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Abstract

Competing risks endpoints are frequently encountered in hematopoietic stem
cell transplantation where patients are exposed to relapse and treatment-related
mortality. Both cause-specific hazards models and direct models for the cumu-
lative incidence functions have been used for analyzing such competing risks
endpoints. For both approaches, the popular models are of a proportional haz-
ards type. Such models have been used for studying prognostic factors in acute
and chronic leukemias.

We argue that a complete understanding of the event dynamics requires that
both hazards and cumulative incidence be analyzed side-by-side, and that this
is generally the most rigorous scientific approach to analyzing competing risks
data. That is, understanding the effects of covariates on cause-specific hazard
and cumulative incidence functions go hand in hand. A case study illustrates
our proposal.

Keywords: Competing risks, Cumulative Incidence, endpoints, bone marrow
transplant

1. Introduction

In hematopoietic stem cell transplantation (HSCT), the competing risks end-
points are usually relapse and treatment-related mortality (TRM). For each pa-
tient, we record an observation time that is the minimum of a failure time, and a
censoring time and a status indicator that capture the failure type information.
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The status indicator is generally coded as 0 if the observation is censored, 1 if
the observed cause of failure is the event of interest, and 2, 3, . . . if the observed
cause of failure arises from the competing events.

The quantities of clinical and statistical interests are the cause-specific haz-
ard and the cumulative incidence function. The former refers to the instanta-
neous rate of occurrence of a given event amongst the patients still event-free,
whereas the latter is the probability of occurrence of a given event by time, t.
In other words, the cumulative incidence denotes the expected proportion of
patients with a certain event over the course of time. It has been well docu-
mented that the analysis of the cause-specific hazard of a particular event does
not suffice for estimation of that event’s corresponding cumulative incidence
function. As a result, the Kaplan-Meier estimator, which naively disregards
censoring from competing event, is an inappropriate method for estimating the
cumulative incidence in the presence of competing events such as death in re-
mission [1, 2].

A critical point is that the effect of a covariate on the cause-specific hazard
for a particular cause can be different from its effect on the cumulative incidence
of the corresponding cause [3]. Thus, investigators are usually advised to choose
carefully that quantity which has the most relevant clinical interpretation and
importance from a biomedical perspective. However, as both the cause-specific
hazard and cumulative incidence provide particular insights, this advice might
be too restrictive in practice and lead to difficulties in interpretation and study
planning.

Competing risks endpoints are commonly analyzed by using proportional
cause-specific hazard models and/or proportional subdistribution hazards mod-
els. The first approach requires that each cause-specific hazard follows a Cox
model [4, 5, 6]. The second approach, also known as the Fine–Gray model, is
also a Cox model, but for the subdistribution hazard [3] attached to the cu-
mulative incidence [7]. In the sequel, we reserve the term Cox model for Cox
regression on the cause-specific hazard (CSH), and we use Fine-Gray regression
for proportional hazards modeling of the subdistribution hazard (SH).

Often only one set of analyses is reported, either cause-specific hazard or cu-
mulative incidence. When both sets of analyses are reported, the interpretation
rarely connects the results. The aim of this paper is to offer practical guidance
on how to synthesize findings across causes. Crucial points are:

1. An important issue when simultaneously conducting all of the analyses
mentioned above is that under one of the popular model choices, the other
model will be misspecified. In other words, if a Cox model is postulated
for the event of interest and the competing event, the proportionality
assumption of a Fine–Gray model for the event of interest may not hold
and vice versa [8, 9]. We advocate a practical approach to addressing such
misspecification by including covariate time interaction terms, as originally
suggested in [7].
This singular setting, often encountered in day–to-day data analysis, re-
quires some guidance for use and interpretation of these models. Such
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issues have not been addressed in previous overview papers [2, 10, 11, 12].

2. The presentation of the results may also lead to confusion in interpreta-
tion. Often, the analyses of cause-specific hazard and cumulative incidence
are reported side-by-side, simply as hazard ratio or HR, without clearly
distinguishing between the two approaches [13, 14, 15]. This underlines
a common misconception that the two models are essentially the same
and capture the same information. We thus suggest a terminology for
each model as recently advocated in the analysis of epidemiological data
by [16].

3. Although originally proposed for the summary analysis of a single event
of interest, it is now not unusual that Fine–Gray models are fitted for
each of the competing events [17, 18, 12]. However, Fine-Gray models
cannot generally hold simultaneously for all causes if one postulates such
models at all time points. Importantly, it is possible that such models
may hold over restricted time ranges, which has practical implications for
studies with limited longitudinal follow-up. That is, the models may hold
simultaneously up to the longest follow-up time. For situations where
non-proportionality is evidence, covariate time interaction terms may be
employed to improve model fit.

