
HAL Id: hal-00794892
https://hal.science/hal-00794892v1

Submitted on 26 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotically Stable Running for a Five-Link,
Four-Actuator, Planar Bipedal Robot

Christine Chevallereau, Eric Westervelt, Jessy Grizzle

To cite this version:
Christine Chevallereau, Eric Westervelt, Jessy Grizzle. Asymptotically Stable Running for a Five-
Link, Four-Actuator, Planar Bipedal Robot. The International Journal of Robotics Research, 2005,
24 (6), pp.431-464. �hal-00794892�

https://hal.science/hal-00794892v1
https://hal.archives-ouvertes.fr


ASYMPTOTICALLY STABLE RUNNING FOR A FIVE-LINK, FOUR-ACTUATOR, PLANAR BIPEDAL ROBOT, MARCH 24, 2005 1

Asymptotically Stable Running for a Five-Link,
Four-Actuator, Planar Bipedal Robot

C. Chevallereau, E.R. Westervelt, and J.W. Grizzle

Abstract— Provably asymptotically stable running gaits are
developed for the five-link, four-actuator bipedal robot, RABBIT.
A controller is designed so that the Poincaŕe return map
associated with periodic running gaits can be computed on the
basis of a model with impulse-effects that, previously, had been
used only for the design of walking gaits. This feedback design
leads to the notion of a hybrid zero dynamics for running, which
in turn allows the existence and stability of running gaits to
be determined on the basis of a scalar map. The main results
are illustrated via simulations performed on models with known
parameters and on models with parameter uncertainty and
structural changes. Animations of the resulting running motions
are available on the web.

I. INTRODUCTION

T HIS paper addresses the design and analysis of asymp-
totically stable running gaits for RABBIT, a five-link,

four-actuator, planar bipedal robot [1]. Running is defined
as forward motion with alternation of single support (one
leg on the ground) and flight (no contact with the ground);
without forward motion, the robot would be jumping in place,
or “jogging” in place. RABBIT was specifically designed to
advance the fundamental understanding of controlled legged
locomotion. In particular, it was designed without feet, and
hence a widely-used stability heuristic, called the zero mo-
ment point (ZMP) criterion, is not applicable. The robot was
designed to be able to walk with an average forward speed of
at least 5 km/h and to run at more than 12 km/h.

In a series of papers, the authors and colleagues have
developed new feedback control strategies [2]–[7] that achieve
provably asymptotically-stable walking gaits in underactuated
bipeds, such as RABBIT, and demonstrated many of them
experimentally [8], [9]. In regards to running, open-loop
trajectories have been studied in [10], [11]. An objective of
this paper is to develop a time-invariant feedback controller
that realizes these open-loop running trajectories as provably
asymptotically-stable orbits. A key step is to design the feed-
back controller in such a way that the Poincaré map associated
with a running gait can be computed on the basis of the models
with impulse effects studied in [3] for the design of walking
gaits. This leads to the notion of a hybrid zero dynamics
(HZD) for running, and to the closed-form computation of
the restricted Poincaré return map [12].

C. Chevallereau is with the IRCCyN, Ecole Centrale de Nantes, UMR
CNRS 6597, BP 92101, 1 rue de la Noë, 44321 Nantes, cedex 03, France, E-
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Section III presents the models of the stance, flight, and
impact phases of the studied robot. These are assembled into
an overall hybrid model of running in Section IV. A qualitative
discussion of the proposed control law for running is presented
in Section V. The details of the control law are developed in
Section VI. Like the model, the controller is hybrid, with both
continuous-time and event-based actions taking place. In the
stance phase, the control law is identical to the development in
[3]. The control law in the flight phase consists of two parts:
a continuous action similar to [3] plus a discrete or event-
to-event action that adjusts the coefficients in the continuous
portion of the controller in order to achieve a landing objective
that assures the existence of a hybrid zero dynamics. The
existence and stability properties of periodic orbits of the
closed-loop hybrid model are studied in Section VII. The main
contribution is the closed-form computation of the restricted
Poincaré return map of the hybrid zero dynamics, because
analysis of orbits in the closed-loop, multi-phase, hybrid model
can then be performed on the basis of an easily computable
scalar map. Section VIII begins an extensive simulation study
of the control laws proposed in the paper as applied to
the underactuated, planar bipedal robot, RABBIT [1]. The
restricted Poincaré return map is computed for ten different
running trajectories, varying from 0.5 m/s to 2.75 m/s, showing
the ability to achieve stable running motions over a wide
range of speeds. The trajectories for 1.5 m/s and 2.5 m/s are
illustrated in detail under the assumption of a perfect model.
The robustness to model imperfection is studied via simulation
in Section IX. The systematic design of auxiliary event-based
control action [4], [13] to accelerate the rate of convergence
to a periodic orbit is illustrated in Section X. The paper is
concluded in Section XI. Animations and other supporting
material are available on the web [14].

II. RELATED WORK

In the early 1980’s, Raibert proposed an elegant conceptu-
alization of running in terms of a one-legged, prismatic-kneed
hopper [15], [16]. He decomposed his control actions into
three parts—hopping height, foot touchdown angle, and body
posture—and emphasized the role of symmetry in designing
stable running motions. The remarkable success of Raibert’s
control law motivated others to analytically characterize its
stability [17], [18], and to further investigate the role of
passive elements in achieving efficient running with a hopper
[19]. Raibert’s control scheme has been augmented with
leg-coordination logic to achieve running in prismatic-kneed
bipeds and quadrupeds [15], [20].

Various attempts have been made to extend a Raibert-style
controller to a robot with revolute joints. Building on the
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ideas of Koditschek et al. [21]–[24], a spring-loaded inverted-
pendulum model—essentially a prismatic-kneed hopper with
a radially symmetric body and a massless leg—was approx-
imately embedded into a one-legged, revolute-jointed robot
with an ankle, knee, and hip [25], [26]. With this approach,
the center of mass of the robot could be nicely controlled.
However, there was no natural “posture principle” to specify
the evolution of the remaining degrees of freedom of the
robot; also, the ballistic phase was difficult to address, due
to underactuation and the non-holonomic constraint arising
from conservation of angular momentum. Various methods for
controlling the attitude of bodies undergoing ballistic motion
have been studied; see [27]–[31] and references therein.

In late 2003, both Iguana Robotics and Sony announced
(separate) experimental demonstrations of running for bipedal
robots with revolute knees. In early 2004, running was an-
nounced for another humanoid robot, HRP-2LR [32], and in
December 2004, Honda’s robot, ASIMO, achieved running.
The readers are invited to seek videos of these robots on the
web. The controllers of the Sony and Honda robots are based
on the ZMP, that of Iguana Robotics is based on central pattern
generators (CPGs), and HRP-2LR uses “resolved momentum”.
To our best knowledge, only two other bipeds with revolute
knees have been designed to perform running—Johnnie in
Munich, Germany [33], [34] and RABBIT in Grenoble, France
[1], [35].

The computation of optimal running trajectories has been
studied in [36]. Trajectory tracking for running was investi-
gated on a simulation model of the Honda biped, ASIMO,
[37]. A nominal trajectory was computed off-line, and then
during the ballistic phase, an on-line trajectory modification
was made to allow Raibert-like control of foot placement. A
control strategy for running that does not rely on trajectory
tracking was studied in [38], where a Raibert-like controller
was used on a planar robot with a torso and two prismatic-
kneed legs. The control action sought to excite natural passive
solutions of the dynamics by restoring energy lost at touch-
down.

III. MECHANICAL MODEL OF A BIPED RUNNER

A. The biped

The studied bipedal robot evolves with respect to a flat
surface in the sagittal plane; see Fig. 1. The flat surface will
be referred to as the ground. The robot is composed of five
rigid links with mass, connected through ideal (i.e., rigid and
frictionless) revolute joints to form a torso and two identical
legs, with each leg articulated by a knee. Each leg end is
terminated in a point so that, in particular, the robot does not
have feet. An actuator is provided at the each knee and two
actuators are provided at the hips, acting between the torso
and the legs. There is no actuation at the leg ends. Hence, in
single support, the robot is underactuated.

The robot is said to be in flight phase when there is no
contact with the ground, and in stance phase when one leg
end is in stationary contact with the ground (that is, the leg
end is acting as an ideal pivot) and the other leg is free. For
the stance phase, the leg in contact with the ground is called
the stance leg and the other leg is the swing leg.

q1

q2

q3

q4
q5

(a) (b) (c)

xcm

ycm

y1

x1

y2

x2θs(q)

Fig. 1. Different phases of running with coordinate conventions labeled.
The robot is shown (a) at the end of the stance phase; (b) during flight; and
(c) at the beginning of the stance phase just after impact. To avoid clutter,
the coordinate conventions have been spread out over the single support and
flight phases even though they apply to all three phases. leg-1 is presented in
bold. Angles are positive in the clockwise direction.

In the flight phase, the robot has seven degrees of freedom
(DOF): a degree of freedom associated with the orientation of
each link, plus two DOF associated with the horizontal and
vertical displacement of the center of mass within the sagittal
plane. The state vector of the dynamical model is thus 14-
dimensional: there are seven configuration variables required
to describe the position of the robot, plus the associated
velocities. In the stance phase, the robot has only five DOF
because the position of the center of mass is determined by the
orientation of the five links (plus a horizontal, constant off-set
of the stance leg end with respect to a world frame). The state
vector of the dynamical model is thus 10-dimensional.

B. Lagrangian model for flight

A convenient choice of configuration variables is depicted
in Fig. 1. The vector of body coordinates qb consisting of
the relative angles (q1, q2, q3, q4)′ describes the shape of the
biped. The biped’s absolute orientation with respect to the
world frame is given by q5. The biped’s absolute position is
specified by the Cartesian coordinates of the center of mass,
(xcm,ycm). The vector of generalized coordinates is denoted
as qf := (q′b, q5,xcm,ycm)′.

The dynamic model is easily obtained with the method of
Lagrange, which consists of first computing the kinetic energy
and potential energy of each link, and then summing terms to
compute the total kinetic energy, Kf , and the total potential
energy, Vf [39]–[41]. The Lagrangian is defined as Lf = Kf −
Vf , and the dynamical model is determined from Lagrange’s
equation

d

dt

∂Lf

∂q̇f
− ∂Lf

∂qf
= Γf , (1)

where Γf is the vector of generalized forces and torques
applied to the robot.

In terms of the generalized coordinates of the robot, qf , the
total kinetic energy becomes

Kf =
1
2
q̇′fDf(qb)q̇f , (2)
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where

Df =

[
A(qb) 05×2

02×5 mI2×2

]
, (3)

m is the total mass of the robot, and A depends only on qb

because the total kinetic energy is invariant under rotations
and translations of the body. The potential energy is

Vf = mg ycm. (4)

The principle of virtual work yields that the external torques
are

Γf = Bfu =

[
I4×4

03×4

]
u, (5)

where u is the vector of actuator torques applied at the four
joints of the robot. Applying Lagrange’s equation leads to a
model of the form

Df(qb)q̈f + Cf(qb, q̇f)q̇f + Gf(qf) = Bfu, (6)

where Df is the inertia matrix, the matrix Cf contains Coriolis
and centrifugal terms, and Gf is the gravity vector. Introducing
the state vector xf := (q′f , q̇

′
f)

′, the Lagrangian model (6) is
easily expressed as

ẋf = ff(xf) + gf(xf)u. (7)

The state space is taken as TQf := {xf := (q′f , q̇
′
f)

′ | qf ∈
Qf , q̇f ∈ IR7}, where, if S denotes the circle, the configuration
space Qf is a simply-connected, open subset of S

5 × IR2

corresponding to physically reasonable configurations of the
robot.

C. Lagrangian model for stance

For the stance phase, the generalized coordinates can be
taken as q := (q′b, q5)′ = (q1, · · · , q5)′. Since the robot’s legs
are identical, in the stance phase, it will be assumed without
loss of generality that leg-1 is in contact with the ground.
Moreover, the Cartesian position of the stance leg end will be
identified with the origin of the (x−y)-axes of a world frame.

The position of the center of mass can be expressed in terms
of q per [

xcm(q)
ycm(q)

]
= f1(q), (8)

where f1 is determined from the robot’s geometric parameters
(link lengths, masses, positions of the centers of mass). Hence

q̇f =


 I5×5

∂f1
∂q


 q̇. (9)

Substituting (9) into (2) yields the kinetic energy of the
stance phase,

Ks =
1
2

q̇′Ds(qb)q̇, (10)

with

Ds(qb) = A(qb) + m
∂f1(q)

∂q

′
∂f1(q)

∂q
; (11)

because the kinetic energy is invariant under rotations of the
body, Ds depends only on qb. The potential energy remains
Vs(q) = mg ycm(q). Lagrange’s equation becomes

d

dt

∂Ls

∂q̇
− ∂Ls

∂q
= Γs, (12)

and the external torques are

Γs = Bsu =

[
I4×4

01×4

]
u. (13)

The dynamic model can therefore be written as

Ds(qb)q̈ + Cs(qb, q̇)q̇ + Gs(q) = Bsu. (14)

Introducing the state vector xs := (q′, q̇′)′, the Lagrangian
model (14) is easily expressed as

ẋs = fs(xs) + gs(xs)u. (15)

The state space is taken as TQs := {xs := (q′, q̇′)′ | q ∈
Qs, q̇ ∈ IR5}, where the configuration space Qs is a simply-
connected, open subset of S

5 corresponding to physically
reasonable configurations.

D. The impact model

The Cartesian position of the end of leg-2 can be expressed
in terms of the Cartesian position of the center of mass and
the robot’s angular coordinates as[

x2

y2

]
=

[
xcm

ycm

]
− f2(q), (16)

where f2 is determined from the robot’s parameters (links
lengths, masses, positions of the centers of mass); see (8).
When leg-2 touches the ground at the end of a flight phase,
an impact takes place. The impact model of [42], [43] is
used, which represents the ground reaction forces at impact as
impulses with intensity IR. The impact is assumed inelastic,
with the velocity of the contact leg end becoming zero
instantaneously; furthermore, after impact, the contact leg end
is assumed to act as an ideal pivot. This model yields that the
robot’s configuration qf is unchanged during impact and there
are instantaneous changes in the velocities.

