the perturbations 
δY1 and δY2 are uncoupled in the variational equation (142) if and only if there exists a 
multiple class  containing all the amplitudes X and the subset Y1.  

Theorem 6 has the following consequence: if the smallest class  that contains X 
and at least one amplitude Yj also contains all the amplitudes Y, then the Jacobian matrix 
JY is full. In contrast, if such a class contains only some of the Y, then the matrix JY is 
block-diagonal. An example of the application of Theorem 6 is given in Section 3.3. 
 
3.3 Examples 

As an example, a system is considered in which N = 5 frequencies are involved in 
three independent resonance conditions: 

 
                                                                   (15) 

 
From Equation (15) a further (dependent) condition is derived: 
 

                                                                                                           (16) 
 
so that four resonance conditions must be accounted for. Applying the RCM, the table of 
resonance coefficients reads:  
 

                                                                                               

(17)

 
 

By canceling the first column no strings are found containing a unique digit ± 1 and 
all zeros, and therefore {A1} is a 1-class. In contrast, if the second column is canceled, 
such a string is found on the first row, and {A2} is therefore not a 1-class. Similarly, {A1, 
A2} is a 2-class, but {A1, A3} is not since the third resonance condition inhibits it. By 
repeatedly  applying  the test, the  following classes of motion are found: {A1}, {A5}, 
{A1, A2}, {A1, A5}, {A3, A4}, {A1, A3, A4}, {A1, A2, A3, A4}, in addition, of course, to the 
complete class.  

Applying the CDM, the spaces of the resonances (15) are 1 = {A1, A2}, 2 = {A2, 
A3, A5}, and 4 = {A3, A4}, while for the resonance (16) the space is 3 = {A2, A4,A5}. 
The  families of elementary classes are obtained from Table 2 and are 
drawn in Fig. 2a in thin lines. First, the interaction between the 1 and 2 families is 
studied and the multiple 12 (Fig. 2b) family is built up as follows. The elementary 
monomodal solutions {A1}, {A3} and {A5} all survive the interaction since they are 
external to  = {A2}, in contrast, the monomodal solution {A2} disappears since it 



Angelo Luongo et al. 

 

14

is  not  a  class of . Similarly, the set {A1, A2} is a multiple class of 12 while the sets 
{A2, A3} and {A2, A3, A5}, are not. To check if other classes emerge from the interaction, 
combinations between the elementary classes must be considered. Thus, two new 
bimodal solutions {A1, A3} and {A1, A5}, a new trimodal solution {A1, A2, A3} and, 
finally, a new four-modal solution {A1, A2, A3, A5} are found to be multiple classes. They 
are drawn in Fig. 2b as thicker curves. As a second step, the interaction between the 4- 
and 12-families is studied and the new 124-family (Fig. 2c) is built up as follows. 
Among the monomodal solutions, {A1} and {A5} survive, while {A3} disappears. Among 
the bimodal solutions, {A1, A2}, {A1, A5} and {A3, A4} still exist, while {A1, A3} is 
destroyed. Similarly, {A1, A2, A3} and {A1, A2, A3, A5} disappear. New classes, however, 
are  formed  by  merging  some  elementary classes of 12  and 4 namely: {A1, A3, A4}, 
{A1, A2, A3, A4} and {A1, A2, A3, A4, A5}, drawn in heavy type in Fig. 2c, all of which 
satisfy Theorem 4. In contrast, {A3, A4, A5} and {A1, A3, A4, A5} are not multiple classes, 
since their intersection with  i.e. {A3, A5} and {A1, A3, A5}, are not 
elementary classes of 12. The last graph thus obtained (Fig. 2c) represents all the 
classes of motion existing under the resonance conditions (15). It is easy to check that 
the dependent condition (16) does not alter the scenario of Fig. 2c. Classes of motion 
found using the CDM coincide with those obtained using the RCM.  

As a second (and third) example the system considered above is taken, and an external 
resonance in added, namely:  

 

                                                                                      
 (18)

 
 

 
 
Figure 2. Class of motion diagram for a system undergoing S = 4 internal resonance conditions: 
(a) elementary families r (r = 1, 2, 3, 4) of dominions   (b) 12 multiple family, resulting 
from the interaction between 1 and 2; (c) overall multiple family 124. 
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These entail the dependent conditions ω0 = 2ω2 and ω2 = ω4 + 2ω5, ω2 = ω1 ± 2ω3 ∓ ω4, 
respectively; however, as in the previous example, it can be seen that they do not affect 
the classes of motion. A new space 0 = {A0, A1} or 0 = {A0, A1, A5} must be added to 
those in Fig. 2a. The relevant 0 elementary families are plotted in Figs. 3a1 and 3a2. To 
build up the multiple classes of motion, 0124, the interaction between the 124 (drawn 
in Fig.2c) and 0 families must be analyzed. Resonance (181) is first studied. Since the 
forced amplitude A0 cannot vanish, it must be contained in every multiple class; the same 
property therefore holds for A1, which is connected to A0 in 0. Consequently, all the 
classes of 124 not containing A1, are destroyed by the interaction with 0. The scenario 
in Fig. 2c is thus simplified in Fig. 3b1. It should be noted that although the classes {A3, 
A4} and {A5} would satisfy the conditions of Theorem 4, they are not multiple classes 
because of Corollary 2. To sum up, in the ω0 = ω1 case, six classes still exist, since the 
excitation only inhibits the bi-modal {A3, A4} and monomodal {A5} solutions of 124. 

