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Abstract—This paper addresses the challenging problem
of scene classification in street-view georeferenced images of
urban environments. More precisely, the goal of this task is
semantic image classification, consisting in predicting in a given
image, the presence or absence of a pre-defined class (e.g.
shops, vegetation, etc.). The approach is based on the BOSSA
representation, which enriches the Bag of Words (BoW) model,
in conjunction with the Spatial Pyramid Matching scheme
and kernel-based machine learning techniques. The proposed
method handles problems that arise in large scale urban
environments due to acquisition conditions (static and dynamic
objects/pedestrians) combined with the continuous acquisition
of data along the vehicle’s direction, the varying light conditions
and strong occlusions (due to the presence of trees, traffic signs,
cars, etc.) giving rise to high intra-class variability. Experiments
were conducted on a large dataset of high resolution images
collected from two main avenues from the 12th district in Paris
and the approach shows promising results.

Keywords-semantic image classification; street-level images;
visual words; spatial pyramid matching; kernel-based machine
learning;

I. INTRODUCTION

In recent years, the emergence of street-level geoviewers

(Google Street View, Microsoft Live Earth, Geoportail ...)

led to a growing interest in exploiting the visual content

of the acquired data. There are at least two particularities

corresponding to this task, one being data acquisition and

the second one being the applications developed. As such,

numerous mobile mapping systems capable of capturing and

delivering geospatial data of entire cities and metropolitan

areas were conceived by companies such as Blue Dasher

Technologies Inc. EveryScape Inc., Earthmine Inc., Google
TM, or different Geographic Survey Agencies. Vehicles are

criss-crossing the urban environment collecting stereo pho-

tographs and/or laser scanner data of every street, alley and

freeway in the urban environment and creating highly de-

tailed and accurate spatial datasets at a large scale. Collected

data is globally positioned and oriented to form a seamless

geospatial framework that accurately describes the urban

environment.

Tremendously diverse target applications can be consid-

ered by exploiting such complex datasets, extending from 3D

navigation through panoramic images, image-based search

engines based on semantic and spatial queries (”Which

offices are within the 50 meters from this point?”) and

3D city modeling ones. The difficulty in processing such

data arise from the challenging context of street-view im-

age acquisition conditions generating occlusions, varying

viewpoint and real traffic speed conditions (not constant

speed for the acquisition system). This paper addresses the

challenging task of street scene classification, which consists

in predicting in a given image, the presence or absence

of a pre-defined class (e.g. shops, vegetation, etc). This is

done by exploiting local features extracted from a database

of street-level high-resolution images acquired by a mobile

mapping system. Data was collected from streets of the

12th district of Paris. It is a dense urban area combining

natural scenes (park entances, street furniture, etc.) with

highly commercial avenues overcrowded by pedestrians and

more residential ones, containing a high number of parked

vehicles. The realistic data acquisition conditions (static and

dynamic objects/pedestrians) combined with the continu-

ous acquisition of data along the vehicle’s direction, the

varying light conditions and strong occlusions due to the

presence of trees, traffic signs, cars, etc. gives rise to high

intra-class variability to the street scene classification task.

The proposed system (c.f. Section II) follows the BOSSA

approach [1] which is an extension of the Bag of Words

(BoW) image retrieval formalism, in conjunction with the

Spatial Pyramid Matching (SPM) scheme and kernel-based

machine learning techniques. Details on the dataset and

selected categories will be presented in section III), while

experiments and results obtained for each category will be

presented in section IV.

II. OVERVIEW OF THE SCENE CLASSIFICATION PIPELINE

Scene classification is typically based on finite-

dimensional representations of image regions, or feature

vectors, describing the color, texture and/or other visual

properties of images [2]. Effective image features (also

called visual features or points of interest) are crucial to the

performance of image classification tasks. Such tasks have

been largely tackled by the Computer Vision community and

can be summarized by Figure 1.



Figure 1. Image classification pipeline. Image signatures computed for each image in the dataset are used by the classification system to predict classes the
image belongs to. Such unique vector representations are obtained by the following succesive steps: after dense sampling, visual feature space is quantized
into visual words, which are further used to encode image characteristics. Spatial information is also taken in consideration and the final feature vector
obtained by concatenation is the final image representation which can be used by any machine learning system to predict the class of an unknown sample.

In the following subsections, we will detail each of

the steps of the scene classification pipeline, starting with

state-of-the-art techniques encountered in such systems and

continuing with the ones used for urban scene classification.

A. Detection and Description of Visual Features

The first step can be divided in two, the detection of a

finite set of points containing rich local information and

the description of the visual neighborhood of these points.

