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Abstract

This paper reviews issues and developments in the field of structure-environment interaction problems, in which the
environment is an elastic body, possibly unbounded. It covers in particular the fields of soil-structure interaction,
ground-borne noise and vibration emitted by transportation systems and wave diffraction by obstacles in an elastic
medium. The general setting for a linear bounded structure coupled to an unbounded linear environment through a
bounded interface is first recalled, and the domain decomposition technique classically used for its description is put
up. Extensions for the cases of non-linear structure and uncertain environment are then discussed. Finally, the ongoing
research in the fields of unbounded interface, moving interface, and multiple interfaces are reviewed and summarized.
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1. Introduction

This paper aims at reviewing some well established theoretical and numerical methods developed in the last few
decades to account for the dynamic interaction between structures and their environment. Although some of the
reviewed methods can be applied to a wide spectrum of interacting media (e.g. fluid-structure interaction [1], or elec-
tromechanical coupling), the structure’s environment is restricted here to a large and possibly unbounded visco-elastic
medium. Under these hypotheses a Lagrangian formulation for both parts can be assumed, together with the assump-
tion of infinitely small transformations. Still, many practical applications fall into this category: i) Soil-Structure
Interaction [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]; ii) Ground-borne noise and vibration emitted by transportation
systems [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]; and iii) Surface geophysics [33, 34, 35].

However, the focus here is on methods rather than applications. Given this context, making a clear distinction
between what is called the structure and its elastic environment is not straightforward and deserves more precise
definitions. From an engineering point of view, the structure can be defined as the mechanical object to be designed and
built (e.g. a car, a building, a piece of equipment), and the environment as the rest of the world (e.g. the road, the soil,
the host mechanical system), under the aforementioned restrictions. Though still imprecise, this definition indicates
that the structure is an object of limited extent D on which: i) a fair amount of detailed information is available; ii)
hight levels of precision and robustness are required; and iii) modifications and improvements may be proposed. On
the contrary, the environment is characterized by: iv) its large dimension L compared to that of the structure; v) a
moderate to high level of uncertainty on the model and the data; and vi) little possibility of modification. Basically,
the structure is the object of engineering design and concern, while the environment is imposed and considered only
through its impact on the structure.

Considering the above problem setting, the first obvious dimensionless parameter of the problem is D/L, which is
assumed to be small. In addition, the dynamic behavior of the structure is assumed to remain in the low-to-medium
frequency range, which implies, under a linear elastic hypothesis and given a typical wavelength in the structure λ,
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that the ratio D/λ is not too large. Indeed, hypotheses ii) and iii) are difficult to meet out of that range. Combining
these remarks, one obtains that λ/L remains small:

D ≈ λ � L (1)

These hypotheses on the length scales of the problem provide the basic framework for the general and now tra-
ditional modeling approach for this type of structure-environment problem. It considers: i) a bounded linear elastic
structure coupled to; ii) an unbounded linear elastic environment along; iii) a bounded interface. For completeness,
this model is recalled in section 2. In the following sections, this elementary approach is then generalized in several
directions.

Non-linear behavior of the structure and its environment is the first important issue to be addressed. Indeed,
most design methods are based on linear or equivalent linear models, which have proven in particular to be efficient
in quantifying amplifications due to resonance. Yet, advanced design methods, safety margin studies on existing
structures or specific cases call for the consideration of non-linear models for the structure and its nearby environment.
These non-linear extensions of the structure-environment coupling will be considered in section 3.

We then consider in section 4 the influence of uncertainties on the coupled structure-environment problem. These
uncertainties play a key role in the dynamical behavior of the structure itself (see the review in [36]), but we will con-
centrate here on the interaction problem. Hence, we will mainly consider stochastic models related to the environment,
both in terms of loadings and mechanical properties.

The next three sections consider interaction problems for which the interface between the structure and its environ-
ment falls outside of the cases considered before: i) unbounded in section 5; ii) moving in section 6; and iii) multiple
in section 7. Typical examples for these three problems include, respectively: i) the interaction between a tunnel and
the soil in which it is embedded; ii) the train-track interaction problem; and iii) the city-site coupling effect in which
multiple interaction between the buildings of a city modifies a seismic incident field. The first two types of problems
are approached through appropriate changes of variables or transformations of the equations, while the last one is
tackled through statistical methods.

Finally the conclusion will emphasis the shortcomings of the proposed approach and will draw some perspectives
for further developments in this field.

2. Linear dynamics of structure-environment interaction

The aim of this section is to present a general formulation for a structure-environment interaction problem, along
with the associated parameters, unknowns and equations, under the assumptions of: linear elasticity, bounded structure
and bounded interface. The case of an unbounded interface is considered in section 5 and that of a non-linear structure
in section 3.

The classical approach under these simple hypotheses is based on sub-structuring techniques [37, 38] commonly
used in structural dynamics [39], fluid-structure [40] and soil-structure interaction [41, 42, 43, 44, 45]. The physical
domain is decomposed into two subdomains: the (possibly unbounded) elastic environment, denoted by Ωe, and the
bounded structure, denoted by Ω, as shown in Figure 1. The interface between these domains is denoted by Σ. On
the other parts of their boundaries denoted by Γ and Γe, free surface boundary conditions are assumed. The extension
of this formalism to the case where part of the boundary of either Ωe or Ω beholds Dirichlet boundary conditions is
straightforward.

This decomposition has two important features: i) the behavior of the structure is usually of more interest than that
of the environment; and ii) the environment is in practice often infinite or semi-infinite, which calls for a particular
numerical approach. Therefore, the two parts of that coupled problem have often been solved with different numerical
techniques, which will be briefly described in section 2.5.

2.1. The local problems: structure and environment
The permanent displacement fields and stress fields in Ωe and Ω due to static loads (the weight for example) are

denoted by ueo(x), σeo(x), uo(x) and σo(x), respectively. These fields are assumed to be known in the following
and will play the role of parameters. The dynamic perturbations of the displacement fields due to dynamic loads
are denoted by ue(x, t) and u(x, t). We assume that they are small enough to allow for a linear approximation of
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Figure 1: Model layout and notation

the constitutive and equilibrium equations in the vicinity of the static state (ueo, σeo; uo, σo), and that the nonlinear
geometric terms are negligible. Hence, the dynamic perturbations of the stress tensors, denotedσα(u) can be expressed
as linear functions of the dynamic fluctuation of the strain tensors, denoted ε(uα) = (∇uα + ∇uT

α )/2, with α ∈ {e, }:

σα(uα) =

∫ t

0
Cα(t − τ)ε(uα(τ))dτ, α ∈ {e, } (2)

where ∇ is the gradient operator, Ce and C are fourth-order symmetric visco-elastic tensors being the time derivative
of the relaxation tensor. In the particular case where the media follow the classical Hooke’s Law, these relations
simplify to σα(uα) = λα(divuα)Id + 2µαε(uα), where (λe, µe) and (λ, µ) are the classical Lamé parameters for the
environment and the structure, respectively. Id is the 3 × 3 identity matrix.

Locally in each subdomain Ωe and Ω, the unknown fields must verify the equilibrium equations

−Divσα(uα) + ρα∂ttuα = fα in Ωα

σα(uα)n = tα on Γα
(3)

with homogeneous initial conditions uα(x, t = 0) = 0 and ∂tuα(x, t = 0) = 0, with α ∈ {e, }. In these equations, fe and
f are body forces, and te and t are surface tractions. They are assumed to have bounded support over their respective
domain of definition. In particular, we define a bounded subset Ωv

e of Ωe in the vicinity of the structure, and assume
that fe = 0 in Ωe \ Ωv

e and te = 0 on Γe \ (∂Ωv
e ∩ Γe). In the case of non-vanishing initial conditions, one can formally

recover the above equations by introducing additional body forces f0
e (x, t) and f0(x, t), using the Dirac distribution δ(t):

f0
α(x, t) = −ρ (δ(t)∂tuα(x, t = 0) − uα(x, t = 0)∂tδ(t)) , (4)

2.2. Incident and diffracted fields

In the type of coupled problems considered here, loads can often be accounted for by defining an incident field uinc

inside Ωe. This is the case, for example, in seismic or noise engineering. This incident field can be seen as a parameter
of the dynamic interaction problem, that has to satisfy some constraints. Firstly, it is assumed that, before the initial
time t = 0, uinc(x, t) vanishes in the vicinity of the structure Ωv

e . We then assume that uinc satisfy the Navier-Lamé
equation, free surface boundary conditions (3) in Ωe \Ω

b
e and with any appropriate extension inside Ωv

e . This generates
equivalent body forces fd and surface tractions td both with bounded support:

−Divσe(uinc) + ρe∂ttuinc = fe − fd in Ωv
e

σe(uinc)n = te − td in ∂Ωv
e ∩ ∂Ωe

(5)
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Classically [42], an auxiliary field, called the diffracted – or scattered – field, and denoted ud, becomes the new
main unknown in Ωe. It is defined in the environment, as:

ud = ue − uinc in Ωe. (6)

and has to satisfy the Navier-Lamé equations (3), for any time t ≥ 0 replacing ue, fe and te by ud, fd and td respectively
and satisfying homogeneous initial conditions ud(x, t = 0) = 0 and ∂tud(x, t = 0) = 0.

