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Topology-preserving rigid transformation

of 2D digital images
Phuc Ngo, Nicolas Passat, Yukiko Kenmochi, Hugues Talbot

Abstract—We provide conditions under which 2D digital im-
ages preserve their topological properties under rigid transfor-
mations. We consider the two most common digital topology
models, namely dual adjacency and well-composedness. This
study leads to the proposal of optimal preprocessing strategies
that ensure the topological invariance of images under arbitrary
rigid transformations. These results and methods are proved to
be valid for various kinds of images (binary, grey-level, label),
thus providing generic and efficient tools, that can be used in
particular in the context of image registration and warping.

Index Terms—Digital images, rigid transformation, digital
topology, image preprocessing, registration, warping.

I. INTRODUCTION

IN image computing, the preservation of topological prop-

erties is a crucial issue. Indeed, topological properties

provide useful information and descriptors when performing

image processing and analysis tasks such as segmentation

[1], classification [2], registration [3] or tracking [4]. This

concerns not only 3D (e.g., in medical imaging [5]) but also

2D data (e.g., in remote sensing [6] or computer vision [7]).

In particular, topology preservation – pioneered nearly fifty

years ago [8], [9] – has been investigated in the context of

image transformation, both from the viewpoints of registration

[10] and warping [11]. To this end, efforts have been mainly

devoted to handling complex transformations, while simpler

ones have remained largely under-considered.

The handling of such transformations (e.g., translations,

rotations) is often assumed to be almost trivial. Indeed, in R
n,

most are topology-preserving, while this is not necessarily the

case for complex ones (induced, e.g., by nonrigid registration

[12]). Based on this assertion, it is often assumed that simple

transformations also lead to trouble-free handling of topolog-

ical properties in Z
n. This is a wrong belief.

In the case of rigid transformations in Z
2 [13], which

include the family of rotations [14], [15], [16], [17], [18],

some topological issues have been identified [19], [20]. They

are induced by the sampling operation, which is mandatory to

guarantee the stability of the transformations inside Z
2.

In this article, that is an extended and improved version

of the conference paper [21], we deal with these topological

issues (Sec. III), and we provide some methods for topo-

logical analysis and preprocessing of images before rigid

transformations. We first give some conditions under which
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a 2D digital image preserves its topological properties under

arbitrary rigid transformations (Sec. IV). Then, we propose

methods for analysing and preprocessing digital images before

rigid transformation, in order to preserve their topological

properties (Sec. V). This study is generic on two sides: (i)
the main two digital topology models are considered, namely

the dual adjacency, and the well-composedness ones; and (ii)
the cases of binary, grey-level and label images are dealt with.

Experiments are finally proposed (Sec. VI). The article is

concluded by perspective works (Sec. VII). For the sake of

readability, technical proofs are reported in Appendix A.

II. BACKGROUND NOTIONS

A. Notations

The sets are noted A, B, C, etc., and their subsets are noted

A, B, Γ, etc. The power set of a set A is noted 2A. The elements

of sets are noted a, b, c, etc., and a, b, c, etc. if the set is

a Cartesian product. By abuse of notation, an element that

should be noted as a column vector
(

a

b

)

is noted as a line

vector (a, b).
The functions defined on continuous sets are noted A, B, C,

etc., and the ones defined on discrete sets are noted A, B, C,

etc. A function F from A to B is noted F : A → B. If A ⊆ A

and B ⊆ B, we note F (A) = {F (x) | x ∈ A} and F−1(B) =
{x | F (x) ∈ B}. If F is a bijection, its inverse function is

also noted F−1 : B → A. The restriction of F : A → B to

the subset A ⊆ A is noted F|A : A → B. The composition of

F : A → B and G : B → C is noted G ◦ F : A → C. The

spaces of functions are noted A, B, C, etc.

Adjacency (i.e., binary, irreflexive and symmetric) relations

are noted a. Equivalence (i.e., binary, reflexive, transitive and

symmetric) relations are noted ∼. We recall that a relation a

(resp. ∼) defined on a set A is actually a subset of A×A, and

that a a b (resp. a ∼ b) means that (a, b) ∈ a (resp. ∼).

Given a set A, equipped with an equivalence relation ∼, the

equivalence class of a ∈ A with respect to ∼ is noted [a]∼,

and the quotient set of A with respect to ∼ is noted A/∼.

The most important notations further introduced are recalled

in Table I.

B. Rigid transformations

1) Continuous case: In R
2, a rigid transformation is a

function ∣

∣

∣

∣

U : R
2 → R

2

x 7→ R.x+ t
(1)

where R is a rotation matrix, and t ∈ R
2 is a translation

vector. The function U is a bijection, and we note T = U−1
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TABLE I
PRINCIPAL NOTATIONS

C⋆[I] connected components of I
T⋆(I) adjacency tree of I
RIG

R2 , RIG
Z2 rigid transformations

IMB, IMG, IML finite images
WCB, WCG, WCL well-composed images
NSB, NSG, NSL well-composed, non-singular images
REGB, REGG, REGL regular images
INV⋆

B
, INV⋆

G
, INV⋆

L
topologically invariant images

its inverse function, which is also a rigid transformation. We

note RIGR2 the set of all the rigid transformations.

2) Discrete case: These definitions cannot be directly ap-

plied when considering Z
2 instead of R

2. Indeed, there is

no guarantee that U(Z2) ⊆ Z
2. The handling of discrete

rigid transformations then requires to consider a discretisation

operator D : R2 → Z
2. Generally, D is a standard rounding

function, e.g., the floor or ceiling functions. We can then define

the discrete analogues U : Z2 → Z
2 and T : Z2 → Z

2, of U
and T , as

U = D ◦ U|Z2 (2)

T = D ◦ T|Z2 = D ◦ (U−1)|Z2 (3)

We note RIGZ2 the set of all the discrete rigid transformations.

3) Transformation models: Two transformation models can

be considered for discrete (rigid) transformations.

The Lagrangian model consists of computing U(Z2). From

the viewpoint of image computing, this is not suitable, since

U is often neither injective nor surjective. In other words,

if U is applied on a digital image (Sec. II-C), it may lead

to a transformed image that will present both undefined and

conflicted values.

The Eulerian model, considered in this work, consists of

computing T (Z2). From an imaging viewpoint, this is more

satisfactory, since T is defined on the whole transformed space

Z
2, thus guaranteeing that any point of a transformed digital

image will be unambiguously defined. Nevertheless, since T
presents the same properties as U in terms of non-injectivity

and non-surjectivity, this model is not exempt from topological

difficulties.

C. Digital images

We consider finite digital images I : Z2 → V. This means

that there exists a background value b ∈ V such that I−1(V \
{b}) is of finite extent.

We consider three frequently used value sets V:

• B = {0, 1};

• G ⊆ Z or R (equipped with the canonical order 6);

• L, being any arbitrary set (not equipped with any order).

The first case (V = B) deals with binary images. The set of all

finite binary images is noted IMB. The second case (V = G)

deals with grey-level images. Without loss of generality, we

assume that b =
∧6

G. The set of all finite grey-level images

is noted IMG. The third case (V = L) deals with label images.

The set of all finite label images is noted IML.