Resonance (182) is then analyzed. The 0-family associated with Equation (182) is 
drawn in Fig. 3a2. Unlike the example in Fig. 3a1 it admits the incomplete {A0, A5} class 
of  motion.  From  Corollary 2 all the classes  of 124 not containing  A5 are disrupted, so 
that only {A0, A5} and {A0, A1, A5} (drawn in thin lines in Fig. 2b2) survive. The possible 
merging among classes is then analyzed. Class {A1, A2} cannot merge with classes of 

0,  since {A1, A2, A5} is  not  a  class  of 124.  For  similar  reasons {A1, A3, A4} cannot 
merge.  However, {A3, A4}  merges  with  both  {A0, A5} and {A0, A1, A5}. The  following  

 

 
 

Figure 3. Class of motion diagram for a system undergoing three independent internal resonances 
as in Fig. 2 plus one external resonance as in Fig. a1 or Fig. a2: (a1, a2): elementary family 0 of 
dominion  (b1, b2): overall multiple family 0124, resulting from the interaction between the 

124-family of Fig. 2c and the 0-family of Fig. a1 or Fig. a2, respectively. 
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classes therefore exist in addition to the complete classes: {A0, A5}, {A0, A1, A5}, {A0, A1, 
A3, A4, A5} (drawn in thick lines).  

To illustrate some applications of Theorems 5 and 6 let us consider the diagram in 
Fig. 2c. First, let us analyze the stability of a steady motion X = {A1, A2}. From the 
elementary resonance spaces in Fig. 2a, it follows that Y = {A3, A4, A5} (since A3 and A5 
are in resonance with A2 in Eq. (152), A4 in Eq. (16)) and Z = {0}. Theorem 5 states that 
the variational equations uncouple in the perturbations {δA1, δA2} and {δA3, δA4, δA5}. 
Moreover, Theorem 6 states that, since a class  exists (see Fig. 2c), containing {A1, A2} 
and Y1 = {A3, A4} the variational equations in {δA3, δA4, δA5} are uncoupled in two 
blocks {δA3, δA4} and {δA5}.  

As a second example, the stability of a steady solution X = {A1, A5}  is  analyzed. 
From the elementary classes of resonance (15) and (16) it follows that Y = {A2, A3, A4}, 
Z = {0}. Therefore, according to Theorem 5, {δA1, δA5}, {δA2, δA3, δA4} are uncoupled 
in the variational equation. Moreover, since the only class that contains {A1, A5} also 
contains {A2, A3, A4}, the perturbations δA2, δA3 and δA4 are coupled in the variational 
equation in accordance with Theorem 6. 

Finally, as a third example of Fig. 2c, if X = {A3, A4}, then Y = {A2, A5}, Z = {A1}; 
since there exists a class  containing {A3, A4} and Y1 = {A2} it follows that JY 
uncouples in two blocks (Theorem 6). 
 
4. The standard form of amplitude equations 
4.1 The Polar form 

The complex amplitude Equations (11) govern the evolution of a 2N-dimensional 
dynamical system. They are usually stated in real form by adopting the polar 
representation  ( ) where an are real amplitudes and θn are phases. 
However, since complex amplitudes are involved in the equations, periodic motions are 
not their fixed points. In fact, while the real amplitudes an remain constant during a 
periodic motion, the phases θn vary linearly in time, as a result of the tuning of the 
nearly-resonant linear frequencies. To make the mathematical problem easier, the 2N 
amplitude-phase equations are combined and a (generally) reduced system is obtained. 
This step requires the introduction of S phase-differences γs, which remain constant 
during a periodic motion. Therefore, the fixed points of the (an, γs)-Reduced Amplitude 
Equations actually are the periodic motions of the original system. The phases γs 
naturally appear in the procedure, as a consequence of the form (11) of the amplitude 
equations discussed in Sect. 2.2.  
They turn out to be equal to:  
 

                                                           
(19)

 
 

where ksn are the resonance coefficients appearing in Equation (3). However, due to the 
linear dependence of the resonance conditions (Equation (3)), only R of them are 
independent of the remaining ones; e.g. {γs} = {γr, γq} with r = 1, 2, …, R and q = R + 1, 
R + 2,…, S.  