The velocity vector just before impact is denoted by q̇−f .
After impact, with the assumption that the leg neither rebounds
nor slides after impact, the robot is in stance phase. leg-2 acts
as an ideal pivot and thus the linear velocity of the center of
mass center can be expressed in terms of the angular velocities
just after impact, q̇+, yielding[

0
0

]
=

[
ẋ+

cm

ẏ+
cm

]
− ∂f2(q)

∂q
q̇+. (17)

The impact model of [42], [43] is expressed as

[
A(qb) 05×2

02×5 mI2×2

]



q̇+

ẋ+
cm

ẏ+
cm


− q̇−f


 =

[ −∂f ′2(q)
∂q

I2×2

]
IR.

(18)
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The vector IR of the ground reaction impulses can be ex-
pressed using the last two lines of the matrix equation (18) in
combination with (17):

IR = m

(
∂f2(q)

∂q
q̇+ −

[
ẋ−

cm

ẏ−
cm

])
. (19)

Substituting this into the first five lines of (18) and rearranging
yields that the robot’s angular velocity vector after impact is
given by a linear expression with respect to the velocity before
impact:

q̇+ =
[
A + m

∂f2
∂q

′ ∂f2
∂q

]−1 [
A

∣∣∣∣ m
∂f2
∂q

′]
q̇−f , (20)

which, for later use, is written as

q̇+ = ∆̃(q−f , q̇−f ). (21)

Remark 1: In the case of running, since the robot has 7
DOF before impact and only 5 DOF after impact, for any post-
impact velocity, there is a two-dimensional set of velocities in
the flight phase that gets mapped onto that same vector. This is
different from walking where, generically, the double support
impact results in a one-to-one mapping between pre-impact
and post-impact velocity vectors.

E. Some linear and angular momentum relationships

A few linear and angular momentum properties of the
mechanical models are noted. Let σcm denote the angular
momentum of the biped about its center of mass. In the flight
phase, σcm can be computed by σcm = ∂Kf

∂q̇5
= A5q̇, where A5

is the fifth row of A. The fifth row of (1) yields conservation
of σcm,

σ̇cm = 0. (22)

In addition, the last two rows of (1) correspond to Newton’s
second law in a central gravity field:

m ẍcm = 0 and m ÿcm = −mg. (23)

Let σi denote the angular momentum of the biped about
the end of leg-i, for i = 1, 2. The three angular momenta are
related by

σi = σcm + m ((ycm − yi)ẋcm − (xcm − xi)ẏcm) . (24)

This expression is valid in both the stance and flight phases.
In the stance phase, σ1 is determined by σ1 = ∂Ks

∂q̇5
= Ds,5q̇,

where Ds,5 is the fifth row of Ds. The fifth row of (12) yields
the angular momentum balance theorem:

σ̇1 = −∂Vs

∂q5
= mg xcm. (25)

The impact model of [42], [43] yields conservation of
angular momentum about the impact point. Indeed, because
the only external impulsive force is applied at the impact point,
the fifth row of (18) can be written as

σ+
cm − σ−

cm = m [ycm − y2 | − xcm + x2]

[
ẋ+

cm − ẋ−
cm

ẏ+
cm − ẏ−

cm

]
,

(26)

since ∂f2
∂q5

= [−xcm(q) |ycm(q)]′. Using (24) results in

σ+
2 = σ−

2 , (27)

meaning the value of σ2 is unchanged during the impact. Since
the stance phase model assumes that the stance leg is leg-1,
for later use, (27) is rewritten as

σs+
1 = σf−

2 (28)

to reflect the swapping of the roles of the legs; see (30).
Remark 2: The notation s+ emphasizes that σ1 is being

evaluated at the beginning of the stance phase and the notation
f− emphasizes that σ2 is being evaluated at the end of the
flight phase. If no confusion is possible, the notation + and −
will be used. For example, the variable θs only makes sense
in the stance phase, and hence θs−

s would be redundant. On
the other hand, for a variable such as xcm, it is important to
distinguish among xs+

cm, xs−
cm, xf+

cm, and xf−
cm.

Remark 3: The robot is assumed to advance from left to
right that is, in the positive direction of the x-coordinate.
In this paper, angles are positive when measured in the
clockwise direction so that the angular momenta about the
stance leg end and the center of mass will be positive in
the simulations. A more classical choice of measuring the
angles in the trigonometric sense, that is, positive is counter
clockwise, would lead to negative angular momenta for left-to-
right movement of the robot. In this case, (24) would become
σi = σcm + m ((xcm − xi)ẏcm − (ycm − yi)ẋcm). In turn,
certain equations derived from this one would have to be
modified. For the convenience of the reader, the principal
changes are noted in Appendix VI.

IV. HYBRID MODEL OF RUNNING

The overall biped robot model can be expressed as a
nonlinear hybrid system containing two state manifolds (called
“charts” in [44]):

Σf :




Xf = TQf

Ff : (ẋf) = ff(xf) + gf(xf)u
Ss

f = {xf ∈ Xf | Hs
f (xf) = 0}

T s
f : x+

s = ∆s
f (x

−
f )

(29)

Σs :




Xs = TQs

Fs : (ẋs) = fs(xs) + gs(xs)u

Sf
s = {xs ∈ Xs | H f

s (xs) = 0}
T f

s : x+
f = ∆f

s(x
−
s )

where, for example, Ff is the flow on state manifold Xf , Ss
f

is the switching hyper-surface for transitions between Xf and
Xs, and T s

f : Ss
f → Xs is the transition function applied when

xf ∈ Ss
f .

The transition from flight phase to stance phase occurs when
leg-2 impacts the ground. Hence, Hs

f (xf) = y2; see Fig. 1. The
ensuing initial value of the stance phase, x+

s , is determined
from the impact model of Section III-D. A relabeling matrix R
is applied to the angular coordinates to account for the impact
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occurring on leg-2 while the stance model assumes leg-1 is in
contact with the ground:

∆s
f (x

−
f ) =


 [ R | 05×2 ] q−f

R∆̃(x−
f )


 , (30)

and

R =




0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1


 , (31)

where (21) has been used.
The transition from stance phase to flight phase can be

initiated by causing the acceleration of the stance leg end
to become positive. If torque discontinuities1 are allowed—
as they are assumed to be in this paper—when to transition
into the flight phase becomes a control decision. Here, in view
of simplifying the analysis of periodic orbits in Section VII,
the transition is assumed to occur at a pre-determined point in
the stance phase. Hence, H f

s = θs(q) − θ−s,0, where θs(q) :=
q1
2 +q2+q5 is the angle2 of the hips with respect to end of the

stance leg (see Fig. 1) and θ−s,0 is a constant to be determined.
The ensuing initial value of the flight phase, x+

f , is defined so
as to achieve continuity in the position and velocity variables,
using (8) and (9):

∆f
s(x

−
s ) =




[
q−

f1(q−)

]

 q−

∂f1
∂q

∣∣∣
q−

q̇−





 . (32)

Continuity of the torques is not imposed, and hence neither is
continuity of the accelerations. It is assumed that the control
law in the flight phase will be designed to achieve ÿf+

1 > 0;
see [11].

The definition of a solution of the hybrid model is adopted
from [44]. For the definitions of orbital stability in the sense of
Lyapunov, attractivity, and orbital asymptotic stability in the
sense of Lyapunov, see [2], [45], [46].

V. QUALITATIVE DISCUSSION OF CONTROL LAW DESIGN

This section describes in qualitative terms a control law
design for planar bipedal running that is presented in detail
in Section VI, analyzed in Section VII, and illustrated via
simulations on RABBIT in Section VIII. A related discussion
about control law design for walking is available in [1]. An
important difference is that running has two continuous-time

1This is a modeling decision. In practice, the torque is continuous due to
actuator dynamics. It is assumed here that the actuator time constant is small
enough that it need not be modeled. See the very end of Section IX-B for
further discussion of this point.

2In RABBIT the femur and tibia are of equal length. In general, any
function that is independent of the body coordinates and is monotonically
increasing along the motion of the robot can be used. As long as the tibia
and femur are approximately of the same length, θs(q) := q1

2
+ q2 + q5 is

a reasonable choice.

phases, stance and flight, and discrete transitions between
them. Moreover, the flight phase presents more complications
for controller design than does the stance phase: it has two
additional degrees of freedom and angular momentum about
the center of mass is conserved.

A. Analytical tractability through invariance, attractivity, and
configuration determinism at transitions

Above all, the control strategy is constructed to facilitate the
stability analysis of the closed-loop hybrid system consisting
of the robot, the running surface, and the feedback controller.
If stability analysis can be rendered sufficiently simple, then
it becomes possible to explore efficiently a large set of
asymptotically-stable running gaits in order to find one that
meets additional performance objectives, such as minimum
energy consumption per distance traveled for a given average
speed, or minimum peak-actuator power demand.

The controller will be hybrid, with continuous-time feed-
back signals applied in stance and flight phases, and discrete
(or event-based) updates of controller parameters performed
at transitions between phases. The design of the controller
uses two principles that are ubiquitous in non-hybrid sys-
tems, namely invariance and attractivity, with the notion of
invariance being extended to hybrid systems so as to include
the discrete transitions as well as the continuous flow of
the Lagrangian dynamics. Hybrid invariance will lead to the
creation of a low-dimensional hybrid subsystem of the full-
order closed-loop system. The low-order hybrid subsystem is
called the Hybrid Zero Dynamics (HZD) of running. Attrac-
tivity will mean that trajectories of the full-order closed-loop
system converge locally and sufficiently rapidly to those of
the hybrid zero dynamics so that existence and stability of
periodic running motions can be restricted to the study of
the hybrid zero dynamics. The Poincaré return map for the
hybrid zero dynamics will turn out to be one-dimensional.
When transitions between phases in the hybrid zero dynamics
occur at known configurations of the robot—this is called
configuration determinism at transitions—it will turn out that
the Poincaré return map can be computed in closed form,
thereby rendering stability analysis of the closed-loop system
tractable.

B. Desired geometry of the closed-loop system

The objective of the control law design is to achieve the
internal structure of the closed-loop system that is depicted in
Fig. 2. The vertical surfaces Sf

s and Ss
f represent the points

in the state space where the transitions from stance to flight
and from flight to stance occur, respectively; see (29). The
horizontal surface on the left, Zs, is created by the stance-
phase controller; it is designed to be invariant in the usual
sense that if the system is initialized in Zs, the solution of
the stance-phase differential equation remains in Zs until it
intersects Sf

s , at which time the flight phase is initiated. The
family of horizontal surfaces on the right, Zf,af , (shown for
two values of af , namely, af,1 and af,4) is created by the flight-
phase controller; each surface is designed to be invariant in
the usual sense that if the system is initialized in Zf,af , the
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∆s
f

p0
p1

p2

p3

p4 p5

Zs

Zf,af,1

Zf,af,4

Sf
s

Ss
f

∆(Ss
f ∩ Zf,a∗

f
)

Sf
s ∩ Zs

Ss
f ∩ Zf,a∗

f

Fig. 2. Geometry of the closed-loop system that is achieved with the
controller presented in this paper. Under the action of the feedback controller,
the state of the system evolves on the low-dimensional surfaces Zs, Zf,af .
Consider two strides of a running cycle initiated at the beginning of stance
(at p0). The robot’s state evolves in Zs throughout stance until the state
enters Sf

s (at p1), when two discrete events occur: the robot lifts off to begin
the flight phase; and the controller selects a value of af that will be held
constant throughout the flight phase. The value of the parameter, call it af,1, is
determined as a function of the angular momentum about the stance leg end at
transition into flight in such a way that the robot will land in a pre-determined
configuration. During the flight phase, the state of the robot evolves in Zf,af,1
until it enters Ss

f (at p2). The impact mapping ∆s
f is then applied and the

next stance phase is begun (at p3) and the process repeats. The robot will
terminate the ensuing stance phase (at p4) with an angular momentum that is
different than what it had on the previous stride (at p1). Due to conservation
of angular momentum about the center of mass in the flight phase, the robot
must evolve on a different surface in the flight phase this time in order to
land in the same configuration it had on the previous landing. The required
change in flight-phase evolution is accomplished by appropriate selection of
af,4, which specifies Zf,af,4 . By design, the rule for selecting af results
in Ss

f ∩ Zf,af,1 = Ss
f ∩ Zf,af,4 . This common set has been denoted by

Ss
f ∩ Zf,a∗

f
, where a∗

f is the parameter value corresponding to a periodic
orbit.

solution of the flight-phase differential equation remains in
Zf,af until it intersects Ss

f , at which time the stance phase
is re-initialized through the impact map, ∆s

f . The value of
the parameter af is selected at each transition from stance to
flight as a function of the angular momentum of the robot
about the stance leg end, σs−

1 , in such a way that evolution
along the surface Zf,af(σ

s−
1 ) will cause the robot to land on Zs

with a pre-determined configuration. This brings out a second
form of invariance that is related to the hybrid nature of the
system: the parameter af is selected so that the composition
of the flight-phase dynamics with the impact map ∆s

f maps
Zs ∩ Sf

s back to Zs. This is shown in Fig. 2 with the arrow
looping from the end of the flight phase back to the initiation
of the stance phase, and more succinctly in Fig. 3, where the
composition of the flight-phase dynamics with the impact map
is represented by a “generalized” impact map, ∆.

Not shown in either figure is the behavior of the robot off
of the hybrid zero dynamics. This is where attractivity comes
into play. In addition to creating the invariant surfaces, the
feedback controller must also ensure that trajectories that start
off of the surfaces converge to the surfaces. Both the creation
of the invariant surfaces and their attractivity are accomplished
with the use of virtual constraints.