(a) I1 ∈ IMB (b) C(8,4)[I1] (c) C(4,8)[I1] (d) I1 ∈ WCB

(e) I2 ∈ IMB (f) C(8,4)[I2] (g) C(4,8)[I2] (h) I2 /∈ WCB

Fig. 1. (a) A binary image I1 ∈ IMB. (b) If we consider I1 as a (8, 4)-
image, the 8-connected components of Ω = I−1

1 ({1}) are depicted in blue,

purple and red, while the 4-connected components of Ω = I−1
1 ({0}) are

depicted in yellow and green. (c) If we consider I1 as a (4, 8)-image, the
4-connected components of Ω are depicted in blue, purple and red, while the
8-connected components of Ω are depicted in yellow and green. Note that
since I1 has the same topological structure as a (8, 4)- and as a (4, 8)-image,
it can also be considered in the well-composedness model: the boundaries
shared by its foreground and background regions, depicted in green (d), are
1-manifolds. (e) A binary image I2 ∈ IMB. (f) If we consider I2 as a (8, 4)-
image, the 8-connected components of Ω = I−1

2 ({1}) are depicted in purple

and red, while the 4-connected components of Ω = I−1
2 ({0}) are depicted

in yellow, cyan, blue and green. (g) If we consider I2 as a (4, 8)-image, the

4-connected components of Ω = I−1
2 ({1}) are depicted in blue, purple and

red, while the 8-connected components of Ω = I−1
2 ({0}) are depicted in

yellow and green. Note that I2 does not have the same topological structure
as a (8, 4)- and as a (4, 8)-image. Thus, I2 is ill-composed: the boundaries
shared by its foreground and background regions, depicted in green, are not
1-manifolds (see the red dots in (h)). (a,d,e,h) Ω is depicted in black, and Ω
in white. (b,c,f,g) For the sake of readability, each connected component is
represented in a different colour.

Remark 1: For the sake of readability, a point p = (x, y) ∈
Z
2 will be associated to the pixel [x− 1

2 , x+
1
2 ]×[y− 1

2 , y+
1
2 ] ⊂

R
2. All the figures rely on this digital interpretation.

D. Digital topology

1) Basic notions: Digital topology [22] provides a simple

framework for handling the topology of binary images in Z
n.

It is also compliant [23] with other discrete models (e.g.,

Khalimsky grids [24] and cubical complexes [25]) but also

with continuous notions of topology [26].

Practically, digital topology relies on two adjacency rela-

tions, noted a2n and a3n−1, defined, for any p,q ∈ Z
n, by

(

p a2n q
)

⇐⇒
(

‖p− q‖1 = 1
)

(4)
(

p a3n−1 q
)

⇐⇒
(

‖p− q‖∞ = 1
)

(5)

In the case of Z
2, we retrieve the well-known 4- and 8-

adjacency relations.

Let Ω ⊆ Z
2. We say that p,q ∈ Z

2 are 4- (resp. 8-)

adjacent, if p a4 q (resp. p a8 q). From the reflexive-

transitive closure of a4 (resp. a8) on Ω, we derive the 4-

(resp. 8-) connectedness relation ∼4 (resp. ∼8) on Ω; we say

that p,q are 4- (resp. 8-) connected in Ω, if p ∼4 q (resp.

p ∼8 q). It is plain that ∼4 (resp. ∼8) is an equivalence

relation on Ω; the equivalence classes Ω/∼4 (resp. Ω/∼8) are

called the 4- (resp. 8-) connected components of Ω.



3

2) Dual adjacency and well-composedness models: A finite

set Ω ⊂ Z
2 can be modeled as a binary image I ∈ IMB,

defined by I−1({1}) = Ω and I−1({0}) = Ω = Z
2 \ Ω, or

vice versa. The topological handling of I cannot easily rely on

a single adjacency relation for both Ω and Ω, due to paradoxes

related to the discrete version of the Jordan theorem [27]. Such

paradoxes are avoided by considering distinct adjacencies for

Ω and Ω, leading to the dual adjacency model [28] (Fig. 1(e–

g)).

Definition 2 (Dual adjacency [28]): Let I ∈ IMB. Let

Ω = I−1({1}) and Ω = I−1({0}). We say that I is a (8, 4)-
(resp. a (4, 8)-) image if Ω is equipped with a8 (resp. a4),

while Ω is equipped with a4 (resp. a8). We define the set of

the connected components of the (8, 4)- (resp. (4, 8)-) image

I as

C(8,4)[I] = I−1({1})/∼8 ∪ I−1({0})/∼4 (6)

(resp. C(4,8)[I] = I−1({1})/∼4 ∪ I−1({0})/∼8 )

For the sake of concision, we will often write (k, k) as a

unified notation for (8, 4) and (4, 8).
Alternatively, both Ω and Ω may be equipped with a4,

provided one considers only images that avoid the issues

related to the Jordan theorem, i.e., those for which ∼4 and

∼8 are equivalent for both Ω and Ω, thus leading to the well-

composedness model [29] (Fig. 1(a–c)).

Definition 3 (Well-composedness [29]): Let I ∈ IMB. We

say that I is a well-composed (or a wc-) image if

∀v ∈ B, I−1({v})/∼8 = I−1({v})/∼4 (7)

We define the set of the connected components of the wc-
image I as

Cwc[I] = I−1({1})/∼4 ∪ I−1({0})/∼4 (8)

The set of the finite well-composed binary images is noted

WCB.

Remark 4: When interpreting digital topology in a con-

tinuous framework [23], an image is well-composed iff the

boundaries shared by the foreground and background regions

are manifolds [29] (Fig. 1(d,h)).

Remark 5: The well-composedness model is more restric-

tive than dual adjacency. Indeed, any I ∈ IMB can be

considered in the dual adjacency model, but not necessarily

in the well-composedness one, i.e.

WCB ⊂ IMB (9)

III. PURPOSE

Given an image I ∈ IMV, a transformation T : Z2 → Z
2,

and the transformed image IT ∈ IMV obtained from I and

T , a frequent question in image analysis is: “Does T preserve

the topology between I and IT ?”. It is generally answered by

observing the topological invariants of these images.

Among the simplest are the Euler-Poincaré characteristic

and the Betti numbers. However, these are too weak to accu-

rately model “topology preservation” between images [27].

It is necessary to consider stronger topological invariants,

e.g., the (digital) fundamental group [30], the homotopy-type

(a) (b) (c)

Fig. 2. (a) The binary image of Fig. 1(a). (b) The connected components of
the background (in yellow and green) and foreground (in red, blue and purple)
of (a). (c) The adjacency tree associated to (a) in which each coloured node
corresponds to a connected component of (a,b), while each edge corresponds
to an adjacency link between two components. The root of the tree is the
yellow node, that corresponds to the infinite background component in (a,b).

(considered via notions of simple points/sets [31], [32], [33],

[34]), or the adjacency tree [35].

Our first goal is to provide conditions under which 2D

digital images preserve their topological properties under

arbitrary rigid transformations. A crucial issue is the choice

of the topological invariant used to formalise this problem.

Any of those evoked above describe topology preservation in a

global fashion, and do not model accurately the possible local

modifications of the image topological structure. Indeed, I
and IT may have identical fundamental group, homotopy-type

and/or adjacency tree while still retaining some topological

differences between regions of I and IT that are in correspon-

dence with respect to T . (A classical example that illustrates

this assertion is the “scorpion” configuration illustrated, e.g., in

[36], where the removal of a point from a 3D object removes a

tunnel while simultaneously creating another, thus producing

a new object with the same global topological invariants.

However this procedure changes the local topological structure

in the neighbourhood of these two tunnels.)

In the sequel, we propose some conditions to achieve this

first goal. Our conjecture is that these conditions are necessary

and sufficient to locally preserve image topological properties

under arbitrary rigid transformations. However, in this article,

we only establish that they are sufficient to globally preserve

image topological properties under any rigid transformation.

Indeed, on the one hand, the proof of the whole conjecture

would require the development of a heavy theoretical frame-

work, that falls out of the scope of this journal (Sec. VII).

On the other hand, the fact that our proposed conditions

are sufficient is the result that is actually useful for image

preprocessing. This is the second goal of this article, and

probably the most interesting for many readers.

We consider the adjacency tree [35] as a (global) topological

invariant. The motivation of this choice is twofold: (i) under-

standing this topological invariant is probably easier for most

readers; and (ii) in the 2D case, its preservation is equivalent

[37] to the preservation of the homotopy-type, that is the most

commonly used topological invariant in image processing. We

now recall the definition of the adjacency tree.

Let I ∈ IMB (resp. WCB). Let Ω1,Ω2 ∈ C(k,k)[I] (resp.

Cwc[I]), with Ω1 6= Ω2. We note Ω1 a
(k,k)
I Ω2 (resp. Ω1 awc

I

Ω2) if there exist p ∈ Ω1 and q ∈ Ω2 such that p a4 q.