The reduced amplitude equations assume the following form [28]: 
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(20)

 

        

 
in which  Equations (20) are a set of  M := N + R equations in the (am, γr) 
unknown; after solving them, the modulation of the phases θn is evaluated by means of 
an additional set of N equations, uncoupled from Equations (20).  

In conclusion, although the asymptotic motion develops in a 2N-dimensional space, 
its essential aspects (e.g., the existence of periodic motions and their stability) are 
described in a smaller M-dimensional space, equal to the codimension of the problem; 
the remaining 2N − M dimensions govern complementary aspects of the motion (e.g., the 
frequency corrections), not affecting the qualitative character of the solution. 

Nevertheless, the aγ-form (Equations (20)) entails some computational difficulty. 
The equations appear in a non-standard form, since the γ-equations admit some 
amplitudes ah as factors which cannot be eliminated if ah identically vanish in some 
classes of motion. In such cases some γ-equations are identically satisfied and the 
relevant γ’s remain undetermined. From a geometrical point of view such fixed points 
are not-isolated points, lying on a manifold in the (an, γr) space. When the stability of 
these points is analyzed, the standard method fails, since some coefficients of the time-
derivative  vanish in the variational equation, so that more complex adhoc methods 
must be employed. To overcome this drawback, it is customary in the literature to return 
to the complex amplitude equations and: (a) to express the amplitudes An in Cartesian 
form, (b) to multiply the equations by suitable time-exponential factors (so as to render 
the equations autonomous) and finally (c) to build up the 2N × 2N variational equation. 
In these new variables the non-isolated fixed points of the aγ-form equations reduce to 
isolated points, so that the standard variational equation procedure works well. The 
method therefore calls for a change of variables and for an enlargement of the 
dimensions of the problem. An alternative procedure that allows the dimension M to be 
maintained and both periodic solutions and their stability to be analyzed by the same 
equations, is illustrated in the next Section. 
 
4.2 The mixed Polar-Cartesian representation of complex amplitudes 

The following change of variable is introduced:  
 

                                                                                   (21) 
 
where αn(t) are unknown functions of time (except for the dummy α0 ≡ 0). A 
substitution of Equations (21) in the (non autonomous) Equation (11) leads to the 
(autonomous) system:  
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(22) 

 

if the functions αn(t) are chosen in such a way that:  
 

                                                                       
(23)

 
 

If R < N, Equations (23) are not sufficient to determine all the functions αn, and L = 
N−R of them (e.g. the first L) remain undetermined. In order to avoid indeterminacies, 
they are taken as equal to the phases θn of the associated amplitudes. By solving 
Equations (23) for the remaining αn’s, it follows that:  
 

                                              
(24)

 
 
where cqp and dqr are constant coefficients. According to this choice, the amplitudes Bp 
are assumed to be real while the amplitudes Bq are assumed to be complex, i.e.:  
 

                                                           
(25)

 
 
The phases θp and the associated real amplitudes ap will be referred to as principal 
phases and principal amplitudes, respectively. From Equations (21) (24), and (25) it 
follows that:  
 

                                               
(26)

 
 

In conclusion, the unknowns of the problem are still 2N, as in the original problem: the L 
principal phases θp, the L principal amplitudes ap, and the 2 (N−L) = 2R components uq 
and υq of the complex amplitudes Bq, measured in bases each rotating with a time law 
derived from Equation (242). With Equations (25), Equations (22) read:  
 

                 

(27)
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in which, due to Equations (242):  
 

                                                                                                           
(28)

 
 
Equations (27) are referred to as the mixed form of Equations (11). To obtain periodic 
motions,  must be enforced, together with  const. Hence, 
by solving 2N algebraic equations, the 2N unknowns (ap, νp, uq, υq) are evaluated. By 
substituting θp = νpt + ϕp in Equations (242), where the ϕp’s are L arbitrary initial phases, 
αq = νqt + ϕq is drawn, with the frequency corrections νq univocally determined and the 
initial phases ϕq depending on ϕp. 

Similarly to the original system (11), and an account of the presence of the principal 
phases, periodic motions are not fixed points for the mixed form of the Equation (11). To 
remove this drawback it is necessary to eliminate these phases from the equations. 
However, this operation is  not always possible, as will be explained. Let us introduce 
the following fundamental hypothesis: the L principal amplitudes ap do not vanish in any 
motion. In this case Equations (272) can be divided by ap ≠ 0 and stated in standard form 

 By using these equations in Equations (28),  
follows. Therefore Equations (271), (273) and (274) become a standard form system 

  of   M = N + R  equations  in  the  M  unknowns  a = (ap, uq, υq)T.  This  will  
be   referred   to  as  the  standard  form  of  the  Equation  (11). Once the unknowns 
have   been  determined,  from  Equations  (272)  the  evolution  of the principal phases 
θp is first derived and, from Equation (242), that of the phases  
αq  is finally obtained.  

