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Abstract. A comparative study of the low temperature conductivity of an ensemble of multiwall carbon nanotubes and

semiconductor nanowires is presented. The

quasi one-dimensional samples are made in nanoporous templates
electrodeposition and CVD growth. Three different structures

by
are studied in parallel: multiwall carbon nanotubes,

tellurium nanowires, and silicon nanowires. It is shown that the Coulomb blockade regime dominates the electronic transport

below 50 K,

together with weak and strong localization effects. In the Coulomb blockade regime, a scaling law of the

conductance measured as a func- tion of the temperature and the voltage is systematically observed. This allows a single
scaling parameter a to be defined. This parameter accounts for the specific realization of the “disorder”, and plays the role
of a fingerprint for each sample. Correlations between a and the conductance measured as a function of temperature and
voltage, as a function of the perpendicular magnetic field, and as a function of the temperature and voltage in the localized
regime below 1 K have been performed. Three universal laws are reported. They relate the coefficient a (1) to the
normalized Coulomb blockade conductance Gr (), (2) to the phase coherence length /,(a), and (3) to the activation energy
E.(a). These observations suggest a description of the wires and tubes in terms of a chain of quantum dots; the wires and
tubes break into a series of islands. The quantum dots are defined by conducting islands with a typical length on the order
of the phase coherence length separated by poorly conducting regions (low density of carriers or potential barriers due to
defects). A corresponding model is developed in order to put the three universal laws in a common frame.

1 Introduction

The study of electronic properties of nanowires or nan-
otubes is an active field of research and many questions
are still open regarding the reproducibility of the transport
parameters from one sample to the other and consequently
the ability to massively integrate such objects into efficient
nanoelectronic devices. Since a couple of vacancies or a
single ion are able to trap electrons, a good single electron
transistor should be controlled at the scale of any topolog-
ical defects and any inhomogeneous charge distribution.
However, the disorder is often used in order to create, nat-
urally and randomly, a chain of quantum dots [1]. The rea-
son usually invoked [1,2] is that small defects (topological,
chemical, etc.) induce strong charge inhomogeneities. The
consequence is that some small highly conducting regions

(Q. dots) are separated by poorly conducting ones
(tun- nel barriers). Pictures of such chain of quantum
dots have been nicely imaged by scanning probe
techniques [3-5]. The aim of this paper is to report a
set of empirical laws observed about transport
properties in such nanostruc- tures, and to interpret
them within the model of a chain of quantum dots.

In disordered nanostructures, the role of defects is
not easy to measure since the thermodynamic limit is
not necessarily reached for a given sample. Important
quantitative variations of the transport parameters are
usually observed from one sample to the other even if sam-
ples are produced within a well-defined fabrication pro-
cess [3,6-16]. Since one sample is a specific realization of
a statistical distribution of defects (called “disorder”), the
whole distribution can be known by measuring a statisti-
cal ensemble of samples. In the study reported here, we use
a template synthesis technique [17], in order to produce



large enough numbers of samples with different materi-
als. Multiwall carbon nanotubes (CNT), Te nanowires,
and Si nanowires are studied in parallel. Some controlled
fabrication parameters (sizes, nature of the wire, nature
of the contacts) have been modified, and the variations
are hence added to the unknown distribution of structural
topological and chemical disorder defined over the ensem-
ble of samples. The goal is to access the statistical distri-
bution of the electronic transport properties, in order to
extract some general behavior related to disorder.

Fortunately, in the case of carbon nanotubes (see for
example [18-24]), some of the main physical properties
have been intensively studied in the last decade. In the
present study, these properties (see below) are systemati-
cally observed, not only for CNTs, but for all samples of
the statistical ensemble. Three main effects are observed
and described: (1) Coulomb blockade effects, (2) weak lo-
calization like effects and (3) transition to an activated
regime at low temperatures.

(1) Due to the small diameter, the disorder and the
low carrier density, the screening of the electronic charges
is poor, and Coulomb interaction occurs between carriers.
This Coulomb blockade effect is observed and quantified
experimentally through the so-called “zero bias anomaly”
profile of the conductance measured as a function of the
bias voltage for various temperatures (Fig. 3). A scaling
law is observed (the effect of the bias voltage scales with
that of the temperature) that allows a scaling coefficient
a to be measured. Each sample is described by a single
parameter a, which plays the role of a fingerprint.

(2) The weak-localization effect (or an analogous ef-
fect) is also observed systematically in carbon nanotubes
and nanowires [14,23,25-37]. Weak localization (WL) is
a well-known effect [38-40] due to the interference of an
electron with itself during a random walk, and is described
in terms of perturbative quantum correction to the Drude
conductivity. The main parameter that governs the WL
effect, the phase coherence length /,, can be measured
by applying a perpendicular magnetic field to the sample.
However, the presence of WL (perturbative correction to
the conductivity) together with Coulomb blockade (non-
perturbative treatment needed) is puzzling, and this ques-
tion will also be addressed in this paper. The coefficient
Iy is also correlated to a and shows a second universal
behaviour (Sect. 3).