It is plain that a
(k,k)
I (resp. awc

I ) is an adjacency relation,

and that Ω1 a
(k,k)
I Ω2 implies that Ω1 ∈ I−1({1})/∼k and
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Ω2 ∈ I−1({0})/∼
k

or vice versa. We define the (k, k)- (resp.

wc-) adjacency graph of I as G(k,k)(I) = (C(k,k)[I],a
(k,k)
I )

(resp. Gwc(I) = (Cwc[I],awc
I )). This graph is connected and

acyclic, and is indeed a tree. It can be equipped with a root

that is the (only) infinite connected component of C(k,k)[I]
(resp. Cwc[I]), thus leading to the following definition.

Definition 6 (Adjacency tree [35]): Let I ∈ IMB (resp.

WCB). The (k, k)- (resp. wc-) adjacency tree of I is the triplet

T(k,k)(I) =
(

C(k,k)[I],a
(k,k)
I , B

(k,k)
I

)

(10)

(resp. Twc(I) =
(

Cwc[I],awc
I , Bwc

I

)

)

where B
(k,k)
I ∈ C(k,k)[I] (resp. Bwc

I ∈ Cwc[I]) is the unique

infinite connected component of I .

An adjacency tree example is given in Fig. 2.

We are now ready to present our definition of topology

preservation under rigid transformation.

Definition 7 (Topological invariance): Let I ∈ IMB (resp.

WCB). We say that I is (k, k)- (resp. wc-) topologically

invariant if I ◦ T ∈ IMB (resp. WCB) and if any T ∈ RIGZ2

induces an isomorphism between T(k,k)(I) (resp. Twc(I)) and

T(k,k)(I ◦ T ) (resp. Twc(I ◦ T )). We note INV
(k,k)
B

(resp.

INV
wc
B ) the set of all the (k, k)- (resp. wc-) topologically

invariant binary images.

IV. THEORETICAL RESULTS

In this section, we define a notion of regularity (Sec. IV-C)

that provides conditions under which binary images are topo-

logically invariant (Sec. IV-D). We then derive analogue con-

ditions for grey-level (Sec. IV-E) and label images (Sec. IV-F).

A. Preliminary remarks

We consider the Eulerian transformation model (Sec. II-B),

and we first focus on binary images. In other words, given an

image I ∈ IMB and a discrete rigid transformation T ∈ RIGZ2

(intrinsically associated to a rigid transformation T ∈ RIGR2 ),

we consider the transformed image IT ∈ IMB defined as

IT = I ◦ T = I ◦ D ◦ T|Z2 (11)

By setting Ω = I−1({1}), Ω = I−1({0}), ΩT = I−1
T ({1}),

and ΩT = I−1
T ({0}), Eq. (11) rewrites as

ΩT = Z
2 ∩ T −1(Ω⊕�) (12)

ΩT = Z
2 ∩ T −1(Ω⊕�) (13)

where ⊕ is the dilation operator defined in mathematical mor-

phology [38, Ch. 1], and � ⊂ R
2 is the unit square, namely a

pixel. These equations can lead to different results depending

on the definition of this pixel, i.e., whether � = [− 1
2 ,

1
2 ]

2 or

]− 1
2 ,

1
2 [

2. This motivates the next remark.

Remark 8: We assume that T and T are such that Z2 does

not intersect any transformed pixel border. In other words,

we consider that Eqs. (11)–(13) lead to identical results for

both (open or closed) definitions of �. From a theoretical

viewpoint, this allows us to develop a general discussion

without confusing variants related to D. From a practical

viewpoint, this assumption is compliant with computer-based

applications, that generally rely on floating point arithmetic.

(a) (b) (c) (d)

Fig. 3. Examples of images being (a) singular and ill-composed, (b) singular
and well-composed, (c) neither singular nor well-composed, and (d) not
singular but well-composed. Red dots identify ill-composedness, while red
boundaries identify singularity.

B. Image space restrictions

We first state that the binary images considered for the study

of topological invariance can be chosen in a subspace of IMB.

Remark 9: We restrict our study of (k, k)-topological in-

variance within the binary images, to the subspace WCB ⊂
IMB. This restriction is motivated1 by the fact that any

I ∈ IMB \WCB presents configurations (Th. 23, in Sec.V-A)

that may be non-compliant with the definition of (k, k)-
topological invariance.

We now introduce a notion of singularity, and we establish

that singular images cannot be topologically invariant, thus

reducing the image subspace to consider.

Definition 10 ((Non-)singular image): Let I ∈ IMB. We

say that I is a singular image if

∃p ∈ Z
2, ∀q ∈ Z

2,
(

q a4 p
)

=⇒
(

I(p) 6= I(q)
)

(14)

otherwise I is non-singular. We note NSB the set of the well-

composed images that are non-singular.

Examples of (non-)singular images are given in Fig. 3.

The non-topological invariance of singular images is derived

from the non-surjectivity of some rigid transformations of

RIGZ2 [19], [20]. Indeed some such transforms may remove

connected components composed of exactly one pixel. More

precisely, we have the following proposition.

Proposition 11:

INV
wc
B ⊆

(

INV
(k,k)
B

∩WCB

)

⊆ NSB (15)

The study of topological invariance is then carried out

within the set of well-composed non-singular images, in-

dependently from the considered (dual adjacency or well-

composedness) model.

C. Regularity

Let us now introduce a new notion that strengthens the

notion of well-composedness.

Definition 12 (Regularity): Let I ∈ NSB. Let v ∈ {0, 1}.

We say that I is v-regular if for any p,q ∈ I−1({v}), we

have
(

p a4 q
)

=⇒
(

∃⊞ ⊆ I−1({v}),p,q ∈ ⊞
)

(16)

where ⊞ = {x, x+ 1} × {y, y + 1}, for (x, y) ∈ Z
2. We say

that I is regular if it is both 0- and 1-regular. We note REG
1
B

1This restriction, presented here as an arbitrary choice when considering
a global topological invariant, could be thoroughly justified in the case of a
local invariant. However, as discussed in Sec. III, such a proof is beyond the
scope of this article.
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(a) (b)

Fig. 4. (a) A regular image. (b) An image that is neither 1- nor 0-regular,
but that is however opened by a structuring element ⊞, both for black and
white points (see Rem. 13).

(resp. REG
0
B, resp. REGB) the set of all the 1-regular (resp.

0-regular, resp. regular) binary images.

An example of a regular binary image is given in Fig. 4(a).

Remark 13: Following mathematical morphology terminol-

ogy [38, Ch. 1], if I is 1- (resp. 0-) regular, then Ω = I−1({1})
(resp. I−1({0})) is opened by any structuring element ⊞, i.e.

γ⊞(Ω) = Ω⊖⊞⊕⊞ = Ω (17)

The converse is not true, as illustrated in Fig. 4(b).

D. Topological invariance: the binary case

We now establish our main theoretical result, that states that

regularity implies topological invariance, for binary images.

Theorem 14:

REG
0
B ⊆ INV

(8,4)
B

(18)

REG
1
B ⊆ INV

(4,8)
B

(19)

REGB ⊆ INV
wc
B (20)

In the remainder of this section, this theorem (proved in

App. A) is extended to grey-level and label images.

E. Topological invariance: the grey-level case

A finite grey-level image takes its values in a finite, totally

ordered subset of Z or R. It is then isomorphic to an image

I : Z2 → G, where G = [[0,m]] ⊂ Z and b = 0. Without loss

of generality, we then focus on such images.

A grey-level image I ∈ IMG is modeled by the finite set

of its binary level set images λv(I) ∈ IMB defined, for any

v ∈ G as
∣

∣

∣

∣

∣

∣

λv(I) : Z
2 → B

p 7→

{

1 if v 6 I(p)
0 otherwise

(21)

The image I can then be reconstructed as the supremum of

these level set images, with respect to the pointwise order ≤
on functions induced by the order 6 on G, i.e.