Detection and description of visual features can either be

considered together or independently. From the latter point

of view, many types of primitive detectors exist: points

(corners, blobs, etc.), edges, or rectangles. Ease in detection

and description made point detectors the most popular in the

computer vision community. They are classically based on

signal processing principles: the interest points are maxima

of saliency functions computed on the image signal. Other

researches introduced blob detectors [3] based on maximal

stable regions, or/and salient regions [4] making use of

information theory. The most popular interest point detector

is the Scale Invariant Feature Transform (SIFT) [5]. It

combines an interest point detector based on the maxima

of the scale space with an efficient descriptor that relies

on histogram of gradients. From the same point of view

of detector and descriptor taken together, a similar interest

point detector and descriptor, SURF, was released by [6].

Detection is based on the Hessian matrix [7] while the

descriptor consists of a distribution of 2D Haar wavelet

responses around the point of interest. Once interest points

have been sampled, local visual content around them can

be described in a variety of manners. Depending on the

level of invariance needed (viewpoint, scale, orientation,

illumination, etc.) the choice of the descriptor may vary. In

some applications, mere patches around the interest points

are used as descriptors. For example Lepetit and Fua [8]

use patches to train classifiers for object detection whereas

Gabor filter banks (which are texture descriptors, performing

a time-frequency analysis of the signal) are used in medical

imaging [9]. The most widely used descriptor is the SIFT.

Each interest region previously extracted is divided into sub-

regions, each of which is associated an orientation histogram

weighted by the maximum gradient orientation in the sub-

region. The final descriptor is a concatenation of orientation

histograms of each sub-region. The robustness of SIFT

descriptors to small displacements and lighting changes as

well as an efficient available implementation by Andrea

Vedaldi [10] have made them the gold standard in Computer

Vision tasks. In this work, interest regions were extracted in

a dense sampling strategy. For each of the thus extracted

regions, SIFT descriptors are computed on each of the

color channels of the images in the dataset. The dimension

of each descriptor is of 384 (3x128 SIFT dimension).

This step outputs a set of local descriptors, denoted by

F =
{

fi = (pi, di) ∈ K × R
3×128

}

1≤i≤N
, whereas N is

the number of local regions pi ∈ K obtained after the dense

sampling step and associated with descriptors di ∈ R
3×128.

B. Descriptors Encoding

The aim of this step is to obtain a global descriptor for

each image based on local descriptors. One way to describe

an image is to declare its contents using the previously

extracted local descriptors, in a manner similar to the Bag-

of-Words (BoW) model from text retrieval [11]: given a

text and a predefined dictionary of K words, the Bag-of-

Words of the text is a vector of K dimensions, where the kth

entry indicates the number of times that a word k appears

in the text. Analogously, an image can be represented as an

unordered collection of visual words. The finite set of visual

words is obtained by quantizing the space of local descrip-

tors into informative regions whose internal structure can be



disregarded or parameterized linearly. The visual vocabulary

is built during the training stage: training data is used to

divide the descriptor space into clusters, each of them being

labeled. The visual vocabulary is the list of cluster centers

and associated identifiers. The clustering procedure is based

on the k-means algorithm. Having the visual codebook and

the dataset, each visual word appears in different amount

of images and different times in each particular image. The

visual codebook is denoted C = {cm} ,m ∈ {1;M}, M is

the number of visual words.

C. Computing Image Signatures

The Bag-of-Words (BoW) representation is a collection

of visual words representing the image content. Having the

visual codebook, for each descriptor of local features from

the image, the k visual words (nearest clusters) are found.

The number of occurrences of each word is computed and

used to increase the value of the image signature at the

word’s ID position. The image signature then can be seen

as a histogram of occurred visual words. Given a set of

descriptors {d1, ..., dN} sampled from an image, let kmi be

the assignment of each descriptor di to the corresponding

visual word cm obtained through k-means clustering. Each

local descriptor is assigned to the nearest visual word,

according to kmi =







1 if m = argmin
m∈{1;M}

‖di − cm‖
2

0 otherwise
Thus the encoding of the set of local descriptors corre-

sponds to a scalar hm given by [h]
m

= card (di|kmi = m).
The final vector representation for an image, h is made

up by concatenating values for each visual word h =
[h1, · · · , hm, · · · , hM ]