C. Virtual constraints

Virtual constraints are holonomic constraints on the robot’s
configuration that are asymptotically imposed through feed-
back control. Their function is to coordinate the evolution

∆

p0 p1

p2

p3

Zs

Sf
s

∆(Sf
s ∩ Zs)

Sf
s ∩ Zs

Fig. 3. Geometry of the closed-loop system when the flight phase and the
impact map ∆s

f are composed to form a generalized impact map ∆ that maps
Sf

s ∩ Zs to Zs. This is analogous to the geometry that previous work has
designed into walking. The analogy becomes exact if the robot’s configuration
at the initiation of the stance phase is the same for all points in Zs ∩ Sf

s .

of the various links throughout a stride—which is another
way of saying that they reduce the degrees of freedom. It
is the imposition of the constraints that creates the invariant
surfaces. Since RABBIT has four independent actuators (two
at the hips and two and the knees), four virtual constraints
may be imposed in both the stance and flight phases. The
virtual constraints used in this paper are constructed as follows.
Consider a function pair {θ(q), hd(θ)}, where θ : Q → IR is
a scalar function of the configuration variables (in stance or
flight) and hd : IR → IR4 gives the desired configuration of
the actuated joints. θ(q) should be selected to be monotonic
along the planned motion and, for purposes of analysis, it is
required that qb and θ be independent, that is, [q′b, θ]′ is a valid
change of coordinates on Q. The virtual constraint is expressed
in the form of an output y = h(q) := qb − hd ◦ θ(q), and a
controller is designed to asymptotically enforce the constraint
by driving the output asymptotically to zero. Since the input
and output have the same number of components, designing
a controller to drive the output to zero is a standard problem
[47]. The control action of driving the output to zero is what
causes the trajectories of the system off of the invariant surface
to converge to the surface.

VI. CONTROL LAW DEVELOPMENT

Separate state-variable control strategies are developed for
the stance and flight phases of the running cycle. The controller
for each phase is formulated as an output zeroing problem
resulting in non-trivial zero dynamics [1], [3]. For the flight
phase, it will be advantageous to allow the control to depend
also on the initial value of the flight state or, equivalently, the
final value of the stance state.

A. Stance phase control

As in [3, Sec. V], define the output

ys = hs(q) := qb − hd,s ◦ θs(q) (33)

on (14), where the twice continuously differentiable function
hd,s : IR → IR4 encodes the stance-phase gait. It is assumed
that the associated decoupling matrix3, LgsLfshs, is invertible,

3The control law is rewritten without the use of Lie derivatives in Ap-
pendix I.
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Φs(q) := [h′
s, θs]

′ is a global diffeomorphism on Qs,

Zs := {xs ∈ TQs | hs(xs) = 0, Lfshs(xs) = 0} (34)

is an embedded two-dimensional submanifold of TQs, and
Sf

s∩Zs is an embedded one-dimensional submanifold of TQs;
see Fig. 2.

The feedback control is chosen to be continuous and to
render Zs invariant under the closed-loop dynamics as well
as attractive in finite time (the exact hypotheses from [3] are
given in Appendix II):

us(xs) = (LgsLfshs(xs))−1
(
v(hs(xs), Lfshs(xs))

− L2
fs

hs(xs)
)
, (35)

where v renders the origin of

d2ys

dt2
= v (36)

globally asymptotically stable with finite convergence time.
The closed-loop system is denoted

fcl,s(xs) := fs(xs) + gs(xs)us(xs). (37)

The feedback control

u∗
s (xs) = −(LgsLfshs(xs))−1L2

fs
hs(xs) (38)

renders Zs invariant under the stance-phase dynamics; that is,
for every z ∈ Zs,

fzero(z) := fs(z) + gs(z)u∗
s (z) ∈ TzZs. (39)

Zs is called the stance-phase zero dynamics manifold and
ż = fzero(z) is called the stance-phase zero dynamics. Follow-
ing the development in [1], [3], (θs, σ1) is a valid set of local
coordinates for Zs and in these coordinates the zero dynamics
has the form

θ̇s =
1

I(θs)
σ1,

σ̇1 = mg xcm(θs),
(40)

where I(θs) plays the role of an inertia. Moreover, in these
coordinates, Sf

s ∩ Zs is given by

{(qs−
0 , q̇s−) | qs−

0 = Φ−1
s (0, θ−s,0), q̇s− = q̇s−

0 σs−
1 , σs−

1 ∈ IR},
(41)

where

q̇s−
0 =

[
∂hs
∂q

A5

]−1
∣∣∣∣∣∣
qs−
0

[
04×1

1

]
. (42)

For later use in computing a Poincaré return map on the
zero dynamics, it is noted that (40) has Lagrangian [3, Eq.
(59)] Ls,zero := Ks,zero − Vs,zero, where

Ks,zero :=
1
2
(σ1)2 (43)

Vs,zero(θs) := −
∫ θs

θ+
s

I(ξ)mg xcm(ξ) dξ; (44)

the choice of the lower limit θ+
s is arbitrary and will be made

later. Also for later use, define[
λx(qs−

0 )
λy(qs−

0 )

]
:=

∂f1(qs−
0 )

∂q
q̇s−
0 , (45)

so that [
ẋs−

cm

ẏs−
cm

]∣∣∣∣∣
Sf

s∩Zs

=

[
λx(qs−

0 )
λy(qs−

0 )

]
σs−

1 . (46)

B. Flight phase control

The overall goal of the flight-phase controller is to land the
robot in a favorable manner for continuing with the stance
phase. It will turn out that a particularly interesting objective
is the following: if the robot enters the flight phase from the
stance-phase zero dynamics manifold, Zs, control the robot
so that it lands on Zs in a fixed configuration. The analytical
motivation for this objective will be made clear in Section VII.
The feasibility of landing in a fixed configuration will be
illustrated in Section VIII with a feedback controller that
depends on xf and the final value of the state of the preceding
stance phase. To realize such a controller as a state-variable
feedback, the flight-state vector is augmented with dummy
variables, ȧf = 0, whose values can be set at the transition
from stance to flight. Let af ∈ A := IRp, p ∈ IN.

In other regards, paralleling the development of the stance
phase controller4, define the output

yf = hf(qf , af) := qb − hd,f(xcm, af), (47)

where hd,f is at least twice differentiable. Then the following
can be easily shown: for any value of af ,

1) the decoupling matrix, Lgf Lff hf , is everywhere invert-
ible;

2) Φf := [h′
f , q5,xcm,ycm]′ is a global diffeomorphism on

Qf ;
3) the flight-phase zero-dynamics manifold

Zf,af := {xf ∈ TQf | hf(xf , af) = 0, Lff hf(xf , af) = 0}
(48)

is a six-dimensional embedded submanifold of TQf ;
4) Ss

f ∩Zf,af is a five-dimensional embedded submanifold
of TQf ;

5) (q5,xcm,ycm, σcm, ẋcm, ẏcm) is a set of global coordi-
nates for Zf,af ; and

6) the flight-phase zero dynamics has the form

q̇5 = κ1,f(σcm,xcm, ẋcm, af) (49)

σ̇cm = 0 (50)

ẍcm = 0 (51)

ÿcm = −g, (52)

where (49) arises from evaluating

q̇5 =
σcm

A55(qb)
−

4∑
i=1

A5i(qb)
A55(qb)

q̇i (53)

on Zf,af . Note that in Fig. 2, only a two-dimensional projection
of Zf,af could be shown and Ss

f ∩ Zf,af was represented as a
one-dimensional projection.

4As in the stance phase, the control law for the flight phase is rewritten
without the use of Lie derivatives in Appendix I.
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The feedback controller is defined as

uf(xf , af) := −(Lgf Lff hf(xf , af))−1
(
Kphf(xf , af)

+ KdLff hf(xf , af) + L2
ff

hf(xf , af)
)
, (54)

where ÿf + Kdẏf + Kpyf = 0 is exponentially stable. Let
x̄f := (x′

f , a
′
f)

′ and denote the right-hand side of (7) and the
trivial parameter dynamics ȧf = 0 in closed loop with (54) by

fcl,f(x̄f) :=

[
ff(xf) + gf(xf)uf(x̄f)
0

]
. (55)

C. Closed-loop hybrid model

The closed-loop hybrid model is

Σf,cl :




X̄f = TQf ×A
F̄cl,f : ( ˙̄xf) = fcl,f(x̄f)

S̄s
f = {(xf , af) ∈ X̄f | Hs

f (xf) = 0}
T̄ s

f : x+
s = ∆̄s

f (x̄
−
f ) := ∆s

f (x
−
f )

(56)

Σs,cl :




Xs = TQs

Fcl,s : (ẋs) = fcl,s(xs)

Sf
s = {xs ∈ Xs | H f

s (xs) = 0}
T̄ f

s : x+
f = ∆f

s(x
−
s ), a+

f = wf
s(x

−
s ),

where the parameter update law wf
s is at least continuously

differentiable. The internal geometry of the closed-loop system
is shown in Fig. 2.

VII. EXISTENCE AND STABILITY OF PERIODIC ORBITS

This section of the paper could equally well be titled, “Main
Results”, as it is here that the internal geometric structure
of the closed-loop system (56) is exploited to obtain a low-
dimensional, closed-form characterization of asymptotically
stable, periodic, running motions. Section VII-A develops the
Poincaré section and the Poincaré return map that will be
used for analyzing periodic orbits of (56). The analytical
results based on restriction dynamics—that is, the hybrid
zero dynamics of Fig. 3—are developed in Section VII-B.
The relation to stability in the full-order model is treated in
Section VII-C.

A. Definition of the Poincaré return map

A periodic running motion corresponds to a periodic orbit
in the closed-loop model. The Poincaré return map is a well
known tool for determining the existence of periodic orbits
and their stability properties; for its use in hybrid systems, see
[2], [45], [48], [49]. A fixed point of the Poincaré return map
is equivalent to a periodic orbit.

Since running consists of two phases, the Poincaré return
map is naturally viewed as the composition of two maps: P :=
Ps ◦ Pf , as in Fig. 4, where Ps : S̄s

f → Sf
s follows a solution

of the closed-loop model from the impact event at the end
of flight to just before the end of stance, and Pf : Sf

s → S̄s
f

follows a solution from the end-of-stance event to just before
the end of flight. Since not every landing will result in the

Xs
X̄f = Xf × A

Sf
s S̄s

f

x∗+
s

x∗−
s x̄∗+

f

x̄∗−
f

∆̄s
f (S̄s

f )

(
∆f

s(Sf
s), ws(Sf

s)
)

Fig. 4. Poincaré maps for the closed-loop system. Conceptually, Ps : S̄s
f →

Sf
s , and is determined by following the flow of the closed-loop stance model

from the impact at the end of flight up to, and not including, the transition
from stance to flight. Similarly, Pf : Sf

s → S̄s
f , and is determined by following

the flow of the closed-loop flight model augmented with the trivial parameter
dynamics (ȧf = 0) from the transition at the end of stance up to, and not
including, the impact event at end of flight. The Poincaré map is P : Sf

s →
Sf

s , where P := Ps ◦Pf . A periodic orbit corresponds to a fixed point of P ,
namely, x∗−

s = P (x∗−
s ).

completion of a stance phase (for example, the robot may not
have sufficient speed), Ps is only a partial map. And, since
not every transition out of stance results in a successful flight
phase followed by a successful stance phase, Pf is a partial
map. Hence, the domains where these maps are well defined
must be identified, which will give rise to the subsets S̃f

s ⊂ Sf
s

and S̃s
f ⊂ S̄s

f .

Following [2], define the stance-time-to-impact function5,
TI,s : x0 ∈ Xs → IR ∪ {∞}, by

TI,s :=




inf{t ≥ 0 |ϕcl,s(t, x0) ∈ Sf
s} if ∃ t such that

ϕcl,s(t, x0) ∈ Sf
s

∞ otherwise,
(57)

where ϕcl,s(t, x0) is an integral curve of (37) corresponding
to ϕcl,s(0, x0) = x0. ¿From [2, Lemma 3], TI,s is continuous
at points x0 where 0 < TI,s(x0) < ∞ and the intersection
with Sf

s is transversal6. Hence, X̃s := {xs ∈ Xs | 0 <
TI,s(xs) < ∞, Lfcl,sH

f
s (ϕcl,s(TI,s(xs), xs)) 
= 0} is open,

and consequently, S̃s
f := ∆̄s −1

f (X̃s) is an open subset of S̄s
f .

It follows that the generalized Poincaré stance map Ps : S̃s
f →

Sf
s defined by

Ps(x̄f) := ϕcl,s(TI,s(∆̄s
f (x̄f)), ∆̄s

f (x̄f)), (58)

is well defined and continuous (the terminology of a
generalized-Poincaré map follows Appendix D of [50]).

Similarly, the generalized Poincaré flight map Pf : S̃f
s →

S̃s
f , is defined by

Pf(xs) := ϕcl,f(TI,f(∆f
s(xs), wf

s(xs)),∆f
s(xs), wf

s(xs)), (59)

5Flows from one surface to another are sometimes called impact maps or
impact functions. TI,s could also be called the time-to-flight function.

6Transversality guarantees nonzero vertical leg end velocity at impact; that
is, the foot does not just scuff the ground.
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where, TI,f : x̄0 ∈ X̄f → IR ∪ {∞} by

TI,f :=




inf{t ≥ 0 |ϕcl,f(t, x̄0) ∈ S̃s
f } if ∃ t such that

ϕcl,f(t, x̄0) ∈ S̃s
f

∞ otherwise,
(60)

and S̃f
s = {xs ∈ Sf

s | 0 < TI,f(∆f
s(xs), wf

s(xs)) <
∞, Lfcl,f H

s
f (ϕcl,f(TI,f(∆f

s(xs), wf
s(xs)),∆f

s(xs), wf
s(xs))) 
=

0}. In [50, Appendix D], it is proved that Pf is continuously
differentiable.

