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Nonlinear Control of Mechanical Systems with an
Unactuated Cyclic Variable

J.W. Grizzle,Fellow, IEEE,C.H. Moog, Senior Member, IEEEand C. Chevallereau

Abstract— Numerous robotic tasks associated with underactu- normally of short duration since reestablishing conta¢hai
ation have been studied in the literature. For a large number of gsyrface (e.g., ground, mat, water, ...) is an objective ef th
these in the plane, the mechanical models have a cyclic Variable’maneuver. A typical control problem would be to execute
the cyclic variable is unactuated, and all shape variables are . . . . . .
independently actuated. This paper formulates and solves two N predefmgd mot|on-, W'th, emphasis on achl.evmg a final
control problems for this class of models. If the generalized State that is compatible with an elegant landing on a mat
momentum conjugate to the cyclic variable is not conserved, (no rebounding or slipping), or re-entry into the water (no
conditions are found for the existence of a set of outputs that splash). Similar things can be said for back flips, tumbling,
yields a system with a one-dimensional exponentially stable and somersaults.

zero dynamics —i.e. an exponentially minimum-phase system L . . .

- alo)n/g with a dynamic gxtensionythat rendeﬁs the s);/stem The obje_ctlve of this paper is to contribute to the _control
locally input-output decouplable. If the generalized momentum Of mechanical systems that are capable of executing such
conjugate to the cyclic variable is conserved, a reduced systemdexterous maneuvers in the plane. The literature on unierac
is constructed and conditions are found for the existence of ated (a.k.a. super-articulated [50]) systems and nonbahin

a set of outputs that yields an empty zero dynamics, along gystems js vast. A few representative control works include

with a dynamic extension that renders the system feedback S e -
linearizable. A common element in these two feedback problems the study of accessibility in [44], stabilization of eqbiiia

is the construction of a scalar function of the configuration through passivity techniques in [40] and energy shaping in
variables that has relative degree three with respect to one of th [3], stabilization and tracking via backstepping in [24, 26],
input components. The function arises by partially integrating the use of virtual constraints to achieve stabilization ifits
the conjugate momentum. The results are illustrated on WOy [51] and path planning in [4]. Representative works ia th
balancing tasks and on a ballistic flip motion. robotics area are cited in Section Il. One of the noveltiethef
present paper is to recognize that balancing on a pivot while
I. INTRODUCTION executing a motion and planning a back flip share a common

Underactuated mechanical systems have fewer actuatdi@thematical problem: designing a set of outputs that résul
than degrees of freedom. Underactuation is naturally asso& Minimal zero dynamics: exponentially minimum phase and
ated with dexterity. For example, the act of standing witle orPhe dimensional in the first case, and empty, in the second.
foot flat on the ground is not viewed as particulary dexterou part, this is of course related to theaximal feedback
whereas a headstand sur les pointegballet) are considered linearization problem, which has been solved completelgnh
dexterous. In the first case, since the foot is not in rotatigatic state feedback is considered [31], while only phrtia
with respect to the ground, the point of rotation is the ankléesults are known when dynamic state feedback is allowed,
which is actuated, as are each of the joints further up ke [12, 29] and references therein. The additional requirémen
tree; that is to say, normal standing involves a fully actdat being achieved here is that the “non-feedback linearizable
system. On the other hand, in headstands or whepaimte ~ Part” of the system is exponentially stable, and no general
the contact point between the body and ground is acting @sults are available on this aspect.

a pivot without actuation. These are underactuated systemsSection Il identifies a special class of mechanical systems
In these examples, a typical control task would be to howfith one degree of underactuation that underlies the stdidy o
an equilibrium pose with (asymptotic) stability, or to exee dexterous maneuvers in the plane as discussed previotmy. T
a motion (e.g., aelewe lent, battemeptwithout falling over key feature is that the systems possess a cyclic variableéhand
(i.e., with internally bounded states). variable is unactuated [38]. Section IIl formulates and/esl

Motions that include a ballistic phase are also often viewd@o related control problems. If the generalized momentum
as dexterous. Examples include dismounting from a high bar@njugate to the cyclic variable is not conserved, conagtio
platform diving. In these cases, the underactuation is fasni are found for the existence of a set of outputs that yields an

in the lack of contact with any surface. The ballistic phase gxponentially minimum phase system with a one-dimensional
zero dynamics, along with a dynamic extension that renders
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a set of outputs that yields an empty zero dynamics, along
with a dynamic extension that renders the system inputuutp
decouplable. When these two properties are met, is well known
that local dynamic state feedback linearization is posdi22].

In both of these feedback problems, the principal contidwut

is the construction of a scalar function of the configuration
variables that has relative degree three with respect to ahe
the input componen{s]. The theoretical results are illustrated
on three simple examples in Section IV. The paper is wrapped
up with some additional discussion of the results in Section
V and concluding remarks in Section VI.

II. MOTIVATING CLASSES OFSYSTEMS

This section uses two classes of systems to set the stagerf@rl. A planar tree structure attached to an inertial fraaeavireely acting
the mathematical and control developments that follow. TH#ot All joints are actuated except the attachment at thetpi coordinate
. . . . ._convention is indicated. Though not shown, prismatic joamtsl springs can
first class consists aV > 2 planar rigid bodies connected in s pe included.
a tree structure—no closed kinematic chains—with the base
attached to an inertial reference frame via a pivot, that is,
an unactuated revolute joint. It is supposed that each link
has nonzero mass, and that each connection of two links is
independently actuated so that the system has one degree of
underactuation/{ degrees of freedom witlv —1 independent
actuators). It is further supposed that all joints are ifrigdess,
but this assumption is really only important at the pivogute
1 shows an example of such a system. Though not indicated in Yo fmmmmmmmmmmmme e
the figure, massless springs may be attached between lidks an
between links and the inertial reference frame; prismalitt$
between links are also allowed. This class of systems glearl
includes the Acrobot [2, 36, 52], the brachiating robots1d, [
34, 35, 46], the gymnast robots of [32, 39, 57] when pivoting
on a high bar, and the stance phase models of Raibert’s one-
legged hopper [1, 6, 14, 26, 33, 42] as well as RABBIT [7-10,
41]. The control objectives will be to stabilize the systemat
an equilibrium point or to track a set of reference trajdetor
with internal stability. The second class of systems cd®sisig. 2. A planar tree structure in ballistic motion. All joinaire actuated.
of V > 2 planar rigid bodies, once again connected in a trdef T ot s bt novdaet ik and
structure, but this time, it is assumed that the mechanismys inertial frame.
undergoing ballistic motion. As before, it is supposed that
each link has nonzero mass and each connection of two links is
mdepe.ndently actuated. In. addition, it IS as;umed thaethee of the orientation of the reference fram®,is independent of
no springs between any link and an inertial reference frame, . 9D(q) _ : : . .