I =

≤
∨

v∈V

v.λv(I) (22)

Based on this modelling of I ∈ IMG by {λv(I)}v∈G,

the notions previously introduced for binary images can be

extended to grey-levels2 as follows

WCG =
{

I ∈ IMG | ∀v ∈ G, λv(I) ∈ WCB

}

(23)

NSG =
{

I ∈ WCG | ∀v ∈ G, λv(I) ∈ NSB
}

(24)

2A notion of grey-level well-composedness has also been proposed in [39].

Moreover, we can define the analogues of the binary notions

of topological invariance (Def. 7) and regularity (Def. 12).

Definition 15 (Grey-level topological invariance): Let I ∈
NSG. We say that I is (k, k)- (resp. wc-) topologically

invariant if for any v ∈ G, λv(I) ∈ INV
(k,k)
B

(resp. INV
wc
B ).

We note INV
(k,k)
G

(resp. INV
wc
G ) the set of all the (k, k)- (resp.

wc-) topologically invariant grey-level images.

Definition 16 (Grey-level regularity): Let I ∈ NSG. We say

that I is 1-regular (resp. 0-regular, resp. regular) if for any

v ∈ G, λv(I) ∈ REG
1
B (resp. REG

0
B, resp. REGB). We note

REG
1
G (resp. REG

0
G, resp. REGG) the set of all the 1-regular

(resp. 0-regular, resp. regular) grey-level images.

The following theorem, that is the grey-level analogue of

Th. 14, straightforwardly derives from this last theorem, and

Defs. 15, 16.

Theorem 17:

REG
0
G ⊆ INV

(8,4)
G

(25)

REG
1
G ⊆ INV

(4,8)
G

(26)

REGG ⊆ INV
wc
G (27)

Remark 18: The topological invariance (and thus, the reg-

ularity) of I ∈ IMG also leads to the preservation of the

hierarchy of its connected components between successive

levels. More precisely, the (k, k)- (resp. wc-) topological

invariance implies that for any T ∈ RIGZ2 , the images I
and I ◦ T have isomorphic component-trees [40], [41], [38,

Ch. 7]. This assertion is easy to prove, based on the fact that (i)
T establishes a bijection between the connected components

of the initial and transformed level set images (Lem. 36, in

App. A), and (ii) T preserves, by construction (Eqs. (3),

(21), (22)), the inclusion relation between these components

at successive levels.

F. Topological invariance: the label case

A finite label image I : Z2 → L is such that L is finite and

b ∈ L. Several topological frameworks have been proposed

for label images [42], [43], [10], [44]. We follow a recent and

general proposal [45], [46], that consists of considering the

values of L as proto-labels, and any subsets of such values as

the labels of the image. This leads to the following notions.

A label image I ∈ IML is modeled by the finite set of its

binary characteristic images χΛ(I) ∈ IMB defined, for any

Λ ∈ 2L as
∣

∣

∣

∣

∣

∣

χΛ(I) : Z
2 → B

p 7→

{

1 if I(p) ∈ Λ
0 otherwise

(28)

In particular, by identifying (i) the sets {l}l∈L and {{l}}l∈L,

and (ii) the monoids ({0, 1}, .) and ({L, ∅},∪), the image

I can be reconstructed as the infimum of these characteristic

images, with respect to the pointwise order ⊑ on functions

induced by the inclusion order ⊆ on 2L, i.e.

I =

⊑
∧

Λ∈2L

Λ.χΛ(I) (29)
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Based on this modelling of I ∈ IML by {χΛ(I)}Λ∈2L ,

the notions previously introduced for binary images can be

extended3 to label ones as follows

WCL =
{

I ∈ IML | ∀Λ ∈ 2L, χΛ(I) ∈ WCB

}

(30)

NSL =
{

I ∈ WCL | ∀Λ ∈ 2L, χΛ(I) ∈ NSB
}

(31)

Moreover, we can define the analogues of the binary notions

of topological invariance (Def. 7) and regularity (Def. 12).

Definition 19 (Label topological invariance): Let

I ∈ NSL. We say that I is (k, k)- (resp. wc-) topologically

invariant if for any Λ ∈ 2L, χΛ(I) ∈ INV
(k,k)
B

(resp. INV
wc
B ).

We note INV
(k,k)
L

(resp. INV
wc
L ) the set of all the (k, k)-

(resp. wc-) topologically invariant label images.

Remark 20: In the sequel, we restrict4 our study to the case

of wc-topological invariance for label images.

Definition 21 (Label regularity): Let I ∈ NSL. We say that

I is regular if for any Λ ∈ 2L, χΛ(I) ∈ REGB. We note REGL

the set of all the regular label images.

The following theorem, that is the label analogue of Th. 14,

straightforwardly derives from this last theorem, and Defs. 19,

21.

Theorem 22:

REGL ⊆ INV
wc
L (32)

V. METHODOLOGY

We have established how to guarantee topological invari-

ance, from regularity. We now propose some algorithms to

characterise regularity (Sec. V-A). Then, we describe some

preprocessing strategies to turn a non-regular image into a

regular, and thus a topologically invariant one (Sec. V-B).

A. Pattern-based characterisation of regular images

Regularity can be determined by considering a small set of

specific patterns. This result leads to an algorithm with optimal

time and space complexity.

1) Well-composedness characterisation: Regular images

are necessarily well-composed. A prerequisite is then to char-

acterise WCB. This is tractable by considering a specific 2×2
pattern [29].

Theorem 23 ([29]): Let I ∈ IMB. We have I /∈ WCB iff

there exist distinct points p,q, r, s ∈ Z
2, with p a4 q a4

r a4 s a4 p, that verify

I(p) 6= I(q) 6= I(r) 6= I(s) (33)

Based on Th. 23 and Defs. 15, 19, we straightforwardly derive

characterisations of grey-level and label well-composedness.

Corollary 24: Let I ∈ IMG. We have I /∈ WCG iff there

exist distinct points p,q, r, s ∈ Z
2, with p a4 q a4 r a4

s a4 p, that verify

I(p) > I(q) < I(r) > I(s) < I(p) (34)

3The proposed definition of well-composedness for label images is more
restrictive than the one introduced in [42], that only requires that χ{l}(I) ∈
WCB for any proto-label l ∈ L.

4As in Rem. 9 and the associated footnote, this restriction is motivated
by the fact that the (8, 4)- and (4, 8)-topological invariance (that are equal,
from there very definitions) may be proved to be equal to the wc-topological
invariance. The proof of this assertion is beyond the scope of this article.

(a) (b) (c)

Fig. 5. Forbidden patterns in WCB (a) and in REG0
B

(a–c), up to π/2 rotations

and symmetries. The patterns forbidden in REG1
B

are obtained from (a–c) by
value inversion. Black (resp. white) points have value 1 (resp. 0).

Corollary 25: Let I ∈ IML. We have I /∈ WCL iff there

exist distinct points p,q, r, s ∈ Z
2, with p a4 q a4 r a4

s a4 p, that verify

I(p) 6= I(q) 6= I(r) 6= I(s) 6= I(p) (35)

The characterisation of binary, grey-level and label images

as well-composed can then be carried out by simply checking

that they do not contain the forbidden patterns induced by

Fig. 5(a).

2) Regularity characterisation: We now propose a pattern-

based characterisation of regular binary images.

Proposition 26: Let I ∈ WCB. We have I /∈ REG
1
B (resp.

REG
0
B) – and a fortiori REGB – iff there exists p ∈ I−1({1})

(resp. I−1({0})) that satisfies at least one of the following two

conditions (up to π/2 rotations and symmetries)

I(p− (1, 0)) 6= I(p) 6= I(p+ (1, 0)) (36)

I(p+ (0, 1)) = I(p) 6= I(p− (1, 0)) = I(p+ (1, 1)) (37)

Indeed, Eq. (36) is a rewriting of I /∈ NSB, while Eq. (37) is

a rewriting of the negation of Eq. (16).

Based on Prop. 26 and Defs. 15, 19, we straightforwardly

derive characterisations of grey-level and label regularity.