T
. Although numerous drawbacks,

the BoW image representation became popular due to its

simplicity and good performance. Its main limitation is

the loss of spatial information, which can be overcome

by computing one encoding (e.g. BoW) in different sub-

regions of an image and then stacking the results (as

proposed in [12] with the Spatial Pyramid Matching (SPM)

technique). When computing the encoding for each spatial

region, the contribution of local features can be considered

either through sum-pooling, in which case the encodings of

visual features in a given region are combined additively,

or through max-pooling, in which case each bin in the

encoding is assigned a value equal to the maximum across

feature encodings in that region. Here, we use sum-pooling

for the BoW encoding. Coding errors can be induced by

the quantization of the descriptor space, which provides a

very coarse approximation to the actual distance between

two features - zero if assigned to the same visual word and

infinite otherwise. Alternatives to such approaches (called

hard assignment) have been proposed: soft-assignment (soft-

weighting) techniques [13] which assign different weight to

the visual word according to its distance or rank in the list

or approaches explicitly minimizing reconstruction errors,

e.g. Local Linear Coding [14]. Other approaches model

the visual vocabulary through a probability density function

(a Gaussian Mixture Model) such as the Fisher Vector

representation [15] which describes in which direction the

parameters of the model should be modified to best fit the

data. In this work, we follow the BOSSA approach [1] that

extends the BOW representation. It consists in modelizing

the distribution of visual features around each visual word by

computing for each local descriptor the distances to visual

words. Given the distribution of visual features around the

visual words, and the spread of this distribution, histograms

of occurrences of visual words relative to the nearest

prototype are built. Then the spatial pyramid approach is

used to create local histograms. The approach is illustrated

in Figure 2 through a toy example and compared to the

creation of the BOW image representation. The distribution

(a) (b)

Figure 2. Image representations. (a) Standard Bag of Words encoding.
(b) BOSSA representation. For each visual word, a histogram is computed.
Distances around each visual word are discretized into a fixed number of
bins. Local descriptors are indicated through black dots. The height of each
bin of the histogram accounts for the number of local descriptors which
are at the same distance from the visual word. Note that if the number of
bins is set to 1, the BOSSA encoding resumes to the BoW representation.

of local descriptors around each visual word is estimated by

discretizing distances over B bins and counting the number

of local descriptors falling into each bin. Thus, for each

visual word cm we obtain a local histogram hm given by

hm = card(di|kmi ∈ kmax
m

·[ k
B
, k+1

B
]), where B denotes the

number of bins of each histogram hm, kmax
m

is the maximum

distance to which the local histogram is computed. This pa-

rameter is given by the standard deviation σm of each visual

word cm and is obtained by applying the k-means algorithm,

such as kmax
m

= λ·σm. To this local histogram representation

is added a scalar fm, encoding the information regarding the

number of visual descriptors di corresponding to each visual

word cm. This is done for consistency reasons, in order to

be robust to the l1 normalization of the hm histogram. As

bin counts encode differently spatial information between

different local histograms hm representing the same image,

each local histogram is normalized through: hm = ‖hm‖1.

The final image representation is a vector of size M ·(B + 1)
which can be rewritten as H = [[hm] , fm]

T
.

D. Classification

Once image signatures have been computed, images can

be classified using just any machine learning algorithm.

In all experiments, a SVM classifier is used on top of

each encoding. Training is performed for each class in a

one−vs.−all configuration. For each region r of the spatial



pyramid, a kernel kr is defined by using the histograms

h
(r)
1 and h

(r)
2 associated to the specific region, from the

corresponding images x1 and x2. For each level l of the

spatial pyramid grid, a kernel kl is defined as a weighted

sum of region kernels: kl(x1, x2) =
∑

r∈l
̟rkr(h

(r)
1 , h

(r)
2 ),

with ̟r being the weights. The similarity kernel K between

two images x1 and x2 is the sum of kernels from each level

of the spatial pyramid: K(x1, x2) =
∑

l
kl(x1, x2). The

weights are set such as the bigger the size of the region, the

less its similarity is important in the final kernel, whereas

the spatial pyramid grid is composed of one of the two

configurations illustrated by Figure 3. Inspired by the spatial

pyramid (SPM) technique [16] which consists in dividing an

image according to a regular grid (1x1, 2x2, 4x4, or a total

of 21 regions) we propose to divide the image according to

the composition of an urban scene (in 1x1, 3x1 for a total

of 4 regions). This approach is content-specific and more

appropriate for the street-scene context studied here and is

entitled in the following Street Context Slicing (SCS).

Figure 3. Taking into account spatial information in the image descriptor.
Left: Illustration of the Spatial Pyramid Matching (SPM) scheme. Right:
Illustration of the Street Context Slicing (SCS) technique.