. qo; that is =22 = 0. The coordinatey, is said to becyclic

Such a system has three degrees of underactualo#: 2 181 (a.k 0%t Lin 1371) wh led
degrees of freedom any — 1 independent actuators. Figure[ ] (ak-a. external in [37]) wheredg,, ...,qn 1) are calle

2 shows an example of such a system. This class of systesrﬂgpe variablesThe form of the potential energy depends

clearly includes the gymnast robot of [32] when dismounting” whether the system is evolving under the action of gravity

rom he igh bar. e pianar e f 17, he fp gat o SXATEI 0 & rien Rlane v & orione e
the robot in [16], the ballistic phase of the 4-link planabob pring J ’

in [47], and the ballistic phase of running in planar bipe lectromagnetic and electrostatic forces are excluded, an

robots [8] and Raibert's hopper [1,6, 14, 26, 42]. The cdntra€nce. the potential energy depends only on the configaratio
L . . L variables. Mechanical systems where the kinetic energy is

objective will be to maximally linearize the system so as touadratic in the velocities and the potential eneray desend

facilitate the construction of a trajectory that transfies state q . : . P . \ergy dep

of the system from one point to another in finite time. only on the configuration variables are said tosi@ple
Consider theN-link system shown in Figure 1, along with D€note the Lagrangian by = K — V', and assume that the

the indicated coordinateg,= (qo, q1, -~ , qn_1), where, for SYStém is actuated such that

convenience, the reference frame has been attached avtte pi

point. The kinetic energy is quadratif = %qTD(q)q, with d oL 0L { 0 k=0 (1)
D positive definite. Since the kinetic energy is independent dt 94, dq, | uk k=1,--- ,N—-1"
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with u, taking values inlR. The model thus takes the form [ll. CONTROL OF SIMPLE MECHANICAL SYSTEMS WITH
AN UNACTUATED CYCLIC VARIABLE
D(q)j+C(q,4)q + G(q) = Bu, (2) , _ _ _
Consider the classes of mechanical systems motivated in
0 Section Il. Roughly speaking, the goal is to determine a set
whereB = | . |. of outputs that gives rise to a zero dynamics of “smallest

Consider next theV-link system shown in Figure 2, alongPossible” dimension, and if this dimension is non-zeropals
with the indicated coordinates, = (¢, z., y.), where(z,,y,) o assure that the zero dynamics is stable [5]. More pregisel
are the Cartesian coordinates of the center of mass. Suppbséhe case of a system where the generalized momentum
further that there are no springs between a link and an alertfonjugate to the cyclic variable is not conserved, a set of

reference frame. Then the equations of motion decomposetgéputs will be found that leads to local dynamic input-autp
decouplability and a one-dimensional exponentially staleiro

D(q)i+C(q,4)¢+ G(q) = Bu dynamics, and for systems where the conjugate momentum is
. = 0 (3) conserved, a set of flat outputs [13,45] will be determined;
e = 4o, that is, a set of outputs will be found that leads to the

construction of a regular dynamic feedback and a local chang
where in a vertical plang, is the gravitational constant and ifof coordinates in which the system is linear.
the system is evolving on a horizontal plane without friotio  Before proceeding, it is worth noting that if outputs are
then g = 0. As in the first class of systems considergg, chosen to correspond to the actuated variables, that is,¢;
is also a cyclic variable ofD because the kinetic energy is, for i = 1,--- ,N — 1, then each component has relative
independent of the chosen orientation of the inertial exfee degree two and the associated decoupling matrix is invertib
frame. (one says the system has vector relative dedgee-- ,2)

The important point is that the dynamics of the bodj22]). Such a choice leads to a two-dimensional zero dynamic
coordinates,q, and the Cartesian coordinates of the centerhich, moreover, can be shown to be once again a Lagrangian
of mass,(z.,y.), are decoupled. Since the center of masg/stem [56], and thus can never have an asymptotically
coordinates are unactuated, the control of the system (8) caable equilibrium. One way to get around this problem is
be reduced to the control of a system having one degreetofconstruct a set of outputs such that the associated zero
underactuation as in (2) by eliminating the trivial dynasnicdynamics has dimension one, and hence is not Lagrangian. For
Z. = 0, §. = go. In this sense, the two systems in Figures &pecial cases, [5] shows how to construct an output componen
and 2 are very similar: they give rise to control problems fahat has relative degree three with respect to one of thet inpu
systems with\V > 2 DOF, (IV — 1) actuators, and the cyclic components. This idea is developed in much more generality
coordinate is unactuated. One way in which the systems dwere.
often different is that angular momentum about the center of
mass of (3) is always conserved, whereas (2) may or may
not have a conserved quantity depending on the potential Partial integration of a one-form
energy. For example, consider a system as in Figure 1 in a_ | _ )
horizontal plane without friction; suppose furthermorerth This sqbsechon presents a key result that will lead to_the
are no springs between any link and the inertial referenf@nstruction of outputs for the system (2) so that the aatexti
frame. Then the angular momentum about the pivot point 6" dynamics has dimension one, and hence may admit an
a conserved quantity, and thus this feature—conservation&¥/Mmptotically stable equilibrium point. As will be seen in
angular momentum—is possible in (2) as well. Conservatidfe next SL_Jbsectlon, the _abstrgct one-form considered here
of angular momentum gives rise to a nonholonomic constraffturally arises from consideration of momentum. The tesul
[27] and changes fundamentally the nature of the contfmalizes and extends previous work of [5] and [38].
problem. The following lemma can be viewed as a special case of the

In summary, the models of the simple mechanical systefai@fi-Darboux Theorem, whose role in control systems theor
represented by Figures 1 and 2 present the common featurd/gf first highlighted in [21]. As a point of notation, given
an unactuated, cyclic variable. The system (2) has one degfecellection of smooth real-valued functio;|1 <i < k}
of underactuation whereas even though the system (3) igdined on some open s, span {dfi|1 <i < k} denotes
three degrees of underactuation, in the proper coordintites the corregpondlng codlst_rlbutl_on as defined in [22]; that is
control problem decouples into the control of a system of tBE SPan is computed point-wise ov#. _
form (2) plus keeping track of the evolution of the center of Lemma 1. Consider a smooth N-dimensional manifald
mass variables. These observations are used in the nextrsect€t w € T*Q be a smooth one-form o and suppose there
to motivate the class of models analyzed. As a final remark,§t@ set of coordinategyo, ¢, - ,qy—1) defined in an open
is worth noting that [38] has shown quite clearly that even fé€ighborhood? of a point(qg, ¢7 - - , ¢5 ) in whichw has
systems with two degrees of freedom, if the cyclic coordinathe form
and the unactuated coordinate do not coincide—such as in the N_1
inverted pendulum on a cart—then the system possesses quite w =dgo + Z (g, qn_1)dg. 4)
different properties from a control point of view. P
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Then for anyl < m < N — 1, there exists a smooth function(regular) static state feedback transformation are givethé

pm : O — IR such that at each point @ Appendix. Note that everywhet® is positive definited ¢ is
never zero. Note also thal, does not depend because
w=dp, mod span{dg|l <i<N-1,i#m}. (5) : . a, P Off
qo is cyclic.
Moreover, in the coordinateég,qi,--- ,qn—_1), one such  Denote the generalized momentum conjugatet¢l8] by
function is o = gTL. Because the kinetic energy is quadratic and the

am potentia(i energy depends only on the configuration var&gble
Pm ZQO_QS+/ am(Qlf" ydm—1,T,dm+1," " 7(1N—1)d7'- it follows that
am N-1
. . (6) gzzd (g1, ) (9)
Proof: Becausev is smooth, the functions;, are smooth 0.k \G1Ls " AN —1)Gk-
k=0

on O. The integral in (6) is well-defined at each point@h ; ) )
because the integrand is smooth and the integral is eveludfé®m the assumption on the actuation and the assumption that

over a closed and bounded interval. Since g0 is cyclic, oV
dpm = dgo + am(Qla T aQN—l)de"' 7= _8—%((])' (10)
Nz_:l T 0o (q1,y -+ 3 Q=15 Ts Qg1 - ’QN_l)d For later use, note that (10) implies that the relative degrfe
o O T %k 5 is at least thrée Using (9) and (10) to express the normal
k=1,km = 2m form in terms of the state variables, ¢1, ..., qn, 0, ¢1 - - . 4w,
it follows immediately that, at each point i@, instead ofgo, - -, qn, go, - - - , ¢n, Shows that (2) is (globally)

w—dpm €span{dgl <i <N —1, i#£m}. (7) static state feedback equivalent to

. o N-1 .
| Q9 = doolar,an1) +2 k=1 Jrlan - av—1)dk
Remark 1: The N-tuple (pn, q1,--- ,qn—1) is a valid set ¢ = —52(q)
of coordinates or®. Indeed, . )
4m g = v, j=1,-- ,N—-1, 1)
= *+ m ™ (679 s s dm—1,T,qm P — dT' . . . . g
9% =%P - (&1 =157 Q1 an-1) which was introduced in [37] and will be called theodified

normal form. Since only a change of state variables has been
made, the feedback required to go from (2) to (11) is the same
as that used in (8).