Corollary 27: Let I ∈ WCG. We have I /∈ REG
1
G (resp.

REG
0
G) – and a fortiori REGG – iff there exists p ∈ Z

2 that

satisfies at least one of the following two conditions (up to

π/2 rotations and symmetries)

I(p− (1, 0)) < I(p) > I(p+ (1, 0)) (38)

(resp. I(p− (1, 0)) > I(p) < I(p+ (1, 0)))

I(p+ (0, 1)) > I(p) > I(p− (1, 0)) > I(p+ (1, 1))
(39)

(resp. I(p+ (0, 1)) 6 I(p) < I(p− (1, 0)) 6 I(p+ (1, 1)))

Corollary 28: Let I ∈ WCL. We have I /∈ REGL iff there

exists p ∈ Z that satisfies at least one of the following two

conditions (up to π/2 rotations and symmetries)

I(p− (1, 0)) 6= I(p) 6= I(p+ (1, 0)) (40)

I(p) 6= I(p− (1, 0)) 6= I(p+ (0, 1)) 6= I(p+ (1, 1)) 6= I(p)
(41)

The characterisation of regular binary, grey-level and label

images can then be carried out by simply checking that they

do not contain the forbidden patterns induced by Fig. 5.

3) Complexity: The following result straightforwardly de-

rives from Th. 23, Prop. 26, and their respective corollaries.

Proposition 29: Let I ∈ WCV (with V = B, G or L).

Let S ⊂ Z
2 such that I−1(V \ {b}) ⊆ S. Characterising the

regularity of I has a time complexity O(|S|), and a space

complexity O(1).
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B. Image regularisation

We now propose two strategies for preprocessing images in

order to obtain regular – and thus topologically invariant –

versions, before further rigid transformation. Such strategies

(i) must preserve the topological properties of the images,

and (ii) should preserve as much as possible their geometric

properties.

1) Iterative homotopic regularisation: A first strategy con-

sists of locally modifying the image to eliminate the forbidden

configurations defined in Eqs. (33)–(41) and Fig. 5.

Let I ∈ IMV (or WCV, if we aim to obtain regularity, and

not only 1- or 0-regularity). The problem can be expressed as

a constrained optimisation one, described by

R(I) = arg min
REG⋆

V
(I)

DI (42)

where R(I) is the regularised version of I; REG
⋆
V(I) is the

subset of REG
⋆
V ∈ {REGk

V,REG
k
V,REGV} composed by the

images that have the same topology as I; and DI : IMV → R+

is a cost function that describes a distance with respect to I ,

from a geometric viewpoint. (The definition of DI actually

depends on the targeted application, and can rely, e.g., on

Hausdorff distance, or any standard (dis)similarity measure.)

In real applications, I is defined on a finite set S ⊂ Z
2, and

so is the space of (potential) solutions of Eq. (42). However,

the size O(|V||S|) of this space is huge. Then, one has to

settle for an approximate solution of Eq. (42). In this context, a

tractable strategy is to consider the homotopy-guided approach

initially developed for monotonic transformations [47], and

then adapted to non-monotonic ones [48], [49], [11], [44].

This strategy starts from the image I , and iteratively

eliminates forbidden configurations by modifying the value

of one point p ∈ S at each iteration, until stability. This

value modification can be interpreted either as a background-

to-foreground or a foreground-to-background sweep, when

interpreting G or L in terms of binary slice decomposition.

The choice of p is guided (i) by DI , e.g., by following a

gradient descent approach, and (ii) by choosing p as a simple

point. This is feasible for V = B, G or L since notions of

simple points have been proposed in binary [50], grey-level

[51], [52] and label cases [45].

The obtained algorithm can be seen as an extension of those

presented in [37], [53] for well-composedness recovery, to

the case of regularity recovery. In particular, it presents the

same strengths and weaknesses. Indeed, in most application

cases, it will converge in linear time with respect to the

number of forbidden configurations, that are often sparsely

distributed within images. Nevertheless, in the worst cases

(e.g., in presence of fine textures, Fig. 8), it may not converge,

or even fail. To deal with this issue, we propose an alternative

up-sampling regularisation strategy.

2) Up-sampling regularisation: Let I ∈ IMV (with V = B

or G) be a (k, k)-image. Even before the issue of regu-

larisation, it may happen that I cannot be modified into a

topologically-equivalent well-composed image, when using

a strategy such as presented above. It is then possible to

oversample I by explicitly representing its interpixel topo-

logical structure. This can be done by embedding I into the

Khalimsky space [24], then leading to a new image I
(k,k)
K

defined as
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I
(4,8)
K : Z

2 → V

2.p 7→ I(p)

2.p+ (0, 1) 7→
∨6

I(p+ {0} × {0, 1})

2.p+ (1, 0) 7→
∨6

I(p+ {0, 1} × {0})

2.p+ (1, 1) 7→
∨6

I(p+ {0, 1} × {0, 1})
(43)

(The image I
(8,4)
K is defined by substituting

∧

to
∨

in

Eq. (43).) The following result straightforwardly derives from

these definitions.

Proposition 30: Let I ∈ IMV (with V = B or G). We

have I
(k,k)
K ∈ WCV. Moreover, I

(k,k)
K and I have the same

homotopy-type, when considered as (k, k)-images.

From now on, we then assume that I ∈ WCV (with V = B,

G or L). As stated before, even in this case, image I may still

not be modified into a regular image when using homotopic

iterative regularisation. Once again, an oversampling strategy

can be alternatively proposed. This strategy no longer relies

on Khalimsky space embedding, but on a 2 × 2 up-sampling

approach. More precisely, from I ∈ WCV, we can define a

new image
∣

∣

∣

∣

I2×2 : Z
2 → V

p = (x, y) 7→ I((⌊x/2⌋, ⌊y/2⌋))
(44)

The following result straightforwardly derives from this defi-

nition.

Proposition 31: Let I ∈ WCV (with V = B, G or L). We

have I2×2 ∈ REGV. Moreover, I2×2 and I have the same

homotopy-type when considered as (k, k)- (resp. wc-) images.

Finally, Eqs. (43)–(44) provide a global up-sampling strat-

egy that enables to re-cast any (8, 4)-, (4, 8)-, or wc-image

as regular, and thus topologically invariant. This strategy

has the advantages of being deterministic and geometrically

preserving (up to the thickening of the interpixel space). Its

main drawback, in comparison to the first strategy, is its higher

spatial cost, as it models an image of size |S| as a new one of

size 4.|S| (and 16.|S| in the worst cases). This may remain

however acceptable for many applications, considering the

memory specifications and progress of current computers.

VI. EXPERIMENTS AND RESULTS

In this section, we first describe experiments carried out

on synthetic images (Sec. VI-A), that allow us to evaluate the

behaviour of the different analysis and preprocessing strategies

proposed in Sec. V. We then provide some results on real grey-

level and label images (Sec. VI-B).

A. Synthetic images

1) Regularity characterisation: The regularity characteri-

sation described in Sec. V-A, consists of looking for specific

patterns that are likely to forbid the topology preservation of

images during a rigid transformation. Let us consider the four

binary images depicted in Fig. 6(a), that are well-composed,

but neither 1- nor 0-regular. The identified forbidden patterns

corresponding to this default of regularity are illustrated in
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(a) (b) (c) (d) (e)

Fig. 6. (a) Four well-composed, but neither 1- nor 0-regular images. Pixels
of value 1 and 0 are depicted in black and white, respectively. (b) Patterns that
forbid regularity. In red: patterns of Fig. 5(b); in green: patterns of Fig. 5(c).
(c–e) Three examples of rigid transformations where the four images are
topologically altered in comparison to (a). In particular, the black part of
the images, that are 4-connected in (a), are split into several 4-connected
components. Moreover, the 8-connected components forming the holes inside
the “a” and “e” letters in (a) are merged to the background.