(3) Finally, the behavior of the conductivity at very
low temperatures (typically below 1 K) shows an abrupt
transition to a strong-localization like effect where the con-
ductivity is driven by an activation process. The activation
process allows another well-defined parameter to be mea-
sured which is the activation energy E,. It is shown that
this transition, observed as a function of temperature, is
destroyed by applying a critical bias voltage V. [41], and
the Coulomb blockade regime is recovered at higher volt-
age. The parameters E; and V, are also correlated to the
coefficients a (Sect. 4).

After presenting the sample fabrication in Section 2,
the three kinds of measurements described above are
reported and the corresponding empirical laws are dis-

cussed. The challenge is to find a common picture able
to describe the three types of the observed behaviors.
The simplest picture of Coulomb blockade is given for a
system composed by a small Coulomb island separated
by two capacitive junctions. The conduction electrons
have to overcome the Coulomb energy due to the electric
charging of the island. Beyond this, however, some more
general approaches have been developed in order to de-
scribe Coulomb blockade through tunnel barriers in disor-
dered environment. Indeed, generalization of the concept
has been developed in the context of single electron de-
vices [42], extended junctions [43], disordered systems [44],
and multiwall CNTs [45]. In this picture, the active part
of the device is a tunnel junction connected to the rest
of a circuit. During the tunneling process, the electron,
electrically screened in the first contact, should recover a
screening cloud after tunneling, and this process costs an
amount of energy defined by the impedance of the rest of
the circuit. In a more realistic picture (according to pre-
vious observations [3-5]), due to charge inhomogeneities
within the wire or tube, the quasi 1D system is broken
into conducting islands, or quantum dots, separated by
poorly conducting regions, or potential energy barriers.
In this case, WL effect occurs inside the quantum dots,
and Coulomb blockade is generated at the interfaces be-
tween the islands and averaged over many junctions. The
consequences of the chain of quantum dots, in terms of
transport properties, are described formally in the last
section (cf. Sect. 6) in relation with the observed effects.

2 Sample fabrication

The samples are obtained by the template synthesis
method in which the growth of the wires is performed in-
side the pores of a membrane. The diameter of the wires is
calibrated by the diameter of the pores (typically around
50 nm), and the length is fixed by the thickness of the
nanoporous membrane (typically adjusted at 1 pm). A
first electric contact is obtained on the bottom through
the nucleation process in the electrolytic bath, and the
second contact is obtained on the top of the membrane
with the help of a second patterned metallic layer.

We will discuss three types of samples: Tellurium
nanowires(TeNW) grown and contacted by electrodepo-
sition (see Fig. 1), silicon nanowires (Si NW) and mul-
tiwall carbon nanotubes (MWCNT) grown with CVD on
electrodeposited catalysts (see Fig. 2). All samplesare ob-
tained with bottom-up growth inside a nanoporous insu-
lating membrane. The MWCNT were obtained by chem-
ical vapour deposition (thermal CVD) of acetylene at
640 °C, after the electrodeposition of Ni or Co catalyst
inside the nanopores of an alumina membrane (a precise
description of the processis given in [17,22]). The Si NW
are also obtained with thermal CVD of Silane (SiH4) in
a 5% hydrogen atmosphere (a description can be found
in [37]).

The first set of samples is composed of single con-
tacted tellurium nanowires - TeNW - obtained by
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Fig. 1. (a) Sketch of a Te nanowire inside the polycarbonate nanoporous membrane. (b) Transmission microscopy of the wire.
(c) High resolution transmission microscopy. (d) View (SEM) of the top of the membrane with the typical dendritic surface

growth above the wires.

electrodeposition in nanoporous polycarbonate or alumina
membranes of diameter d = 40 nm and d = 150 nm and
a length of 6 ym. Figure 1b shows a zoom of the wire af-
ter dissolution of the membrane. The wires are polycrys-
talline (Fig. 1b) with small disorientations between grains
(Fig. 1c). No other defects have been observed. With the
electrodeposition technique [17], a single nanowire can be
contacted in situ with a feedback loop on the intermem-
brane electric potential, after depositing a thin enough Au
layer on the top. If the electrodeposition potential is main-
tained, dendritic growth are observed on the surface of the
membrane (Fig. 1d). This is the typical form of the top
contact. Both contacts are oxide-free, due to the electro-
chemical reduction at the Te interfaces during the in-situ
electrodeposition.

For the second set of samples, the contact is performed
in a second step. At the end of the CVD growth, MWCNT
or Si NW are emerging from the pores at the top of the
membrane, over a length of a couple of 100 nm. The den-
sity of CNT or NW emerging out of the top of the mem-
brane is very low and not uniform. This is due to the pres-
ence of an oxide layer at the interface between the pore and
the non-oxidized Al. In the electrolytic bath (during the
step before CVD growth), the catalyst nucleates from the
Al layer on the bottom of the wire, after the application
of the potential. The catalyst is consequently deposited in
the wires that have no, or negligibly small, oxide layer. Ac-
cording to SEM observations, some islands of a couple of
nanowires are emerging out of the membrane, from part to
part, separated by a few microns. It is consequently easy
to contact the emerging part of the CNT or NW with
a layer of Au, or any other metal (Cu, Co, Ni and Al),
through a mask, by evaporation or sputtering. Among all
wires or tubes that can be contacted in parallel during
the process, we observe (see Sect. 4) that only a couples
of wires with good ohmic contacts effectively contribute
to the signal.