The standard form of the Equation (11) has the following peculiarities: (a) it has the 
smallest dimension M (equal to the codimension of the problem) and, (b) it admits 
periodic motions as fixed points  In addition, it suffers no problems 
when the stability of incomplete classes of motion (i.e. uh = υh = 0 for some h’s) is 
analyzed. However, to obtain it, it is necessary to select L principal amplitudes that do 
not vanish in any class of motion. If, in contrast, some of the principal amplitudes vanish 
in particular classes, the standard form is unable to give correct information about those 
motions. In these circumstances it would be possible to build more than one standard 
form, each valid for some classes of motion. However, such a procedure could be 
inconvenient from a computational point of view.  

The geometrical method developed in the previous Section permits us to detect the 
existence of standard forms before writing them. To this end, it must be checked that L 
amplitudes participate in all steady motions. For example, for the system in Fig. 2, since 
N = 5 and R = 3 it is necessary to find L = 2 non-vanishing principal amplitudes. 
However, no such amplitudes exist, since only A1 participates in all the motions; hence, 
no unique standard form can be built up for that system. However, if A1 and A3 (or A4) 
are taken as principal amplitudes, the relevant standard form equations enable us to 
analyze the stability of five of the seven classes of motion. If the systems in Fig. 3 are 
instead considered, since N = 5 and R = 4, it is necessary to find only L = 1 non-
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vanishing principal amplitudes. One such amplitude (namely A1) does exist in the 
resonance ω0 = ω1 but does not exist in the ω0 = 2ω1 + ω5 case.  

The  standard  form, when it exists, also suffers the following drawback. Although 
ap ≠ 0 by hypothesis, it can become small in some motions. In these cases, small 
denominators entailing numerical problems appear in the standard form, since in 
Equation (272) θ ′p is affected by a small coefficient. The problem can be overcome by 
adopting a master- and slave-amplitude representation, in which the non-principal 
(slave) amplitudes admit the principal (master) amplitude as factors. In Section 4.3 some 
examples are studied to illustrate this procedure.  
 
4.3 Examples 

An example of the procedure is given here. The equations governing the free 
vibrations of a system in the 1:2 resonance condition ω2 = 2ω1 + εσ are [2]:  

 

             
(29)

 
 
Since N = 2, R = 1, it is necessary to choose L = N − R = 1 principal amplitudes. From 
Equation (29), it follows that A2 ≠ 0 in any motion, while the same property does not 
hold for A1. Therefore A2 must be taken as the principal amplitude.  

Equation (23) reads α2 −2α1 + σ  = 0. By taking α2 = θ2, α1 = (θ2 + σ)/2 follows. 
Therefore, the mixed representation to be used is: 

 

                                                                   
(30)

 
 
By substituting it in Equations (29), four real equations in the unknowns (a2, θ2, u1, υ1) 
are derived. The equation governing the θ2-evolution reads: 
 

                  
(31) 

 

which, after substitution into the other three equations, leads to the following standard 
form: 
 

                                       
(32) 

 
Although a2 ≠ 0, if it is small in some motions, small denominators appear in 

Equations (32), as a consequence of Equation (31). To eliminate these terms, the 
following alternative representation is adopted:  
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(33)

     
 

in which A1 plays the role of slave amplitude and A2 that of master amplitude, since A1 
cannot exist without A2. From Equations (29) and (33)  
 

              
(34)

 
and 
 

                               
(35) 

 

follow, as counterparts of Equations (31) and (32). Equations (35) do not suffer the 
numerical problems of Equations (32); however, it is necessary to use variables (u1, υ1) 
and a2, which are not of the same order of magnitude. The procedure illustrated here 
should be generalized for more complex problems. It has already been adopted in Ref. 
[34], where, however, its use was suggested by the nature of the problem, rather than for 
reasons of mathematical convenience.  

The previous system is considered again, with the mode-2 now excited by a 
sinusoidal force of frequency ω0  ~ ω2. The resonance conditions are ω2 = 2ω1 + εσ1 and 
ω0 = ω2 + εσ2. TheEquations (29) modify as follows [2]:  

 

           
(36)

 
 

Since R = N = 2, it is L = N −R = 0, so that no principal amplitudes need be sought, i.e. 
all the complex amplitudes must be expressed in Cartesian form. Equations (23) read: α2 
−2α1 + σ1 = 0, -α2 + σ2 = 0. By solving them α1 = (σ1 + σ2)/2, α2  = σ2 are found and, 
therefore, the change of variable to be used is:  
 

          
(37)

 
 

From Equations (36) and (37) the standard form equations follow:  
 

                                                  
(38) 
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5.  The reconstitution method 
In Sect. 2.1 the reconstitution procedure was introduced to merge the complex 

amplitude Equations (8), depending on different time-scales, into a single Equation (9), 
in which only the true time t appears. The perturbation parameter ε  was then reabsorbed, 
and the resulting equation analyzed. This is the most commonly used procedure to 
analyze the behaviour of a dynamical system when one resorts to higher-order 
approximations. However, other procedures have recently been used in the literature to 
combine Equations (8) when dealing with specific problems. It is therefore worthwhile 
discussing them critically, referring to general systems, rather than particular examples. 
 