Associate tar the one-form

Said another way, the map that takes,q1, - ,qn-1) tO
(Pm>q1,- - ,qn—1) is a diffeomorphism. Note that iD is all
of @, then the result of Lemma 1 is global.

N-1
B. Model class and a normal form o= Z dor(qu, -, qn—1)dq,
k=0

Consider a simpfe N > 2 DOF Lagrangian system with
N —1 independent actuators, where the unactuated variableigl the normalized one-form

a cyclic coordinate of the kinetic energy. Specifically, et N-1
configuration space b€, an open connected subset B, w=dqy+ Z %(qh s qN—1)dgg.
with local coordinates denoted by = (go,q1, - ,qn_1), k=1 00

and take canonical coordinatég ¢) on 7'Q). Let the kinetic Applying Lemma 1 form = 1, define the function

energy be given byK = 147 D(q)¢, where D is positive oy

definite and smooth everywhere @n and satisfie?% =0 pL=qo—q+ / W’U(T’ 2, qN-1)dT. (12)
(i.e., qo is cyclic). Let the potential energyy, depend only ) o '

on the configuration variables and be smooth. Denote tHA&€Ct computation then leads to

Lagrangian byl = K — V and assume that the system is dp o N1 _
actuated according to (1). The model can then be written as i~ = 5 ——— -5+ > Bilar,- - an—1)dx, (13)
(2). Subsequent analysis and feedback design are morg easifl 0.0 T AN k=2

accomplished if the system is first transformed into the rmbrmwhere,
d
form [44, 53] Brlar, - av—1) = [i soraes(T,q2,+ an—1)dr

. N—-1 .
do = k=1 Jk‘(le e 7(1N—1)Uk + R(Qa Q) do,k
i = n *m(fh,'“ AN-1)-
(8) o o .
: Note that since, does not depend ofp, it must be differen-
gN-1 = UN-_1, tiated at least twice more befoig appears; in other words,
dox ~ p1 has at least relative degree three with respeat;to
where J, = —3>%, dok, k=0,---,N —1 are the entries in * Thjg concludes the preliminary analysis required for subse

the first row of D. The definition ofR(q, ¢) and the required quent feedback design.

1Recall that simple means that the kinetic energy is quadrati¢he 2|f friction were allowed at the unactuated joint, then théatige degree
velocities and the potential energy depends only on the gargiion variables. would in general be only one.
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C. Systems where the generalized momentum conjugate toftme2 = 1,--- , N — 1, should lead to the exponentially stable
cyclic variable is not conserved zero dynamicg, = —Kp1/do .
The main result is now stated.

It is first assumed that, the generalized momentum con- i ’ .
Theorem 1: Consider the simple mechanical system (2)

jugate togqyg, is not constant along solutions of the model (1); . _
with N > 2 DOF, N — 1 independent actuators and the

that is
v unactuated coordinate is cyclic. Associate to the systesn th
Golq) = 78_(10((1) # 0. (14) outputs defined in (15), witlk > 0, and define

It is also assumed that there exists a static equilibriunmtpoi o Odoo i oy . 0%V 9%V
(¢°,0) corresponding to some constant value of the contrd/1.1 =~ E oq ;2 8—ka 0@t 0qi0qe
and that when defining, via (12), ¢* is taken as® so that = (16)
p1 vam;he% .a.t the equmbrl_um point. In this case, conditionsrpen in a neighborhood of any equilibrium point at which
will be identified under which the set of outputs, My 1 is non-zero, the system is

y1 = Kpi+o i) exponentially minimum phase and

Yo = Qo —q5 ii) dynamically, input-output decouplable.

(15) Moreover, once the system is transformed into the normat for
of (8), or into the modified normal form of (11), then the
dynamic extension

K € IR a constant, yields an exponentially minimum phase

YN—1 = qN-1—qN_1,

system. More precisely, conditions will be given such tiat t 51 B Zl

zero dynamics is well defined in a neighborhood of the given ? B 2 (17)
equilibrium point, has dimension one, and is exponentially :

stable for allK > 0, and moreover, the system is dynamically UN_1 = WN_1-

input-output decoqplablg (equivalently., inverti.ble)... . ﬁenders it statically input-output decouplable.

Before proceeding with the analysis, the intuition behind oot The zero dynamics is invariant under regular static
this choice of_outputs is discussed. As stated earlier, ®MQote feedback and dynamic extensions [22]. Hence, assume
standard choice of outputs would bg = ¢; — ¢f , for the system has already been transformed into the normal form

io= L., N -1, whgre each component has_ relativ%ll) and then apply the dynamic extension (17). It followat th
degree two. Such a choice leads to a two-dimensional zere) _ wy, for 2 < k < N — 1. It remains to differentiate the

dynamics, which can be shown to be once again a.Lagrang t output component. Equation (13) yields
system [56], and thus can never have an asymptoticallyesta

equilibrium. By seeking an output component with a relative;y, o = .
degree higher than two, the dimension of the zero dynamicg, — doo(@1, 1 qn-1) + Z Bi(qr, - an—1)dk
can be reduced, opening up the possibility of either having ’ k=2

no zero dynamics at all, or, of creating one that is scalar _ aV(Q)_

and asymptotically stable. For the class of systems being 9qo

studied, no output function of relative degree four has be n R i be d d th(ltgt)h
found (see Section V-B for more discussion on this poimj'.neargumen 601, -, gv—1) will now be dropped so that the
The most obvious relative degree three function available Pr”.‘“'a? remain compact and readable. Differentiating) (18
the conjugate momentuns;, which is a linear combination again yields

of the velocity components. If the first component of the 2y & o - vl )

outputs were modified tg; = o, the resulting zero dynamics 55~ = & | 5— — dQ_dO,U + Z (ﬁk% + ﬁk%)

manifold would include a one-dimensional submanifold of 0.0 0,0 k=2 (19)
equilibria associated witld7 (g0, g1, 45, - ,4%_1) = 0, and _ ?V(q) .

thus asymptotic stability of the zero dynamics would be dqdqo

impossible. Inspired by [5], by associatingto a one-form o (g the dynamic extension (17, --- ,qy_1) have at

and then partially integrating it, a functign was determined |5t rejative degree three ang has at least relative degree
2
that depends only on the configuration variables and hast\%' thus the inputs do not appear—”’%—l. Differentiating once

least relative degree three with respect to one of the iner‘bre and keeping track only of the terms where the inputs
components (after a static feedback was used to put thmsysgepp ear yield

in normal form). Henceany function of p; ando has at least

relative degree three with respect to that input component. 3y, N-1
Moreover, by (13), if; =0, fori=2,.-- N —1, theno is as (¥) + M gwi + Z KBrwk (20)
k=2

proportional top; through the strictly positive quantity o .
Thus the choice; = Kp; + o, K > 0, andy; = ¢; — ¢¢ , WhereM, ; is given in (16). Therefore the decoupling matrix
is

SAlternatively, let g* be arbitrary, for example, zero, and defipe = M = Ml,l K [5% e aﬁNfl] (21)
K(p1 — p$) + o, wherep$ is the value at the equilibrium poing?. ' 0 I(N—2)x(N-2) ’
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and is invertible at a given point if, and only i/, ; is non- Chap. 9]. A global feedforward representation of the system
zero at that point. In a neighborhood of an equilibrium poins discussed in Section V-A; see also [37].
(¢°,0), M; 1 is non-zero if, and only if,

(82V do1 0?V >

g% doo  Oq10q0

#0. (22) D. Systems where the generalized momentum conjugate to the
cyclic variable is conserved

Wherever the decoupling matrix is invertible, the zero
dynamlcs is locally well defined and the set of dlfferentlals
{dyk , 7=0,1,2, 1 <k <N — 1}, is independent [22], .
and hence has dimensiQ‘nV — 3. The system (11) with the oV
dynamic extension (17) has dimensi8V — 2, and thus the Go(q) = —a—(q) =0, (26)
zero dynamics has dimension one. To determine the zero 0

dynamlcs it is enough to find a function whose dlfferentla,{,mch is equ|va|ent tay = 0. In (11) o can be treated as a