3 Coulomb blockade regime

The dynamic conductance measurements G(/) = dl /dV |,

were performed with a lock-in detection bridge LR700
(using an AC current from 0.3 nA of amplitude for most
samples to 10 nA for low resistance samples), together
with a DC current / provided by a current source. The
curves G(V') plotted as a function of bias voltage are ob-

tained after calculating the voltage V = O, (G() ™" di.
The static conductance Gpc (V') as a function of voltage
is also measured directly with a nanovoltmeter in order
to identify possible frequency dependent responses. The
profiles G(V, T) are measured with temperatures ranging
from T = 300K to T = 4.2 K. The results, plotted in Fig-
ure 3, show the typical profiles of the G(V') curves at dif-
ferent temperatures, in a standard semi-log plot Figure 3a.

The R}roﬁle ls)hows two rer\l}a>r<l<alla_}_e (?(S%]sntlftl)touﬁ regimes: the

nearly zero bias regime e e Boltzmann con-
stant, and e the charge of the electron), where the conduc-
tance is a power law of the temperature (Fig. 3b):
. _ a
evhg}d_ G(T)=GrT (1)
and the high bias regime eV » kT, where the conductance
is also a power law, but a power law of the bias voltage:
. _ a
e\/hE}(TG(V)_GVV . (2)
What is significant here is that the power coefficient a
is the same in both regimes. The scaling law is valid for

all intermediate regimes (Fig. 3c): introducing the scaling
function 7, all points collapse on a unique curve

G(T, V)T~ = f(eV/KT). (3)

This scaling law is presented in Figure 4 for different sam-
ples (CNT, TeNW, and Si NW). The profile, described by
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Fig. 2. (a) Sketch of a CNT or Si nanowire inside the alumina nanoporous membrane. Lateral view of the top of the membrane
by transmission microscopy of (b) CNT, (c) Si nanowire emerging from membrane.
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Fig. 5. (Color online) Histogram of coefficients a obtained for
TeNW and CNT samples measured. The parameter a is not
directly defined by the intrinsic parameters of the samples.

the function F, is typical and systematically measured in
such samples: this is a robust structure that is obtained
whatever the type of the wire (carbon nanotubes, Te and
Si nanowires, and metallic wires), the nature and crys-
tallinity of the contacts (Co, Ni, Cu, Au, Te...) [22], the
length (300 to 6000 nm), the diameter of the wires (from

5 nm to 200 nm), and the nature of the supporting tem-
plate (polycarbonate and alumina) [23]. Note that a de-
viation from the scaling law can be observed for the Si
nanowires. The origin of this deviation deserves further
investigations, and may be related to the crystalline prop-
erties of the Si nanowires [46,47].

The histogram of the coefficient a obtained for all sam-
ples measured is presented in Figure 5. The fluctuations
for fixed experimental parameters (e.g. CNT contacted
with Ni, or CNT contacted with Co), are of the same
order of magnitude as that of the total fluctuations for
all materials (the individual distributions can hardly be
distinguished). Accordingly, the parameter a is not di-
rectly defined by the intrinsic parameters, like the band
structure or the density of states. This observation con-
firms the assumption that a is a measure of disorder. The
values found for a are in agreement with that found in
the literature for CNT measured with four terminal con-
tacts [4,16,18,19,22,23,48-55].

It is possible to go further in this analysis by correlat-
ing the main parameters of this study with the coefficient
a. The parameter Gt (see Eq. (1)) is the conductance ex-
trapolated (or measured) at T = 1 K at zero bias. The
result is presented in Figure 6. All points approximately
align in a log-log plot: beyond the singularity of each sam-
ples, a universal behaviour is obeyed by all samples as a
function of the scaling parameter a.

The law followed by the experimental points plotted
as a function of a can be fitted with a formula calculated
in the framework of the Coulomb Blockade theories of a
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Fig. 6. (Color online) Prefactor of the conductance Gr (a) for
about 100 different samples: CNT and TeNW with different

contacts (Co and Ni). Lines: fit to equation (5) with 2 and 7
junctions.

single tunnel barrier. In this model, by assuming a well
defined tunnel junction, contacted to the rest of the cir-
cuit (i.e. mainly the nanowire or nanotube), the following
expression is obtained [42,44,45]:

g~va mak ¢

eVp

Gr = Gy (k)" =
RT(z+a)

(4)

where y = o0.577... is the Euler constant and I' the
Gamma function. The formula contains two adjustable
parameters that are the resistance of the tunnel barrier
R, and the energy eV; of the junction is the Coulomb
energy (e.g. in the case of ultra-small tunnel junctions:
eV = €2/2C where C is the capacitance of the tunnel
barrier) or the thermal energy eVy = kT. This formula
is obtained identically for single electron tunneling for
ultra small junctions [42], for extended junctions [43], or
in the context of non perturbative dissipative tunneling
(environmental Coulomb blockade) [44,45]. The fit gives a
“universal” resistance of the tunnel junctions of the order
of R = 4 kQ, and a “universal” capacitance of the order
of C=10""® F.