(a) (b) (c) (d) (e)

Fig. 7. (a) Regular images obtained from Fig. 6(a) after iterative homotopic
regularisation. (b) Difference between (a) and Fig. 6(a). In blue: pixels
switched from white to black; in green: pixels switched from black to white.
(c–e) Three examples of rigid transformations where the four images are
topologically preserved in comparison to (a). The transformation parameters
are the same as in Fig. 6(c–e).

Fig. 6(b). Their presence indicates that the topological struc-

ture of these images is likely to be altered when applying a

rigid transformation, as exemplified in Fig. 6(c–e).

2) Iterative homotopic regularisation: Let us consider the

first regularisation strategy proposed in Sec. V-B, namely the

iterative homotopic one. Starting from the four images of

Fig. 6(a), this strategy swaps the value of simple points until

a regular image with the same homotopy-type, and sufficient

geometric similarity is obtained. In the results illustrated in

Fig. 7(a,b), the number of modified pixels is 14, 10, 15 and

14, for each image, respectively, and the Hausdorff distance

between the initial and regularised images is 1 in each case. It

can be observed in Fig. 7(c–e), that for rigid transformations

with the same parameters as those of Fig. 6(c–e), the obtained

(a) (b) (c)

(d) (e) (f)

Fig. 8. (a) A well-composed binary image that is not 0-regular. Pixels of value
1 and 0 are depicted in black and white, respectively. (b) A well-composed
grey-level image that is neither 1- nor 0-regular. (c) A well-composed label
image that is not regular. These three images cannot be regularised without
up-sampling, due to fine texture effects. (d–f) Images obtained from (a–c)
after rigid transformations. They are topologically altered, in comparison to
(a–c).

(a) (b) (c)

(d) (e) (f)

Fig. 9. (a–c) Regular images obtained from Fig. 8(a–c) after the up-sampling
regularisation. (d–f) Images obtained from (a–c) after rigid transformations.
They are topologically preserved, by comparison to (a–c). The transformation
parameters are the same as in Fig. 8(d–f).

results now have the same topological structure as in Fig. 6(a).

3) Up-sampling regularisation: Let us now consider the

three images depicted in Fig. 8(a–c), that are well-composed,

but not regular, with topological consequences when applying

rigid transformations, as illustrated in Fig. 8(d–f). For such im-

ages, the iterative homotopic regularisation may not converge,

or even fail, due to fine texture effects. It is then relevant

to consider the second, up-sampling regularisation strategy

proposed in Sec. V-B.

Since the three considered images are already well-

composed, it is not necessary to carry out the first step

of the regularisation, namely the Khalimsky grid embedding

(Eq. (43)). After the application of the second step, namely
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the 2 × 2 up-sampling approach (Eq. (44)), we obtain new

images, depicted in Fig. 9 (a–c), that are regular, and therefore

topologically invariant, as illustrated in Fig. 9(d–f).

B. Real images

We now provide some regularisation results on real images.

1) Grey-level images: The first example consists of regu-

larising the biomedical (retina) grey-level image illustrated in

Fig. 10(a). This image is neither regular nor well-composed.

As a consequence, a rigid transformation leads to an image that

presents topological alterations, as exemplified in Fig. 10(c).

The regularisation of Fig. 10(a) aims at removing not only

the configurations depicted in Fig. 5(b,c) that forbid regularity,

but also those corresponding to Fig. 5(a) that more generally

forbid well-composedness.

When applied on Fig. 10(a), it eliminates any configu-

rations of Fig. 5(a–c), as illustrated in Fig. 10(b). Clearly,

the regularised image is slightly modified. Indeed, due to

the Khalimsky embedding, which endowes a thickness to the

interpixel area, the 1-regularisation leads to an image that is

dilated in a way that can be compared to the flat operations

defined in mathematical morphology [38, Ch. 1]. A dual

behaviour would be achieved for 0-regularisation. In particular,

Fig. 10(b) is a little bit brighter than Fig. 10(a). Moreover, this

image presents dimensions that are 4 times higher than those

of Fig. 10(a). When applying a rigid transformation on this

image, we obtain results, illustrated in Fig. 10(d), that are not

topologically altered, contrarily to the transformed image of

Fig. 10(c). This topological behaviour has direct consequences

on the overall visual quality of the image such as its ability

to be efficiently analysed. This is more easily quantifiable

when considering binary images obtained by thresholding, as

illustrated in Fig. 10(e–h).

2) Label images: The second example consists of regu-

larising the label image illustrated in Fig. 11(a). This image

was obtained by segmentation and clustering of multispectral

remote sensing data. It is well-composed but not regular.

Consequently, a rigid transformation leads to an image that

presents topological alterations, as exemplified in Fig. 11(c).

When applying up-sampling regularisation on Fig. 11(a), it

eliminates any configurations of Fig. 5(b–c), as illustrated in

Fig. 11(b). As Fig. 11(a) is already well-composed, the first

step of the regularisation, i.e., the Khalimsky grid embedding,

does not need to be carried out. Then, Fig. 11(b) presents

dimensions that are only 2 times higher than Fig. 11(a), in

contrast to the grey-level case study of Fig. 10.

When applying a rigid transformation on this regularised

image, we obtain a result, illustrated in Fig. 11(d), that is

not topologically altered, contrarily to the transformed image

of Fig. 11(c). Such a topological behaviour is in particular

desirable, e.g., to analyse such images at an object-level,

based on spatial reasoning [56], or to perform compositing

procedures [57].

VII. CONCLUSION

We have investigated topology preservation of 2D digital

images under rigid transformation. Based on theoretical results

(a) Initial image. (b) Up-sampling 1-regularisation.

(c) Rigid transformation of (a). (d) Rigid transformation of (b).

(e) Thresholding of (a). (f) Thresholding of (b).

(g) Thresholding of (c). (h) Thresholding of (d).

Fig. 10. (a) Grey-level image of dimensions 554 × 554 with 145 grey-
levels, and a sample of dimensions 40× 40 (courtesy of the DRIVE dataset
[54]). It is ill-composed, and a fortiori not 1-regular. (b) 1-regular image of
dimensions 2216 × 2216, obtained from (a) by up-sampling regularisation.
(c) Image obtained from (a) by a rigid transformation. It is topologically
altered, by comparison to (a). (d) Image obtained from (b) by the same
rigid transformation. It is topologically preserved, by comparison to (b). (e–h)
Thresholded images obtained from (a–d), respectively.

established in the digital topology framework, we have derived

efficient algorithms for analysing and preprocessing such im-

ages. The genericity of these results and methods, in terms of

topological models (dual adjacency and well-composedness)
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(a) Initial image (600× 300) and sample (40× 40). (b) Up-sampling regularisation.

(c) Rigid transformation of (a). (d) Rigid transformation of (b).

Fig. 11. (a) Label image of dimensions 600×300, and a sample of dimensions 40×40, segmented and clustered from a multispectral remote sensing image
(courtesy Camille Kurtz [55]). This image is well-composed but not regular. (b) Regular image, of dimensions 1200× 600, obtained from (a) by up-sampling
regularisation. (c) Image obtained from (a) by a rigid transformation. It is topologically altered, by comparison to (a). (d) Image obtained from (b) by the
same rigid transformation. It is topologically preserved, by comparison to (b).

and values (binary, grey-level and label images), authorise their

actual use in real applications.

As a priority, we will seek to prove that the notion of

regularity provides not only sufficient, but also necessary con-

ditions for topological invariance (in other words, that the ⊆
symbols in Ths. 14, 17 and 22, are indeed = symbols). To this

end, it will be necessary to define a relevant local topological

invariant, relying, e.g., on the topological structure that can be

defined on tilings of Z2 induced by rigid transformations.

We will also investigate the links between our results, estab-

lished in a discrete framework, and some results obtained in

the research field of digitisation, that intrinsically merges both

discrete and continuous frameworks. Indeed, as suggested by

Eqs. (12)–(13) the rigid transformation of a digital image can

be interpreted as the re-digitisation of its associated continuous

pixel-based representation. Following this assertion, our notion

of regularity may be seen as a discrete analogue of the notion

of r-regularity developed fifteen years ago [58], [59], for

topology-preserving digitisation purpose. These links are fairly

intuitive but less trivial to formally establish.