It is now assumed thatr, the generalized momentum
conjugate tay, is constant along solutions of the model; that

is independent ofdyy”’, j =0,1,2, 1 <k < N—1}.Inthe constant, yielding the reduced order model
Appendix, it is shown thagbl is an appropriate choice. On the
zero dynamics manifold (that is, when= 0), 0 = —Kps, g = m + Zk 1 k@, av—1)dr
1 =q1(p1,¢°), andgy —q; = ¢y =0, 2 < k < N—1. Thus, i = v, j=1...N—-1.
from (13) (see also (78) in the Appendix), in a neighborhood (27)
of an equilibrium point wherel/; ; # 0, the zero dynamics Let ¢* € @ be given and defing; as in (12). In this case,
is K conditions will be given such that the system (27) with otgpu

p1=- p— D1 (23)

do,0(q1(p1,4%), 45, - ,d%_1) o= nm

Sinced,  is positive, the zero dynamics is exponentially stable Y2 = @0 (28)
for all K > 0. [ | :

Remark 2: Note that an integrator has not been added on
v1. This is becausg; is designed to have relative degree three
with respect tov;, while it only has relative degree two withis locally, dynamically, feedback linearizable. Note tl{28)
respect tovs, - - - ,vy_1. With the dynamic extensiom; has is a simplification of (15) arising frord = 0.
relative degree three with respectu#o Theorem 2: Consider a simple mechanical system (2) with

Remark 3: From [22], exponential minimum phase plusy > 2 DOF, N — 1 independent actuators, and the unactuated
local static input-output decouplability after a dynami- e coordinate is cyclic. Suppose that the generalized momentu
tension implies the existence of a feedback that inducggnjugate to the cyclic coordinate is conserved along the
local asymptotic tracking of output trajectories with imtally motions of the system so that the reduced system (27) can
bounded states. See the three-link robot in Section IV-6r2 the defined. Associate to (27) the outputs defined in (28) and

YN-1 = qN-1—qN_1;

an example. define
Remark 4: If p,, in (12) is selected withn # 1, then the ad N—1 23
dynamic extension becomes M, = 7% 00 4 Z (—qu> ) (29)
By 0 = \0
Um = Wmnm (24)
U = wp, 1<E<N-1, k#m, Then in a neighborhood of any point at whidH, ; is non-
2P > 8d 9 zero, the following hold:
= )+ { K Gt K btm T i) the system (27) is dynamically feedback equivalent
. . y : y y feedback equivalent to a
a7 Jm — m} Wi+ Y0 o K B, controllable linear system;

the system (27) is the strongly accessible part of (2),

and & = 0 can be viewed as a representation of the

uncontrollable part;

(25) ii) the system (2) is dynamically feedback equivalent to
a linear system with a one-dimensional uncontrollable

part; and
iv) the system (27) with outputs (28) is dynamically input-
output decouplable and has no zero dynamics.

and the decoupling matrix is invertible in a neighborhood of“)
an equilibrium point(¢¢, 0) if, and only if,

(82Vdo,m_ 92V )
8Q(2) d0,0 8Q7naq0

£0.
v

Choosing different values of: may be useful for avoiding
singularities.

Remark 5: The results of the Theorem 1 are inherently
local for two reasons. First of all, the decoupling matriloreover, the dynamic extension (17) renders (27) stdyical
typically has singularities away from the equilibrium pojsee feedback linearizable.
the examples in Section IV). Secondly, even if the decogplin ~ Proof: As in the proof of Theorem 1, apply the dynamic
matrix were globally invertible and if the zero dynamics eerextension (17) to (27). Once aga% =wy, for2 <k <
globally exponentially stable, global asymptotic staaibil- /N —1 and it remains to differentiate the first output component.
ity of an equilibrium does not necessarily follow; see [22-rom (18)-(20), by takingk’ = 1 and g—;;(q) = 0, it follows
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that with two rigid links connected via an actuated revolute §oin
d N—1 The angular momentum about the center of mass is conserved,
@ _ 9 + Z B (30) creating a nonholonomic constraint. Corollary 1 is applied
dt do k=2 feedback linearize the accessible part of the system. Tikari
&y, o . N-1 representation of the dynamics is shown to be advantageous
o —de(),o + Z (ﬁqu +ﬂkéjk) (31) for path planning. The singularities that prevent the syste
0,0 k=2 from being globally linearized are explicitly noted and htaw
By N-1 plan a path through such a singularity is illustrated.
el = (*) + My 1wy + Z Brwg- (32)
k=2 A. Computing the outputs
Thus, the decoupling matrix is The key to applying the results of Section Ill is the explicit
M1 [Bas By computation of the functiorp; in (12) used to define the
M= [ 0 Iiv_2yx(v—2) } (33) outputs. For all of the examples treated here, plus a wide

range of other examples, the computation of this function is

and is invertible in a neighborhood of a given point if, anfandled by the following lemma. The proof by direct symbolic
only if, M, ; is non-zero at that point. In a neighborhood Ofntegration is not given.

the relative degrees of the outputs3igV — 1), which equals qrm (2), with N > 2 DOF and mass inertia matri.

(27) with outputs (28) has no zero dynamics [22], and thus ’ "

any regular static feedback that locally input-output dinees doo = oo+ ao1 cos(q1) + aoy S%n(‘h) (35)
(27), (28) and (17), also renders the closed-loop systeailjoc oy = @i+ a1 cos(qr) +arzsin(q),
input-to-state linear in the coordinateg,(j)\l < k < N — wherea;; = a;;(q2, -+ ,qn-1), and thata3, + a3, > 0. Then,
1,0 < j < 2); the associated Brunovsky canonical form ifor ¢* = 0 and—7 < ¢; < 7, (12) can be evaluated explicitly
yP =, 1<k<N -1 m as

Corollary 1: The same results hold for (3) with the excep-

1 q1 q1
. . A = — tan(— tan(=), 36
tion that the uncontrollable part has dimension five: L=+ Co a1+ @1 o tan( 2 )+ 2 0 tan( 2 ) (36)

. where,

c = 0

Fe = 0 (34)  ¢i@) = 2(%40 — e arotan ((eomtaieten )

Yo = 9o, pa(x) = —(am“:ma”) In(ago (1 + z%) + ag1 (1 — z?)

where g, is a constant. +2a022) — 2225 In(1 + 2?)
c1 = ap1611 + A12002
— 2 2
IV. EXAMPLES 2 = ‘o j T2
. . - . 3 = o — @p1 — Ap2-
This section will illustrate the theoretical results of Sec (37)

Il on systems of the type depicted in Figures 1 and 2. The Remark 6: Write

systems are chosen to be simple enough that the calculations ) 5 5
are straightforward and sufficiently complex to illustrae ao1 cos(q1) + aoz sin(q1) = 4/ ag, + agy cos(qr + 0),

range of possible applications of the main theorems. ng thatag; = /a2 + a2, cos(6) and
first example treats a robot with two rigid links connected o1 01+ oz c0s(0)

via an actuated revolute joint and attached at one end to a age = —\/ a3, + a3, sin(6).

pivot; that is, the Acrobot. A novel feature is that the robot )

is placed on a frictionless horizontal plane to remove gyavi €Nce. everywhere thatoo > 0, it follows that ago —