However, this oversimplified picture of a single junc-
tion contacted to the rest of a circuit can hardly be ac-
cepted in our experimental study. In the case of a fixed
material, e.g. CNTs, we would even expect the opposite
situation: a fixed circuit impedance and a distribution of
the parameters of the tunnel junction due to different con-
tacts because we changed the nature and the crystallinity
of the contacts (from the single crystalline Co, Cu, or Au,
to the quasi-amorphous Ni) studied in reference [22]. The
chemical disorder of the junction is also varying dramat-
ically between electrodeposited Te, in which the contact
is performed inside the electrolytic bath under a reduc-
ing potential, so is consequently free of oxides, and the
CNT or Si nanowires, for which the contact is performed
in a second step after the CVD growth, with sputtering,
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parameter /. (b) Phase coherence length /,(T) as a function of the temperature. Grey line: fit to equation (8).

evaporation, or electrodeposition of metal. A universal
tunnel junction (with R = 4 kQ and C = 107" F) for
all these cases is difficult to understand.

Another picture, developed in detail in the last sec-
tion, can be proposed in terms of a chain of quantum dots
(like that observed in Ref. [5]). In this model, the resis-
tance of the junction is not an adjustable parameter but
is contained in the variable a. The averaged capacitance
C of the junctions between the quantum dots is still an
adjustable parameter.

The following formula is obtained from simple assump-
tions developed in the last section of the paper:

ez _ makg
G = (+y)a T aks
T mNa e Ec , (5)
62 mae <
Gy = mnNa 2Ec¢ ©)

with the charging energy Ec = €2/2C, and N referring to
the number of tunnel barriers (cf. Sect. 6).

The corresponding fit is presented in Figure 6 for two
values of the capacitance C, which delimited the best fits
obtained for all samples. Once C is fixed, the only ad-
justable parameter is the number N of tunnel junctions. In
this framework, the experimental universal law observed is
interpreted as the behavior of arrays of 2 to 7 tunnel bar-
riers of average capacitance between 3 to 8 aF (depending
on the sample).

4 Magnetoresistance

The conductance is also measured as a function of a per-
pendicular magnetic field H applied by a superconducting
coil. The field is ramped between 1.3 T. MWCNT and
TeNW systematically feature a positive magnetoconduc-
tance (MC) which (in magnetic field and temperature)
is in agreement with the formulas of quasi 1D weak lo-
calization [23,25,26] for diameters below 200 nm. The Si
nanowires show a smaller WL effect, or no WL at all (the

specificity of the Si nanowires will be reported elsewhere).
WL appears in a disordered metallic system, into which
electrons undergo Brownian motion due to elastic colli-
sions with defects within a loop of size smaller than the
phase coherence length /,. Weak localisation comes from
quantum phase interference effects of electron backscat-
tering [38,40]. Because the interference terms cancel when
applying a sufficiently strong magnetic field (which breaks
the time reversal symmetry), WL manifests itself as a pos-
itive magnetoconductance.

Our samples have magnetoconductive behaviour
shown in Figure 7a at several temperatures. The variation
due to the magnetic field is measured by the quantity
GWL = G(o0) — G(H), where G(o) is the saturation
value of the conductance, i.e. at a field for which the weak
localization correction is destroyed. The doted lines of Fig-
ure 7a represent the fit to the following quasi 1D WL ex-
pression [38,40]:

( \_12
1w
[T

1 é?
mln

(;WL= _

(7)

where /iy = (n/eH))"? is the magnetic length (H the
magnetic field), W diameter of the wire, e the charge

of a% electron and n &e Plan&k constant, The ad-
justable parameters are G(%) and /. At each temper-

ature, the phase coherence length /, can be extracted (cf.
Fig. 7b). The function /,(T) follows the Altshuler-Aronov-
Khmelnitskii [38,40] formula:

V- pGpL?