2.3. Frequency domain and coupling equations
From now on, we will reformulate the equations in the frequency domain as in [42]. We therefore consider the

Fourier transforms of the displacements fields u and ud, as well as the Fourier transforms of the loads (uinc, fd, td, f, t).
However, for notational simplicity, both the fields and their Fourier transform will be denoted in the same way. Note
that, in the frequency domain, the constitutive relations (2) become simple complex-valued products. It is worth
mentioning that Laplace domain approaches are obtained taking s = iω and <(s) ≥ 0 where i2 = −1 and < is the
real part of a complex number. The fields u(x, ω) and ud(x, ω) now verify, in the frequency domain, the balance of
momentum in Ω and Ωe respectively:

Divσ(u) + f = −ρω2u in Ω,
σ(u)n = t on Γ,

(7)

Divσe(ud) + fd = −ρeω
2ud in Ωe,

σe(ud)n = td on Γe.
(8)

In addition the equilibrium equation and the kinematic conditions on the interface Σ read:

σ(u)n − σe(ud)n = σe(uinc)n on Σ (9)
u − ud = uinc on Σ. (10)

The set of equations (7-10) forms a well posed boundary value problem as long as damping is accounted for (e.g.
=(C(ω)) is a positive tensor and =(ω) ≤ 0, = denoting the imaginary part of a complex number). In the purely
elastic case, radiation conditions have to be applied at infinity when =(ω) = 0. They can be formally defined taking
the limit =(ω) → 0 [46]. The displacement fields ud and u verifying this system depend linearly on the parameters
(uinc, fe, te, f, t).

2.4. Domain decomposition and weak formulation
Coupled systems given by equations (7-10) are usually solved through dynamic condensation techniques. The

basic idea of this approach is the following:

• to define new unknown fields on the interfaces, either displacements or tractions,

• to solve the local boundary value problem (8) and possibly (7) using these fields as boundary conditions on the
interface,

• to enforce the remaining equations in a weak sense, e.g. for any trial admissible field on the interface.

Primal formulation. We derive here a primal formulation, for which we choose a compatible displacement field uΣ on
the interface Σ (i.e. that verifies the kinematic condition (10)). The local boundary value problem consists in finding
ud satisfying equations (8) together with boundary conditions:

ud = uΣ − uinc on Σ (11)

The last step would then consist in enforcing weakly the equilibrium equations (9) and (7) to obtain the actual values
of u, knowing that u = uΣ on Σ. Hence, considering the weak enforcement of the equilibrium equation (9) over Σ

yields the following variational formulation of the interaction problem for all v in VΩ:{
K +Ke(ω) − ω2M

}
(u, v) = Le(ω; v) +L(v) (12)
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where VΩ is the functional space of fields with finite energy in Ω. K and M are the classical stiffness and mass
bilinear forms of the structure arising in the Finite Element Method (FEM) [47, 48], and L is the linear form induced
by the forces and tractions in the structure:

K(u, v) =

∫
Ω

σ(u) : ε(v)dV , M(u, v) =

∫
Ω

ρu · vdV (13)

L(v) =

∫
Ω

f · vdV +

∫
Γ

t · vdS (14)

The bilinear form Ke stands for the dynamic stiffness of the environment. Finally, the linear form Le(ω; v) accounts
for the equivalent forces induced by the incident field. After some manipulations, including the application of Betti-
Maxwell reciprocity theorem, these two terms can be rewritten as:

Ke(ω; u, v) =

∫
Σ

σe(uΣe)n · vdS , (15)

Le(ω; v) =

∫
Σ

(
σe(vΣe)uinc − σe(uinc)v

)
· ndS −

∫
Ωe

fd · vΣedV −
∫

Γe

td · vΣedS , (16)

where n is the outward normal vector to the structure Ω and uΣe is the solution of the local problem over Ωe with no
load except an imposed Dirichlet boundary condition uΣ over Σ:

Divσe(uΣe) = −ρeω
2uΣe in Ωe,

uΣe = uΣ on Σ,
σe(uΣe)n = 0 on Γe,

(17)

and vΣe is the same for an imposed Dirichlet boundary condition on Σ equal to v. Note that both uΣe and vΣe are
frequency-dependent. As a consequence of the Betti-Maxwell reciprocity theorem, these bilinear forms are symmetric
but not hermitian since damping or radiation conditions are accounted for.

2.5. Numerical considerations
Summing up the previous sections, two problems are left to be approximated:

• the construction of the dynamic stiffness operator and the equivalent forces, by solution of equations (17) for a
set of interface displacements uΣ;

• the solution of the variational problem (12), where the influence of the environment is considered through the
dynamic stiffness operator and the equivalent body forces.

The approximation and solution of these two problems is usually obtained by means of discretization techniques
like the FEM and the boundary element method (BEM) [49, 50, 51]. These methods are based either on domain or
boundary discretization, and the governing equations are written as a system of algebraic equations with respect to
space and frequency (or time). The choice between the FEM and the BEM depends upon the type of the problem.
For bounded domains (e.g. the structure) the FEM is a well-established and versatile procedure. In problems involv-
ing unbounded domains (e.g. the environment), the FEM requires a special handling, for instance through the use
of absorbing boundary conditions, perfectly matched layers or infinite elements [52, 53, 54, 55], in order to avoid
spurious wave reflections where the mesh is truncated. However the computational cost of the FEM in the context of
3D unbounded domains had been limiting its use for many years and other numerical techniques have been proposed
and will be briefly reviewed here. We will come back to the FEM when drawing perspectives in the conclusion.

Apart from several analytical solutions related to ideal problems, the so-called Scaled Finite Element method has
also been proposed in the context of Soil-Structure Interaction [56, 57] but has hardly been used in other contexts. The
BEM is well known as a powerful procedure for modeling unbounded domains since the radiation condition is satisfied
automatically by the Green’s functions. In addition, the dimension of the model is reduced by one in the BEM analysis,
resulting in a much simpler mesh generation and smaller meshes, specially for three-dimensional problems. Note,
however, that although the resulting matrices are much smaller, they are generally fully populated, which hinders their
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inversion. This drawback has been overcome this last decade by the use of iterative solvers and multipole expansions
[58, 59, 60], numerical computation of more complex Green’s kernels accounting for heterogeneous domains such a
layered soils [61, 62, 63, 64, 65, 11] and accounting for spurious resonance [66] based on pioneering works originally
proposed in homogenous acoustics [67, 68] and bulk FEM-BEM coupling [51, 69].

Hence, because of the specificities of the FE et BE methods, many authors have chosen to model the environment
using the BEM, and the structure with the FEM, possibly encompassing the part of the environment close to the
structure, where non-linear phenomena take place.

When considering the FEM for the discretization, a finite set {φk(x)}1≤k≤n of piecewise polynomial functions is
defined over a mesh defined over the domain Ω. The n×n stiffness and mass matrices are constructed, for 1 ≤ i, j ≤ n,
by Ki j = K(φ j, φi) and Mi j = M(φ j, φi) and the loading vector on the structure is constructed, for 1 ≤ i ≤ n, by
fi = L(φi). When considering the BEM, one uses a finite set {ψk(x)}1≤k≤m of piecewise polynomial functions defined
over a mesh defined only over the interface Σ, or over Σ ∪ Γe. The m × m dynamic stiffness matrix is then defined as
Ke,i j(ω) = Ke(ω;ψ j, ψi), and the equivalent loading vector is defined as fe,i(ω) = Le(ω;ψi). Including a linear viscous
n × n damping matrix D leads to the final linear system:{

K + Ke(ω) + iωD − ω2M
}

q(ω) = fe(ω) + f(ω) (18)

to be solved for the n × 1 vector of generalized Degrees of Freedom q at all frequencies ω or Laplace parameter
s = iω. In this equation, the matrix Ke(ω) is only considered over degrees of freedom that are common to the sets
{φk(x)}1≤k≤n and {ψk(x)}1≤k≤m. It is then filled by zeros to fit the required n × n size wherever the degrees of freedom
are not common to both sets.

Finally note that reduced bases for both the inner displacement fields φk (for instance the eigenmodes on a rigid
interface) and the interfaces fields ψk (rigid body modes and a set of deformation modes) can be sought in order to
drastically reduced the size of the coupled system (18) (see [70, 71] for reduction techniques and related component
mode analyses).