The Poincaré return map P : S̃f
s → Sf

s for (56) is defined
by

P := Ps ◦ Pf . (61)

B. Analysis of the Poincaré return map

Theorem 1 (Connecting running to walking): Let P be
as (61), and let S := Sf

s , and S̃ := S̃ f
s . Then P is also the

Poincaré return map for the system with impulse effects

Σcl :

{
ẋs(t) = fcl,s(xs(t)) x−

s (t) 
∈ S
x+

s (t) = ∆(x−
s (t)) x−

s (t) ∈ S,
(62)

where ∆ := ∆̄s
f ◦ Pf .

Proof: This follows from the construction of the Poincaré
return map in [2, Eq. (14)].

This observation is important because models of the form
(62)—called systems with impulse effects [51], [52]— have
been studied in the context of walking gaits [3], [4]. The
association of running with walking may indicate how results
developed for walking, such as closed-form stability analysis
on the basis of a restricted Poincaré map, may be extended
to running. One motivation for pursuing this association is
the fact that the control law designs of [3], [4] have been
validated experimentally [8], [9]. In this section and the next,
several results along this line of reasoning are developed and
illustrated on an asymptotically stable running gait.

Suppose that ∆(S̃ ∩Zs) ⊂ Zs, where Zs is the stance-phase
zero dynamics manifold. Then, from [3], (62) has a hybrid zero
dynamics, which may be called the hybrid zero dynamics of
running:

ż = fzero(z) z− /∈ S ∩ Zs

z+ = ∆zero(z−) z− ∈ S ∩ Zs,
(63)

where the restricted impact map is ∆zero := ∆|S̃∩Zs
and fzero

is given by (39). The key properties in walking gaits that led
to a rich analytic theory were Zs-invariance, ∆(S̃ ∩Zs) ⊂ Zs,
and what one may call configuration determinism at transition:
π◦∆(S̃ ∩Zs) consists of a single point, where π : TQs → Qs

is the canonical projection. How to achieve these conditions
for ∆ = ∆̄s

f ◦ Pf through design of the flight-phase controller
will be detailed in Section VIII.

Let qs−
0 be as defined in (41) and define qs+

0 := π ◦
∆(qs−

0 , ∗). Use (8) to define the positions of the center of
mass at the beginning of the stance phase, (xs+

cm,ys+
cm), and

the end of the stance phase, (xs−
cm,ys−

cm). In the following, it
is assumed that the center of mass is behind the stance leg at
the beginning of the stance phase, and thus, xs+

cm < 0.

Theorem 2 (Characterization of restricted impact map):
Suppose that ∆(S̃ ∩ Zs) ⊂ Zs and π ◦ ∆(S̃ ∩ Zs) = {qs+

0 }.
In the coordinates (θs, σ1) for Zs, the restricted impact map
is given by

∆zero(θ−s,0, σ
s−
1 ) =

[
θ+
s,0

δ(σs−
1 )

]
, (64)

where

θ+
s,0 = θs(qs+

0 )

δ(σs−
1 ) = χσs−

1 −
√

(βσs−
1 )2 + α,

(65)

and

α = −2m2g(xs+
cm)2(ys+

cm − ys−
cm)

β = mxs+
cmλy(qs−

0 )
χ = 1 + mxs−

cmλy(qs−
0 ) + m(ys+

cm − ys−
cm)λx(qs−

0 ).
(66)

The proof is given in Appendix III.
Remark 4:
1) χ < 0 would imply a sign change in the angular

momentum at impact, which would be incompatible with
the definition of running as forward motion with a flight
phase.

2) If xs+
cm < 0 is not assumed, the general expression

for (65) is δ(σs−
1 ) = χσs−

1 + sgn(xs+
cm)
√

(βσs−
1 )2 + α,

where sgn(x) is the sign of x.
3) When α = 0, that is, the center of mass has the same

height at the beginning and end of the stance phase,
δ(σs−

1 ) = (χ − |β|)σs−
1 is linear, exactly as in walking.

4) In terms of the coordinates (θ−s,0, ζ := 1
2 (σs−

1 )2) for
S̃ ∩ Zs, where the (generalized) kinetic energy of the
stance-phase zero dynamics is used instead of the angu-
lar momentum, the second entry in (64) becomes

δe(ζ) = (χ2 + β2)ζ

− χ
√

2αζ + (2βζ)2 +
α

2
. (67)

5) Implicit in the construction of S̃ is the condition 2αζ +
(2βζ)2 ≥ 0. Also a part of the construction of S̃ is the
condition that TI,f is a positive real number; under the
assumptions made on ∆, this is equivalent to checking
that ys+

cm > ys−
cm and λy(qs−

0 ) < 0 do not simultaneously
occur.

Let P : S̃ → S be the Poincaré return map for (62), and
hence, also for (56), and suppose that ∆(S̃ ∩ Zs) ⊂ Zs, as in
Fig. 3. Then P (S̃ ∩ Zs) ⊂ S ∩ Zs, and the restriction map
ρ : S̃ ∩ Zs → S ∩ Zs by

ρ := P |S̃∩Zs
(68)

is well defined. The restricted Poincaré return map ρ is
important because it is scalar and, by [2, Theorem 2] (see [3,
Sec. IV]), asymptotically stable fixed points of it correspond
to asymptotically stable periodic orbits of the hybrid model
(62), and hence, to asymptotically stable running gaits.

Theorem 3 (Closed-form for ρ): Suppose that ∆(S̃ ∩
Zs) ⊂ Zs and π◦∆(S̃∩Zs) = {qs+

0 }. Let (θ−s,0, σ
s−
1 ) ∈ S̃∩Zs,

and set ζ := 1
2 (σs−

1 )2. Then

ρ(ζ) = δe(ζ) − Vs,zero(θ−s,0), (69)
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θ+
s,0θ+

s,0θ+
s,0 θ−s,0θ−s,0θ−s,0

Vs,zero(θs) + 1
2 (σ1)2

Vs,zero(θ−s,0) + 1
2 (σ∗s−

1 )2

V
s,

z
e
ro

(θ
s
)

1
2 (σs−

1 )2

Impact + Flight

σs+
1 = χσs−

1 −
√

(βσs−
1 )2 + α︸ ︷︷ ︸

1
2 (σs+

1 )2

Vs,zero(θ−s,0) θs

Fig. 5. The stance phase zero dynamics is Lagrangian, and thus throughout
the stance phase, the corresponding total energy Vs,zero(θs) + 1

2
(σ1)2 is

constant. Over the impact plus flight phase, the change in total energy
depends on the angular momentum through δ(σs−

1 ) and the potential energy
through Vs,zero(θ−s,0). The total energy corresponding to the periodic orbit is
Vs,zero(θ−s,0) + 1

2
(σ∗s−

1 )2.

with domain of definition

Dρ :=
{
ζ > 0

∣∣ δe(ζ) − V max
s,zero > 0,

2αζ + (2βζ)2 ≥ 0
}

, (70)

where δe is defined in (67), and

V max
s,zero := max

θ+
s,0≤θs≤θ−

s,0

Vs,zero(θs). (71)

Moreover, the first derivative of the restricted Poincaré return
map is

dρ

dζ
(ζ) =

dδe

dζ
(ζ) = (χ2 + β2) − χ

α + 4β2ζ√
2αζ + (2βζ)2

. (72)

The proof is given in Appendix IV.
Remark 5: 1) Computing a fixed point of (69) is easily

reduced to solving a quadratic equation. If its discriminate Υ
is non-negative, where

Υ := 4χ2
(
χ2α2

+
(
−2Vs,zero(θ−s,0) + α

) (
−αχ2 + α − 2β2Vs,zero(θ−s,0)

) )
,

(73)

the fixed point can be explicitly calculated as

ζ∗ =

(
χ2 + β2 − 1

) (
2Vs,zero(θ−s,0) − α

)
+ 2χ2α −

√
Υ

2
(
(χ + β)2 − 1

)(
(χ − β)2 − 1

) .

(74)
2) As in walking [1, Fig. 14], the restricted Poincaré map can
be interpreted in terms of energy transfer; see Fig. 5.

The following two corollaries are immediate.
Corollary 1 (Exponentially stable fixed points):

Suppose that ζ∗ ∈ Dρ is a fixed point of ρ. Then it is
exponentially stable if, and only if,

µ := (χ2 + β2) − χ
α + 4β2ζ∗√

2αζ∗ + (2βζ∗)2
(75)

satisfies |µ| < 1.
Corollary 2 (Qualitative analysis of ρ): The following

statements are true:
(a) limζ↘0

dρ
dζ (ζ) = −∞, for χ > 0 and α ≥ 0;

(χ − |β|)2

ζζ∗

ρα
2
− Vs,zero(θ

−
s,0)

(a) stable

ζζζ∗

ρ

α
2
− Vs,zero(θ

−
s,0)

(b) unstable

Fig. 6. Qualitatively different Poincaré maps that may occur in running. The
dashed line is the identity map and the bold line is a sketch of the restricted
Poincaré return map. In (a), the fixed point is exponentially stable because the
intersection with the identity line occurs with a positive slope less than 1.0.
In (b), the fixed point is unstable because the intersection with the identity
line occurs with a negative slope less than −1.0.

(b) limζ↘ −α

2β2

dρ
dζ (ζ) = −∞, for χ > 0 and α < 0;

(c) limζ→∞ dρ
dζ (ζ) = (χ − |β|)2;

(d) d2ρ
dζ2 (ζ) = χ α2

(2αζ+4β2ζ2)3/2 does not change sign.

Fig. 6 provides a graphical depiction of ρ for χ > 0, α ≥ 0,
and α

2 − Vs,zero(θ−s,0) > 0. Similar figures could be drawn
for other cases. The next result shows that these qualitative
features of the Poincaré return map lead to a large region of
attraction for an exponentially stable fixed-point.

Theorem 4 (Non-local convergence in the HZD):
Consider ρ : Dρ → IR, and suppose that

1) (χ − |β|)2 < 1,
2) χ > 0,
3) and there exists ζ∗ ∈ Dρ such that ρ(ζ∗) = ζ∗ and

dρ
dζ (ζ∗) > 0.

Then, the following statements are true:

(a) ζ∗ is the unique fixed-point of ρ;
(b) the set

D̃ρ =
{

ζ ∈ Dρ

∣∣∣∣ dρ

dζ
(ζ) > 0

}
(76)

is unbounded and connected; and
(c) ζ∗ is locally exponentially stable and every solution

of ζ(k + 1) = ρ(ζ(k)) initialized in D̃ρ converges
monotonically to ζ∗.

The proof is given in Appendix V. This result shows that
once the motion of the robot has settled to the hybrid zero
dynamics, the domain of attraction of the periodic orbit is
quite large. The analysis in Theorem 4 has not accounted for
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Femur Tibia Torso

Length (m) 0.4 0.4 0.625

Mass (kg) 6.8 3.2 17.0

Inertia about COM (kg-m2) 0.47 0.20 1.33

TABLE I

EXPERIMENTALLY MEASURED PARAMETERS FOR RABBIT.

the peak torque of the actuators and the allowed friction cone
at the support leg end. This theorem should thus be viewed
as stating that such physical considerations will determine the
limits on the region of attraction, and that the semi-global
convergence of the control loop per se is not the key limiting
factor.

For all of the examples worked by the authors, if an
exponentially stable fixed point was found, hypotheses (1), (2)
and (3) of Theorem 4 have always held as well. In particular,
µ was always greater than 0.4 and D̃ρ equalled Dρ, that
is, the Poincaré map was always strictly increasing on the
region of interest. In the case of Raibert’s hopper, the Poincaré
map was unimodal—and thus not strictly increasing on the
domain of interest [17]. Nevertheless, semi-global stability
was established using a more powerful analysis method due
to Singer [53] and Guckenheimer [54].

C. Stability in the full-order model

Under the assumptions made in Section VI-A on the stance-
phase controller, Theorem 2 of [2] guarantees that asymp-
totically stable orbits in the hybrid zero dynamics (63) are
also asymptotically stable in the full-order hybrid model (62)
(for a discussion of exponential stability, see Remark 1 in
[13]). By Theorem 1, the Poincaré return maps of (62) and
(56) are identical. Hence, once asymptotic stability of an orbit
has been proven in (62), it follows that the orbit is also
asymptotically stable for (56). Putting all of this together,
proving the existence and stability of an orbit in the hybrid
zero dynamics of running leads to the desired conclusions in
the state space of the closed-loop hybrid model (56).

VIII. ILLUSTRATION ON RABBIT

The analytical results of Section VII make it straightforward
to determine if a control law of the kind specified in Section VI
leads to the existence of a stable periodic orbit. However,
proposing specific values for the output functions so that
the evolution of the robot is energetically efficient, while
respecting actuator limits, the friction cone at the contact point
of the leg end, and lift-off at the beginning of the flight phase,
is nearly impossible to do by intuition. Here, the feedback
designs will be based on optimization.

Using the method proposed in [11], time-trajectories of (29),
corresponding to average running speeds varying from 0.5 m/s
to 2.75 m/s and parameter values given in Tab. I, were deter-
mined for RABBIT (see [1] for details on the planar, bipedal
robot, RABBIT). The running trajectories satisfy ÿ1 > 0 at the
beginning of the flight phase, the duration of the flight phase

-0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Fig. 7. Stick diagram for a running trajectory with average speed 1.5 m/s.

−0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Fig. 8. Stick diagram for a running trajectory with average speed 2.5 m/s.

is at least 25% of the duration of a stride, and the required
coefficient of friction is less than 2/3. Stick-figure diagrams
corresponding to the running motions of 1.5 m/s and 2.5 m/s
are given in Figs. 7 and 8.

Denote by O the path traced out in the state spaces of
the hybrid model of the robot by any one of these running
trajectories. It was checked that O intersects Sf

s and Ss
f exactly

once; define x∗−
f = O ∩ Ss

f and x∗−
s = O ∩ Sf

s . The goal
is to design a time-invariant state-feedback controller à la
Section VI that has O as its asymptotically-stable periodic
orbit. Recall that designing the controller is equivalent to
specifying the output functions in (33) and (47) and the
parameter update-law in (56).