(M= 2 =2 ®)
where L is the length of the sample, k the Boltzmann con-
stant, D the diffusion coefficient, and Gp the conductivity
without WL correction (i.e. the Drude conductivity).
Hence, we can associate with each sample a couple of
transport parameters (a, /,(T = 4.2 K)). By representing
these couple of parameters for all the samples studied we
observed a strong correlation between a and /y: the scal-
ing exponent a is decreasing as a function of the phase
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Fig. 8. (Color online) Correlation between the phase coherence
length /y at 4.2 K and o for the 20 samples studied. The dotted
line is the Fit defined by equation (9).

coherence length. This curve can be reproduced at differ-
ent temperatures, and also presents a universal behavior.
The correlation at T = 4.2 K is shown in Figure 8. The
data fits a power law of power coefficient:

(9)

a(ly) = c4p_3

where the adjustable parameter ¢ depends on the tem-
perature. A derivation of this empirical law is reported
in Section 6, for the model of the chain of quantum dots
of typical size below /,. Unfortunately, the adjustable pa-
rameter ¢ does not give direct physical information on the
system due to numerical constants difficult to express pre-
cisely (see the discussion of Eq. (15) in Sect. 6).

It is worth pointing out that, in contrast with usual
systems exhibiting WL (e.g. in metallic samples), the con-
ductivity without WL (at saturating magnetic field) is not
the usual Drude conductivity but the Coulomb blockade
regime described in the previous section. The observation

of the WL and the description with equations (7) and (8)
is consequently not trivial. As an illustration, Figure 9
shows that the two effects, WL and Coulomb blockade,
are not independent. The conductance G(V, T, H), with
the typical zero-biasanomaly profile, is plotted at differ-
ent magnetic fields H: it can be observed that bias voltage

destroys the weak localization correction. The curves are
plotted for the two temperatures, 4.2 K and 8 K, in order
to show that the destruction is not produced indirectly
by the Joule heating (otherwise, the profiles at 8 K would
scale to those at 4.2 K at lower bias).

5 Low temperature transition

The low temperature measurements are made in a dilu-
tion refrigerator down to 50 mK. Resistance is measured
by traditional two contact lock-in detection, with AC ex-
citation between 10 and 100 pyV. A DC bias is applied in

di/dVv(usS)
6
8K 4.2K
e 127
5L
0T
y 4

0 4 8 12
V(mV)

Fig. 9. (Color online) Zoom of the conductance as a function
of bias voltage for different magnetic fields (o T to 1.2 T), at
4.2 K and 8 K.
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parallel to probe the bias voltage dependence of the re-
sistance. The response of the samples is measured by the
lock-in after having been amplified by a 10% current am-

plifier, which allowed us to probe resistance up to the G

range.

We studied the transport behavior of 6 samples at very
low temperature (cf. Tab. 1): 4 MWCNT (samples A-D) of
1 um long with a diameter D = 30 nm, one TeNW (sample
E) of 6 um long with a diameter of 150 nm, and one TeNW
(sample F) of 6 ym long with a diameter around 40 nm.
For all samples, at zero bias, we observed an abrupt transi-
tion in the electronic transport regime at a critical temper-
ature T, (Fig. 10). The transition occurs from the power
law regime previously described to an activated regime at
T < T, (see inset in Fig. 10). More precisely, the sam-
ples A,B,C,D,F showed a transition from the power law

E .
=a with E,; des-
G « T9 to an activated law G o< exp( Wi a €es

KT
ignating the activation energy. The parameter E;, is also
a characteristic of each sample (cf. Figs. 10a-10e). Sam-
ple E (whose diameter is 5 times bigger than the other
samples) shows a behavior which cannot be fitted to a
simple activation law, but has rather a profile of the form

G x< exp — ,%é (see Fig. 11). We will come back to

the reason for this difference below. The results are sum-
marized in Table 1.

The behavior of the conductance as a function of the
bias voltage at low temperature is shown in Figure 12
in a semi-log plot for samples A to F. At T > T,, the
conductance follows the scaling law reported in the pre-
vious sections. For T < T,, we systematically observed a
critical voltage V¢ below which the samples change from
the scaling law regime to an exponential dependence:

G < exp(—C(T)V). (10)

where C(T) is a function of the temperature.



Table 1. Sample description: name, material, length L (um), diameter d (nm), scaling exponent q, activation energy E,, critical

energy Ec = eVc, and transition temperature T,.

Name Material L (um) d (nm)

a E. (meV) E; (meV) T, (K)

A MWCNT 1 30 2.5 0.81 7.25 7-8
B MWCNT 1 30 2 0.82 5 5-6
C MWCNT 1 30 0.85 0.08 0.48 0.2-0.3
D MWCNT 1 30 1.2 0.45 3 4-5
E TeNW 6 150 0.17 0.04 0.18 6-7
F TeNW 6 40 1.1 0.22 1 4-5
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Fig. 10. (Color online) Conductance as a function of temperature at zero bias voltage for six samples: (a-d) 4 MWCNT
(samples A,B,C and D), (e): TeNW of 150 nm diameter (sample E), and TeNW of 40 nm diameter (sample F). Dotted line:
power law of the Coulomb blockade regime. Inset: Arrhenius plot at law temperatures (T < Tj).