While we offer guidance on how to deal with these issues, we also note that there
appears to be no final consensus on how to analyse competing risks endpoints.
In this paper, we argue that a complete understanding of the effect of prognos-
tic factor on competing risk endpoints requires modelling both cause-specific
hazards and cumulative incidences side-by-side.

2. Worked example: MAC versus RIC

For ease of presentation, the formal definition of the hazard functions and
the proportional hazards regression models for the cause-specific hazard and
cumulative incidence function are deferred to the supplementary material.

We consider data from the EBMT acute leukemia working party comparing
outcomes from a reduced intensity conditioning regimen (RIC) in the HLA iden-
tical hematopoietic stem cell transplantation (HSCT) with those after myeloab-
lative conditioning regimen (MAC) in patients with acute myeloblastic leukaemia
(AML) over 50 years of age. With this aim, outcomes of 315 RIC HSCT recipi-
ents were compared with those of 407 MAC HSCT recipients [13]. We begin by
focusing on prognostic factors for Relapse. The competing endpoints are thus
Relapse (n=182) and TRM (n=164), with 376 patients censored over 2 years
of follow-up . The main prognostic factor in these analyses is the status of the
disease at the time of transplant. The majority of patients achieve remission be-
fore transplantation but some diseases are resistant to chemotherapy so patients
are transplanted in the refractory or relapse phase of the disease (referred to as
advanced status). The covariates of clinical interest considered in this example
are the conditioning regimen (MAC (56%) vs RIC (44%), as well as the disease
status at transplantation (Other (72%) vs. advanced status (28%)).
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Figure 1: Cumulative hazards of relapse (top) and TRM (bottom) for the binary covariates
treatment (left) and disease status (right)

A proportional hazards regression model for both the CSHs and the SHs will
be employed for the univariate and multivariate analyses, i.e. including regimen
and status at transplant. The estimated effects of regimen and disease status
are summarized in Table (1) and Table (2), using the notation Cause-Specific
Hazard Ratio (CSHR) and Subdistribution Hazard Ratio (SHR).

Cumulative cause-specific hazards for both endpoints as well as the cumu-
lative incidences are displayed in Figures (1) and (2) respectively. The reason
for displaying these curves is to facilitate the interpretation of the effect of a
covariate on the cause-specific hazard or the cumulative incidence.

2.1. Goodness of Fit

Both the Cox model and the Fine-Gray model rely on the key assumption of
proportionality of CSH or SH. It is assumed that the CHSR (or SHR) does not
depend on time. The alternative to the proportional hazards (PH) assumption
is to allow the hazard ratio to vary over time. This can be checked by various
methods, as described by [6, 19, 20].

Using Schoenfeld residuals, the PH assumption of the CSH of relapse was
met for treatment (p=0.39) and for status at transplantation (p=0.17). On
the contrary, the PH assumption of the CSH of TRM was met neither for the
treatment (p=0.02) nor for status at transplantation (p=0.01). However, the
regression parameter estimates can be interpreted as the average effect on the
rate of TRM. In depth study of the time-dependent effect with CSH can be
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Figure 2: Cumulative incidences of relapse (top) and TRM (bottom) for the binary covariates
treatment (left), and disease status (right)

found in [21]. The cox.zph function was employed with multivariate models
including treatment and status at transplantation.

Checking the proportional assumption for a Fine–Gray model is seldom done
but can be conducted using the log minus log of subdistribution hazard or using
Schoenfeld residuals tailored for the subdistribution hazards, as described in [7].

If the PH assumption is not met for a given covariate, stratification on this
factor is advisable if the effect on this variable on the competing endpoint is not
of prime interest. This has been recently extended to the Fine–Gray model [22].
In addition to stratification, one may include time by covariates interaction
terms, which enable the testing of covariate effects in the context of regression
modelling, unlike stratification.

The PH assumption for the Fine–Gray model was investigated by testing for
time by covariate interaction in a multivariate analysis. The PH assumption
for the SH of relapse was met for both covariates (e.g. no significant time by
treatment interaction, nor time by status at transplantation interaction). On
the contrary, the PH assumption for the SH of TRM was not met for the status
at transplantation (borderline significant p=0.05).

2.2. MAC VS. RIC

The RIC regimen is significantly associated with an increase in the rate of
relapse (CSHR 1.56, 95% confidence interval [1.16; 2.10]) while it significantly
decreases the rate of TRM (CSHR 0.50, 95% confidence interval [0.36; 0.71]).
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These results are in line with those displayed by the cumulative incidence analy-
ses. Indeed, the RIC regimen increases the probability of relapse (SHR 1.83, 95%
confidence interval [1.36; 2.45]) while reducing that of TRM (SHR 0.50 [0.35;
0.68]).