From a methodological viewpoint, the next step will be

to tackle Z
3. This raises supplementary difficulties, related

to the more complex definitions of topological models [60]

and topological invariants [36]. To cope with this challenge,

various avenues may be considered. A first possibility relies on

the possible analogy between regularity and r-regularity (see

above). A second way relies on a morphological interpretation

of regularity. Indeed, as stated in Rem. 13, regular images are

open for square structuring elements, but the converse is not

true. A specific class of open images, for which the opening

relies on homotopic erosions and dilations, may be considered

and compared to the family of regular images, in a morpho-

topological framework [61], [62], [63].
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APPENDIX

A. Proof of Theorem 14

The following three properties, used in the proof of Th. 14,

deal with geometric configurations already discussed in the

literature (see, e.g., [19]). Their easy proofs are left to the

reader. (We recall that we are under the hypotheses of Rem. 8.)

Property 32: Let p,q ∈ Z
2 such that p a4 q. Let T ∈

RIGZ2 . If p /∈ T (Z2), then we have q ∈ T (Z2).
Property 33: Let p ∈ Z

2 and T ∈ RIGZ2 with p /∈ T (Z2).
Let q, r ∈ Z

2 such that p a4 q a8 r a4 p. There exists

q′, r′ ∈ Z
2 such that T (q′) = q, T (r′) = r, and q′ a4 r′.

Property 34: Let ⊞ = {x, x+1}×{y, y+1}, for (x, y) ∈
Z
2. We have T−1(⊞)/∼4 = {T−1(⊞)}.

The following lemma authorises the construction of the

function (Eq. (45)) that will induce the isomorphism of Th. 14.

Lemma 35: Let I ∈ REG
1
B (resp. REG

0
B, resp. REGB). Let

T ∈ RIGZ2 . The transformation T|(I◦T )−1({1}) establishes
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a homomorphism from ((I ◦ T )−1({1}),a4) (resp. ((I ◦
T )−1({1}),a8), resp. ((I◦T )−1({1}),a4)) to (I−1({1}),∼4

) (resp. (I−1({1}),∼8), resp. (I−1({1}),∼4)), while the

transformation T|(I◦T )−1({0}) establishes a homomorphism

from ((I ◦ T )−1({0}),a8) (resp. ((I ◦ T )−1({0}),a4), resp.

((I ◦T )−1({0}),a4)) to (I−1({0}),∼8) (resp. (I−1({0}),∼4

), resp. (I−1({0}),∼4)).
Proof Let I ∈ REGB. Let p′,q′ ∈ (I ◦ T )−1({1}) s.t.

p′ a4 q′. Let p = T (p′), q = T (q′). We have (Eq. (11)):

(i) p = q, and then p ∼4 q; or (ii) p a8 q, and then p ∼4

q (Def. 3). The same holds for REGB and (I ◦ T )−1({0});
REG

1
B and (I ◦ T )−1({1}); REG0

B and (I ◦ T )−1({0}). Now,

let I ∈ REG
1
B. Let p′,q′ ∈ (I ◦ T )−1({0}) s.t. p′ a8 q′.

Let p = T (p′), q = T (q′). We have (Eq. (11)): (i) p = q,

and then p ∼8 q; (ii) p a8 q, and then p ∼8 q; or (iii)
p = q+ (2, 0) or (2, 1) up to π/2 rotations and symmetries,

and then p ∼8 q (Prop. 26). The same holds for REG
0
B and

(I ◦ T )−1({1}). �
Let I ∈ WCB and T ∈ RIGZ2 . From the above lemma, we

can licitly define the function T ⋆
I (with ⋆ = (k, k) or wc) as

∣

∣

∣

∣

T ⋆
I : C⋆[I ◦ T ] → C⋆[I]

C 7→ T ⋆
I (C) ⊇ T (C)

(45)

We are now ready to establish the first part of the isomor-

phism of Th. 14, namely the one-to-one mapping between the

connected components of the initial and transformed images.

Lemma 36: Let I ∈ REG
1
B (resp. REG

0
B, resp. REGB). Let

T ∈ RIGZ2 . Then T
(4,8)
I (resp. T

(8,4)
I , resp. Twc

I ) is a bijection.

Proof Let C ∈ C⋆[I]. Let p,q ∈ C s.t. p a4 q (I ∈ NSB).

There exists p′ ∈ Z
2 s.t. T (p′) ∈ {p,q} ⊆ C (Prop. 32).

Thus, T ⋆
I is a surjection.

Let I ∈ REGB. Let C ∈ C⋆[I] s.t. C ⊆ I−1({1}). For any

q, r ∈ C, we have (q a4 r) ⇒ ({q, r} ⊆ ⊞ ⊆ C) (Def. 12). It

follows by induction on C (Props. 33, 34) that T−1(C)/∼4 =
{T−1(C)}. The same holds for REGB and I−1({0}); REG1

B

and I−1({1}); REG0
B and I−1({0}). Now, let I ∈ REG

0
B. Let

C ∈ C⋆[I] s.t. C ⊆ I−1({1}). For any q, r, s ∈ C, we have

(q a4 r a4 s) ⇒ (T−1({q, r, s})/∼8 = {T−1({q, r, s})})
(Eq. (11), Props. 32, 33). It follows by induction on C that

T−1(C)/∼8 = {T−1(C)}. The same holds for REG
0
B and

(I ◦ T )−1({1}). Thus, T ⋆
I is an injection. �

The following proposition is a consequence of this result.

Lemma 37: Let I ∈ REG
1
B (resp. REG

0
B, resp. REGB). Let

T ∈ RIGZ2 . We have I ◦ T ∈ IMB (resp. IMB, resp. WCB)

and T ⋆
I (B

⋆
I◦T ) = B⋆

I (see Def. 6).

Proof The bijectivity of T ⋆
I and the fact that for any p ∈

Z
2, T−1({p}) is finite, imply that I ◦ T ∈ IMB. We have

T ⋆
I (B

⋆
I◦T ) = B⋆

I for the very same reasons.

Let I ∈ REGB. Let us suppose that I◦T /∈ WCB. Then there

exist distinct points n, e, s,w ∈ Z
2 s.t. n a4 e a4 s a4 w a4

n, that verify Eq. (33). From Eq. (11), we then derive that

there exist distinct points n′, e′, s′,w′ ∈ Z
2 s.t. T (n) = n′,

T (e) = e′, T (s) = s′, T (w) = w′; moreover n′ a8 e′ a8

s′ a8 w′ a8 n′. This authorises only three configurations,

up to π/2 rotations and symmetries: (i) e′ = n′ + (1, 0),
s′ = n′ + (2,−1), w′ = n′ + (1,−1); (ii) e′ = n′ + (1, 0),
s′ = n′+(1,−1), w′ = n′+(0,−1); (iii) e′ = n′+(1,−1),
s′ = n′ − (0, 2), w′ = n′ − (1, 1). But (i) corresponds to

Eq. (37); (ii) to Eq. (33); and (iii) to Eq. (36); and I /∈ REGB:

contradiction. Then we have I ◦ T ∈ WCB. �

We are now ready to establish the last part of the isomor-

phism, namely the preservation of the adjacency relation.

Lemma 38: Let I ∈ REG
1
B (resp. REG

0
B, resp. REGB). Let

T ∈ RIGZ2 . Let C1, C2 ∈ C⋆[I ◦ T ] with ⋆ = (4, 8) (resp.