2.6. Limitations and extensions
Up to now, only standard material has been reported to set up important features and report on limitations to be

lifted. These features are summarized in the frequency domain system equation (18). Provided that the structure and
its interface with the environment are bounded and assuming a known linear visco-elastic behavior the main result is
that an approximate solution for the interaction problem can be sought in a proper functional space of finite energy
fields in a bounded frequency range. The main limitation of the proposed frequency domain approach is that it cannot
account for non-linear phenomena even if localized within the structure. A time domain version of equation (18) has
to be sought with a proper definition and numerical treatment of the related dynamic impedance Ke. The account
for uncertainties both on the loads and on the physical properties of the environment is the second issue addressed
in section 4. The extensions to unbounded and multiple interfaces addressed in sections 5 and 6 are based on dual
formulations.

Dual and mixt formulations. The primal formulation described up to now is often favored as straightforwardly com-
patible with standard FEM. It also leads to reduced systems when the displacement field on the interface can be
expanded on a reduced basis such as rigid body modes. However from the environment point of view, the boundary
value problem (17) is a bit artificial and some would find more physically sound to apply tractions τ on the interface:

Divσe(uΣe) = −ρeω
2uΣe in Ωe,

σe(uΣe)n = τ on Σ,
σe(uΣe)n = 0 on Γe.

(19)

Since uΣe depends linearly on τ, equation (19) defines the compliance operator:

uΣe(x) = Ue(τ)(x) =

∫
Σ

UG
e (x, x′, ω)τ(x′)dS , x ∈ Σ, (20)

with UG
e (x, x′, ω) the formal Green’s kernel of Ωe for which no closed-form solution is usually available. Solution ue

then reads:
ue = uinc +Ue(τ − τinc) (21)
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where τinc = σe(uinc)n is the traction field induced on Σ by the incident field. This term only vanish when this incident
field satisfies free surface boundary conditions on the interface.

The same approach applied on the structure using a variational framework yields:{
K − ω2M

}
(u, v) = L(v) −

∫
Σ

τ · vdS . (22)

Defining uo as the solution of this equation for τ = 0, one shows that u−uo depends linearly on τ through a compliance
operatorU:

u = uo −U(τ). (23)

Finally the kinematic coupling along the interface Σ yields:

(U +Ue)(τ) = uo − uinc +Ue(τinc) (24)

which could also be written in a weak sense for all traction fields τ′ on Σ. These dual formulations will be used to
deal with moving and multiple interfaces.

3. Time-domain formulations for non-linear structures

The aim of this section is to review recent developments to account for the non-linear behavior of the structure,
within the framework proposed in section 2. Although the behavior of the structure is now considered non-linear, that
of the environment will still be assumed linear (possibly using equivalent linear approaches [72, 73]). Since non-linear
dynamic solvers are now widely available [47], the key issue addressed here is the influence of a linear dynamic model
of the environment within a time marching scheme. This can be done either through a full FEM, a coupled BEM-FEM
in the time domain, or a mixed time-frequency approach.

The first popular set of methods consists in incorporating a large part of the environment in the FE model [74, 75]
and using absorbing boundary conditions [76] for the remaining part of the environment. This approach is really only
a FEM approach, not considering the coupling in any particular manner. Many investigations have dealt with the
stability of FEM schemes, and some unconditionally stable methods have been proposed [77].

The coupling with a time-domain BEM is another classical option [50, 51]. So far, the BEM/FEM coupling
procedure for time-domain analysis has been studied by a restricted number of researchers, aiming at developing
robust algorithms where the BEM is used to model the unbounded medium. Beskos and coworkers [78, 79] were
among the first to investigate two- and three-dimensional flexible foundations, which were modeled by finite elements
and coupled to the elastic half-space represented by BEM. Von Estorff [80] developed a general FEM/BEM coupling
method for the soil-structure interaction in the time domain. Finally, a work by the same author [81] appears to be the
most general and also considers the non-linear behavior of the FEM domain. The stability of BEM schemes has been
investigated recently, and some methods have been used to improve it [82, 83]. However, the performance of these
methods in coupling BEM/FEM procedures needs to be improved further, as none is unconditionally stable. Note that,
even when considering two stable algorithms, if one of them is not unconditionally stable, then the coupled algorithm
is generally unstable [84].

Finally, hybrid approaches coupling a frequency (or a Laplace) BEM with a time domain FEM scheme can also
be found in the literature. In this way, the main advantages of both methods can be retained and their respective
disadvantages eliminated. Moreover, as said before, if the coupling procedure is entirely formulated in the time
domain and the effects of the unbounded soil are represented by boundary conditions, an extension of the algorithm
to non-linear problems is possible. Using the framework proposed in section 2, these methods reduce to giving a
time-domain version of the boundary impedance matrix Ke and the interaction force vector fe originally computed
in the frequency or Laplace domain. Two major requirements should be satisfied: causality and stability. Pioneer
works in this field have been proposed in [85, 86, 87] in the field of Soil-Structure Interaction. Basically, two types
of methods are proposed. The first one consists in finding an approximation of the impedance on a basis of known
functions satisfying the two requirements. It can directly lead to an explicit discrete differential model in the time
domain. The second class of methods aims at giving a time domain approximation of the related often ill-conditioned
convolution operator. Recent developments along these two lines are reviewed in the following subsections.

7



3.1. Reduced time-domain models for the environment
Whatever the numerical method used to compute the impedance matrix of the linear environment (e.g. FEM,

BEM, analytical solutions, expansion on cylindrical or spherical harmonics), this matrix is frequency-dependent and
is assumed to satisfy the Kramers-Kronig causality condition [88, 89]. From the theoretical point of view it can
be expanded on a basis of matrix-valued Hardy functions [90] and thus can be approximated as a matrix-valued
polynomial of ω as:

Ke(ω) =
N(ω)
q(ω)

(25)

The conversion to the time domain can be performed using model identification techniques or the hidden state
variables method [91, 92, 93]. In both cases, the rational approximate can be obtained by a wide range of techniques
[94, 95, 96, 97]. In the hidden variable method, the rational approximation is reduced to a polynomial of second
order by an identification process that is performed without approximation. Then, the impedance matrix Ke is written
as the dynamic condensation of larger mass, stiffness and damping matrices (M∗

e,K∗e,C∗e) considering the physical
unknowns q on the interface Σ as well as additional so-called hidden variables qh:

M∗
e =

[
MΣ

e Mc
e

McT
e Mh

e

]
, K∗e =

[
KΣ

e Kc
e

KcT
e Kh

e

]
, C∗e =

[
CΣ

e Cc
e

CcT
e Ch

e

]
. (26)

The impedance matrix is then written as the following Schur complement:

Ke(ω) = (−ω2MΣ
e + iωCΣ

e + KΣ
e ) − (−ω2Mc

e + iωCc
e + Kc

e)T (−ω2Mh
e + iωCh

e + Kh
e)−1(−ω2Mc

e + iωCc
e + Kc

e), (27)

These additional hidden variables qh are then added to the original non-linear time domain system, while the dynamic
behavior of the linear environment is written in the form of a standard second order differential system. This method
shows some stability problems originating from the non-positive-definite property of some matrices. Yet it has been
successfully used to develop stochastic models of impedance matrices, replacing matrices (M∗

e,K∗e,C∗e) by random
matrices [98, 99] or to derive reduced models for complex systems [13]. The stability issue is treated in [100] for the
case of a single input-single output (SISO) relationship between force and displacement in the physical or transformed
space. The stability is guaranteed a priori by enforcing the zeros and poles to lie on the lower-half complex ω plane.
The parameter identification of the rational approximation is further developed by directly solving the nonlinear
least-squares fitting problem using the hybrid genetic-simplex optimization algorithm, in which the proposed stability
condition is enforced by the penalty function method.