The transition can be very sharp, with a jump of
at least three orders of magnitude of the resistance (cf.
Figs. 12b and 12d). The plateau observed for the conduc-
tance G = 1072 Q7' is an artifact due to the limitation
of the measurement set-up. It is important to note that
the transition is not that observed for metal - insulator
transition [56], because it occurs from a Coulomb block-
ade regime to the insulator state, as shown in the scaling
plot Figure 13. Whatever the temperature, the Coulomb
blockade regime, with the correct scaling coefficient a is
recovered below T,, under a high enough bias voltage. In

other terms, the scaling law is maintained whatever the
temperature, for high enough scaling parameter eV/kT.
Once again, in the activation regime, a strong corre-
lation appears when we measure a couples of parameters
(a, E;) for all samples studied (Fig. 13): E; follows an
increasing function of a (Fig. 14). The same trend is ob-
served for Ec = eV¢ plotted as a function of a (not
shown). An interpretation of this third universal law is
provided by the model of a chain of quantum dots of high
conductance developed in the last part of this article (see
Sect. 6). In the framework of this model, it appears that
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Fig. 11. (Color online) Arrhenius-like Plot of the conductance
of sample E (bigger diameter: 150 nm) at zero DC bias and

below T,. Dotted line: fit with the law G < exp — ET?

there exists a critical temperature T, at which the con-
ductance goes to zero. The activation energy is related
to the temperature T, through the activation law: critical
energy E; = kg T, In(7/79) where 1 is the typical measure-
ment time and 7y is the typical electronic relaxation time).
Each tunneling junction (of resistance R) enters into an
activated behavior [57,58], and gives to the sample con-
ductance an averaged activation process. In order to fit
the data, the following expression is used (see discussion
in Sect. 6, Egs. (25) and (27)):

N -1
a

Ea:N_l

(11)

exp —

The best fit is obtained for an average number of 5 junc-
tions (dotted line of Fig. 14).

The transition observed from the power law regime to
the activated one (cf. Fig. 13) could be explained by the
transition to a strong tunneling regime of the most resis-
tive junctions. In this framework, the voltage behavior of
the resistance below T, can also be understood. When a
DC bias is applied, the barrier level of each junction is
decreased. Once a critical value V¢ is reached, the sample
comes back to the scaling law regime. Another estimation
of the number of barriers existing in our sample can be ob-
tained by the ratio of the critical energy E¢c to the activa-
tion energy E, which, depending on the sample, takes the
value E¢c/E; = 5—9. These values are in good agreement
with those deduced from the universal law of Figure 6.
The correlations observed between E; and a can be fitted
to equation (11) quite well, and give a mean value of the
number of junctions around 5, which is in agreement with
the previous values.

Sample E is different, because of its 3 times big-
ger diameter (150 nm). As the diameter of the wire in-
creases, the equivalent behavior goes from a 1-dimensional
chain of tunnel junctions to a 3-dimensional one. Then,
many chains in parallel appear, and electrons have many
paths to go through the wire. Therefore, the final re-
sistance results from adding up several activation expo-

nents with d&stributed charging energies, and results in
the R=exp —
(Ea/KT) law observed.

6 Theoretical description of the quantum dot
array model

In this section we develop a theoretical model, which has
been used to fit the experimental data. We consider a ho-
mogeneous one-dimensional chain of N —1 macroscopically
identical quantum dots (see Fig. 15).

Let us first briefly discuss the main features of this
model and its relation to the experiment. First of all,
the experimentally observed suppression of the conduc-
tance with decreasing temperature and bias voltage is
attributed to Coulomb blockade in the tunnel junctions.
This assumption allows us to reproduce the main features
observed in the experiment. Indeed, at sufficiently high
temperatures and at low resistance of a tunnel junction,
R x 2mn/e?, the regime of weak Coulomb blockade is real-
ized, in which the model predicts logarithmic dependence
of the conductance on temperature. The latter is similar
to the power law dependence observed in the experiment.
At the same time at temperatures lower than certain effec-
tive charging energies the strong exponential suppression
of the conductance is expected, which is again in line with
experimental observations. Next, both in theory and in
experiment the non-linear differential conductance shows
similar behavior as a function of bias voltage. Finally, in
order to describe the magnetic field dependence of the
conductance we include the weak localization correction.

We now turn to the quantitative analysis of the pro-
posed model. The quantum dots are coupled to each other
and to the leads by N identical tunnel junctions with re-
sistance R. We also introduce a capacitance C between
neighbouring quantum dots. Provided R is sufficiently low,
namely R X 2mn/e?, the differential conductance of this
system is given by the sum of three contributions

dl 1 dIB

vV~ NR av -
The first and leading term in this expression, 1/IN R, comes
from the classical addition of junction resistances. The sec-
ond term, G\, is the weak localization correction to the
conductance, while the last term, d/ B /dV , is the inter-
action correction to the current originating from Coulomb
blockade effects. Both GW% and dI®B/dV are propor-
tional to e2R/2mn X 1 and formally supposed to be small
compared to the leading classical contribution.