5.1 Methods of analysis 

The starting point of the analysis is Equation (9), in which, however, the complex 
amplitudes A are expressed in real form, using either the polar or the polar-Cartesian 
representation. A  reduced set  of  M equations is thus obtained  in the M  unknowns a = 
(an, γr) or a =(ap, uq, υq), respectively, having the same form as Equation (9), namely:  
 

                                    
(39) 

 
The questions to be answered are two: (1) can the perturbation parameter ε be 
reabsorbed, thus ignoring the asymptotic origin of Equations (39)? (2) do all the terms in 
Equations (39) have to be retained in the analysis, or can some of them be omitted? 
Different answeres to these questions lead to different methods of analysis. Accordingly, 
two main classes, consistent methods and inconsistent methods, and two sub-classes, 
complete methods and incomplete methods are distinguished. In the consistent approach, 
the asymptotic nature of the reduced dynamical system is taken into account, 
consistently with the basic assumptions of the perturbation method, whereas in the 
inconsistent approach this feature is ignored. In the complete methods, all terms deriving 
from the solvability conditions are retained in the analysis, while in the incomplete 
methods some of them are neglected. By combining the alternatives, four approaches are 
identified; these are discussed below. 
 
(a) Complete Inconsistent Method (CIM) 

This method was applied in [13], [24]. According to the philosophy of the 
inconsistent approaches, the reconstituted amplitude equations are dealt with as if they 
were a closed-form representation of the reduced dynamical system, rather than an 
asymptotic approximation of the unknown system. Therefore, the steady-state solutions 
are found by requiring the right hand member of Equations (39) to vanish in a whole:  
 

                                         (40) 
 
For a fixed ε, Equations (40) are a set of m parameter-dependent nonlinear equations in 
the m unknown amplitudes. By solving them, if necessary through numerical algorithms, 



Computational problems in multiple scale analysis 

 

23 

several paths  are found. Their stability is analyzed through the variational 
equation  
 

           
(41)

 
 
in which all quantities are evaluated at a = as.  
 
(b) Incomplete Inconsistent Method (IIM)  

This differs from the CIM in that d1A and 2
1d A terms are omitted from the ε3-order 

solvability conditions (see Equations (82)). This procedure was introduced by Lee and 
Perkins [17] and justified by Lee and Lee [20] as follows: “time derivative terms are 
non-zero only on their corresponding time scale e.g., d1 terms are non-zero on the t1 
scale but vanish on the t2 scale”. The procedure has subsequently been followed by 
several authors (see [17]-[21]).  

The reconstituted amplitude equations (39) simplify as follows:  
 

             (42) 
 
Steady-state solutions are then derived from  

 

                     (43) 
 
and their stability analyzed through  
 

                    (44) 
 
In Refs. [17]−[21] a different procedure is used. Namely, parameters µµ are expanded in 
series as µ = εµ1 + ε2µ2 + …, instead of being ordered as in Equation (4). However, the 
inverse transformation εµ1 + ε2µ2 → µ is later introduced in the reconstituted equations 
so that the expansion of the parameters has no role. The procedure illustrated here 
therefore leads in a more straightforward way to the same results (see [22]).  

A slightly modified version (IIM-M) of the method can also be obtained by 
exchanging the two operations of reconstitution and transformation in real form of the 
solvability conditions (Equations (8)). If the t1-derivatives of the real quantities a are 
neglected rather then those of the complex quantities A, different equations are obtained. 
For example, if the polar representation is adopted, d1θn = 0 is assumed in the IIM, 
entailing d1γs = σs ≠ 0 because of Equation (19); this is in contrast to the assumptions 
d1γs = 0 of the IIM-M. If the problem is non-resonant the two versions coincide. 
 