3.2. Convolution techniques
Based on section 2, the time domain discretized non-linear system for the time-dependent DOF vector q(t) reads:

Kq + Dq̇ + Mq̈ = fΣ(q, t) + fNL(q, t) (28)

where fNL stands for the non-linear generalized force vector in the structure and fΣ is the transient generalized in-
teraction force vector applied on the structure by the environment. It is defined formally as the convolution product
between q and the so-called time impulse displacement matrix Ke(t), the formal inverse Fourier or Laplace transform
of Ke(ω):

fΣ(t) = fe(t) −
∫ t

0
Ke(t − τ)q(τ)dτ (29)

Hence, convolution methods are hybrid approaches that are mainly based on the recursive discrete-filter or the Inverse
Fast Fourier Transform (IFFT). In order to compute fΣ(t) in the time domain, the dynamic time impulse displacement
matrix or time domaine stiffness matrix of the environment Ke(t) must be computed. Unfortunately, this often leads to
unstable results [101], especially when combined with IFFT. Indeed Ke(ω) does not converge towards any finite limit
at high frequencies, which leads to uncontrolled truncation errors. On the contrary, its inverse Fe(ω) = K−1

e (ω), known
as the dynamic flexibility matrix, does converge to a finite value for large frequencies. Hence, flexibility formulations
have been preferred for many years [87, 102]. When coupled with a time-marching scheme, it leads to:

fn
Σ = fn

e −K0
eqn +

n−1∑
k=0

K0
eFn−k

e (fk
e − fk

Σ) (30)
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where Fk
e can be accurately computed using FFT algorithms and where the instantaneous stiffness matrix K0

e is the
inverse of F0

e . It is worth to mention that this algorithm requires the storage of both q and fΣ at all time steps. It is
also pointed out in [103] that the direct integration scheme is often unstable. The θ-method and the introduction of
numerical damping in the Newmark scheme have been used to stabilize the system, with no guarantee however neither
on the stability nor on the quality of the solution [104].

Finally, we ought to mention some preliminary work on FEM-BEM coupling [105, 106] in the time domain using
the Convolution Quadrature Method [107]. It has been shown in [108, 109] that a direct stiffness formulation can be
used, along with a sampling of the stiffness matrix in the upper complex ω plane.

4. Uncertainty on the incident field and environment properties

The solution of the interaction equations (12) or (18) depends:

• linearly on the incident displacement and traction fields uinc σ(uinc)n on the interface Σ and equivalent force
vectors fe and te, which all are space-time fields with bounded support in space;

• non linearly on the mechanical properties of the environment me = (λe, µe, ρe), that are generally time indepen-
dent fields with either bounded or unbounded supports.

In practice, the effective values of these fields of parameters are subject to large uncertainties. In particular, the in-
cident field uinc and the mechanical parameters of the environment are usually poorly known and controlled. These
uncertainties can be accounted for by modeling these fields as second order stochastic fields. There might be uncer-
tainties associated also to the loads and/or mechanical parameters of the structure and this case (described in another
paper of this special issue [36]) will not be addressed here. Hence we will concentrate on the impact of an uncertain
environment on the behavior of the structure, and on the methods that address this issue. It should be noted that prob-
abilistic analyses are usually much more involved than their deterministic counterparts, both in terms of data required
to parameterize the models [110, 75], and in terms of computational cost. Hence, they are mainly restricted to the
most sensitive projects [111, 112, 113].

However, for all structures for which the interface with the environment spans large distances (with respect to
some characteristic length of the fluctuations of the properties and incident field), the consideration of the spatial
variability of the properties of the environment (and of the incident field) is essential for a rational design. In civil
engineering again, this is the case of structures supported on extended footings, as well as for multiply supported
structures such as bridges.

4.1. Stochastic Model for the incident field

Accounting for the effect of the uncertainties in the incident field uinc on the structural response is easier than
accounting for the variability of the properties of the environment, at least when linear models are considered. Indeed,
the linear filtering theory then applies, leading to effective engineering techniques, while for non-linear behavior,
heavy simulations are often required [114]. In both cases, one of the main difficulties consists in modeling and
simulating these uncertainties, with a particular emphasis on the issue of time-dependency. Indeed, these incident
fields are often non-stationary (e.g. earthquake ground motions), hence calling for a particular treatment.

The time dependency is classically accounted for by assuming that the field is either stationary with respect to
time, a deterministic modulation of a stationary process, or an evolutionary stochastic process [115]. These processes
uinc(x, t) read:

uinc(x, t) =

∫ +∞

−∞

H(t, ω)eiωtûinc
o (x, ω)dω (31)

with ûinc
o (x, ω) a correlation-stationary process (the Fourier Transform of a stationary process with power spectral

density So(x, ω)), and H(t, ω) a complex valued time-frequency modulation tensor. This decomposition is not unique
even when ûinc

o (x, ω) is assumed to be a gaussian white noise (see [116] for an optimal choice in terms of under-
spread evolutionary spectrum using the Karhunen-Loeve expansion of the correlation operator), but equation (31)
conveniently accounts for the case of a deterministic modulation function (∂ωH = 0) and also provides a simple
way of sampling the stationary process ûinc

o (x, ω) using independent random amplitudes oand phases in the frequency
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domain. It is also worth noticing that, in addition, since these random amplitudes in the spectral representation of
ûinc

o (x, ω) model the aleatoric uncertainty of the incident field, So and H can depend on additional random parameters
characterizing its epistemic uncertainty. Using this technique, a set a synthetic seismograms fitting given constraints
or experimental data basis (see for instance [117] for seismic signals) and time-dependent power spectral density of
the structural response can be obtained (see [118] for the case of a deterministic modulation of a stationary signal).

Yet, equation (31) cannot account for non Gaussian non-stationary processes with targeted marginal distributions
since it only consists in an extension of the spectral representation. Other modeling and simulation techniques for non-
Gaussian Fields with targeted marginal distribution, moments and correlation functions have been proposed based on
Polynomial Chaos decomposition [119, 120] or more recently on the information theory [121].

Up to now only time dependency has been discussed. Considering space-dependency, the deterministic wave
passage effect and spatial variability have to be taken into account. It is customary to model the resulting stationary
space-frequency random field ûinc

o (x, ω) using a frequency dependent coherency hermitian matrix Γ(x, x′, ω). The
cross correlation between two points x and x′ then reads:

E
(
ûinc

o (x, ω)ûinc
o (x′, ω)H

)
= S1/2

o (x, ω)Γ(x, x′, ω)(S1/2
o (x′, ω))H , (32)

where E denotes the ensemble average and H the conjugate transposed. When considered along a horizontal free
surface, the coherency matrix is often decomposed into a lagged coherency depending on the dimensionless parameter
ω
c ‖x − x′‖, with c a characteristic velocity in the environment, and a wave passage effect:

Γ(x, x′, ω) =

∣∣∣∣∣∣Γ
(
ω‖x − x′‖

c

)∣∣∣∣∣∣ ei ωca
da·(x−x′),

with ka = ω
ca

da an apparent wavenumber along the free surface corresponding to waves propagating in direction da

with a velocity equal to ca. Hence, in that case, ûinc
o (x, ω) can be further decomposed as:

ûinc
o (x, ω) =

∫
R2

S1/2
o (x, ω)Γ̃1/2(k, ω)eik·xW̃(k, ω)dk (33)

where Γ̃ is the Fourier Transform of Γ(x− x′, 0, ω) with respect to its first argument and W̃ is the Fourier transform of
a space-time white noise satisfying:

E
(
W̃(k, ω)W̃(k′, ω′)

)
= δ(k,k′)δ(ω − ω′)

The major drawback of this approach is the underlying assumption of stationary statistically homogeneous process
for ûinc

o (x, ω). The reader is referred to [122] for an extension of coherency models to non-stationary signals. It is worth
noticing that due to the dependency of So with respect to x, the random field in (33) is not statistically homogeneous
but is a space-modulated homogeneous field. However this term can be incorporated in H in equation (31) leading
to a statistically homogeneous case. Yet a dependency of So on the wavenumber k would lead to a more general non
statistically homogeneous coherency model.

In the earthquake engineering community, many different stationary coherency models have been proposed [123],
although no general agreement seems to exist as to which is the most appropriate. Each site - and each event - seems to
require a specific model. Even the numerical treatment performed to evaluate the coherency from the raw data seems
to have an impact. The first models that were developed [124, 125] were purely empirical and only intended to fit data
recorded at seismographs arrays. Other semi-empirical models postulate a structure of the coherency function from
the study of analytical models (e.g. a very widely used model is based on theoretical results of propagation of shear
waves in a random medium [126]) and fit the parameters from recorded data. Finally, the finite size of the source can
be modeled, summing up over different arrival angles for waves impinging on a structure [127].