A. Stance Phase Controller Design

On the basis of x∗−
f and x∗−

s , the values of qs+
0 (the

initial configuration in stance on the periodic orbit), qs−
0 (final

configuration in stance on the periodic orbit), q̇s+
0 (normalized

initial velocity in stance on the periodic orbit; see (42)), and
q̇s−
0 (normalized final velocity in stance on the periodic orbit7)

are easily deduced, which in turn give the initial and final
values of θs on the periodic orbit, θ+

s,0 and θ−s,0.
As in [5], an output ys = hs(q) := qb − hd,s ◦ θs(q)

is designed so that it satisfies the boundary condition and
vanishes (nearly) along the stance phase of the periodic orbit,
and thus the orbit will be an integral curve of the stance-phase
zero dynamics. For this, the function hd,s was selected to be a
fourth-order polynomial in θs. The design method in [11] that
is used to compute the periodic orbit essentially guarantees
that the technical conditions of Section VI are satisfied for hs;
nevertheless, the conditions were formally verified. Once hs

is known, so is Zs, and, by construction, O ∩ TQs ⊂ Zs.

7In (42), replace evaluation at qs−
0 with qs+

0 .
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ρ

Fig. 9. Running at 1.5 m/s. The restricted Poincaré map (bold) associated
with the closed-loop system. The fixed point occurs where the graph of ρ
intersects the graph of the identity map (thin line).

B. Stability of the periodic orbits

The data required to determine the restricted Poincaré map
ρ in Theorem 3 and Theorem 4 can be computed directly from
hd,s. This was carried out for each of the running trajectories
studied in this paper. The numerical values are summarized
in Tab. II. In each case, µ < 1 and hence if a flight-
phase controller can be determined to meet the conditions
of Theorem 3, the corresponding orbit will be asymptotically
stable. Note that slower running speeds yield smaller values
of µ. So, for fast running, the convergence toward the periodic
orbit will be slow. A plot of the restricted Poincaré map
is provided in Fig. 9 for the trajectory corresponding to an
average speed of 1.5 m/s.

C. Flight Phase Controller Design

The flight phase controller, yf = hf(qf , af) := qb −
hd,f(xcm, af), af = wf

s(x
−
s ), is to be designed so that trajec-

tories of the closed-loop system that takeoff from the stance-
phase zero dynamics manifold, Zs, land on Zs; moreover, the
landing configuration should be independent of the robot’s
takeoff velocity from Zs. Since from Section VIII-A the initial
stance-phase configuration of the robot on the periodic orbit
is equal to qs+

0 , these two conditions become

∆(S̃ ∩ Zs) ⊂ Zs (77)

π ◦ ∆(S̃ ∩ Zs) = qs+
0 , (78)

where, as before, π : TQs → Qs is the canonical projection.
The design of the controller can now be broken down into
several steps. First, (77) and (78) will be translated from
boundary conditions on configuration and velocity at the
beginning of the (next) stance phase, into boundary conditions
at the end of the (current) flight phase. This will result in
control objectives for the configuration and velocity of the
body coordinates and for the overall orientation of the robot
at landing. In a second step, because the body coordinates qb

are directly actuated, it is straightforward to design a family of

functions hd,f(xcm, af) that achieve the boundary conditions
on the body-coordinate configuration and velocity, once the
flight duration is determined from the ballistic motion of the
robot’s center of mass. The final step is more difficult because
it is indirect: adjust the evolution of the body coordinates as
a function of the takeoff velocity so as to achieve a desired
orientation q5 of the robot at landing.

To begin the first step, observe that because (qs+
0 , q̇) is in

π−1(qs+
0 )∩Zs if, and only if, q̇ = q̇s+

0 σs+
1 for some σs+

1 ∈ IR,
and (qs−

0 , q̇) is in S̃ ∩Zs if, and only if, q̇ = q̇s−
0 σs−

1 for some
σs−

1 ∈ IR, conditions (77) and (78) are equivalent to

∀ σs−
1 , ∃ σs+

1 s.t. ∆(qs−
0 , q̇s−

0 σs−
1 ) = (qs+

0 , q̇s+
0 σs+

1 ). (79)

¿From Theorem 2, it follows that σs+
1 = δ(σs−

1 ), and hence
(79) is equivalent to

∆(qs−
0 , q̇s−

0 σs−
1 ) = (qs+

0 , q̇s+
0 δ(σs−

1 )), (80)

which gives specific boundary conditions, just after impact,
to be met by the design of the flight phase controller. In
particular, recalling that q = (q′b, q5)′, it is seen that (80)
places constraints on the body configuration variables and their
derivatives, and on the overall orientation of the robot, q5,
while the constraint on q̇5 is equivalent to σs+

1 = δ(σs−
1 ), if

the other constraints are met.
For the purpose of computation, it is convenient to transform

(80) to conditions in the flight-phase state space, TQf , instead
of the stance-phase state space, TQs. This is done as follows:
the boundary conditions (80) specify the height of the center
of mass at impact, and from this information, the flight time,
tf , is computed for any initial condition in S̃ ∩Zs; see (100) in
the Appendix. Using (101) and (46), the velocity of the center
of mass can be expressed as a function of σs−

1 ,

[
ẋf−

cm

ẏf−
cm

]
=


 λx(qs−

0 )σs−
1

−
√

(λy(qs−
0 )σs−

1 )2 − 2g(ys+
cm − ys−

cm)


 .

(81)
The impact model (20), can be rewritten to define the angular
velocity at the end of flight satisfying (80):

q̇f− = A−1
(
A + m∂f2

∂q

′ ∂f2
∂q

)
R−1q̇s+

0 δ(σs−
1 )+

+mA−1 ∂f ′2
∂q

[
ẋf−

cm

ẏf−
cm

]
.

(82)

These last two equations define a function ˙̄q0(qs+
0 , σs−

1 ) such
that (80) is equivalent to

qf−
0 = R−1qs+

0

q̇f− = ˙̄q0(qs+
0 , σs−

1 ).
(83)

In summary, the objective of the flight-phase controller is
to meet the boundary conditions given in (83). Meeting these
two conditions will assure that invariance of Zs under the
composition of the flight phase and impact model is achieved,
(77), and that configuration determinism at transition, (78), is
also met; see Figs. 2 and 3.
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Average Vzero(θ
−
s ) V max

s,zero xs+
cm ys+

cm xs−
cm ys−

cm λx(qs−
0 ) λy(qs−

0 )

velocity (cm) (cm) (cm) (cm) (10−2) (10−3)

0.50 m/s −66 21 −6.8 62.4 14.0 69.8 3.74 5.4
0.75 m/s −114 36 −8.8 62.1 18.4 68.8 3.83 3.3
1.00 m/s −168 54 −10.9 61.5 22.6 67.5 3.95 2.3
1.25 m/s −219 74 −12.9 60.5 26.4 65.7 4.09 2.0
1.50 m/s −258 100 −15.1 59.3 29.6 63.8 4.27 2.3
1.75 m/s −274 134 −17.7 58.1 32.3 61.7 4.48 3.0
2.00 m/s −285 167 −20.1 56.7 34.6 59.7 4.69 3.3
2.25 m/s −306 123 −17.5 55.6 34.0 59.1 4.78 3.9
2.50 m/s −309 81 −14.4 54.7 32.5 59.0 4.85 5.0
2.75 m/s −260 70 −13.2 55.2 29.8 58.6 4.91 5.0

Average α β χ ζmin ζ∗ µ χ − |β|
velocity (10−2)

0.50 m/s 9.12 −1.37 0.926 53 151 0.695 0.832
0.75 m/s 14.26 −1.07 0.926 88 275 0.708 0.838
1.00 m/s 19.04 −0.92 0.931 125 434 0.729 0.850
1.25 m/s 23.34 −0.96 0.940 164 615 0.754 0.866
1.50 m/s 27.33 −1.29 0.955 206 801 0.785 0.887
1.75 m/s 30.84 −1.99 0.976 253 982 0.826 0.914
2.00 m/s 32.77 −2.47 0.990 294 1162 0.856 0.932
2.25 m/s 29.56 −2.52 0.986 231 1327 0.859 0.922
2.50 m/s 23.69 −2.66 0.984 161 1503 0.870 0.916
2.75 m/s 15.91 −2.45 0.994 127 1729 0.908 0.940

TABLE II

STABILITY ANALYSIS OF VARIOUS RUNNING MOTIONS. IF ζ > ζmin, THEN ζ ∈ Dρ .

The design of hd,f can now be given in two more steps.
First, define8

τ(xcm, σs−
1 ) =

xcm − xf+
cm

tf ẋf+
cm

=
xcm − xf+

cm

tfλx(qs−
0 )σs−

1

; (84)

the real-valued function τ varies between 0 and 1 and can be
used to parameterize trajectories from S̃∩Zs to π−1(qs+

0 )∩Zs

in a neighborhood of the periodic orbit. Choose a function
fcn(a1, · · · , a5) : [0, 1] → IR4 such that

fcn(a1, · · · , a5)(0) = a1

dfcn
dτ (a1, · · · , a5)(0) = a2

fcn(a1, · · · , a5)(1) = a3

dfcn
dτ (a1, · · · , a5)(1) = a4,

(85)

and there exist a∗
1, · · · , a∗

5 for which qb − fcn(a∗
1, · · · , a∗

5)(τ)
(nearly) vanishes on O. Here, this was accomplished with
a fourth order polynomial. Off of the orbit, use (85) to
solve for a1, · · · , a4 as functions of σs−

1 so that qb(τ) =
fcn(a1, · · · , a5)(τ) satisfies the constraints on the body co-
ordinates imposed by (83). Specifically, set a1 = (qs−

0 )b,
a3 = (R−1qs+

0 )b, a2 = (q̇s−
0 σs−

1 )b, and a4 = ( ˙̄q0(qs+
0 , σs−

1 ))b.
Define

hd,f(xcm, σs−
1 , a5) := fcn(a1, · · · , a5)(τ) (86)

with ai(σs−
1 ), i = 1, . . . , 4 and τ(xcm, σs−

1 ) as determined
above. Define q5(0) = (qs−

0 )5 and q5,d = (R−1qs+
0 )5.

In the final step, the goal is to select a5 as a function
of σs−

1 so that the q5-component—the overall orientation of

8Note that xf+
cm = xs−

cm.

the robot—satisfies the landing constraint. This is done as
follows. The output (86) satisfies all of the conditions of
Section VI, and hence the evolution of q5 in the flight-phase
zero dynamics is given by q̇5 = κ1,f(σcm,xcm, ẋcm, σs−

1 , a5).
In the flight phase, σcm and ẋcm are constant and can be
substituted by their values from S̃ ∩Zs. In addition, xcm(t) =
xs−

cm + tλx(qs−
0 )σs−

1 . Hence, q̇5 = κ̃1,f(t, σs−
1 , a5). Letting

σ∗s−
1 denote the value of σs−

1 on the orbit, O, q5,d = q5(0) +∫ tf

0
κ̃1,f(t, σ∗s−

1 , a∗
5)dt is satisfied because, by construction of

the output, the orbit corresponds to an integral curve of the
flight-phase zero dynamics. Finally, it is verified (numerically)
that

∂

∂a5

(
q5,d − q5(0) −

∫ tf

0

κ̃1,f(t, σ∗s−
1 , a5)dt

)∣∣∣∣
a5=a5∗


= 0,

(87)
and thus by the implicit function theorem, there exists an open
subset about σ∗s−

1 and a differentiable function w̃f
s such that

w̃f
s(σ

∗s−
1 ) = a∗

5 and

q5,d = q5(0) +
∫ tf

0

κ̃1,f(t, σs−
1 , w̃f

s(σ
s−
1 ))dt. (88)

Since (88) is scalar while a5 has four components, there exist
an infinite number of solutions for w̃f

s. Hence, a numerical
optimization was performed to find, for each point in a neigh-
borhood of σ∗s−

1 , a value of a5 that steers q5 to q5,d, while
minimizing9 ||a5 − a∗

5||. The flight-phase control design is
completed by formally defining hd,f(qf , af), af := (σs−

1 , a′
5)

′,
and wf

s(x
−
s ) := (σs−

1 , w̃f
s(σ

s−
1 )′)′.

9Other criteria could be used, such as minimization of the torques in the
flight phase. This latter criterion requires the computation of the torques via
the dynamic model, and hence is costly in calculation time.
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Fig. 10. Running at 1.5 m/s. The four graphs depict the relative joint angles
in radians (x-axis) versus their velocities in radians per second (y-axis) in
the stance, flight and impact phases: the swing knee angle (knee of leg-2),
the swing hip angle (hip of leg-2), the stance knee angle (knee of leg-1)
and the stance hip angle (hip of leg-1). At impact, the roles of the limbs
are exchanged; as a consequence the configuration angles change at impact;
see (30). Notice that the robot has the same configuration at each transition
between phases. The plots indicate that a limit cycle is achieved.
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Stance

Impact

q5,d

Fig. 11. Running at 1.5 m/s. The graph depicts torso angle in radians (x-
axis) versus its velocity in radians per second (y-axis) in the stance and flight
phases. Notice that the flight-phase controller has regulated the torso angle
to its desired value of q5,d at impact. The plot indicates that a limit cycle is
achieved.

D. Simulation without modeling error

The control law developed above has been simulated on a
model of RABBIT for the various running motions. Assuming
no modeling error and initializing the closed-loop system off
of the periodic orbit—with the initial velocity 10% higher than
the value on the periodic orbit—the simulation data presented
in Figs. 10 to 17 are obtained for the running motions of
1.5 m/s and 2.5 m/s.