Let us first consider the weak localization correction to
the conductance GWt. Provided the dephasing length /,,
exceeds the size of a single quantum dot and the magnetic
field is zero, the weak localization correction reads [59]

+ GWLy

(12)

GWL _ e* Iy

T TN d’

where /, is the dephasing length and d is the size of a
quantum dot. Note that if we introduce the length of the

(13)
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Fig. 12. (Color online) Conductance versus DC bias voltage for each of the sample A to F at different temperature below T,
in a semi-log scale. We observe for each sample a strong increase of the resistance bellow a critical voltage Vc.

sample L = N d, equation (13) coincides with the standard
result derived for diffusive metals (see e.g. Ref. [39]). Since
the temperatures in the experiment, T ;:: 1 — 2 K, are
relatively high and exceed the level spacing in a single
quantum dot 8, we can use the expression for /p derived
by Altshuler, Aronov, Khmelnitski [38]

DGpLn2 °
I¢= a # . (14)

Here a is a numerical prefactor. In order to adapt this for-
mula to the array of quantum dots we use the expression
for the diffusion constant (see e.g. [40,59]) defined by the
Drude conductivity 0 = dAW R) = 26°D/(Wdé) (W is
the diameter). Besides that, we rewrite the product GpL
in the form GpL = L/NR = d/R. Thus we obtain
n26 13
l(p = ad m . (15)

Next we turn to the interaction correction d/ B /dV . The
dwell time is defined by the expression 7p = 6?R/6. In the
diffusive limit 2mkg T rp/N, eV 7p/N X 1 and N > 1 this
correction has the standard 1/° T, 1/ e\ dependence on
temperature and voltage [39]. However, in our experiments
the opposite limit 2mkg T Tp/h, eV 1p/h ;:: 1 is realized. In

this case and for 7p » RC the correction d/ B /dV takes
the form [60]

A EN-1, n
av = mn N2 T YT omkgTRC
N eV N n N eV
2mkg T 2mkg TRC  2mkgT
x¥Y 14 n + eV
2mkgTRC  2mkgT
ieV eV
_l}! —
Y ke T | 2ks T
ieV
XY 1+ ke T (16)

where ¥Y(x) = II__t(()’(()) is the digamma function. In the limit

eV ;S2mkgT ;S n/RC equation (16) reduces to

1 WL_N—lezR
NR 1+ NRG N |7Tn

G(T) =

X In— 1 (17)
smkgTRC T1Y Y 7
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Fig. 13. (Color online) Scaling plot of the function GT ~“ as a function of the ratio eV/kT (same data as Fig. 12). Dotted line:

scaling law.

Likewise for 2mkgT ;S eV ;S n/RC we find
_ _1 WL N — 1 62R
G(V)—NR 1+NRG +—N .

|
eVRC
- .

X In (18)
As we have discussed earlier, equations (17) and (18) are
the result of the lowest order expansion in the dimension-
less parameter €?R/mn X 1. In this limit and at suffi-
ciently high temperatures and voltages (kgT, eV ;:: Ej,
where E; will be defined below, see Eq. (25)), we may
formally replace equations (17) and (18) by the following
ones:

makgT ¢
G(T) g © E. ;. (19)
e2  maeV ¢
G(v) = mnNa 2E¢ (20)

Here we defined the charging energy Ec = ¢2/2C and the
exponent
_ (N —1)e’R
%= 7INn G - NRIGWL])’ ()

1 N T T T T T
-E (meV) R
08 "

0.6 ]
o ;

0.2 f ]
S« _
QL d- 1 1 1 1
0 0.5 1 1.5 2 2.5
Fig. 14. (Color online) Activation energy Ea(a) as a function

of the scaling coefficient a for 6 samples. Dotted line: fit with
equation (11) (see text).

Although the weak localization correction GW- oc T~1/3
depends on temperature, this dependence is weak and in
the wide range of temperatures a approximately remains
constant. This result justifies the analysis of the data



Fig. 15. Model of the chain of quantum dots coupled by tunnel
junctions.

presented in Figure 6. At the same time a is sensitive
to magnetic field through the same weak localization cor-

rection GV, In the metallic limit we have NR|GW-| X 1,

N > 1 and the exponent a acquires a very simple form

e’R
a=—,
— (22)
Let us now express the dephasing length /, (15) in terms
of a. The level spacing in a quantum dot depends on its
size as § ~ 1/Npd®, where Ny is the density of states at
the Fermi level. Therefore,

(23)

lop=————,
7 a2B3(NokgT)13
where b is another numerical prefactor. Here we used the

simplified expression for a (22). This result is in agreement
with the empirical law equation (9) observed in Figure 8.
Finally, we estimate the temperature T, at which the
crossover to the activation behavior should occur. We de-
fine T, as the solution of equation G (T,) = o, where Gt
is given by equation (19). T, sets the scale of temperatures
below which the Coulomb blockade correction to the con-
ductance becomes comparable to the linear conductance

1/NR + GWL. In this way we obtain
- e1+y—1/a_

Pake (24)

a

The activation energy E; should be approximately equal
to kg T, (assuming that the prefactor In(7/79) = 1: see
last section), i.e. we can put

Ec

E o= kBTa — ;Tga e1+V—1/a. (25)
Likewise we find the critical voltage
Vo = 3¢ o7 (26)