If nothing else were done, the angular momentum about tl*veagl +ady > 0 and agy — apr > 0. Therefore,c; is a
attachment point would be conserved, so stabilization eou POSitive real numl:)2er everywhertg théto > 0. The minimum
equilibrium would not be possible. A spring is therefore edid V&!ue of “020(1 T ) t ap1(1 — a%) + 2ag2x OVerz € IR is
between the world frame and the first link, and a stabilizingdu@! t0(ago — agi — ag2)/(aoo — ao1), which is therefore also
controller is then designed through the use of Theorem 1. TH@Sitive everywhere t;atog > 0. Thearctan corresponds to
second example treats a robot consisting of three serig lirfn€ Principal value. Ifig, +ag, = 0, then (12) can be evaluated
connected by independently actuated revolute jointsclaggn SXPNICIly @Sp1 = qo + 30g1 + cbsin(g1) — G2 cos(q1).

to a pivot, and constrained to evolve in a vertical planethisr ~ Remark 7. If N = 2 and eitherap; = a1» = 0 or ag =
system, the results of [5,38] are not applicable for designi 11 = 0: theny; = 0. In this case, the results simplify to the
a stabilizing controller. Theorem 1 is applied to design Esults obtained in [38]. , _

controller that achieves stabilization about an equilibri Remark 8: For a general point of interegt # 0, (12) can
point and asymptotic tracking of trajectories. The lastem be evaluated as

studied focuses on ballistic motion in a vertical plane,ahitis 71 = (90 —a5) + G (@ —af) +protan(sy)

a key part of a model of running. The model assumes a robot +2 0 tan(4) — ¢y o tan(L-) — g o tan(L),



GRIZZLE, MOOG, AND CHEVALLEREAU FINAL VERSION 21/0CT/2004 |EEE TAC

which is justp; in (36) minus the same function evaluated at

*

q .

B. Planar Two-link Structure Attached to a Pivot

The purpose of the example is to emphasize the role
of the potential energy in determining whether generalized
momentum is conserved, and to demonstrate in the simplest
possible setting the computations needed to apply Theorem 1
in order to achieve asymptotic stabilization of an equilibr.  Fig. 3.

//
e \ —qQ
4

Spring
o

»
>

A two-link robot attached to a pivot and constrainedriove in a

The robot consists of two point masses connected by two, rigigrizontal plane. The joing; is actuated, whiley is passive; a linear spring

massless links, with the links joined by an actuated reeolut‘ﬁ
joint (the use of a distributed mass model would not change
any of the following analysis). The connection to the piwt i
unactuated and frictionless.

The configuration variables are chosenygaandg,, whereF
qo is the angle of the first link referenced to a world frame p,
attached to the pivot point ang is the relative angle between
links one and two. A linear spring of stiffness; is introduced
between the first link and the world frame, with rest position
qgo = 0. The plane of movement is assumed to be horizontal

where K > 0 is to be chosen,

ith stiffness K is attached with rest positiogy = 0. From left to right,
e links have lengtil.; and L and the masses afg;, ma.

aii aio appa11
qo+ gHaq1 +2 - :
ao1 \/agofa& ao1 \/0%070%1
-arctan | 40=20L tan(4L.) ),
a0~ 901

(41)

andp§ is the value ofp; at the equilibrium of interesi©.

and thus the acceleration due to gravitygis= 0. The case

where the gravity is non zero can be found in [5]. L . ; - .
. . . . trivial: v; = wy. Since it only amounts to relabelling the input,
1)_ Mathe_matlcal_ representationThe dynamic model IS it is dropped. Direct calculation confirms thathas relative
easily obtained with the method of Lagrange and Ve”f'etﬁagree three:

that qq is a cyclic variable. The complete dynamic model is

For single-input systems, the dynamic extension (17) is

not given; instead, the system is immediately written in the ¥ = Kz + K.
modified normal form (11) as . 8do o o—do 1ds
Y — 0 ag s 5 - 5
d §oo= KK - e v K |
G = G5~ d,h @) M
. - v + N7
g = Gy (38) 4 (42)
Qo= u where,
_ o 0Odo,o do,1
where, M = 7Kd5,o et — K 52t
doo = ago + ao1 cos(qr) ; ad ddo.o
9 _ s . s . 2
doy = a0+ aicos(qr) N = K [K%—Oo - QKSJ% 9q, 1+ ﬁ,o( 9q, 1)
agg = (my+m2)LT+maL} _ g @donga] |
ap1 = 2a11 (39) 2, 0% i
a0 = mol3 ado @’ o—dordr \ ddo.o -
alr = m%Lle Ks |: Sd?]% - (9:;1 Wlo - ( d?:;]l 1) 8:;0 q1:| .
_ vV _
Go = —g5 = K. (43)

_ _ Suppose thatV/(¢¢) # 0. Let real scalarsk,, K; and K
In the above, note that, given by (9), is the usual angularpe chosen such that®) + 2320 K;y9) = 0 is exponentially
momentum of the robot about the attachment point. Since t§@ple. Then (43) leads to the locally input-output lingag

robot is constrained to a horizontal plane, if the springstant  5,q exponentially stabilizing control law [22]
were zero, then angular momentum would be conserved and )

asymptotic stabilization to an equilibrium point would be _—
impossible. M(q)
2) Control Law Design: The control law design consistsThe actual torque applied to the actuated joint is computed
of the preliminary feedback needed to place the system fiom (75) of the Appendix.
the (modified) normal form (as explained in the Appendix), 3) Simulation: For the simulations, the robot is assumed
the definition of an output, and a second static state fedédbawonstrained to a horizontal plang, (= 0), the spring attaching
used to linearize and stabilize the resulting input-outpap. the first link to the reference frame is assumed linear with
For the two-link robot, the output is selected as stiffness K = 5, and the model parameters are selected as
Ly =0.5, Ly =0.75, my = 7, andms = 7. The equilibrium
point was chosen ag, = 0, ¢§ = —n/4, which corresponds to

[—N(q’ q) — [_(29 - f_(ly — Roy] . (44)

v =

y = K(p1—pf)+o, (40)



GRIZZLE, MOOG, AND CHEVALLEREAU FINAL VERSION 21/0CT/2004 |EEE TAC 9

p§ = —0.4068, and satisfies\/ (¢¢) # 0. The scalarsk; were
arbitrarily chosen to place the eigenvalues of the erroaquo
at —1.3. The free parameter in the output was arbitrarily set to

K = 4. Sincedy ¢(¢°) = 5, the zero dynamics has a slightly /Q
slower speed of convergence than the output error equation.
The state feedback controller (44) was simulated for the <

initial condition o = 7/4,q1 = 7/4,40 = 0,41 = 0.
Figure 4 shows the evolution of the commanded output and
its derivatives along with the evolution of the configuratio
variables of the robot. The output rapidly converges to aeid

the configuration variables converge to the desired eqjiitip
point. An animation of the motion is available at [19].

10 0.8

5 0.6
. S 02 (a) (b)
° i'I'ime(ssec) ° 0
2 \/ Fig. 5. Three-link mechanism, connected at a pivot, congjstih point
0 2 bine Cee) © masses and massless bars. The links have lehgtthrough L3 starting at
St/ me (sec) the pivot; the masses are; throughms. (a) shows an equilibrium pose with
-4 15 the center of gravity centered over the pivot; (b) shows ttigal condition
) — ) used in the simulation, with the equilibrium position supgdsed in the
Time (sec) — —q background.
s Ime (sec, § o
=0 ;: 0
= o5 yields immediately the modified normal form (11) as
-5 -1 io— o doas _ doz
° i'I'ime (Gsec) ¢ 10 ’ i‘I'ime ((;ec) ¢ 1 4o - do,o do,o i do,o 92
. o o . ¢ = Go (45)
Fig. 4. Stabilization to an equilibrium. The figure shows tlmnergence i = un
of the commanded output, its first two derivatives, and the gardition .
variables. 42 = U2
where,
apo = (m1 + mo + md)L% + (mg + md)L% + mg,Lg
C. Planar Three-Link Serial Structure Attached to a Pivot +2ms3 Lo L3 cos(gz)
This example treats the planar three-link robot depicted inay; = 2(mgy + m3)Li Ly + 2m3L; L3 cos(go)