As anticipated, the only information available on the incident field is recorded at the free surface Γe [128], whereas
it is needed in (16) along the interface with the structure Σ together with the related traction field. Since the incident
field in the environment needs to verify the system of equations (3), a stochastic deconvolution [129] has to be
performed.
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This deconvolution can be applied on the stationary field ûinc
o (x, ω) under the two following assumptions: i)

horizontal statistical homogeneity (S1/2
o (x, ω) = S1/2

o (ω)), ii) layered media and horizontal free surface. Indeed, let
H̃u(k, ω, z) be the transfer matrix between the displacement at depth z and the displacement at the free surface for
a given horizontal wavenumber k and H̃t(k, ω, z) = σe(H̃ueik·x)ne−ik·x be the corresponding transfer matrix between
the traction vector at depth z and the displacement at the free surface. Both can be easily computed using either the
reflection-transmission techniques [130] or the stiffness matrix method [131]. Hence, starting from (33) on the free
surface, the random displacement and traction fields at any point x = (xs, z) on the interface Σ reads:

b̂inc
o (x, ω) =

(
ûinc

o (x, ω)
σ(ûinc

o (x, ω))n

)
=

∫
R2

(
H̃u(k, ω, z)
H̃t(k, ω, z)

)
S1/2

o (ω)Γ̃1/2(k, ω)eik·xs W̃(k, ω)dk (34)

This equation yields a well-defined expression for the equivalent force vector in (18), using equation (16) in the
stationary case, when one considers samples of the random field W. A non stationary and non linear expression
can be obtained taking the inverse Fourier transform of (16) combined with equation (31). However this simulation
approach could be highly computationally expensive and reduction techniques are appealing. Hence, one can compute
the truncated Kahrunen-Loeve expansion of the covariance of b̂inc

o (x, ω):

binc
o (x, ω) ≈

Nk∑
k=1

λinc
k (ω)θk(ω)binc

k (x, ω), (35)

where (binc
k (x, ω), λinc

k (ω)) are the eigenmodes and eigenvalues of the covariance operator of binc
o on Σ with kernel:

Cinc
b (x, x′, ω) =

∫
R2

(
H̃u(k, ω, z)
H̃t(k, ω, z)

)
S1/2

o (ω)Γ̃1/2(k, ω)
(

H̃u(k, ω, z′) H̃t(k, ω, z′)
)

eik·(xs−x′s)dk,

and θk(ω) are uncorrelated random variables given by:

θk(ω) =
1

λinc
k (ω)

∫
Σ

binc
k (x, ω) · binc

o (x, ω)dS .

This leads in the stationary case to solving Nk deterministic systems (18) for qk with deterministic equivalent forces:

[fk] j =

∫
Σ

(
(σe(vΣe)n) · uinc

k − tinc
k · vΣe

)
dS ,

with vΣe = φ j on Σ and binc
k = (uinc

k tinc
k )T . Spectral analysis and simulation can then be conducted based on the

knowledge of the qk since, due to linearity, q(ω) ≈
∑Nk

k=1 λ
inc
k (ω)θk(ω)qk(ω). Based on (31), expression for the non-

stationary case can easily be obtained, as shown in [118] for surface foundations and modulated signals.
Approximate methods have often been proposed to simplify this exact but rather complex form. In particular,

the kinematics of the interface are often simplified, and the incident field strongly and inappropriately filtered [125,
132, 133, 127]. A more complex integral representation, based on Bycroft [134], is considered in Luco and Wong
[126], Luco and Mita [135], Sarkani et al. [136], but a simplification in the form of the interface tractions is added to
yield a simpler form.

4.2. Influence of stochastic environment properties
The case where the properties of the environment are random is more intricate. If the fluctuations of the properties

are small compared to the mean, then a perturbation approach can be applied. When this is not the case, three alter-
native techniques can be applied, directly extending the approaches followed for deterministic modeling: i) stochastic
FEM (for variability in a bounded subdomain); ii) stochastic BEM; and iii) stochastic model of the impedance.

In the first approach, it is assumed that the properties fluctuate only in a bounded region near the structure. Al-
though questionable, this assumption is justified since, even if large, the uncertainties far from the structure may mod-
ify the incident field but have a limited impact on the structural response itself. This influence can then be accounted
for in an average sense using effective elastic properties far from structure instead of mean properties. Stochastic FEM
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representations can then be considered. The main interest of that method is the possibility to vary several properties
of the soil at the same time (e.g. in a soil-structure interaction problem, in [111], the shear modulus at low strains, the
shear modulus-shear strain curve, the structural damping, the structural stiffness, and the incident field are considered
simultaneously random), or even to model uncertain layers within the environment [137].

Unfortunately, the Stochastic FEM inherits the deficiencies of the deterministic FEM in modeling unbounded
domains. Hence, attempts have been made at coupling a deterministic unbounded environment, that can be modeled
for example using a deterministic BEM, and a bounded volume, where the uncertainty and variability in the parameters
are considered more important than in the rest of the environment [69, 138, 139, 140]. Alternatively, it is possible
to model the fluctuating properties within a bounded but very large domain, but the question of finding adequate
absorbing boundary conditions for these heterogeneous media is still open [75].

Another approach consists in considering variability of the random properties of the environment within the BEM.
Although attractive, and besides initial work using perturbation techniques, this approach has had little influence due to
the difficulty to derive Green’s functions for random media [141, 142, 143]. The variability of the interface geometry
has also been considered [144] in the context of the BEM.

Finally, some authors have attempted to model directly the influence of the uncertain properties of the environ-
ment through a randomization of the boundary impedance. The first attempts have aimed at extending the use of
lumped-parameter models and Winkler spring models to the stochastic domain. In particular, the coefficients of these
simplified models are randomized, thus leading to random boundary impedances [145, 146, 147, 148, 149], modeled
very cost-effectively. The main inconvenient of this approach, is that it is impossible to relate the fluctuations of the
physical properties of the environment to the fluctuations of the coefficients, because the latter are usually identified
by regression. The link between physical properties of the environment and the coefficients of the model is explicit in
some cases, but this is restricted to very simple simple models of the environment (e.g. a 1D column model of a soil
in [150], with use of the perturbation technique).

A more general approach has been developed in [98, 99]. It consists in extending the description of the boundary
impedance matrix seen in section 3.1 and using the nonparametric approach of uncertainties [36]. The use of the
nonparametric method renders the interest of the link between model of the properties and model of the boundary
impedance irrelevant (although a comparison with a stochastic FEM is presented in [151]), and the random model
of the boundary impedance can be checked to be appropriate mathematically and is adequately parameterized. The
application of this method to the design of a nuclear plant is presented in [152].

5. Interaction through an unbounded interface

A basic assumption in the above mentioned deterministic and stochastic techniques is that the structure and the
fluctuating heterogeneous soil region remain bounded. Thus for very long structures such as tunnels, boreholes, tracks,
roads, sheet piles, dykes or hills, some additional developments have to be proposed.

In current practice, these very long structures are assumed to be translationally invariant, and thus only two-
dimensional models are considered. However, the incident fields are not translationally invariant. The importance of
inclined incident fields with respect to the invariant axis has in particular been recognized by geophysicists [153, 154].
In earthquake engineering, these inclined incident fields have a strong impact on the behavior of connected structures
and networks (e.g. bridges, pipelines), because these waves generate differential displacements in the longitudinal
direction [155]. The finite correlation length of recorded seismic motion indicates that these inclined incident waves
always exist in practice. For traffic-induced vibrations or borehole geophysics, the load can be modeled as a fixed
or moving source, and the problem is then far from being translationally invariant. The extension of the preceding
numerical techniques to translationally invariant geometries with non translationally invariant loads has been described
in particular in [156, 157, 158, 159, 160].

This technique is usually referred to as a two-and-a-half-dimensional approach and has been used in the past to
study problems such as the seismic response of tunnels [161, 162, 163] and the amplification of ground motion in
arbitrarily shaped cylindrical alluvial valleys [164]. More recently, this technique has been used by many researchers
to study train-track interaction [165, 28] and ground-borne vibrations due to road and railway traffic [26, 166, 24, 167,
168]. An analytical solution of the two-and-a-half dimensional Green’s function of a full space has been presented
by Tadeu and Kausel [169]. This solution can be used in a two-and-a-half-dimensional BEM formulation. Coupled
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two-and-a-half dimensional FEM and BEM have been presented for railway traffic at grade and in tunnels [170, 171],
as well as to study vibration mitigation by open and in-filled trenches [172]. Recently, a two-and-a-half dimensional
coupled FEM-BEM based on the Green’s functions of a horizontally layered halfspace has been presented [173] to
avoid meshing of the free surface as required when using full space Green’s functions.

Translational invariance of the geometrical and mechanical properties of the model is often a coarse approximation
and for many applications a periodic assumption is better suited. The proposed numerical techniques have been
extended to periodic models in [159] with stochastic loadings [158] or stochastic constitutive parameters [174].

The main purpose of this section is to show that, when the entire domain, or some parts of it, satisfy invariance
properties, the numerical techniques proposed in section 2 can still be used on a reference cell, as long as the proper
integral transform is applied on the unknown fields and on the loads. In particular, this means that restrictions on the
invariance of the domain do not imply restrictions on the loads. Note that the procedure which is described below
corresponds to the Fourier transform when time-dependent problems have been transformed to the frequency domain,
using an argument of invariance with respect to time. Of course, these techniques can only be applied for linear
problems.