(c) Complete Consistent Method (CCM) 

This was introduced in a systematic way by Rahman and Burton [14], after Luongo, 
Rega and Vestroni [36] had used it in a particular case. In this method the reconstituted 
amplitude equations are dealt with as an asymptotic approximation of the reduced 
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dynamical system, corrected up to a certain power of ε. The steady-state solutions and 
the eigenvalues of the variational equation are therefore consistently sought as series 
expansions corrected up to the same ε-order. As a first step, parameters µµ  in Equations 
(39) are expanded in series of ε (i. e. µ̂µ (ε) = µµ1 + εµ2 + …), so that the reconstituted 
amplitude equations read:  
 

 
                 (45) 

 
By requiring that amplitudes a be stationary for any ε, i. e.  the ε - and ε2 - 

terms in Equations (45) must vanish separately, i.e.,  
 

            
(46)

 
 
where Equation (461) has been accounted for in deriving Equation (462). Conditions (46) 
express the vanishing of the amplitude time-derivatives on the different slow scales, 
namely d1a = 0, d2a = 0. Equation (461) is a set of M nonlinear equations in the 
amplitudes a and in the first-order part µµµµ1 of the parameters µµ. They can be solved with 
respect to µ1 for fixed a, to furnish µ1 = µ1(a). The procedure therefore entails expanding 
exactly M control parameters, i.e. the same number as the codimension of the problem. 
By substituting the solution in Equations (462), a set of linear equations in the µµ2 
unknowns is found, from which µ2 = µ2(a) is derived. By moving to higher orders, linear 
equations in µµ3, µ4, …  are still derived. Finally 
 

      
              (47)

 
 
is obtained.  

In the method illustrated, steady-state solutions are described asymptotically in the 
form µ = µµ(a). However, steady-state solutions are frequently sought in the more 
convenient form a = a(µµ), so that Equations (47) have to be inverted (see [22]). As an 
alternative, steady-state solutions can be found directly in the form a = a(µµ) simply by 
expanding the amplitudes a, instead of the parameters µ̂µ , in the steady version of 
Equations (39).  

Concerning stability analysis, the variational equation built up on Equations (45), is 
 

                               
(48)

 
 
where Equations (46) have been used. Equation (48) is studied in detail in [29]. It should 
be noted that α3-terms play no role.  
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(d) Incomplete Consistent Method (ICM)  
This has only been applied in Ref. [37]. In the spirit of the incomplete methods, d1a 

and 2
1d a terms are omitted in the reconstituted amplitude Equations (45), which 

therefore read:  
 

                                           (49) 
 
In contrast to the IIM (see Equations (42)), steady-state solutions are required to 

satisfy Equations (49) for any ε . Therefore Equations (46) and the same solution as the 
CCM are recovered. Stability is instead analyzed on the variational equation based on 
Equations (49):  

 

           (50) 
 

which differs from Equations (48) in the absence of  α1-and α2-terms. 
 
5.2 Discussion 

A number of considerations regarding the four methods of analysis illustrated are 
now discussed. 
 
(1)  If steady-state solutions are sought through an inconsistent method, an ordering 

violation occurs. In fact, if the non-polynomial inconsistent solutions are expanded 
in series, powers of ε greater than the highest power present in the equations are 
found. These higher-order terms are incorrect, since they do not represent the series 
expansion of the (unknown) exact solution. On the contrary, consistent methods 
furnish the correct coefficients of the series expansion, up-to the equation order. 
Indeed, inconsistent terms can sometimes improve the truncated solution; however, 
when this happens it cannot be predicted in advance. 

(2)  Inconsistent methods are usually applied in the literature by first expanding the 
parameters and then recombining them in the reconstituted equation. The expansion 
therefore plays no role and can be avoided by using the procedure illustrated. 

(3)   The t1-derivatives accounted for in the CIM affect steady-state solutions. This result 
appears to be qualitatively incorrect, since the steady amplitudes, which are constant 
in time, cannot depend on their time-derivatives. Paradoxically, by using the CIM, 
static equilibrium positions of a damped mechanical system have been found to 
depend on the damping coefficient. This drawback is avoided in the IIM simply by 
neglecting d1a and 2

1d a, however, this omission is arbitrary and affects stability.  
(4)   For a particular class of systems, which is encountered fairly frequently in 

applications [18], [17], [20], the IIM and CCM furnish the same steady-state 
solutions. This occurs whenever the parameters appear linearly in the first-order part 
of the reconstituted amplitude equations and are absent in the higher-order parts.  

(5)  The slow-time amplitude derivatives omitted in incomplete methods influence the 
stability of steady-state solutions, since they describe the contribution to the 
acceleration of higher-order harmonics as well as of the passive coordinates possibly 
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triggered by the active ones. In [22] a consistent approach is used to show that the 
omission of these derivatives entails an error of ε2-order on the critical amplitude if 
it is associated with a dynamic bifurcation, while no error exists at the ε2-order if the 
bifurcation is of a static type. However the error persists in all non-critical states. 

(6)  Consistent methods sometimes fail in stability analysis. This happens whenever the 
second approximation is responsible for the occurrence of a critical condition which 
is absent in the first approximation, i.e. it entails qualitative changes. In these cases 
an inconsistent approach can instead give correct qualitative information. The 
failure of the consistent approach depends on the occurrence of an ordering 
violation caused by higher-order terms prevailing over lower-order terms. This type 
of problem could be analyzed more easily using a different approach, ordering 
competitive terms at the same level in the perturbation scheme (see e.g., [38]). 