Figure 5. The robot consists of three point masses connected

by three rigid, massless links, with the links joined by an %02 = —2msLliLssin(gz)
actuated revolute joint. The connection to the pivot is unac a;q = (mg +ms3)L3 +msL3 + m3L3
tuated and frictionless. The links are labellgg through L3 +2ms3 Lo L3 cos(gz)

starting from the pivot and the masses are similarly labelle

my throughms. The parameter values given in Table | were %11
selected to approximate the biped robot RABBIT with the legs a;, = —m3L;L3sin(g2)
held together [7]. The configuration variables are chosep as
throughgs, whereqq is the angle of the first link referenced “0-2

= (ma2+m3)L1Ls +mgLy L3 cos(qz)

= mgL3(Lacos(q2) + Ly cos(q1 + g2))

to a world frame attached to the pivot poigt, is the relative G, = 73_;((1) = go(my + ma +ms3) Ly cos(qo)

angle between links one and two, apgis the relative angle +go(ma + m3) L2 cos(qo + q1)

between links two and three. No springs are used. The plane of +gomsLs cos(qo + q1 + q2),

movement is assumed to be vertical, and thus the acceleratio (46)
due to gravity isgy = 9.81. with do 0, do,1 as given in Lemma 2, (35). Note thatis the

The example further illustrates the application of Theoresngular momentum of the robot about the attachment point
1 through the use of an output component that has relatixad is computed from the above data via (9).
degree three with respect to only one of the input component2) Control Law Design:The goal is to demonstrate local
and the use of a non-trivial dynamic extension in the desigixponential stability and asymptotic tracking about ani-equ
of the feedback controller. Both local asymptotic trackargl librium point. An equilibrium point(¢®,0) was found from
exponential stabilization to an equilibrium point are demo %(q)(qe) =0, g5 = /3, andg§ + ¢ + ¢5 = 7/3, resulting
strated. in ¢ = (1.0472,1.4522, —1.4522); see Figure 5 (a).

1) Mathematical representationThe complete dynamic The control law design consists of the preliminary feedback
model is easily obtained using the method of Lagrange andeded to place the system in the (modified) normal form (as
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Link 1 | Link 2 | Link 3 01

length ¢n) 0.4 0.4 0.3 0
mass kg) 6.4 13.6 12.0 o1
TABLE | 5702

-03
MASS AND LENGTH PARAMETERS FOR THREELINK MECHANISM .

-0.4

N
a
S

150

explained in the Appendix), the selection of two outputg th
dynamic extension that renders the system statically decou
plable (and hence statically input-output linearizabb)d a
second static state feedback used to linearize and staliliz

— u

N
=}
S

=@ 100

=
@
S
=y

50

,_
o B

- 88

Torques (N)
o

Config. Variables (Deg)

-50

|
a
=)

input-output map. For the three-link robot, the outputsehav o fMVV / -100
been selected as 1505 20 40 60 150 20 40 60
Time (sec) Time (sec)
y1 = Kpi+o @7)
Yo = Qo — qg? Fig. 6. Demonstration of asymptotic tracking and stabilaafior the three-

] ) ) link mechanism. For the first forty seconds, the motion consiSen initial
where K > 0 is to be chosen, and the functigm, is transient, followed by tracking of sinusoidal trajectsrithat correspond to

determined this time via Remark 8. The dynamic extensir{fﬁee bends. At forty seconds, the reference trajectorynspdly set to zero,
is hereby commanding the system to an equilibrium point.

oo =
i i ) ) ’_ execute a form of calisthenics, namely, deep knee bends;
which consists of adding a single integrator on Introduce ¢ forty seconds, the references are abruptly set to cdnstan
a state vectorr = (go, 0,41, 41,42, 42, v2), and express the 5,65 corresponding to the equilibrium poigt in order
composition of (45), (47), and (48) as to demonstrate convergence to a constant set point. The
i = f(z)+g(x)w asymptotic convergence of the outputs to the commanded
y = h(z). references is shown in Figurg?, along with the evolution

Direct calculation confirms thaj has (vector) relative degreeOf the_ conﬁgurauon varlgblgs anq the applied joint torques
i ) . - <. ~~An animation of the motion is available at [19].

three [22] with respect tav. Indeed, using Lie derivative

notation, the output derivatives are

(49)

gy = Lsh(z) D. Planar Two-Link Structure in Ballistic Motion
i = L2h(x) This examples illustrates how the locally linearizing atier
f (50) . . .
@) 5 ) nates of Theorem 2 can be used to advantage in planning a flip
y = Lih(z) + LyLih(z)w, gait in a planar two link structure undergoing ballistic fat

) _ o The boundary constraints chosen in the flip gait are motivate
whereL, L3 h corresponds to the decoupling matfikin (21). py bipedal running [8]. The singularities in the decoupling

Evaluating the right hand side of (22) at the equilibriummtoi matrix will be explicitly computed and related to configuoat
gives—2.35, and thus the decoupling matrix is invertible in &hanges of the mechanism.

neighborhood of this point. It follows that a feedback lawtth a5 shown in Figure 7, the mechanism consists of three point

provides asymptotic tracking is [22] masses joined by two massless bars in an actuated, revolute
2 joint. The four configuration variables are selectedy@sqs,
w — [LgLfch} -1 y$3) _ Lfch + Z[‘(j (ygj) _ L}h) , x¢, andy., whereq, relates the orientation of the mechanism
=0 to a world frame andy; is the relative angle between the
(51) two links. The mechanism’s position with respect to a world
for any constant matrice&’; that render the error equationframe is represented by the Cartesian coordinates of iteicen
exponentially stablee®) + Z?:o K;e) = 0, for e := of mass. The point masses are givenihy, m,, mo; the bar
(yr — ). connectingmg to my has lengthZ; and that connecting;
For the simulation, the matrice’s; were arbitrarily chosen to my has lengthL,.
to be diagonal and to place all of the eigenvalues of thel) Mathematical representationThe complete dynamic
error equation at-1. The free parameter in the output wasnodel is easily obtained using the method of Lagrange and
arbitrarily chosen ag{ = 5. Sincedy ¢(¢°) ~ 14.5, the zero yields immediately the modified normal form (11)
dynamics is about one third as fast as the output error exquati

3) Simulation resultsiThe simulation demonstrates asymp- Go = %&fﬁ‘“
totic tracking and exponential stabilization. The initendi- 6 = 0
tion was taken ag1.1,1.42,—1.80,0,0,0), and is depicted i = v (52)
in Figure 5 (b). For the first forty seconds, the robot is Te = 0

commanded to track sinusoidal references that cause it to e = 90,



GRIZZLE, MOOG, AND CHEVALLEREAU FINAL VERSION 21/0CT/2004 |EEE TAC 11

The duration of the flight phas&;, is determined fromj. =
go, with the initial conditions coming from the initial positis
and velocities of the angular coordinates at lift-off, ane énd
) T condition of the height of the center mass coming from the
desired final configuration of the angular coordinates atheu
down. Once the flight time is known, determining whether or
not there exists a solution of the reduced model,

o—do,1(q1)q1

T Tl (54)
> a1 = v,
e that is compatible with a given set of initial and final con-

Fig. 7. A two-link robot undergoing ballistic motion in a viedl plane. ditions is a difficult prObI?m: Once a traJeCtory_ fai(t) is
Only the jointq: is actuated. From left to right, the links have lendth and  chosen, must be numerically integrated, andqif(7") does
L and the masses argo, mi, ms. not have the desired value, they(t) must be altered. Such an
iterative procedure is poorly adapted to on-line compoiesti
Theorem 2 will be applied to simplify this task. It should be

with control v and noted that the value of the momentwmis unknown before

doo(q1) = aoo+ ao1 cos(qr) the start of the flight phase, and thus it is not even possible t
doi(q1) = a0+ ai1cos(qr) determine the reduced model (54) before the initial coaditi
" _ mo(my+ma) L3 +ma(mo+m,) L3 of the robot is known at lift-off.