5.1. General space-wavenumber transform

In order to give a general overview of these techniques, the general framework of infinite groups of isometries
will be used. Let T be a group of isometries through which the domain and the parameters are left unchanged (T =

{τ : Ωt → Ωt/τ(Ωt) = Ωt; τ(m) = m}). Hence, domain Ωt can formally be decomposed as a product Ωt = Ω̃t × ΩT ,
where Ω̃t is the generator (the cross section for 2.5D models or the generic cell for periodic ones) and ΩT is the set
of indices of T . For 2.5D models, ΩT is the set of coordinates along the invariant axis, namely the real line R. For
periodic models, it is the set of cell indices, namely Z.

Using this framework, the expression of ũ, the integral transform of any field u with respect to the space variables
belonging to ΩT , is then given by:

ũ(̃x,k) =

∫
ΩT

u(̃x + xT )ei〈k,xT 〉dxT , x̃ ∈ Ω̃t, (36)

where k is the wavenumber belonging to Ω′
T
, the dual of ΩT for the duality product 〈., .〉. In particular, the Fourier

transform of u with respect to p directions {e j}1≤i≤p<n:

ũ(̃x,k) =

∫
Rp

u(̃x + x1e1 + ...xpep)ei(k1 x1+...kp xp)dx1...dxp, (37)

is obtained taking ΩT = Ω′
T

= Rp,

x̃ =

n∑
j=p+1

x je j, xT =
∑
j=1,p

x je j, 〈k, xT 〉 =
∑
j=1,p

k jx j.

The Floquet transform [175] of u for a l = le1 periodic domain defined as:

ũ(̃x,k) =
∑
n∈Z

u(̃x + nle1)einkll, (38)

is obtained taking Ω̃t = {̃x ∈ Ω/0 ≤ x̃1 < l}, ΩT = {nle1, n ∈ Z}, Ω′
T

= [0, 2π
l ], and 〈k, xT 〉 = knl (note that the Floquet

transform falls back to the Fourier transform with nl = x when the period l tends to 0).
Most of these transformations are widely used in order to solve boundary value problems on symmetric domains,

especially in the FEM [176], and their use for boundary integral equations is well known in physics [177]. In earth-
quake engineering and structural dynamics, the Fourier Transform has been associated with the BEM [154, 178],
using the analytical Fourier transform of Green’s function of an homogeneous elastic medium or that of a layered
half-space [156, 157, 173]. Fourier series for axisymmetrical or non-axisymmetrical loads on axisymmetrical domains
have been used for example in [179, 180], and in [181] within a substructuring context. The main difficulty here is the
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accurate computation of the axisymmetrical Green’s function, which does not have a closed-form solution in elasto-
dynamic problems. Axisymmetric Green’s functions for a layered half-space are presented in [182, 183]. The Floquet
Transform has been recently used to model periodic domains [184] and results given in [11, 30, 31, 32, 158, 159, 174]
are summarized here as an example of integral transform used in connection with Domain Decomposition and bound-
ary integral equations.

5.2. Invariant operators

The above mentioned integral transforms expand any field u defined on a periodic domain into a finite or infinite
set of fields ũ defined on the reference cell Ω̃t, that can themselves be extended on the whole domain Ω using the
invariance properties:

ũ(̃x + xT ) = e−i〈k,xT 〉ũ(̃x). (39)

Moreover, once the fields ũ are known, an inverse transform can be defined in order to recover the original field u:

u(̃x + xT ) =
1

(2π)p

∫
Ω′
T

ũ(̃x,k)e−i〈k,xT 〉dk. (40)

Then, using the linearity of the original equations, a boundary value problem for u, on a periodic domain Ωt and with
applied loads f, can be equivalently solved as boundary value problems for the ũ, on domain Ω̃t and with applied loads
f̃. With the invariance property (39), the problem can then be restricted to Ω̃t provided that ũ satisfies these invariance
properties on the interfaces between cells.

5.3. Domain decomposition on invariant domains

With the previously mentioned properties, equations (8-10) still apply on the reference cell, provided that the
integral transform is applied to all fields and that generalized boundary conditions (39) are satisfied by all fields on the
interfaces between cells. These generalized boundary conditions can be transformed to standard periodicity conditions
writing all fields ũ as follows:

ũ(̃x) = e−i〈k,̃x〉 û(̃x), (41)

where û satisfies standard periodicity conditions. However, this transformation will change equations (8-10) when
expressed as functions of ·̂ fields since the derivations along the invariant axis have to be applied both on û and on
the exponential term. This is actually what is done when the Fourier Transform is applied. However it is believed that
keeping ·̃ fields as unknowns is simpler and safer. Moreover, it gives the correct limit when L tends to 0 as long as
constraint (39) is accounted for.

Thus the standard domain decomposition technique can be applied on the reference cell Ω̃t and local boundary
value problems (8) and (11) on Ω̃e can be defined as long as generalized boundary conditions are satisfied by the
local fields. Thanks to the conditions satisfied by both the coupling field ũΣ and the virtual field ṽΣ, integrals on
the interfaces between cells disappear because they are of opposite signs due to the orientation of the normal vector.
Finally, equation (12) still holds adding ·̃ on all fields and performing the integral (13-15) on Ω̃ and Σ̃. The nice
feature is that the fields that have to be approximated are now supported only on bounded domains or interfaces.

The approximation of equation (12) is certainly the most difficult step since the basis functions φ̃k (̃x) or ψ̃k (̃x) have
to satisfy the periodicity conditions (39) on interfaces between cells. A way to build such a basis has been proposed in
the context of component mode synthesis [158]. The second difficult step consists in solving the local boundary value
problems (17) for ũΣ using boundary integral equation and Boundary Elements, keeping in mind that these fields have
to satisfy the periodicity conditions (39). This step is achieved using Green’s functions satisfying the same periodicity
conditions (39), either deriving the corresponding close form solution or applying the general transform (36) to the
non-periodic Green’s function. However, one should notice that the numerical approximate can show rather poor
convergence due to the singularity of the Green’s functions.
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5.4. Non-invariant unbounded interfaces

Invariant domains or subdomains are not so easy to find in nature and the scope of applicability of techniques
described in this section may not appear to be as wide as expected even when combined with domain decomposition
techniques and BEM for complex media. Nevertheless it can be argued that such techniques are able to account for the
most important physical phenomena and in particular guided waves [185, 186, 187, 188]. However these waves are
very sensitive to perturbations of the medium and the consequences of the loss of invariance have to be investigated
and improvements sought. A few guidelines are given below.

Statistically Homogeneous Random Medium. Surprisingly, for strongly perturbed domains the invariant approach is
still effective. Indeed for a domain showing random perturbations that are homogenous in space and the covariance
depending only on the separation distance, the invariant property is satisfied in a statistical sense. Then periodic
models with a period much larger than the correlation length are shown to be very good approximations of the original
model as far as ensemble averages are concerned [189, 190].

Weakly Perturbed Invariant Domains. As long as the perturbations around the perfectly invariant case remain small,
iterative solutions have been considered. In particular when the problem under consideration can be described as
an invariant domain with perturbations at some distance from the invariant interface the interaction problem on this
interface can be decoupled from the propagation problem in the medium [188, 191]. Similar techniques can be applied
when the surface is weakly perturbed or curved. This technique has been widely used in geophysics to model seismic
experiments in boreholes [178, 192, 193, 194].

Truncated Invariant Domains. The perturbation approach fails when the invariant domain is truncated since the per-
turbation is not weak -compact in the mathematical sense- and the three dimensional problem has to be studied. Some
arguments have then to be found to justify the approximation by a numerical model. Some mathematical develop-
ments have been proposed in [195, 196] whereas some numerical experiments suggest rules for such an approximation
(see [197] for the case of borehole geophysics).

6. Interaction through a moving interface

A particular problem in the interaction of a bounded structure and its unbounded environment is found when the
interface is moving. Such problems occur when road or railway vehicles interact with their supporting infrastructure.
In these analyses, a lot of emphasis has gone to physical phenomena occuring when the train speed approaches or
exceeds the Rayleigh wave velocity in the soil [25, 198, 199]. This may occur for high speed trains running on tracks
supported by soft soils and give rise to high vibrations and track displacements, affecting track stability and safety.

Early research on the subject of moving loads has lead to the formulation of closed-form solutions for loads
with constant intensity moving on an unbounded homogeneous elastic full space [200] or halfspace [201, 202, 203,
204, 205, 206]. Numerical techniques are usually required for studying problems with more complicated loading or
environment. For the particular case of a horizontally layered halfspace, the Fourier transform techniques outlined
in the previous section have been used to study the response to moving loads, thereby exploiting the translationally-
invariant character of the domain [207, 208, 209, 210]. Such solutions are particularly useful for verifying numerical
solutions of more complicated problems.