The CSHRs for the two competing events are in opposite directions. This
facilitates the interpretation of the impact of treatment on the cumulative in-
cidence of relapse. Indeed, a higher rate of relapse for RIC patients associated
with a reduced rate of TRM implies that we will observe more relapse in the
RIC group at the end of the study. Moreover, as both the cause-specific and
the cumulative incidence analyses are consistent with each other, we can in-
terpret the regimen effect on the cumulative incidence of relapse as an actual
effect (without being necessarily causal), and not as an indirect effect on the
competing event.

2.3. Disease Status

Patients having advanced disease have a higher rate of relapse (CSHR 3.70 [2.77;
4.96]) and also a slightly elevated (not statistically significant) rate of TRM
(CSHR 1.30 [0.92; 1.82]). Advanced disease status also displays a strong ef-
fect on the cumulative incidence of relapse (SHR 3.20 [2.40; 4.27]) but a rather
small non-significant effect on the cumulative incidence of TRM (SHR 1.07 [0.75;
1.51]).

Both CSHRs are greater than 1. Such unidirectional treatment effects on
the CSHRs is the most difficult situation to interpret in terms of cumulative
incidence functions[16, 23]. Because the effect of disease status on the CSHR of
relapse is so strong (Figure (1)), it appears that the direct effect of disease status
via the CSHR of relapse may be the primary reason for the large differences in
the corresponding cumulative incidence functions.

2.4. Multivariate analyses

Results of the multivariate analyses i.e., including regimen and status at
transplant, are displayed in Table (2) and are in agreement with those from
Table (1), but with tighter confidence intervals.

Finally, we recall that the case study is not a randomized experiment so
some confounders are present.

3. Discussion

The current proposal supplements previous works on the analysis and the
reporting of competing endpoints [2, 10, 11, 12, 24, 16]. When analysing the
effects of prognostic factors on competing risk endpoints, we suggest using the
Cox model and Fine-Gray model, presenting the results for all causes side by
side. This was illustrated in a recent data set where insights from the different
models were connected and reconciled in a unified interpretation.

From a practical point of view, if a particular endpoint is of clinical interest,
we recommend:
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• Using a distinct terminology for each model of the hazard ratio namely
CSHR for Cox model and SHR for Fine–Gray model

• Reporting all the CSHRs

• Reporting the SHR for the event of interest and the SHR for the competing
event

• Presenting the results in a unified interpretation, so as to connect and
reconcile results from the two sets of models

• Explicitly checking the PH assumption for Cox and Fine–Gray models

• Providing plots of all cumulative incidences for categorical variables, in
order to better understand whether the effect of such factors on the sub-
distribution hazard ratio of a particular endpoint is either direct (e.g, on
the cause-specific hazard ratio of that endpoint), or indirect (e.g., on the
cause-specific hazard ratio of competing endpoints), or both direct and
indirect

If there is more than one competing event, and the research question focuses on
one event of interest, the competing causes of failure may be aggregated together
in a single endpoint to simplify the analysis. We have not detailed other non-
proportional hazards regression models for the cause-specific hazard and the
cumulative incidence function which have been proposed for analyzing compet-
ing risks data, owing to their lack of use in real applications. A comprehensive
discussion of such models can be found in [10, 21, 25, 26].

Further details on including time-dependent covariates in proportional haz-
ards models for competing risks data, which has been used in practice, may be
found in [27].
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Table 1: Estimated cause specific hazard ratio and subdistribution hazard ratio
for Relapse and TRM using univariate regression model.

Cox: cause specific hazard ratio
Covariates Relapse TRM
MAC vs RIC 1.56 [1.16; 2.10] p < 10−3 0.50 [0.36; 0.71] p < 10−3

Status(other vs advanced) 3.70 [2.77; 4.96] p < 10−3 1.30 [0.92; 1.82] p = 0.13

Fine–Gray: subdistribution hazard ratio
Relapse TRM

MAC vs RIC 1.83 [1.36; 2.45] p < 10−3 0.50 [0.35; 0.68] p < 10−3

Status (other vs advanced) 3.20 [2.40; 4.27] p < 10−3 1.07 [0.75; 1.51] p = 0.71
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Table 2: Estimated cause specific hazard ratio and subdistribution hazard ratio
for Relapse and TRM using multivariate regression model.

Cox: cause specific hazard ratio
Covariates Relapse TRM
MAC vs RIC 1.46 [1.09; 1.96] p < 10−3 0.50 [0.36; 0.70] p < 10−3

Status (other vs advanced) 3.62 [2.70; 4.85] p < 10−3 1.34 [0.95; 1.88] p = 0.09

Fine–Gray: subdistribution hazard ratio
Relapse TRM

MAC vs RIC 1.79 [1.33; 2.41] p < 10−3 0.49 [0.35; 0.68] p < 10−3

Status (other vs advanced) 3.17 [2.37; 4.23] p < 10−3 1.09 [0.77; 1.55] p = 0.60
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