00 mo+mi+ms (53) 3) Determining a ballistic motion trajectory in linearizin
apn = 2a11 coordinates: Local, input-output linearizing coordinates for
ajp = ma(mo+m1)L3 the reduced model (54) are constructed frgm- p; and its

Motmitme first two derivatives. Defing; by (41). Direct computation
ay = eralile leads to

The strongly accessible portion of the model has dimension ,; — — g _ g (55)
three, and involvesy, g1, ¢;. Due to ballistic motion, there is do,o(q1)  aoo + ao1 cos(qr)

a five dimensional uncontrollable s_ubsystem that is comMgt L o—%do,o(ql)_ B oag sin(qr) . 56
decoupled from the actuated portion of the model, and thisis P1 = doo(q1)? @ = (@00 + ao1 cos(q1))? G1- (56)
given by z.,y., 0, ., 3.. How these two parts interact in a _ S o
path planning problem is explained next. To determine the linearizing control, one more derivatige i

2) Interaction through boundary conditionsThe flight needed
phases of a gymnastic robot, such as a tumbler or a bipedal 3)
runner, are typically short-term motions that alternatéhwi b1

1 (2a01 + ago cos(q1) — ap1 cos?(q1)) .o
(apo + ag1 cos(qr))? !

single support phastsThe creation of an overall satisfactory + M v (57)
motion is closely tied to achieving correct boundary candg aici () .

at the interfaces of the flight and single support phases. The,, = — dg; Y0.0\41) oapr sin(q) . (58)
state of the robot at the end of a flight phase determinesthe in =~ do,0(q1)? (ago + ao1 cos(q1))?

tial conditions for the single support phase, and consetquerWhereverM1 )
the state of the robot at the end of a flight phase is typically,ch that
more important than the exact trajectory followed during th (3)

fli b =w. (59)

ght phase.

At the beginning and end of a flight phase, the robot is ior arbitrary initial and final conditions of the linear méde
contact with a surface, assumed here to be identified with {B9), it is trivial to define a feasible trajectory. Indeed, i
horizontal component of the world frame. Assume furtheenokuffices to define a three-times continuously differenéabl
that the robot is in single support, with the contact poiftinction passing from given initial values to given final wes.
being either the massy, or m». In single support, there areQOne could even use a polynomial of order five or greater.
two holonomic constraints that tie the position and velocit Since the change of coordinates going from (54) to (59) is
of the center of mass to those of the angular coordinatgs¢al, not every solution of (59) can be mapped back onto a
in other words, there is a loss of two degrees of freedomplution of (54). From (55)p;, the “global” orientation of the
Conservation of angular momentum through= 0 yields an rgbot, can only be changed through modification of the inerti
additional (nonholonomic) constraint on the angular viéiles.  parameter/, o, because the angular momentum is constant.
In particular, the desired final joint velocities must be 10 The inertia termiy o can only be changed through variation of
to satisfy this constraint. the internal angleg;. Sinced is bounded, so i$;. These

4 , o , - kinds of constraints, which must be applied point-wise ineti

That is, one end of the mechanism is in contact with a rigidemerf and

the contact point is neither slipping nor rebounding; inestivords the contact 9" the trajectories Of_ (59), are made explicit by computimeg t
point is acting as a pivot. inverse of the coordinate change.

# 0, a linearizing feedback can be constructed
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4) Constraints point-wise in time associated with the linn Figure (8); they belong to the same configuration class.
earizing coordinates:The calculation ofy, ¢1, ¢1 in terms of From the initial conditions of the robot and the desired final

p1,P1, P11 Yields configuration, the flight time is computed 85 = 0.5173.
° _g Conservation of angular momentum implies thatI") = —5.
By Y00
¢ = arccos(Z——) (60)
ao1
o = p a11q 9 aio apoai11 2
0o - 1— — 41 — - :
ao1 \/a%O — a%l aop1y/ a%o - a(2)1
_ 1.5¢
-arctan (% tan(q—1)> (61)
oo — o1 2
. p1 (ago + ag1 cos 2 |
0o = P1(aoo 01 ¢os(q1)) (62) 1

oaor sin(qy)

The first equation only admits a solution f% <p <

aooj'ram' and then has two solutions: one for< ¢; < = 05

and another for—m < ¢; < 0. These two domains for the

cosine define two “configuration classes” of the robot, with 0

the extreme points of the domains corresponding to the links 05 0 05 1 15 2

being completely folded or unfolded. At the extreme points
of the domainsp; attains an extremum and consequenjly, Fig. 8. The motion of the robot passes from left to right withpassing
is zero. At an extreme point af;, ¢; cannot be determined through a singularity. The initial configuration £ -— green) and final

configuration (— -— red) belong to the same configuration class. The center

from (62), which takes the forny; = %- Since M1 vanishes  of gravity follows a parabolic trajectory.

at an extreme point, (57) is used will; ; = 0 to obtain

The initial and final values g, and its first two derivatives
. \/ 3) (ago + ao1 cos(q1))? were computed from (41), (55), and (56). A fifth-order polyno
g1 = =4/p; 3 s . . g o,
oa01(2a01 — ao1 cos?(q1) + aoo cos(qr)) mial of ¢ was defined that satisfied these boundary conditions.
(63) The resulting trajectories af;, p1, p1 are depicted in Figure
with the sign of ¢; being determined by continuity (with 9; the point-wise in time constraints associated with (68))
torque control, there cannot be discontinuities in thesigfp. and (62) are met. The input torque for the system was
The robot will then pass through the singularity, and changemputed using (57) and (75) of the Appendix. The resulting
configuration classes. trajectories in terms off and ¢ are shown in Figure 10 and
Consequently, when generating a motion, two cases c#e evolution of the robot in the vertical plane is presented
present themselves, according to whether the motion stdigure 8. An animation of the motion is available at [19].
always in the same configuration class or not. If the initial
and final configuration are in the same configuration class,

then a trajectory can be generated by impos% < =
p1(t) < —%.—. Both open-loop and feedback controls are or

equally easily computed starting from the linear modelh# t -1
initial and final configurations are in different configuoati —_—y
classes, a trajectory can be computed that passes througha [~ ——— == = ——— ]

singularity at a single time instance < ¢, < 7', where M, ; '5:;:
vanishes. An open-loop control can be determined as before. - ...
On the other hand, a feedback implementation is not possible 0 005 01 015 02 02 03 0% 04 045 05
based on invertingl/; ; in (58). However, since the flight s

phase is typically of short duration and the input is caliada

as a function of the initial conditions, an open-loop cohiso

probably sufficient. e e s e 0E g 0w
5) Simulation without passing through a singularitfhe Time (sec)

model parameters were SeIECtec_j[‘aS_: I'O’_LQ = 1.0, mo = Fig. 9. Based on the initial and final conditions of the flightape, a

1.0, m1 = 2.0, mp = 1.0 For this simulation, the mass,y trajectory forp;, and its derivatives is derived. The plot shows thaatisfies

of the robot is supposed initially in contact with the gropndhe constraint.——=—— < p; (¢) < -

with configuration defined by, = 37/4,q1 = —n/4, and

angular velocitiegy = —5,¢; = 0. The objective is to transfer  6) Simulation with passage through a singularitiyor this

the robot at the end of a flight phase so that when the madswlation, the massny of the robot is supposed initially

mso Of the robot touches the ground, its configuratiomgs= in contact with the ground, with configuration defined by

—0.5,¢1 = —n/4 with angular velocity proportional tgo = ¢y = 37/4,¢1 = w/4 and angular velocitiegy = —5,¢; = 0.