III. DATASET AND IMPLEMENTATION DETAILS

This section describes the experimental setup, including

implementation parameters used for each of the represen-

tations compared here. We apply the scene classification

pipeline on a real-world dataset of a dense urban area, which

will be described in the following.

A. Urban Area Mobile Mapping Dataset

Data is collected by a mobile mapping system (cf. Figure

4-(b)) composed of a set of ten full HD cameras mounted

on a rigid frame (cf. Figure 4-(c)). Figure 4-(a) illustrates

a panoramic assembly of images acquired by the mobile

mapping system. The cameras are perfectly synchronized,

mounted very closely, and have the same exposure times

in order to produce seamless panoramic. They have been

chosen to have a high radiometric dynamic and a high signal

to noise ratio (200-300) in order to manage the variations

in illumination between the shadowed and the lightened

sides of the street. The cameras are triggered in a way to

acquire images at regular distance intervals (one panoramic

per 3 meters). The images are georeferenced in a global

reference frame with the help of an Inertial Navigation

Systems (integrating 2 GPS, an Inertial Measurement Unit

(a)

(b) (c)

Figure 4. The iTowns Mobile Mapping System.

and an odometer) providing overall a submetric absolute

localization. All images were drawn from the same dataset,

acquired on two main streets from the 12th district of

Paris. Qualitatively the images contain a very wide range

of viewing conditions, occlusions, and images where there

is little bias toward images being of a particular object, e.g.,

there are images of boutiques in a street scene, rather than

solely images of boutiques. Figure 5 depicts images from the

dataset for each category. Experiments were conducted on

Figure 5. Example images for each of the four categories chosen for
the street-scene classification task. First row presents examples from the
vegetation category, second row presents samples from the porch class, the
third one depicts the commerce class and the last row illustrates the generic
background class.

images acquired by the side-cameras of the mobile mapping

system, acquiring images from an orthogonal viewpoint with

respect to the moving direction. Image sizes are 1920×1080
pixels and color information is exploited for all samples of

the dataset. The dataset was equally divided into two sets,

one used during the training stage and the second one during

the test. We built a database of 1516 samples containing



four categories of scenes by manually labeling image data.

The total number of examples labeled from each category

is given in Table I, along with the number of samples used

in the classification framework for each category.

Table I
DATASET SIZE FOR THE CLASSIFICATION FRAMEWORK. NUMBER OF

SAMPLES FROM EACH CATEGORY USED DURING TRAINING AND TEST.

Number of images
Category Total Train Test

Shops 569 284 285
Porch 194 97 97

Vegetation 404 202 202
Background 349 175 174

TOTAL 1516 758 758

B. Implementation Details

Visual features Interest regions are extracted in a dense

sampling strategy, e.g. one region was extracted every 6th

pixel on a scale of 5. The dimension of each descriptor is of

384 (3x128 sift dimension). The total number of descriptors

per image is of 56.604. This is done for all images in the

dataset by using the opponentcolorSIFT descriptor extracted

using UVA’s [17] software.

Visual dictionary 5.000 descriptors were randomly sam-

pled from each image (i.e. some 14 million descriptors)

to create a visual codebook using the k-means clustering

algorithm with Euclidean distance. k is set to 10, 100, 500,

1000 visual prototypes.

Image signatures Two approaches have been studied to

create image signatures. The first one is the baseline Bag-

of-Words (BOW) approach, and the second one is the Bag

Of Statistical Sampling Analysis (BOSSA). Each of the

approaches was studied using two types of grid-partitions,

the standard SPM one, dividing an image in 21 (1x1, 2x2,

and 4x4) regions and the SCS one, dividing the image into 4

(1x1 and 3x1) parts. Representations based on BOSSA were

constructed using a hard type of assignment of descriptors to

the histograms. This consists in adding 1 to the histograms’

bin corresponding to the most likely cluster (this is computed

like a Gaussian centered on the clusters’ center and with

standard deviation computed during the k-means algorithm

from the descriptors assigned to the cluster). The parameter

values for the proposed representation of BOSSA are given

in the following: B (the number of bins in each histogram)

took values in the range [5, 10], while the λ parameter giving

kmax
m

was in the range [1, 5].
Similarity measure and SVM classifier Classification is

done with a support vector machine (SVM) classifier trained

in one-vs.-all paradigm: a classifier is learned to separate

each class from the rest. We used the JKernelMachines

library [18] and two types of Gaussian kernels, chi2 and L2.

The weights are chosen such as each level of the pyramid

has the same importance in the global similarity. The γ

parameter of the Gaussian kernel is identical for each layer

of the pyramid. For each classifier and for each type of image

signature, the γ was tuned by cross-validation.