(8, 4), resp. wc). We have
(

C1 a
⋆
I◦T C2

)

⇐⇒
(

T ⋆
I (C1) a

⋆
I T ⋆

I (C2)
)

(46)

Proof Up to reindexing, we set C1 ⊆ (I ◦ T )−1({0}) and

C2 ⊆ (I ◦ T )−1({1}).
Let us suppose that C1 a⋆

I◦T C2. Let p′ ∈ C1 and q′ ∈ C2

s.t. p′ a4 q′. Let p = T (p′) ∈ T ⋆
I (C1), q = T (q′) ∈ T ⋆

I (C2).
We have (Eq. (11)): (i) p a4 q and then T ⋆

I (C1) a
⋆
I T ⋆

I (C2);
or (ii) p a8 q and p 6a4 q. In that case, let r ∈ Z

2 s.t.

p a4 r a4 q. We have either r ∈ T ⋆
I (C1) or T ⋆

I (C2), and

then T ⋆
I (C1) a

⋆
I T ⋆

I (C2).
Let us suppose that T ⋆

I (C1) a
⋆
I T ⋆

I (C2). Let p ∈ T ⋆
I (C1),

q ∈ T ⋆
I (C2) s.t. p a4 q. Case 1: p,q ∈ T (Z2). Let p′ ∈

C1 s.t. T (p′) = p, and q′ ∈ C2 s.t. T (q′) = q. We have

(Eq. (11)): (i) p′ a4 q′ and then C1 a⋆
I C2; (ii) p′ a8 q′

and p′ 6a4 q′: by setting r′ ∈ Z
2 s.t. p′ a4 r′ a4 q′, we

have either r′ ∈ C1 or C2, and then C1 a⋆
I C2; (iii) q′ =

p′ + (2, 0), up to π/2 rotations: by setting r′ = (p′ + q′)/2,

we have either r′ ∈ C1 or C2, and then C1 a⋆
I C2. Case 2:

p /∈ T (Z2), q ∈ T (Z2). Let r ∈ T ⋆
I (C1) and s ∈ T ⋆

I (C2)
s.t. p a4 r a8 s a4 p (I ∈ NSB). We have r ∈ T (Z2)
and s ∈ T (Z2) (Prop. 32). Let r′ ∈ C1 s.t. T (r′) = r, and

s′ ∈ C2 s.t. T (s′) = s. We have r′ a4 s′ (Prop. 34), and then

C1 a⋆
I C2. No other cases are possible (Prop. 32). �

Theorem 14 derives from the above three lemmas.
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[15] E. Andres, “The quasi-shear rotation,” in DGCI, ser. LNCS, vol. 1176.
Springer, 1996, pp. 307–314.

[16] M. S. Richman, “Understanding discrete rotations,” in ICASSP, vol. 3,
1997, pp. 2057–2060.

[17] B. Nouvel and E. Rémila, “Incremental and transitive discrete rotations,”
in IWCIA, ser. LNCS, vol. 4040. Springer, 2006, pp. 199–213.

[18] Y. Thibault, Y. Kenmochi, and A. Sugimoto, “Computing upper and
lower bounds of rotation angles from digital images,” Pattern Recogn,
vol. 42, no. 8, pp. 1708–1717, 2009.

[19] B. Nouvel and E. Rémila, “Configurations induced by discrete rotations:
Periodicity and quasi-periodicity properties,” Discrete Appl Math, vol.
147, no. 2–3, pp. 325–343, 2005.

[20] P. Ngo, Y. Kenmochi, N. Passat, and H. Talbot, “Sufficient conditions for
topological invariance of 2D digital images under rigid transformations,”
in DGCI, ser. LNCS, vol. 7749. Springer, 2013, pp. 155–168.

[21] P. Ngo, N. Passat, Y. Kenmochi, and H. Talbot, “Well-composed images
and rigid transformations,” in ICIP, 2013, pp. 3035–3039.

[22] T. Y. Kong and A. Rosenfeld, “Digital topology: Introduction and
survey,” Comput Vision Graph, vol. 48, no. 3, pp. 357–393, 1989.

[23] L. Mazo, N. Passat, M. Couprie, and C. Ronse, “Digital imaging: A
unified topological framework,” J Math Imaging Vis, vol. 44, no. 1, pp.
19–37, 2012.

[24] E. Khalimsky, “Topological structures in computer science,” J Appl Math

Sim, vol. 1, no. 1, pp. 25–40, 1987.
[25] V. A. Kovalevsky, “Finite topology as applied to image analysis,”

Comput Vision Graph, vol. 46, no. 2, pp. 141–161, 1989.
[26] L. Mazo, N. Passat, M. Couprie, and C. Ronse, “Paths, homotopy and

reduction in digital images,” Acta Appl Math, vol. 113, no. 2, pp. 167–
193, 2011.

[27] C. R. F. Maunder, Algebraic Topology. Dover, New York, 1996.
[28] A. Rosenfeld, “Digital topology,” Am Math Mon, vol. 86, no. 8, pp.

621–630, 1979.
[29] L. J. Latecki, U. Eckhardt, and A. Rosenfeld, “Well-composed sets,”

Comput Vis Image Und, vol. 61, no. 1, pp. 70–83, 1995.
[30] T. Y. Kong, “A digital fundamental group,” Comput Graph, vol. 13,

no. 2, pp. 159–166, 1989.
[31] C. Ronse, “A topological characterization of thinning,” Theor Comput

Sci, vol. 43, no. 1, pp. 31–41, 2007.
[32] G. Bertrand and G. Malandain, “A new characterization of three-

dimensional simple points,” Pattern Recogn Lett, vol. 15, no. 2, pp.
169–175, 1994.

[33] G. Bertrand, “On P-simple points,” CR Acad Sci I-Math, vol. I, no. 321,
pp. 1077–1084, 1995.

[34] N. Passat and L. Mazo, “An introduction to simple sets,” Pattern Recogn

Lett, vol. 30, no. 15, pp. 1366–1377, 2009.
[35] A. Rosenfeld, “Adjacency in digital pictures,” Inform Control, vol. 26,

no. 1, pp. 24–33, 1974.
[36] G. Bertrand, M. Couprie, and N. Passat, “A note on 3-D simple points

and simple-equivalence,” Inform Process Lett, vol. 109, no. 13, pp. 700–
704, 2009.

[37] A. Rosenfeld, T. Y. Kong, and A. Nakamura, “Topology-preserving
deformations of two-valued digital pictures,” Graph Model Im Proc,
vol. 60, no. 1, pp. 24–34, 1998.

[38] L. Najman and H. Talbot, Eds., Mathematical Morphology: From Theory

to Applications. ISTE/J. Wiley & Sons, 2010.
[39] J. Marchadier, D. Arquès, and S. Michelin, “Thinning grayscale well-

composed images,” Pattern Recogn Lett, vol. 25, no. 5, pp. 581–590,
2004.

[40] P. Salembier, A. Oliveras, and L. Garrido, “Anti-extensive connected
operators for image and sequence processing,” IEEE T Image Process,
vol. 7, no. 4, pp. 555–570, 1998.

[41] P. Salembier and M. H. F. Wilkinson, “Connected operators: A review of
region-based morphological image processing techniques,” IEEE Signal

Proc Mag, vol. 26, no. 6, pp. 136–157, 2009.
[42] L. J. Latecki, “Multicolor well-composed pictures,” Pattern Recogn Lett,

vol. 16, no. 4, pp. 425–431, 1995.
[43] Y. Cointepas, I. Bloch, and L. Garnero, “A cellular model for multi-

objects multi-dimensional homotopic deformations,” Pattern Recogn,
vol. 34, no. 9, pp. 1785–1798, 2001.

[44] G. Damiand, A. Dupas, and J.-O. Lachaud, “Fully deformable 3D digital
partition model with topological control,” Pattern Recogn Lett, vol. 32,
no. 9, pp. 1374–1383, 2011.

[45] L. Mazo, N. Passat, M. Couprie, and C. Ronse, “Topology on digital
label images,” J Math Imaging Vis, vol. 44, no. 3, pp. 254–281, 2012.

[46] L. Mazo, “A framework for label images,” in CTIC, ser. LNCS, vol.
7309. Springer, 2012, pp. 1–12.

[47] E. R. Davies and A. P. Plummer, “Thinning algorithms: A critique and
a new methodology,” Pattern Recogn, vol. 14, no. 16, pp. 53–63, 1981.

[48] J.-F. Mangin, V. Frouin, I. Bloch, J. Régis, and J. López-Krahe, “From
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