 
5.3 Example 

A Duffing/Van der Pol oscillator in primary resonance with an external excitation is 
considered, having equation:  

 

            (51) 
 
where µ and ν are control parameters. When ν = 0, the homogeneous linear part of 
Equation (51) admits a couple of purely imaginary eigenvalues; when µ = 0, the 
oscillator is in resonance with the external excitation. The codimension of the problem is 
M = 2. By ordering the control parameters as  the excitation amplitude 
(imperfection parameter) as  and expanding the displacement as 

  the perturbation equations are:  
 

         (52) 
 
By solving Equations (52), q1 = a cos(t + θ),  
and the solvability conditions are obtained [22]. The reconstituted amplitude equations, 
in real polar form, read: 
 
 

                        

(53)
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where  is the phase difference between the excitation and the response, 
2

1d a and 2
1d γ can be expressed  in terms of a and γ  by differentiating the first-order part 

of Equations (53).  
If a complete method (CCM, CIM) is adopted, all terms in Equations (53) have to be 

retained. If an incomplete method (ICM, IIM) is instead followed, d1a = 2
1d a = 0 and 

d1θ = 2
1d θ  = 0 must be taken. Hence, d1γ = µ̂  and 2

1d γ = 0 must be posed in Equations 
(53). In contrast, if the modified approach is followed (IIM-M), then d1a = 2

1d a = d1γ  = 
2

1d γ = 0 are directly substituted in Equations (53). In all methods, consistency requires that 
Equations (53) be solved in series. By letting µ̂  = µ1 + εµ2, γ =  γ1 + εγ2 and solving the 
resulting set of perturbation equations, steady solutions in the form µ = µ(a, ν) and γ = γ (a, 
ν) are derived. In contrast, if an inconsistent procedure is followed, the parameter ε is 
reabsorbed and the nonlinear equations are solved directly.  

In order to make a quantitative comparison between different solutions furnished by 
the four previous methods, numerical values of the auxiliary parameters c1 and c2 and of 
the excitation amplitude p are chosen, namely c1 = 1 / 30, c2 = 1 / 60, p = 1/5; moreover, 
the control parameter ν is kept fixed at ν = 1/40. The steady-state amplitude a and the 
phase γ are then plotted vs µ . Figure 5 shows the first approximation, common to all 
methods. It is found that the amplitude reaches a limit point at A, saddle-node bifurcations 
occur at points B and C and a Hopf bifurcation manifests itself at H. For increasing µ ’s, 
the steady solution loses stability at B, regains it at C, and again becomes unstable at H.   

The second approximation is next considered according to the methods illustrated 
above. The results are shown in Figure 5. It is seen that the second approximation entails 
only quantitative modifications of the curves, i.e. the first approximation captures all the 
qualitative      aspects  of  the  phenomenon. It is remarkable that the IIM produces only  small  

 

 
Figure 5. Amplitude and phase response vs detuning in the second approximation; • numerical 
results. 
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modifications with respect to the first approximation. The remaining three methods, in 
contrast, give curves that are very close to each other and fairly distant from the first 
approximation curve, above all at higher amplitudes. The CCM expansion is not valid near 
the limit point A, where the coefficients matrix of the unknowns γ2 and µ2 appearing in 
Equations (46) becomes singular. However, this drawback does not entail errors at points B 
and C, where instability occurs, although B is fairly close to A. Vice versa, if a and γ, 
instead of µ and γ, were expanded in series, the method would fail precisely at points B and 
C. The problem would be avoided completely if ν were expanded in series, instead of being 
kept constant.  

The second-order perturbative solutions are compared with exact numerical 
solutions obtained by directly integrating the equation of motion (51) and performing an 
FFT of the regime response. The amplitudes of the fundamental harmonic for different  
µ ’s in the stable zones are marked in Figure 5. It is found that the CIM and IIM-M give 
an excellent approximation of the exact solutions over the whole range, while the small 
errors in the CCM are due to the presence of the amplitude limit point. The IIM, in 
contrast, is affected by errors at large amplitudes.  

An eigenvalue analysis was performed in Ref. [22]. It was found that the CCM and 
IIM solutions are different, but virtually coincident at points B and C and slightly 
different at H.  
 
6. Conclusions 

Some computational problems in multiple scale analysis have been discussed, 
namely: (a) classes of motion evaluation, (b) the proper form of the amplitude equations, 
and, (c) reconstitution techniques. The three problems have been analyzed in the light of 
the existing literature, and the following conclusions are drawn.  

 
(1)  The multiple scale method is an efficient tool to analyze the behaviour of nonlinear 

dynamical systems with weak nonlinearities. It works as a reduction method, by 
lowering the dimensions of the original system to its codimension.  