For a running speed of 1.5 m/s (resp., 2.5 m/s) Figs. 10 and
11 (resp., Figs. 14 and 15) show the phase-plane evolution of
the configuration variables. The convergence to the periodic
orbit is clear. By the design of the controller, the stance-phase
evolution of the configuration variables does not change stride-
to-stride; only the velocities change. In the flight phase, (most
notably, for the hips and the torso when running at 1.5 m/s),
the path traced out is modified so that the robot lands in the
desired state.
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Fig. 12. Running at 1.5 m/s. The four graphs depict the joint torques in
Newton-meters (y-axis) versus time in seconds (x-axis) in the stance and flight
phases. Upon convergence to the periodic orbit, the achieved torques are very
close to their optimal values. The torque is higher in the flight phase away
from the periodic orbit, especially in the hips.
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Fig. 13. Running at 1.5 m/s. The left graph depicts leg-1 (stance leg)
horizontal force in Newtons (y-axis) versus time in seconds (x-axis) in the
stance and flight phases. The right graph depicts vertical force (y-axis) versus
time (x-axis) in the stance and flight phases. The impulsive forces existing
during impact are not presented.
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Fig. 14. Running at 2.5 m/s. The four graphs depict the relative joint angles
in radians (x-axis) versus their velocities in radians per second (y-axis) in
the stance, flight and impact phases: the swing knee angle (knee of leg-2),
the swing hip angle (hip of leg-2), the stance knee angle (knee of leg-1)
and the stance hip angle (hip of leg-1). At impact, the roles of the limbs
are exchanged; as a consequence the configuration angles change at impact;
see (30). Notice that the robot has the same configuration at each transition
between phases. The plots indicate that a limit cycle is achieved.
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q5,d

Fig. 15. Running at 2.5 m/s. The graph depicts torso angle in radians (x-
axis) versus its velocity in radians per second (y-axis) in the stance and flight
phases. Notice that the flight-phase controller has regulated the torso angle
to its desired value of q5,d at impact. The plot indicates that a limit cycle is
achieved.
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Fig. 16. Running at 2.5 m/s. The four graphs depict the joint torques in
Newton-meters (y-axis) versus time in seconds (x-axis) in the stance and flight
phases. Upon convergence to the periodic orbit, the achieved torques are very
close to their optimal values. The torque is higher in the flight phase away
from the periodic orbit, especially in the hips.
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Fig. 17. Running at 2.5 m/s. The left graph depicts leg-1 (stance leg)
horizontal force in Newtons (y-axis) versus time in seconds (x-axis) in the
stance and flight phases. The right graph depicts vertical force (y-axis) versus
time (x-axis) in the stance and flight phases. The impulsive forces existing
during impact are not presented.

Figs. 12 and 16 depict the torques for running at 1.5 m/s
and 2.5 m/s, respectively. As the motion converges to the
periodic orbit, the torques correspond to their optimal values,
and hence are within the capabilities of the actuators. Off of the
periodic orbit, the torques are significantly higher in the flight
phase. For the slower 1.5 m/s-orbit, the torque increase occurs
principally in the hips. For the faster 2.5 m/s-orbit, the torque
increase is more evenly divided among the four actuators and
is smaller in magnitude; the corresponding modification to the
path in the flight phase is also smaller; see Figs. 14 and 15.

The reaction forces on leg-1 are provided in Figs. 13 and
17. These graphs show the alternating phases of single support
and flight. The robot will not slip for a coefficient of friction
greater than 0.5. The vertical force during the single support
phase is very close to the weight of the robot (from Tab. I, its
mass is 37 kg).

IX. A PARTIAL ROBUSTNESS EVALUATION

The purpose of this section is to show that the proposed
control strategy may still yield an attractive limit cycle even
if the hypotheses made in the modeling of the robot, the
control law’s construction, and the analysis and simulation
of the closed-loop system are not met exactly. The model of
Section III assumed a rigid contact between the leg end and the
ground. Here, a compliant contact model will be used [5]. This
has several consequences. First of all, the seven DOF model
of Section III-B will be used in the stance phase, with the
position of the leg end with respect to the ground evolving
freely as a function of the reaction forces provided by the
compliant contact model. Secondly, the robot will enter the
flight phase when the reaction forces at the leg end go to zero.
Finally, the impact forces at touch down will be computed by
the compliant model as well. In addition to these changes,
parameter error will be introduced in the robot model.

A. Compliant contact model

In the experimental platform of RABBIT [1], the contact
between the ends of the robot’s legs and the ground is
compliant and the ends of the legs may slip. A model that
more closely reflects these points is summarized here. A
more detailed discussion is available in [5] and the references
therein.

The dynamic model consists of the full 7-DOF model of
the biped (6) with the computation of the forces acting on the
leg end being given by

Fn = −λa|z|nż − λb|z|n sgn(ż)
√

|ż| + k|z|n

Ft = (ϑad + ϑbḋ + ϑcv + ϑd sgn(v̇)
√

|v|)|Fn|

ḋ = v − |v|ϑa

ϑe d,

(89)

where z ≤ 0 is the penetration depth (if z ≤ 0, the leg is in
contact with the ground, if z > 0, the leg is not in contact
with the ground and the contact forces equal zero) and v is
the relative velocity of the end of the leg with respect to
the ground. This model supposes that the interface between
the two contacting surfaces is a contact between bristles; the
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Parameter Value Parameter Value

λa 9 × 106 ϑa 260

λb 0.3 ϑb 0.6

ϑc 0.18 n 1.5

ϑd 0.3 k 25 × 105

ϑe 0.285

TABLE III

COMPLIANT CONTACT MODEL PARAMETERS.

average deflection d of the bristles is an internal state used
to model dynamic friction. The numerical values used in the
simulation, given in Tab. III, were adjusted for a nominal
penetration of approximately 3 mm and to avoid rebound of
the leg during the stance phase.

Together, the models (6) and (89) describe the robot’s
evolution in all phases of motion: flight, stance and impact.
The robot’s dynamics are then described by ordinary (non-
hybrid) differential equations over the entire stride, even
during the impact, which will now have a non-zero duration.
With this model, contact forces at the leg end are continuous,
which means in particular that they will not experience an
instantaneous jump to zero at the transition from stance to
flight as supposed in the development of the control law.

B. Simulation with modeling error

In addition to the structural change in the contact model,
parametric modeling error is included. A deviation of ±20%
in the masses and inertias was introduced between the robot’s
design model and the simulation model; symmetry of the
two legs was preserved. It is important to note that one
consequence of parametric error is that there will be an error
in the state of the robot at landing: because the flight-phase
controller does not correspond to the simulation model, it
will not correctly account of the conservation of angular
momentum. Finally, saturation was introduced on the torques
(±150 Nm) to take into account the limitations of the actuators
of RABBIT.

Despite all of the differences between the simulation model
and the model used to design the controller, the feedback
controller illustrated in Section VIII is able to induce a stable
running motion. This is shown in Figs. 18 to 21 for a nominal
speed of 1.5 m/s. In the simulations, the controller was
switched from the stance phase to flight phase when θs(q)
attained θ−s , and it was switched from flight phase to stance
phase when the penetration of the leg end into the compliant
surface exceeded 2 mm. Due to the differences in the design
and simulation models, the limit cycle does not correspond
exactly to the theoretical prediction. The value of ζ∗ calculated
from the simulation data and the model parameters is 829,
whereas the value predicted with the rigid model and perfectly
known parameters was 801 (see Tab. II). The average running
speed was calculated to be 1.54 m/s, compared to the previous
value of 1.50 m/s.

Figs. 18 and 19 show the evolution of the configuration
variables in the phase plane; the convergence to a limit cycle
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Fig. 18. Running at 1.5 m/s with the compliant contact model and parametric
modeling error. The four graphs depict the relative joint angles in radians (x-
axis) versus their velocities in radians per second (y-axis) in the stance, flight
and impact phases: the swing knee angle (knee of leg-2), the swing hip angle
(hip of leg-2), the stance knee angle (knee of leg-1) and the stance hip angle
(hip of leg-1). At impact, the roles of the limbs are exchanged. Notice the
abrupt change in the velocities at impact, especially in the stance leg. The
plots indicate that a limit cycle is achieved.

Flight

Stance

Fig. 19. Running at 1.5 m/s with the compliant contact model and parametric
modeling error. The graph depicts torso angle in radians (x-axis) versus its
velocity in radians per second (y-axis) in the stance and flight phases. Notice
that the flight-phase controller has approximately regulated the torso angle to
its desired value of q5,d at impact. The plot indicates that a limit cycle is
achieved.

is clear. At touchdown, the roles of the legs are swapped, as
when the rigid contact model was used. At the beginning of the
stance phase, the impact causes an abrupt change in the robot’s
velocities. At the moment of contact, the robot’s velocities still
correspond to their values from the flight phase. The control
law sees this as a large set-point error and consequently applies
a large torque, resulting in saturation; see Fig. 20. Once past
the impact, the evolution of the relative angles is quite close to
what was predicted with the rigid impact model; see Fig. 10
and Fig. 11. The perturbations during the flight phase are
small because the initial condition of the simulation lies on
the periodic orbit corresponding to the rigid contact model
and no parametric modeling error.

The reaction forces on leg-1 are provided in Fig. 21. These
graphs show the alternating phases of single support and
flight. Except during impact, which is no longer instantaneous,
the forces are close to the values predicted by the earlier
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Fig. 20. Running at 1.5 m/s with the compliant contact model and parametric
modeling error. The four graphs depict the joint torques in Newton-meters
(y-axis) versus time in seconds (x-axis) in the stance and flight phases. The
torques are limited to ±150 Nm. Upon convergence to the periodic orbit, the
achieved torques are close to their optimal values. Prior to convergence, note
the larger torques in the beginning of the stance phase due to a combination
of modeling error and landing in the wrong state.
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Fig. 21. Running at 1.5 m/s with the compliant contact model and parametric
modeling error. The left graph depicts leg-1 (stance leg) horizontal and vertical
force components in Newtons (y-axis) versus time in seconds (x-axis) in
the stance and flight phases. Large forces occur at touchdown; the maximal
vertical force is close to 8000 N and the maximal horizontal force is close
to −4000 N with the compliant contact model. The vertical lines show the
instant of transition between the control law phases. The right graph depicts
vertical position of the leg end in meters (y-axis) versus time in seconds (x-
axis) in the stance and flight phases. Notice that the flight control law induces
the stance leg to lift off quickly and the reaction forces to go to zero.

simulation; see Fig. 13. The penetration of the stance leg
end stabilizes at approximately 3 mm. These two plots show
clearly the very rapid liftoff of the stance leg to initiate
the flight phase. Consequently, for the purposes of modeling,
feedback design, and analysis, it is as reasonable to suppose an
instantaneous transition to the flight phase as it is to suppose
an instantaneous impact.

X. ADDITIONAL EVENT-BASED CONTROL FOR RUNNING

Each of the feedback designs illustrated in Section VIII
resulted in a nominally exponentially stable running motion.
Indeed, this has been the case for all of the periodic orbits
computed by the authors using the techniques in [11]. From
Tab. II, it is seen that the rate of convergence to the periodic
orbit decreases as the average running speed increases (that
is, µ becomes closer to 1.0). The aim of this section is to
illustrate how an additional event-based-control action studied

in [4], [8], [13] can be profitably used to increase the rate
of convergence to the periodic orbit. It will also be shown
that the additional feedback action can be used to reduce the
magnitude of the torques that are used in the flight phase to
attain the desired landing state.

Remark 6: In Section IX-B, it was seen that modeling
error alters the average running speed. As in [8], event-based
control could also be used to attenuate the effects of modeling
error on average running speed. In addition, it could be used
to stabilize a periodic orbit that was nominally unstable under
the feedback designs proposed so far.

A. Deciding what to control

Based on [15], it is natural to conjecture that modification
of the target landing configuration stride-to-stride can be used
to ameliorate the rate of convergence to the orbit and the
peak torques in the flight phase. In particular, the horizontal
distance between the center of mass and the stance leg has
a strong effect10 on µ. This suggests modifying the landing
configuration in the direction [0, 0, 1, 0, 0]′. On the other hand,
the action of modifying the flight trajectory to obtain the
correct orientation of the torso at landing is what leads
to the higher torques. This suggests modifying the landing
configuration in the direction [0, 0, 0, 0, 1]′.

B. Implementing stride-to-stride updates of landing configu-
ration

Let qf−
0 denote the nominal landing configuration for one of

the running motions of Section VIII; see (83). Set the desired
landing configuration at the k th stride to be

qf−
0,d(k) = qf−

0 + [0, 0, w1(k), 0, w2(k)]′, (90)

where the real scalars w1(k) and w2(k) are to be updated
at the end of each stance phase. Through the impact map
(30), a change in the desired landing configuration needs to be
accompanied by a corresponding change in the desired initial
stance configuration. Both of these changes entail stride-to-
stride parameter updates to the stance and flight controllers of
Section VI. As a result, the restricted Poincaré map is now a
function of w1(k) and w2(k) and can be viewed as a discrete-
time control system

ζ(k + 1) = ρ(ζ(k), w1(k), w2(k)) (91)

with state space S̃ ∩ Zs and inputs (w1, w2)′ ∈ IR2; see [13]
for details. Linearizing (91) about the nominal fixed-point ζ∗

corresponding to w1 = 0 and w2 = 0 results in

δζ(k + 1) = µδζ(k) + b1δw1(k) + b2δw2(k). (92)

The value of µ is determined from Corollary 1; the sensitivities
b1 and b2 are more easily determined numerically through a
simulation of the model.