The interaction between a moving vehicle and its supporting environment may be studied with the aim of quan-
tifying the vehicle response or the effect the vehicle has on its environment. Determining the vehicle response is
important e.g. for the study of passenger comfort, stability of railway vehicles [199], risk of derailment, and loading
of vehicle components, whereas the response of the supporting infrastructure is of interest for track and road de-
sign [160] and environmental problems of ground-borne vibration [18, 19, 20, 22, 23, 24, 26, 27, 29, 30, 211] and
noise [16, 21, 212, 213, 214]. The focus of the study will determine the detail of modeling in both structures, as well
as the kind of excitation mechanisms considered. The total load applied by the vehicle on its environment can be
decomposed into a static load component and a dynamic load component. As the vehicle is moving, the static load
component also becomes a dynamic load. The static moving load generally dominates the response of the track or
the road as well as the soil in its immediate vicinity. In the usual case where the vehicle speed is below the wave
velocities in the environment, the environment displays a quasi-static response traveling with the vehicle. For the
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dynamic response of the vehicle and problems of ground-borne vibration and noise in the environment, however, the
dynamic load component is to be considered. In the case of railway traffic, dynamic train-track interaction results
from several excitation mechanisms, such as the spatial variation of the support stiffness and the wheel and track
unevenness [212, 215, 216]. Due to its irregular nature, track unevenness is usually modeled as a stationary random
process.

Since line infrastructure such as roads and railway tracks is generally characterized by a regular geometry, the tech-
niques outlined in the previous section are well suited to analyze the dynamic interaction between the infrastructure
and the underlying unbounded layered soil [156]. Often, the supporting infrastructure is assumed to be translationally-
invariant. This assumption also holds in the case where the infrastructure has a periodic geometry (e.g. classical bal-
lasted railway tracks) and the wavelength in the system is sufficiently large compared to the period. Because of their
high computational efficiency and relatively modest modeling effort, techniques for translationally-invariant domains
have been applied by a large number of researchers to study dynamic train-track interaction [199], ground-borne
vibration due to railway traffic at grade [24, 26, 166, 170, 217] and railway traffic in tunnels [167, 168, 171, 218].
As stated earlier, alternative methods based on the FEM require appropriate procedures [219] to account for the un-
bounded domain and to avoid spurious reflections at the boundaries. Although translationally-invariant models may
be used for studying low-frequency ground-borne vibration due to railway traffic, they are not sufficient for studying
the dynamic track response at higher frequencies for track structures exhibiting periodicity. In this case, the previously
discussed Floquet transform may be applied [30, 32, 220]. Note that the full non-linear train-track-tunnel interaction
has been proposed in [221], using the aforementioned compliance formulation in the time domain. In order to prevent
instabilities to develop a regularization method is also proposed.

A brief recapitulation of numerical techniques for analyzing the interaction of bounded structures with an un-
bounded environment is made next. Further to the assumptions previously outlined, it is assumed that i) the vehicle
is moving at a constant speed v in a fixed direction e2 and ii) the environment is translationally-invariant in the di-
rection e2. This allows for the use of a Fourier transform of all field variables in the direction e2. The discussion
is therefore limited to translationally-invariant domains and problems such as vehicles crossing transition zones are
not considered. The assumption of a constant velocity is not very restrictive since the speed of the vehicle remains
almost constant over the typical period of the dynamic phenomena at stake. Anyhow, this assumption is much less
restrictive for practical application compared to the second one on translation invariance. This considerably simplifies
the analysis as the response in the moving frame of reference is stationary when the load is stationary in the determin-
istic or stochastic sense. The response in a fixed frame of reference remains, however, nonstationary due to the load
motion. A (partial) generalization of the results for periodic domains can be found in [32]. In the following, it is first
outlined how the response of the environment to static and dynamic moving loads is analyzed. Next, it is shown how
the dynamic load component can be computed from the solution of the vehicle-track interaction problem.

6.1. Response of the environment to moving loads
It is first assumed that the load applied by the moving bounded structure (the vehicle) on its environment (the

supporting infrastructure) is known. For simplicity, a point load is considered here, so that the load position can be
written as xs(t) = ve2t. The load intensity is denoted by the vector g(t). The load distribution fe(x, t) acting on the
environment is written using the Dirac delta function δ as δ(x − xs(t))g(t). The aim is now to solve the equilibrium
equation in the subdomain Ωe with the prescribed load distribution fe(x, t). A solution to the moving load problem
is easily obtained in terms of the Green’s displacement tensor UG

e (x, x′, t − t′) of the environment. Each element
[UG

e ]i j(x, x′, t − t′) of the tensor represents the displacement at the position x′ in the direction e j due to a unit impulse
load in the direction ei at time t′ and position x. Note that a closed-form solution for the Green’s displacement tensor
is generally not available for most environments of interest but it is formally defined in the frequency domain by
equations (19) and (20). The solution for the displacement field ue(x, t) is found as follows:

ue(x, t) =

∫ t

−∞

∫
Ωe

UG
e (x, x′, t − t′)fe(x′, t′) dx′ dt′. (42)

Introducing the load distribution fe(x′, t′) = δ(x′ − xs(t′))g(t′) eliminates the integration with respect to space:

ue(x, t) =

∫ t

−∞

UG
e (x, xs(t′), t − t′)g(t′) dt′. (43)
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Due to the translationally-invariant character of the environment Ωe in the direction e2, the Green’s displacement
tensor UG

e (x, x′, t − t′) is equal to UG
e (x̃, x̃′ + x′2e2 − x2e2, t − t′) with x̃ = x1e1 + x3e3:

ue(x, t) =

∫ t

−∞

UG
e (x̃, x̃s + vt′e2 − x2e2, t − t′)g(t′) dt′. (44)

By applying first a Fourier transform with respect to x2 and next a Fourier transform with respect to the time t, the
following expression is derived from equation (44):

ũe(x̃, k2, ω) = ŨG
e (x̃, x̃s,−k2, ω)g(ω − k2v), (45)

where ŨG
e (x̃, x̃′, k2, t− t′) denotes the Fourier transform of the Green’s tensor UG

e (x̃, x̃′+ x′2e2− x2e2, t− t′) with respect
to (x′2 − x2). In equation (45), the shift between the frequency ω− k2v at the source and the frequency ω at the receiver
gives rise to the Doppler effect. An inverse Fourier transform allows obtaining the displacement field in the frequency
domain:

ue(x, ω) =
1

2π

∫
R

ŨG
e (x̃, x̃s,−k2, ω)g(ω − k2v)e−ik2 x2 dk2. (46)

Equation (46) is usually preferred over equation (44) because the techniques of the previous section for translationally-
invariant domains offer a solution for the Green’s tensor in terms of the wavenumber k2 and the radial frequency ω.

A similar expression can be derived for the Fourier transform of the displacement field u′e(x̂, t) ≡ ue(x̂ + vt, t) in
the moving frame of reference x̂ = x − vte2 starting from the evaluation of equation (44) at x = x̂ + vte2:

u′e(x̂, ω) = C(ω)g(ω), with Ce(ω) =
1

2π

∫
R

ŨG
e (x̃, x̃s,−k2, ω + k2v)e−ik2 x̂2 dk2, (47)

where Ce(ω) represents the compliance of the environment. This shows that the Doppler effect will not be observed
in the moving frame of reference but that the compliance depends on velocity and the frequency.

6.2. Interaction between the moving bounded structure and the unbounded environment

In problems of ground-borne vibration due to railway traffic, the dynamic interaction between the vehicle and the
track needs to be considered in order to compute the intensity of the moving loads. In this case, the bounded structure
Ω is the vehicle and the interface Σ between the bounded structure and the environment is moving in a fixed frame of
reference. The interface Σ usually consists of a finite set of contact surfaces through which the vehicle interacts with
the supporting infrastructure. In the following, it is assumed that the contact surfaces do not depend on time and are
small, so that they can be approximated by contact points. This implies that a perfect, time independent contact is
considered, excluding e.g. occurrence of loss of contact between the vehicle and the track. In the expressions, a single
contact point is considered, as would be the case when a single axle model is used for the vehicle. The results are
easily generalized for the case of multiple contact points [26, 187, 222, 223]. A more general formulation considering
finite sized contact surfaces is found in [187].