The activation energy (25) agrees with the estimates of
the renormalized charging energy of a tunnel junction ob-
tained in references [61-63]. Our experimental data rather
suggest

e—c/a
E, ~

, 2

o (27)
where ¢ = 4, i.e. the measured activation energy is lower
than that predicted by equation (25). Two different mech-
anisms may account for this discrepancy. First, the junc-
tions in the array may have different resistances. In this

case the exponent in E, is mostly determined by the junc-
tions with lower resistances, while a is mostly sensitive to
high resistances. Therefore the activation energy turns out
to be suppressed, E, ;S e~'/@. Alternatively, additional
suppression of the activation energy may be explained if
we assume that the tunnel junctions have few channels
with significant transmission probability T, ~ 1. Accord-
ing to Nazarov [62] in this case one finds the activation
energy in the form (27) with ¢ > 1.

mally

though equations (1 20), (23), (2 e fo
]ustAF} lél ¥ the limit. (>? 1( t%ey( sae)en(l % describe ex.
perimental data quite well even for a > 1. Since the

range a ~ 1 is most difficult for theoretical studies, we
do not ¢ pletely understand why it happens. We can

om

speculate that if the junctions in the array have different
resistances one can approximately split the system into
several parts consisting of one highly resistive junction
and several low resistive ones. The low resistive junctions
form an Ohmic environment for the poorly conducting
one. The conductance of every part is then described by
the theory of Coulomb blockade in the presence of electro-
magnetic environment [64], which predicts power law de-
pendence G(T) ~ T 9. The resistance of the whole sample
is simply the sum of resistances of the wire sections, and
therefore the total conductance €T as well. More ac-

curate approach to this problem should probably rely on
the renormalization group equations formulated in refer-
ence [63].

7 Conclusion

Transport measurements of an ensemble of semiconductor
nanowires and carbon nanotubes have been performed.
The samples are obtained by electrodeposition and CVD

in nanoporous membranes. Three different kinds of sam-
ples have been measured and compared: carbon nan-
otubes, Te nanowires, and silicon nanowires. Qualitatively,
the transport parameters of all samples follow the same
profile as a function of bias voltage, temperature, and
magnetic field, whatever the material and the contacts.
The Coulomb blockade regime dominates in the temper-
ature range between about 50 K down to about 1 K.
The Coulomb blockade regime is characterized by a typi-
cal scaling law of the temperature and bias voltage, from
which a scaling coefficient a is deduced. The parameter a
describes the disorder, and is a fingerprint of each sample.
In the Coulomb blockade regime, a weak localization like
behaviour is also observed in the magnetoresistance pro-
file. These measurements allow the phase coherence length
to be measured as a function of a. Beyond, we observe that
the weak localization is destroyed at high voltage: an in-
terplay between both effects is evidenced. Finally, below

1 K (down to 60 mK), a transition to activation conduc-
tion regime is observed at low enough bias potential. The
activation energy has been measured as a function of the
coefficient a.

We have observed that the three following parame-
ters: conductance, phase coherence length, and activation



energy are universal functions of the coefficient a (in the
sense that it is valid for almost all samples measured).

In order to explain the universal laws, a theoretical
model of a chain of quantum dots has been developed.
This physical picture is supported by recent imaging ex-
periments based on scanning probe techniques showing
that nanowires or nanotubes break into a one-dimensional
chain of quantum dots [3-5] at low temperatures.

Due to charge inhomogeneities, the wire is composed
by high conducting regions separated by poorly conduct-
ing ones. Schematically, the low conducting regions are
associated with tunnel barriers, that separate high con-
ducting regions, quasi-ballistic at this scale, i.e. quantum
dots.

The problem is then to understand the consequences of
such a picture in terms of transport properties measured
in the configuration of two point contacts. The conclusion
is that the universal laws associated with the three differ-
ent regimes are indeed rather well described within this
model. The parameter a is defined in relation to the scal-
ing law of the conductance, the phase coherence length,
and the activation energy. However, the generalization of
the theory to large exponents a is still unclear. Some argu-
ments are proposed in order to relate the model of chain
quantum dots to the environmental Coulomb blockade.
Another point that remains to be clarified concerns the
observed interplay between Coulomb blockade and weak
localization for large a.

However, this study shows that a change of paradigm
should be taken into account while considering the trans-
port properties in carbon nanotubes or semiconductor
nanowires. In the context of room temperature nanoelec-
tronic devices, the tubes or wires are usually character-
ized with the parameters related to bulk semiconductor
physics like band structure and mobility of charge carri-
ers. At low temperature, the process of “breaking the wire
into a chain of quantum dots” takes place, and the same
object changes to single electron device, for which the rel-
evant parameters are related to the disorder through the
barriers that separates the quantum dots, and the quasi-
ballistic properties inside the quantum dots. The relevant
parameters are then reduced to the scaling coefficient a,
the phase coherence length of the charge carriers, and the
activation energy.
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