Linear state variable feedback δw1(k) = k1δζ(k),
δw2(k) = k2δζ(k) can then be used to tradeoff peak torques

10When the heights of the center of mass at the beginning and end of the
stance phase are the same, µ = (χ − |β|), which is a function only of the
horizontal position of the center of mass with respect to the stance leg end;
see (66).
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Fig. 22. A one-parameter search to minimize peak torque. Let k2 = ak1.
The graph depicts the maximal torque in Newton-meters (y-axis) versus the
parameter a (x-axis) for an initial velocity of the robot equal to ±10% of its
value on the periodic orbit (the solid line corresponds to +10% and the dashed
line corresponds to −10%). The best choice of parameter a is 0.3 < a < 0.35
to minimize the peak torque.

and the rate of convergence to the fixed point. For the running
motion with average speed of 1.5 m/s, it was arbitrarily
decided to place the closed-loop eigenvalue at µd = 2/3.
A one-parameter search was then performed to minimize the
torques in the flight phase when the velocity upon entering
the flight phase differed from the value on the periodic orbit
by ±10%, subject to µ + k1b1 + k2b2 = 2/3; see Fig. 22.
This resulted in k1 = 7.8 × 10−5 and k2 = 2.6 × 10−5.
It is important to note that transient performance has been
optimized subject to a stability constraint.

C. Simulation results

Assuming no modeling error and initializing the closed-
loop system off of the periodic orbit—with the initial velocity
10% higher than its value on the periodic orbit—yields the
simulation data presented in Figs. 23 through 25. The landing
configuration is being modified at each stride. The orientation
of the support hip and the torso vary slightly stride-to-stride
under the event-based feedback. The deviation in the flight
phase trajectory—compare Figs. 23 and 24 to Figs. 10 and
11—is clearly much less under the event-based control action.
Consequently, the torques during the flight phase are notice-
ably reduced; see Fig. 25.

The evolution of ζ from stride-to-stride over the course of
the simulation is presented in Fig. 26. The desired convergence
rate has been achieved.

The evolution of the event-based-control action, w1 + w2,
is presented in Fig. 27. The induced variation in the landing
configuration is rather small. Despite this, there are significant
improvements in the rate of convergence to the periodic orbit
and the reduction in peak torque. This sensitivity points to
potential problems when implementation is pursued on the
actual mechanism. It may be necessary to develop other
methods to avoid unnecessarily high torques in the flight
phase.

XI. CONCLUSIONS

A time-invariant feedback control strategy has been devel-
oped for a bipedal runner. The control strategy is hybrid: it

0.5 1 1.5 2
−10

−5

0

5
swing knee angle

1.5 2 2.5 3
−6

−4

−2

0

2
swing hip angle

0 0.5 1 1.5
−6

−4

−2

0

2

4
stance knee angle

1.5 2 2.5 3
1

2

3

4

5
stance hip angle

Fig. 23. Running at 1.5 m/s with event-based control of the landing
configuration. The four graphs depict the relative joint angles in radians (x-
axis) versus their velocities in radians per second (y-axis) in the stance, flight
and impact phases: the swing knee angle (knee of leg-2), the swing hip
angle (hip of leg-2), the stance knee angle (knee of leg-1) and the stance
hip angle (hip of leg-1). At impact, the roles of the limbs are exchanged; as
a consequence the configuration angles change at impact; see (30). Notice
that the robot no longer has the same configuration at each transition between
phases. The plots indicate that a limit cycle is achieved.
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Fig. 24. Running at 1.5 m/s with event-based control of the landing
configuration. The graph depicts torso angle in radians (x-axis) versus its
velocity in radians per second (y-axis) in the stance and flight phases. Notice
that the torso angle at the end of the flight phase varies stride-to-stride. The
plot indicates that a limit cycle is achieved.

acts both continuously during a stride and discretely stride-to-
stride. The flight-phase portion of the control strategy was
designed so as to create a generalized impact map whose
properties are similar to those of the impact maps that occur in
models of walking. This led to the deliberate design of a hybrid
zero dynamics of running, that is, a low-dimensional, invariant,
sub-dynamic of the closed-loop hybrid system. Asymptotically
stable orbits of the hybrid zero dynamics are asymptotically
stabilizable orbits of the full-order hybrid model. Using the
idea of a restricted Poincaré return map—which is the Poincaré
return map associated with the hybrid zero dynamics—an
explicit criterion for the existence of periodic orbits was
given, as well as an explicit characterization of their stability
properties. With this theoretical tool, stability analysis involves
the straightforward computation of a scalar map.

The principal results were illustrated on a five-link, four-
actuator planar biped with revolute joints. Periodic trajectories



CHEVALLEREAU et al.: ASYMPTOTICALLY STABLE RUNNING FOR A FIVE-LINK, FOUR-ACTUATOR, PLANAR BIPEDAL ROBOT 19

0 1 2 3 4 5
−200

−100

0

100

200
Torque in Knee 1

0 1 2 3 4 5
−200

−100

0

100

200
Torque in Hip 1

0 1 2 3 4 5
−200

−100

0

100

200
Torque in Hip 2

0 1 2 3 4 5
−200

−100

0

100

200
Torque in Knee 2 

Fig. 25. Running at 1.5 m/s with event-based control of the landing
configuration. The four graphs depict the joint torques in Newton-meters (y-
axis) versus time in seconds (x-axis) in the stance and flight phases. Modifying
the landing configuration stride-to-stride has resulted in much smaller torques
when the robot is off of the periodic orbit.
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Fig. 26. Running at 1.5 m/s with event-based control of the landing
configuration. The graph’s thick line depicts the value of ζ at step k + 1
(y-axis) versus its value at step k (x-axis) as obtained directly from the
simulation. The desired modification in the slope of the Poincaré map has
been obtained without changing the fixed point: slope ≈ 0.66, ζ∗ ≈ 800.
The thin line is the identity map. The fixed point is at the intersection of the
two lines.
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Fig. 27. Running at 1.5 m/s with event-based control of the landing
configuration. The graph depicts w1 (y-axis) versus step number (x-axis) as
obtained in the simulation. Note that w2 = k2

k1
w1.

computed in [11] were interpreted as desired periodic orbits
in the state space of the robot model. For each trajectory,
a time-invariant feedback controller was designed to realize
the corresponding orbit as an attractive solution of the hybrid
zero dynamics, without, it is very important to note, the use
of trajectory tracking. Very roughly speaking, the controller
is “clocked” to events on the orbit and not to time. Hence,
when perturbed away from the orbit, the robot’s links regain
“synchrony” with respect to the robot’s position on the orbit
and not with respect to time. In this sense, the work here is
philosophically similar to [15]–[18], [55] and diametrically op-
posed to most other work in the legged-locomotion literature.

The performance of the controller was simulated on slow
and fast running motions. Robustness of the controller to
model imperfections was demonstrated through simulations
where the rigid impact model was replaced by a compliant
contact model, and where the parameters of the robot model
did not correspond to those used to design the controller. The
event-based control method of [4], [13] was used to accelerate
the rate of convergence to a periodic orbit and to improve the
transient performance in the flight phase.

This work has only partially explored the benefits of ap-
proaching the feedback control of running with tools previ-
ously developed for walking. On the basis of [4], it seems
likely that event-based control can be profitably used in run-
ning to provide additional regulation of average running speed
and rejection of perturbations. These extensions may involve
event-based control actions in the stance-phase controller,
parallel to what was done here for the flight-phase controller.

While this paper was in review, experimental implementa-
tion of a running controller was initiated [56].
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APPENDIX I
STANCE AND FLIGHT PHASE CONTROL LAWS

The control laws are rewritten here in a form where their
dependence on terms in the models becomes more explicit.
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A. Stance phase control

The control law is defined so as to achieve input-output
linearization with respect to v, d2ys

dt2 = v(ys, ẏs), where
v(ys, ẏs) is subsequently chosen to globally asymptotically
stabilize the origin with finite-time convergence [2]. Input-
output linearization is equivalent to

q̈b =
∂hd,s

∂θs
θ̈s +

∂2hd,s

∂θ2
s

θ̇s
2

+ v. (93)

The robot’s configuration is a linear combination of qb and θs,

q = T

[
qb

θs

]
, (94)

where T is a constant invertible matrix, and hence the control
law is easily expressed directly in terms of the dynamic model.
Indeed, the required torques satisfy

Ds(qb)T


 ∂hd,s

∂θs
θ̈s + ∂2hd,s

∂θ2
s

θ̇s
2

+ v

θ̈s




+ Cs(qb, q̇)q̇ + Gs(q) =

[
I4×4

0

]
u. (95)

The fifth row of the model yields θ̈s. Substituting this expres-
sion in the above yields the required feedback controller

us = −Ds,1:4(qb)T

[
∂hd,s
∂θs

1

](
Ds,5(qb)T

[
∂hd,s
∂θs

1

])−1

(
Ds,5(qb)T

[
∂2hd,s

∂θ2
s

θ̇s
2

+ v

0

]
+ Cs,5(qb, q̇)q̇ + Gs,5(q)

)

+ Ds,1:4(qb)T

[
∂2hd,s

∂θ2
s

θ̇s
2

+ v

0

]
+ Cs,1:4(qb, q̇)q̇ + Gs,1:4(q), (96)

where the subscript “, 1 : 4” designates the sub-matrix com-
posed of the first four rows and the subscript “, 5” designates
the fifth row only.

B. Flight phase control

The control law is defined so as to achieve input-output
linearization, d2yf

dt2 = v(yf , ẏf), where v(yf , ẏf) = −Kpyf −
Kdẏf exponentially stabilizes the double integrator. Input-
output linearization is equivalent to

q̈b =
∂2hd,f(xcm, af)

∂x2
cm

ẋ2
cm + v, (97)

because af is constant during the flight phase and ẍcm = 0.
The control laws is easily determined using the first five rows
of the dynamic model:

uf =
(
A1:4,1:4 − A1:4,5A

−1
5,5A5,1:4

)(∂2hd,f

∂x2
cm

ẋ2
cm + v

)
+ Cf,1:4 − A1:4,5A

−1
5,5Cf,5, (98)

where the subscript “1 : 4, 1 : 4” designates the square sub-
matrix composed of the first four rows and columns, the

subscript “1 : 4, 5” denotes the first four rows of the fifth
column, the subscript “5, 1 : 4”denotes the first four columns
of the fifth row and the subscript “, 5” designates the fifth row
only.

APPENDIX II
HYPOTHESES ON THE FINITE-TIME CONTROLLER IN THE

STANCE PHASE

Let v(y, ẏ) be any feedback controller on (36) satisfying
conditions CH2–CH5 of [2], that is, for N = 4 the dimension
of y:
Controller Hypotheses: for the closed-loop chain of double
integrators, ÿ = v(y, ẏ),

CH2) solutions globally exist on IR2N−2, and are unique;
CH3) solutions depend continuously on the initial condi-

tions;
CH4) the origin is globally asymptotically stable, and con-

vergence is achieved in finite time;
CH5) the settling time function11, Tset : IR2N−2 → IR by

Tset(y0, ẏ0) := inf{t > 0 | (y(t), ẏ(t)) = (0, 0),
(y(0), ẏ(0)) = (y0, ẏ0)}

depends continuously on the initial condition,
(y0, ẏ0).

Hypotheses CH2–CH4 correspond to the definition of finite-
time stability [57], [58]; CH5 is also needed, but is not implied
by CH2–CH4 [59]. These requirements rule out traditional
sliding mode control, with its well-known discontinuous ac-
tion.

APPENDIX III
PROOF OF THEOREM 2

By (41), points in S̃ ∩ Zs are parameterized by
(qs−

0 , q̇s−
0 σs−

1 ). The position of the center of mass (xs−
cm,ys−

cm)
is obtained by evaluating (8) at qs−

0 and its velocity is obtained
from (46), (ẋs−

cm, ẏs−
cm) = (λx(qs−

0 )σs−
1 , λy(qs−

0 )σs−
1 ). The

angular momentum about the center of mass can be determined
from (24) to be

σs−
cm = σs−

1 −m
(
ys−

cmλx(qs−
0 )σs−

1 − xs−
cmλy(qs−

0 )σs−
1

)
. (99)

Since the transition map from the stance phase to the flight
phase preserves positions and velocities, (99) is also the
angular momentum at the beginning of the flight phase, σf+

cm,
and because angular momentum is conserved during ballistic
motion, (99) is also the value of the angular momentum
at the end of the flight phase, σf−

cm. From the hypotheses
∆(S̃ ∩ Zs) ⊂ Zs and π ◦ ∆(S̃ ∩ Zs) is a single point, the
position of the center of mass at the end of the flight phase is
known and equal to the position of the center of mass at the
beginning of the subsequent stance phase, (xs+

cm,ys+
cm). From

this, the flight time, tf , can be computed

tf =
ẏs−

cm

g
+

√
(ẏs−

cm)2 − 2g(ys+
cm − ys−

cm)

g
, (100)

11That is, the time it takes for a solution initialized at (y0, ẏ0) to converge
to the origin. The terminology is taken from [57].
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and from (23), the velocity of the center of mass at the end
of the flight phase is determined[

ẋcm(tf )
ẏcm(tf )

]
=


 ẋs−

cm

−
√

(ẏs−
cm)2 − 2g(ys+

cm − ys−
cm)


 . (101)

Equations (99), (101), and (24) allow the angular momentum
about the contact point at the end of the flight phase, σf−

2 ,
to be evaluated, and then (28) allows the evaluation of the
angular momentum about the stance leg at the beginning of
the subsequence stance phase. This yields

σs+
1 = σs−

1 − m
(
ys−

cmλx(qs−
0 )σs−

1 − xs−
cmλy(qs−

0 )σs−
1

)
+

m

(
ys+

cmλx(qs−
0 )σs−

1 +

xs+
cm

√
(λy(qs−

0 )σs−
1 )2 − 2g(ys+

cm − ys−
cm)

)
, (102)

which, after simplification, completes the proof.

APPENDIX IV
PROOF OF THEOREM 3

¿From [3, Sec. IV], in the coordinates (θs,Ks,zero =
1
2 (σ1)2) for Zs, the stance-phase zero dynamics can be in-
tegrated as

Ks,zero(θs) = Ks,zero(θ+
s ) − Vs,zero(θs). (103)

Evaluating the above at θ−s and applying (67) yields the
restricted Poincaré map

ρ(ζ) = δe(ζ) − Vs,zero(θ−s ), (104)

where ζ = 1
2 (σs−

1 )2. The domain of ρ follows from [3,
Thm. 3].