IV. RESULTS

The results of the experiments are shown in this section.

First, we present the influence of the dictionary size on

classification performances, for each class and different

weighting schemes. Figure 6 presents classification perfor-

mance results for varying codebook sizes of 10, 100, 500 and

1000 prototypes. Table IV lists classification performances
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(b) Porch category
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(c) Background category
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(d) Shops category

Figure 6. Classification Performances (MAP) for each class under different
weighting schemes and vocabulary sizes.

achieved for each class, in terms of Mean Average Precision

(MAP), for the two representation approaches, BOW and

BOSSA. In order to be comparative in terms of size of the

image representation obtained, results for a dictionary size

of 100 for the BOSSA approach and for 1000 for the BOW

approach should be compared.

Table II
SCENE CLASSIFICATION RESULTS FOR STREET-LEVEL DATABASE. THE

HIGHEST RESULTS FOR EACH CONFIGURATION ARE SHOWN IN BOLD.

BOW k=1000 BOSSA k=100 BOSSA k=1000

Kernel SPM SCS SPM SCS SPM SCS

shop chi2 72.3 67.1 82.5 81.8 82.3 77.4

shop L2 72.3 67.1 81.9 76.4 80.4 79.1

porch chi2 67.5 63 79.3 69.2 81.7 72.6

porch L2 67.5 63 94.2 95.2 94.2 93.7

vegetation chi2 70.2 68.1 68.8 68.7 73.9 74.3

vegetation L2 70.2 68.1 67.6 74.5 69.0 70.8

background chi2 71.2 59.2 72.4 60.9 77.7 74.4

background L2 71.2 59.2 77.0 60.9 67.5 68.2

Globally, the proposed representation of images through

the BOSSA approach improves the classification perfor-

mance over the standard BoW approach. With a smaller

codebook size, the BOSSA with kernel L2 performs bet-

ter than the baseline encoding with L2 kernel, for all

categories. The BoW representation with a chi2 kernel

performs better than BOSSA for the vegetation category,



while the performance degrades dramatically with linear

kernel for the other categories. For larger codebook sizes

(k=1000), BOSSA performs better than the baseline BoW

and BOSSA for k=100 for the vegetation and background

categories and a chi2 kernel. However, it is interesting

to note that the BOSSA encoding using the linear kernel

achieves comparable performance to the chi2 kernel across

different vocabulary sizes and outperforms the results us-

ing the chi2 kernel for porch, vegetation and background

categories. This suggests that the linear kernel is sufficient

to achieve good performance with the encoding, avoiding

the computational expense of applying a non-linear kernel.

Experiments clearly demonstrate that larger vocabularies

lead to higher accuracy, as can be observed in Figure 6.

It should be noted that in the case of the BOW encoding,

even at a vocabulary size of 1, 000 the performance appears

to be still increasing suggesting that further gains could

be achieved by increasing the vocabulary size even further.

Nonetheless, gains of the BOSSA encoding seem to be

saturating even for higher dictionary sizes but are most of

the time superior to performances achieved by the baseline

approach. Spatial information obtained by applying different

partitioning techniques does matter, with a higher number

of regions yielding higher accuracy (the performance of

the context slicing technique (SCS) considered here slightly

improves over the baseline SPM for only two categories).

The baseline BoW method gains considerably from large

vocabularies resulting in a correspondingly large encoding

size opposite than the BOSSA encoding, which results in

a smaller yet faster to compute representation (since it

searches neighbors/compute distances within a much smaller

vocabulary).

V. CONCLUSION

We have presented an evaluation of two encoding meth-

ods for semantic image classification in a database of

georeferenced street view images. We examined the per-

formance of the BOSSA representation and compared it

to the state-of-the-art bag-of-words (BOW) representation,

both in a standard spatial-matching scheme (SPM) and a

street-context one (SCS). The most encouraging result of

this paper is the non-parametric histogram representation

BOSSA, compact and simple to compute, which works

well with SVM and improves classification accuracy. Our

experiments on a variety of categories for image classifi-

cation prove the effectiveness of this approach. Based on

the quantitative evaluations for image classification on the

real street-scene database, the proposed representation seems

to retain more information than state-of-the-art approaches

which it significantly outperformed. We consider that BoW

approaches and extensions presented here are well adapted

to the image classification task and we intend to share our

database and ground truth with the community in order to

allow the benchmarking of other such approaches on it.

Further research of this study and theoretical understanding

is an interesting direction which needs to be undertaken.
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