(2)  The qualitative form of the complex amplitude equations can be derived before 
writing and solving the perturbation equation, simply by looking at the resonance 
conditions. All terms are classified as improper resonant and primary or secondary 
proper resonant terms, according to their origin in the resonance conditions.  

(3)  Classes of motion are defined as invariant subspaces of the amplitude space. It is 
proved that their existence depends only on the primary resonant terms, the 
remaining terms having only a quantitative effect on the motion. Moreover, higher-
order asymptotic solutions do not modify the classes of motion of a system once the 
primary terms have appeared in the perturbation procedure, unless other resonances 
are encountered.   

(5)  A simple and efficient algorithm (the Resonance Coefficients Method, RCM) is 
implemented, that is able to find all the existing classes of motion simply by 
analyzing the resonance conditions. The method works well for general systems, for 
which all the nonlinear terms are assumed to be different from zero. Particular 
systems, for which some terms may be absent, usually possess more classes of 
motion than general systems.  
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(6)  The resonance conditions are interpreted as constraint relations for the classes of 
motion, since they prevent the occurence of some classes. If a system is nonresonant, 
all the classes are admitted; the larger the number of resonances, the smaller the 
number of classes. A constraint degree can be attributed to each resonance, equal to 
the number of classes it inhibits. The index allows the resonances to be ordered 
hierarchically: resonances with a lower degree of constraint are usually unessential to 
the evaluation of the classes, but general rules are not available.  

(7)  A geometrical approach to the problem of evaluating the classes of motion is also 
illustrated. The method is based on a set representation of the classes of motion, 
consisting in the following two steps: (a) the set of the classes of motion admitted by 
each individual resonance (family) is first built up; (b) the interactions among 
families are studied recursively in pairs, by applying simple rules generated by a 
unique theorem (the Class Diagram Method, CDM). The method furnishes class 
diagrams which efficiently synthesize the couplings existing among the amplitudes 
as well as their importance in describing the motion.  

(8)  The structure of the variational equations governing the stability of steady (periodic 
or bi-periodic) solutions is then analyzed. Three types of perturbation are identified: 
(a) in-class perturbations, i.e. perturbations of the amplitudes participating in the 
motion; (b) non-resonant and (c) resonant out-of-class perturbations, i.e. 
perturbations of the amplitudes not participating in the motion directly or not 
involved in resonance with the active amplitudes, respectively. It is proved that the 
Jacobian matrix is block diagonal and does not contain coupling terms among the 
three classes of perturbation. Finally, based on the class diagrams, it is also possible 
to gain information on possible further uncouplings of the Jacobian block associated 
with the resonant out-of-class perturbations. It is found that improper resonant terms 
that are unessential to the class evaluation do nonetheless contribute to the stability 
of steady motion.  

(9)  To perform quantitative analysis, the complex amplitude equations must first be 
transformed in real quantities and then reduced to their codimension. In this form 
they are autonomous and admit periodic solutions as fixed points. If the variable 
transformation is made by using polar components, the resulting real equations will 
be in non-standard form, so that problems arise when the stability of an (incomplete) 
class of motion is analyzed. It is shown here that a mixed polar-Cartesian 
representation permits standard form of equations to be obtained. However, the 
method works well only if a sufficient number of amplitudes (called principal) do 
not vanish in any class of motion. The class diagram technique illustrated above 
makes it possible to ascertain in advance whether or not the amplitude equations 
admit such a standard form. 

(10) The reconstitution procedure, i.e. the procedure to combine in a unique equation 
(the reduced dynamical system) the solvability conditions derived at each step of the 
perturbation procedure, is finally discussed. The approaches followed in the 
literature are classified as Complete Inconsistent Method (CIM), Incomplete 
Inconsistent Method (IIM), Complete Consistent Method (CCM) and Incomplete 
Consistent Method (ICM). In consistent methods the asymptotic nature of the 
reduced dynamical system is consistently taken into account, whereas in 
inconsistent  methods  the  reduced  dynamica l system  is  dealt  with  as  if  it  were  
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 expressed in closed form. In the complete methods, all the terms deriving from the 
analysis are retained, while in incomplete methods the amplitude derivatives d1a and 

2
1d a, appearing in the higher-order solvability conditions, are neglected.  

(11) A critical comparison among the methods is performed, showing how the omission 
of the slow derivatives in the incomplete methods entails errors both in the steady 
solution and in their stability, if these are dynamic. Complete methods, however, if 
consistent, suffer a violation of order that sometimes leads to qualitatively incorrect 
results; if they are consistent, they suffer failures around the bifurcation points of the 
lower approximations. Therefore complete methods should be used, but care should 
be taken to the drawbacks highlighted above.  

(12) Examples are worked out for each problem addressed to illustrate the procedures 
and to compare numerical results.  
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