The position of the single contact point in the fixed frame of reference is time dependent and equal to xc(t) = ve2t,
whereas in the Galilean frame of reference x̂ = x − vte2 that follows the vehicle, the position x̂c = 0 is independent
of the time t. Since the contact between the vehicle and the supporting infrastructure is assumed to be perfect, the
following compatibility equation can be written in the moving frame of reference:

ue(x̂c, t) + uw/r(x̂c + vte2) = u(x̂c, t), (48)

where u(x̂c, t) is the displacement of the vehicle at the contact point xc(t) and uw/r(x̂c + vte2) represents the combined
wheel and rail (or road) unevenness at the position of the contact point. This equation, formulated in the frequency
domain, is used to calculate the unknown load intensity g(t). For a linear vehicle model, a linear relation between the
displacement at the contact point uv(x̂c, ω) and the load intensity g(ω) can be derived as in equation (23):

u(x̂c, ω) = −C(ω)g(ω), (49)
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where Cv(ω) is termed the vehicle compliance and the minus sign on the right hand side is due to the convention where
the load intensity g(t) is chosen positive when acting in the positive direction on the supporting infrastructure. In the
particular case of translationally-invariant structures, a similar relation is derived from equation (47). By introducing
equations (49) and (47) in the compatibility equation (48), the following expression is derived for the Fourier transform
of the load intensity g(ω):

[Cv(ω) + Ce(ω)] g(ω) = −
1
v

ũw/r

(
x̃c,−

ω

v

)
, (50)

where ũw/r (x̃, k2) is the Fourier transform of uw/r(x) with respect to x2. The combined unevenness ũw/r (x̃, k2) is
evaluated at a wavenumber k2 = −ω/v, showing that unevenness with a wavelength λ2 = 2π/k2 leads to excitation
at a radial frequency ω = 2πv/λ2. Furthermore, equation (50) shows how the load intensity g(ω) depends on the
vehicle and track compliance, respectively. In the case of road traffic, the vehicle compliance is usually much larger
than the road compliance, so that the latter can be disregarded in the calculation of the dynamic vehicle loads. In the
case of railway traffic, however, both terms have a similar order of magnitude and equation (50) allows accounting for
interaction phenomena such as resonance of the unsprung mass on the track. Equation (50) has been used recently by
many researchers studying ground-borne vibration due to railway traffic with track models either derived following
the techniques outlined in the previous section [26, 187, 222, 223] or using FEM models involving a finite part of
track [23].

7. Interaction through multiple interfaces

The last issue addressed in this paper is the cross-interaction between many structures through a common linear
elastic environment. Several of the aforementioned methods can be used, simply considering the generic structure as
a set of disconnected sub-structures. The only limitation is then the computational cost, related to the boundedness
in space of the set of substructures. This approach has been used in particular to study the interaction between the
geological site and the buildings in a city by means of pure FEM [224, 225], FEM-BEM coupling [14, 35, 226, 227,
228], or the interaction of a large structure with attached small resonant objects [229]. Periodic models such as those
presented in section 5 have been used to extend these analyses to an infinite number of structures [7]. Yet, these
approaches often yield unrealistic results since wave propagation in periodic wave guides is strongly modified by the
presence of small perturbations [230, 231]. This major drawback of periodic models can be reduced accounting for
larger cells incorporating a natural variability. This leads to more reliable results, both in terms of mean response and
fluctuation levels [174].

When the number of substructures becomes very large and both their location and dynamic properties are highly
uncertain, deterministic numerical simulations are extremely expensive and bring little insight into the physical phe-
nomena at stake. Theoretical models have recently been developed and have proven to be very effective in those
cases. A deterministic homogenization technique has been proposed in [232, 233], but statistical methods are often
preferred. As far as the interaction between a large structure and a large set of local resonators is concerned, a struc-
tural fuzzy model has been proposed in [234]. Coming back to the formalism presented in section 2, the set of random
oscillators plays the role of a random linear environment. This leads to a stochastic model for the dynamic stiffness
matrix Ke(ω), which however shows only short range coupling. More recently, methods based on the Ward Identity
have proven to be quite effective as long as no localization occurs [235].

When applied to the interaction of a random collection of structures with an elastic environment, general theoreti-
cal methods for wave propagation in random media can be used [236, 237, 238, 239, 240, 241]. The first step consists
in analyzing the scattering properties of each individual structure. The approach used in section 2 can be used, and
it has been shown in [227] that the total cross-section S and the scattering cross-section S s are proportional to the
imaginary parts of the equivalent forces and dynamic stiffness given in equations (15) and (16):

piS = ω=
{
Le(ω; v∗Σe)

}
, piS s = ω=

{
Ke(ω; vΣe, v∗Σe)

}
(51)

where ∗ indicates the complex conjugate, ={·} the imaginary part, and pi = ρcv2 the power surface density of the
incident wave of speed c and velocity amplitude v along the wave front. In addition, the local interaction problem has
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been used [189] to compute the impurity operator Λ in the Lippmann-Schwinger equation:

ue = uinc +UG
e Λue. (52)

HereUG
e can be the integral operator of the elastic environment defined in equation (20), with prescribed traction on

the interface, or any other integral operator satisfying the field equations in Ωe (see [69] for a dual variational form
of this equation). When UG

e is defined by equation (20), with free surface conditions on Σ for the incident field, one
has, for each structure, an equation of the form (23) with Λ−1 = UG. Under the assumption that the impurity operator
is random, the combination of the average of (52) and the fluctuation around this average leads to the deterministic
Dyson equation, that yields the value of the mean field ue:

ue = uinc +UG
e Mue, M = PΛ(I −UG

e (I − P)Λ)−1), (53)

with P and I are the expectation and identity operators, respectively. Similar developments for the correlation lead to
the Bethe-Salpeter equation. However, these equations are formally defined as infinite sums, with possibly divergent
series of operators, so that the truncation of the series may be unstable. Yet, in the context of elastic waves, the
approximation of these equations using the Foldy [242] and the Ladder approximations have proven to compare
effectively with full numerical models [189, 190, 227]. A numerical approximation using the polynomial Chaos
expansion has also been proposed in [243], as well as methods based on Radiative Transfer approaches [244].

8. Conclusion

This review paper aimed at showing that the important developments made during these past two decades in the
field of interaction between structures and their elastic environment can be cast in the general framework proposed
in section 2. The main interest of this framework is to be independent of the numerical technique at stake in each
subdomain: FEM, BEM, series expansions or analytical developments. In addition, it has been efficiently extended
to account for randomness (section 4), non-linear structure (section 3) and unbounded (section 5), moving (section 6)
and multiple (section 7) interfaces. Several applications of these techniques in different fields have also been reported,
showing its high versatility in engineering. Finally, it is worth noticing that it can be extended to fluid-structure
interaction, especially when a Lagrangian approach is chosen (as proposed in [1]).

This approach also shows some downsides. The first criticism to be addressed concerns the decomposition be-
tween the structure and the environment, which is somehow artificial. Although well justified in many cases, especially
in fluid-structure interaction, this decomposition can be considered as useless from a numerical point of view. Indeed,
a global FEM model for the linear or non-linear dynamic analysis is a quite valuable option using modern commercial
FEM codes and computers.

The second criticism, somehow related, is that the proposed substructure method has been fostered by the devel-
opment of BEM methods to account for unbounded environments. Yet, even though many researchers have tried in
the nineties to rise the BEM as an alternative to the FEM, it turned out to be competitive (in terms of efficiency as well
as software availability) only in specific fields, among which linear dynamic problems in unbounded domains. The
recent development of multi-pole solvers for harmonic problems is a recent attempt to reach the efficiency of domain
decomposition solvers in the FEM community [245]. Finally, the development of the Perfectly Matched Layers has
also weakened the superiority of the BEM to account for radiation conditions at infinity [55], especially for transient
analysis and when coupled with Spectral Elements [246, 247]. To the authors’ knowledge, the BEM cannot compete
for this type of application especially when the medium is strongly heterogeneous. But the FEM also has its own
limitations, for example in terms of efficiency and accuracy when coupling Spectral Elements to standard non-linear
FEM codes or accounting for randomly heterogeneous media [248].

Hence, the need for coupling techniques between specific solvers for the structures (possibly standard FE) and fast
linear solvers for the environment (the SEM is a good candidate) still remains. To this end, and considering a broader
perspective, these fast solvers for the environment can be seen as generalized BEM techniques, as proposed in the
Fictitious Domain approach [249]. Volume coupling techniques [250] are also to be considered. But, in any case,
time-domain approaches will probably be favored in the future, both for non-linear analyses or for efficiency reasons
when targeting broadband transient loads.
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Finally, it is believed that the proposed formalism remains highly valuable for the physical analysis of the phe-
nomena at hand and the account of uncertainties [36], especially when adapted levels of description of the random
dimension are sought (see [140] as a first attempt). But the main challenge in the context of dynamic phenomena will
certainly be the coupling of different models at different scales with different accuracy requirements.
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equations: application to cross-hole geophysics), Ph.D. thesis, Ecole Centrale Paris, France, 1993. In French.
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