Remark 7: The integration of the stance phase zero dy-
namics can also be expressed as

Ks,zero(θs) + Vs,zero(θs) = Ks,zero(θ+
s ),

for θ+
s ≤ θs < θ−s , which is conservation of total “pseudo-

energy” during the stance phase; see also Fig. 5.

APPENDIX V
PROOF OF THEOREM 4

By (d) of Corollary 2, the hypotheses imply that ρ is strictly
convex, and by (c), dρ

dζ ≤ (χ−|β|)2 < 1. Hence, the graph of ρ
can have at most one intersection with the graph of the identity
function, which implies that there can exist at most one fixed
point. Since δe and ρ differ by a constant, their derivatives
are equal and Corollary 2 applies equally to δe. Therefore, δe

is strictly increasing on D̃ρ, and therefore, if ζ̃ ∈ D̃ρ, then
ζ ∈ D̃ρ for all ζ > ζ̃. It follows that D̃ρ is unbounded and
connected. By Corollary 1, ζ∗ is exponentially stable.

Let ζ ∈ D̃ρ be such that ζ < ζ∗. Then, since ρ is
strictly increasing on D̃ρ, ρ(ζ) < ρ(ζ∗) = ζ∗. Hence,
ρ(k)(ζ) is a strictly increasing sequence bounded from above,
and therefore has a limit. By continuity of ρ, this limit is
a fixed point of ρ, and by uniqueness of the fixed point,

limk→∞ ρ(k)(ζ) = ζ∗. Similarly, let ζ ∈ D̃ρ be such that
ζ > ζ∗. Then ζ∗ = ρ(ζ∗) < ρ(ζ), and similar reasoning
shows that limk→∞ ρ(k)(ζ) = ζ∗, with the convergence being
monotonic.

APPENDIX VI
EFFECTS OF MEASURING ANGLES IN

COUNTER-CLOCKWISE DIRECTION

If angles are positive when measured in the counter-
clockwise direction, the following equations are modi-
fied.Equation (24) becomes

σi = σcm + m ((xcm − xi)ẏcm − (ycm − yi)ẋcm) . (105)

The fifth row of (18) is

σ+
cm − σ−

cm = −m [ycm − y2 | − xcm + x2]

[
ẋ+

cm − ẋ−
cm

ẏ+
cm − ẏ−

cm

]
,

(106)
since ∂f2

∂q5
= [ycm(q) − y2(q) | − xcm(q) + x2(q)]′, and using

(105) results in (27). Consequently, Appendix III is modified
as follows. The angular momentum about the center of mass
can be determined from (105) to be

σs−
cm = σs−

1 + m
(
ys−

cmλx(qs−
0 )σs−

1 − xs−
cmλy(qs−

0 )σs−
1

)
.

(107)
This yields

σs+
1 = σs−

1 + m
(
ys−

cmλx(qs−
0 )σs−

1 − xs−
cmλy(qs−

0 )σs−
1

)
−

m

(
ys+

cmλx(qs−
0 )σs−

1 +

xs+
cm

√
(λy(qs−

0 )σs−
1 )2 − 2g(ys+

cm − ys−
cm)

)
. (108)

Thus

δ(σs−
1 ) = χσs−

1 +
√

(βσs−
1 )2 + α, (109)

with

α = −2m2g(xs+
cm)2(ys+

cm − ys−
cm)

β = mxs+
cmλy(qs−

0 )
χ = 1 − mxs−

cmλy(qs−
0 ) − m(ys+

cm − ys−
cm)λx(qs−

0 ).
(110)

and equations (65) and (66) must be changed accordingly.
Since the sign of the angular momentum is different, the signs
of λx and λy are changed. The numerical evaluation of α and
χ gives the same value whether the positive direction is defined
clockwise or counter-clockwise. The sign of β is changed,
but it does not play any role. The main difference is the sign
before the square root; thus the evolution of the absolute value
of the angular momentum given by (65) for positive angular
momentum and by (109) for negative angular momentum is the
same. The remainder of the analysis is based on the evolution
of ζ = 1

2 (σs−
1 )2, and since the sign of the angular momentum

does not affect ζ, the analysis and formulas are valid for any
choice of positive direction.
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APPENDIX VII
NOMENCLATURE

The subscript “f” corresponds to the flight phase and the
subscript “s” corresponds to the stance phase. The superscripts
“+” and “−” define the beginning and end of a phase respec-
tively. When they are applied to a variable that is only defined
for a single phase, such as θs, then there is no ambiguity,
as in θs+

s . For a variable such as xcm, which is used in both
flight and stance phases, the notation xs+

cm, xs−
cm, xf+

cm, and xf−
cm

is used. The superscript “∗” occasionally is used to denote
the value of a variable on a periodic orbit; an exception is
u∗, which is a feedback control rendering a zero dynamics
manifold invariant.

Symbol Meaning Defined

af
parameter in flight-phase virtual
constraints; is up-dated each step

Sec. VI-B

A(qb)
part of inertia matrix in flight
phase, Ai : i − th row of A,
Aij = A(i, j)

Eq. (3)

A space where af takes values
A := IRp, p number of parameters

Sec. VI-B

α parameter defining the function δ Eq. (66)

b1, b2
sensitivities of restricted Poincaré
map w.r.t. variations w1 and w2

Sec. X

Bf , Bs transforms u into Γf or Γs Eqs. (5), (13)

β parameter defining the function δ Eq. (66)

Cf , Cs coriolis and centrifugal terms Secs. III-B, III-C

χ parameter defining the function δ Eq. (66)

Df , Ds inertia matrices Secs. III-B, III-C

Dρ domain of definition of ρ Eq. (70)

D̃ρ domain where ρ has positive slope Eq. (76)

δ
function that defines the change of
angular momentum σ1 in the
restricted impact map

Eq. (65)

δe
same as δ, but expressed in terms
of energy instead of momentum

Eq. (67)

∆ generalized impact map Thm. 1

∆f
s, ∆s

f

impact maps determining new
initial conditions at transitions

Sec. IV

∆zero restricted impact map Eqs. (63), (64)

∆̃ change in velocity at impact Sec. III-D

∆̄s
f

∆s
f extended to include the

parameters
Sec. VI-C

Symbol Meaning Defined

fcl,f , fcl,s closed-loop system Secs. VI-A, VI-B

fi

vector function defining the
Cartesian coordinates of the mass
center with respect to the
Cartesian coordinates of leg i

Eqs. (8), (16)

ff , fs
drift vector fields in flight and
stance phase models

Eqs. (7), (15)

fzero(z) stance-phase zero dynamics Sec. VI-A

fcn

conveniently parameterized
function used in the flight-phase
controller, hd,f (xcm, af) =
fcn(a1, · · · , a5)(τ)

Sec. VIII-C

Fn, Ft
normal and tangential components
of the ground reaction force

Sec. IX-A

Ff , Ff open-loop flow on state manifold Sec. IV

F̄cl,f , Fcl,s closed-loop flow on state manifold Sec. VI-C

g gravity constant

gf , gs
control vector fields in flight and
stance phase models

Eqs. (7), (15)

Gf , Gs gravity vector Sec. III-B

Γf , Γs
vector of generalized forces and
torques

Secs. III-B, III-C

hf , hs
output functions in flight and
stance phases

Secs. VI-A, VI-B

hd,f , hd,s
part output function defining a
virtual constraint

Sec. VI-A, VI-B

Hs
f , Hf

s
switching condition from
“subscript” to “superscript”

Sec. IV

I
pseudo inertia, defines the zero
dynamics

Eq. (40)

IR
intensity of the ground reaction
impulses at impact

Sec. III-D

k1, k2
gains of the stride-to-stride
controller

Sec. X

Kd, Kp
derivative and proportional gains
of the flight-phase controller

Sec. VI-B

Kf , Ks total kinetic energy Secs. III-B, III-C

Ks,zero
kinetic energy for the zero
dynamics in stance phase

Eq. (44)

κ1,f
part of zero dynamics in flight
phase

Eqs. (49), (50)

leg-1 supporting leg in stance Fig. 1

leg-2
swing leg in stance, leg that
impacts at end of flight

Fig. 1

Lf , Ls Lagrangian Secs. III-B, III-C

Ls,zero
Lagrangian for the stance phase
zero dynamics

Sec. VI-A

λx, λy
normalized velocity of the center
of mass

Eqs. (45), (46)

m total mass of the biped Sec. III-B

µ
slope of the restricted Poincaré
return map at its fixed point

Eq. (75)

µd desired value of µ Sec. X

IN natural numbers Sec. VI-B

O periodic orbit viewed as a subset
of the state space

Sec. VIII

P Poincaré map Eq. (61)

Pf , Ps
generalized Poincaré map for a
single phase

Sec. VII-A



24 ASYMPTOTICALLY STABLE RUNNING FOR A FIVE-LINK, FOUR-ACTUATOR, PLANAR BIPEDAL ROBOT, MARCH 24, 2005

Symbol Meaning Defined

π
canonical projection that picks off
the configuration variable

Sec. VII-B

ϕcl,f(t, x0),
ϕcl,s(t, x0)

integral curve of closed-loop dy-
namics with initial state x0

Sec. VII-A

Φf , Φs
coordinate change on configuration
space

Secs. VI-A, VI-B

qb
body coordinates,
qb = (q1, q2, q3, q4)′ Fig. 1

qf , q
generalized coordinates in the
flight qf := (q′b, q5,xcm,ycm)′
and stance q := (q′b, q5)′ phases

Sec. III-B

qf−
0

reference configuration at the end
of flight; equals R−1qs+

0
Eq. (83)

qs−
0

reference configuration at the end
of stance

Eq. (41)

qs+
0

reference configuration at the
beginning of stance

Secs. VII-A, VIII-A

q5

angle of torso referenced to world
frame, and hence biped’s absolute
orientation

Fig. 1

q̇s−
0

normalized reference velocity at
the end of stance

Eq. (42)

q̇s+
0

normalized reference velocity at
the beginning of stance

Sec. VIII-A

˙̄q0

function determining the velocity
before impact as function of
velocity after impact

Eq. (83)

Qf , Qs configuration space Secs. III-B, III-C

R
relabeling matrix to take into
account the change of leg number

Eq. (31)

ρ restricted Poincaré return map Eq. (68)

S topological circle

S
switching hyper-surface, also
called an impact hyper-surface,
S := Sf

s

Thm. 1

Sf
s , Ss

f
switching hyper-surface Sec. IV

S̃s
f , S̃f

s , S̃ domains where associated Poincaré
maps are well defined

Sec. VII-A, VII-B

S̄s
f

switching hyper-surface in the
extended closed-loop model that
includes the parameters as states

Sec. VI-C

σcm
angular momentum of the biped
about its center of mass

Sec. III-E

σi
angular momentum of the biped
about the end of leg-i

Sec. III-E

σ∗s−
1 value of σs−

1 on a periodic orbit Sec. VIII-C

Σf , Σs
flight and stance portions of
open-loop hybrid model

Eq. (29)

Σf,cl, Σs,cl
flight and stance portions of
closed-loop hybrid model

Eq. (56)

tf duration of flight Eq. (100)

TI,f , TI,s
time-to-impact function for one
phase

Eq. (57)

TQf , TQs
state space, tangent spaces of Qf

and Qs
Secs. III-B, III-C

T coordinate transformation matrix App. I

T f
s , T s

f

transition function from
“subscript” to “superscript”

Sec. IV

T̄ s
f , T̄ f

s
transition function from
“subscript” to “superscript”

Sec. VI-C

Symbol Meaning Defined

τ
scaled time for flight phase, varies
from 0 to 1

Eq. (84)

θs
in stance phase, angle of the hips
with respect the stance leg end

Fig. 1

θ−s
value of θs just before transition to
flight phase

Sec. IV

θ+
s

value of θ just after transition
from flight phase

Eq. (65)

θ−s,0
desired value of θs at the transition
from stance to flight; a constant

Sec. IV

θ+
s,0

desired value of θ at the beginning
of stance; a constant

Eq. (65)

u vector of actuator torques Sec. III-B

u∗
s

feedback control that renders
stance-phase zero dynamic
manifold invariant

Eq. (38)

v
control after partial feedback
linearization

Eq. (35)

v
relative velocity of the end of the
leg with respect to the ground

Sec. IX-A

Vf , Vs total potential energy Secs. III-B, III-C

Vs,zero
potential energy for the stance
phase zero dynamics

Eq. (43)

V max
s,zero

maximal value of the potential
energy for the zero dynamics
during stance phase

Eq. (71)

wf
s

transition function for the
flight-phase parameters af

Sec. VI-C

w1,w2
functions defining the landing
configuration

Sec. X

xf , xs
state variables for flight and
stance, (q′f , q̇

′
f )

′ and (q′, q̇′)′ Secs. III-B, III-C

x∗−
f , x∗−

s
state on intersection of periodic
orbit and switching hyper-surface

Sec. VIII

x̄f

extended state in flight phase,
includes the parameters,
x̄f := (x′

f , a
′
f )

′
Sec. VI-B

xcm
horizontal Cartesian coordinate of
the center of mass

Fig. 1

x1, x2
horizontal Cartesian coordinates of
the leg ends

Fig. 1

Xf , Xs state space Sec. IV

X̄f
state space including the
parameters

Sec. VI-C

yf , ys
output used to define the desired
coordination of the limbs

Secs. VI-A, VI-B

ycm
vertical Cartesian coordinate of the
center of mass

Fig. 1

y1, y2
vertical Cartesian coordinates of
leg end

Fig. 1

z
state variable for hybrid zero
dynamics

Eq. (39)

z
penetration depth of leg end in
compliant ground model

Eq. (89)

Zf,af , Zs zero dynamics manifold Secs. VI-A, VI-B

ζ
kinetic energy for the stance-phase
zero dynamics just before
transition to flight, ζ := 1

2
(σs−

1 )2
Sec. VII-B

ζ∗ fixed point of restricted Poincaré
map

Eq. (74)