1,¢; = 0. The initial and final configurations are depicted’he objective is to transfer the robot at the end of a flight

)
)
T

I I I
0.4 0.45 0.5
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Fig. 10. The computed open-loop control transfers the rotushfits initial ~ Fig- 12.  Based on the initial and final conditions of the fligitase, a
state to the desired final state (*). trajectory forp; and its derivatives is derived. The plot shows tpathits

the (:onstraintaooj‘m01 in the middle of the flight phase, which allows the
change in the configuration class to occur.

phase so that when the mass, of the robot touches the 25 15
ground, its configuration igy = —0.5,¢1 = —n/4 with 1_2 !
angular velocity proportional tg, = 0,4; = 1. The initial - } -
and final configurations are depicted in Figure (11); they do 05 s
not belong to the same configuration class. From the initial s 4
conditions of the robot and the desired final configuration, e o e or v o o o e
the flight time is computed a& = 0.7062s. Conservation of Time (sec) Time (5e¢)
angular momentum implies thag(7") = —5. 0 10
- 5
2 ) 8 -10
© " fheey C " fiheses
1.5¢ Fig. 13. The computed open-loop control transfers the rotmon fits initial
state to the desired final state (*).
1, 4
V. ADDITIONAL TECHNICAL POINTS
0.5f 8 This section provides additional discussion on a few points
that would have broken the flow of the main developments.
0

15 1 0.5 0 05 1 15 2 A. A cascade structure

Fig. 11. The motion of the robot passes from left to right, vatisingular . The feedback deSIQ-nS of Section .Hl-C that have be-en
poéitioﬁ occurring when the two links are aIigned.Theaiiﬁonf’iguration(— illustrated on the two-link and three-link models have sin-
-— green) and final configuration-¢ -— red) belong to different configuration gularities where the decoupling matrix looses rank. Result
classes. in [20] show that (within the category of analytic systems
and compensators) achieving an invertible decoupling irmatr
The initial and final values g, and its first two derivatives via dynamic compensation is a necessary condition for the
were computed as before. So that the robot changes conéigistence of a compensator that achieves asymptotic trgcki
uration class, at, = T/2, the trajectory was forced to passof an open set of reference trajectories. Hence, while ibis n
through a singularity corresponding 4o = 0, that is,p; =0 necessary that the particular decoupling matrix constcuit
and p; = o/(ago + ap1). A seventh-order polynomial in (21) be invertible, at least some other decoupling matrixieio
was defined that satisfied the six boundary conditions, plbave to be invertible for asymptotic tracking to be possiie
P1(ts) =0, p1(ts) = o/(ago + ao1). The resulting trajectories a larger set.
of pi,p1,p1 are depicted in Figure 12. The corresponding If one is only trying to accomplish stabilization on a
trajectories in terms off and ¢ are shown in Figure 13 andlarge set and not asymptotic tracking, it is then intergstin
the evolution of the robot in the plane is presented in Figute consider feedback designs that avoid the requirement of
11. An animation of the motion is available at [19]. an invertible decoupling matrix. One way that this may be
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approached for the systems studied in Section IlI-C is tlenditions for dynamic feedback linearization are knowsi 4
following. First, use (13) to rewrite (11) in the coordingtein particular, for the class of systems being studied in this

(p1,0,q1,++ yqN—1,G1---4N—1) @S paper, the conclusion is that there do not generally exist fla
. " N-1 g . outputs depending only on the configuration variables.
Pt = Gaan T k=e Je(an e av-1)dk Consider first a 2-DOF system written in the form of (64),

and suppose thaf, # 0. Such a system has a single input
) . and thus necessary and sufficient conditions for feedback
G = v, j=1-,N-1, linearizability can be checked. Applying the method of [11]

GO(plaqla e 7qN71)

o

Where (64) the system is feedback linearizable if, and only if,
_ . eitherd%(do,o) = 0, in which casep, is a linearizing (or
Go(pr,q1, - ,qn-1) = flat) output,
d d _
e Or, 2(d 0 and % = 0, where =
_g_,‘;)(QOth"' anfl) qo=pi1+q5— /2 ZO_’l(TQZ N 1)d‘r' leh( 0;); 7_é dan (ﬂ) ﬂ
q§ do, e - 0,0 i H 2 H H 171
£ 0,0 (65) do) 6q10) , in which caser“+20p; is a linearizing
Define z1 = (p1,0), 22 = @, ©3 = {1, Ts = (or flat) output.
(g2, -~ »(INfl)//: x5 = (G2, ,qn-1)’, v1 = v1 and v = These conditions are not generally satisfied for the class of
(v2,---,un-1)". Then (64) takes the form of a feedforwardsystems being studied; in particular, applying them to e t
nonlinear system link example of Section IV-B proves that it is not feedback
in = fi(z, 0, 24) + g1(22, 24)75 Imearlngle. _ . . .
By = 3 Consider next a system with 3-DOF written either in the
P (66) form (11) or (64). Applying once again the method in [11],
B4 = w5 the system is statically feedback linearizable only if
Is = g, oy 68
for which various feedback stabilization methods have been g (68)

developed [30, 48, 49, 55]. Backstepping suggests Corrl?'gjermoreover, the same obstruction persists if an integrator is

zo and x5 as virtual controls [28], leading to the simpler . . .
(block-)feedforward system added onwv, so the dynamic extension used in the paper

does not render the system static feedback linearizable. Th
1 = fi(xr,x9,24) + g1(x2,x4)T5 (67) obstruction (68) is present in the three link example of Bact
Ty = xs. IV-C.
- : We know of only two mechanical systems that meet the
For a two-link syste andzs are empty, leading to the two » - . .

yStermy ¥ Pty 9 conditions of this paper and are feedback linearizable: the

di ional teni; = , the global totic .~
imensional systent; = fi(z1,2), the global asymptotic ertia wheel pendulum [54] and the RTAC or TORA (see

stabilizatio? of which has been studied in [36]. The problelj;3] and references therein). Both systems satisfy theitiond
of asymptotically stabilizing (67) on large sets is open f "0 (dy.0) = 0, and thusp, is a linearizing output. The method

systems with three or more links. dg1 *. ' . - : .
y 0?1th|s paper also finds the locally linearizing coordinaigss

is shown only for the inertia wheel pendulum.
B. Checking feedback linearizability In the coordinates of Figure 1, the modified normal form of
This subsection offers a few observations on the genetlte inertia wheel pendulum is
non-feedback linearizability of the model class studiedehe

when generalized conjugate momentum is not conserved. The do = #,0 - ZZ_:;%

reason to check this property is that if the systems were o = Gy (69)
feedback linearizable, then it would be possible to achieve G = v,

an empty zero dynamics instead of a zero dynamics Wi&vmere

dimension one. Recall that for single-input systems, it iIs doo = ml2 +mal+ 1 + Iy

known that a system is dynamically feedback linearizahle if do’1 - I N

and only if, it is statically feedback linearizable. For il Go = mgocos(qo) (70)
input systems, dynamic feedback does enlarge the class of M = myly +maly,

linearizable systems, but necessary and sufficient comditi

for dynamic feedback linearizability are not known. If onend the parameters are as defined in [54]. Sificeanddy ;
restricts the outputs used to achieve dynamic feedbackriine are constant, (6) is trivially integrated about the equiliin
ability (often called flat outputs) to being only functionstbe  point ¢° = (7/2,0,0,0) to obtain

configuration variables, however, then for mechanicalesyst

with one degree of underactuation, necessary and sufficient p1= (g —m/2) + %ql. (71)
0,0

5The Lyapunov function used in [36] was not shown to be propeadially .. .
unbounded. For the Acrobot, a periodicity propertyaf can be used to fil Defining the output ag) = Kp; + o and using (13) and

this lacuna when the dynamic model is extended in the obvioystear*.  (18)-(20), the model (69) in the coordinatés,, zs, x3,x4)
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= (y,9,%,p1) becomes rendered the system locally input-output decouplable. By
existing results, a controller that achieves asymptotabist

9;1 - ? lization and tracking is then easily constructed. When the
; _ *?’+ M v (72) generalized momentum conjugate to the cyclic variable was
S T M conserved, a reduced system was constructed and conditions
T4 = Gt T Aot were found for the existence of a set of outputs that yielded

At the upright equilibrium M; ; = mgojg'; £ 0, and hence an empty zero dynamics, along with a dynamic extension
(72) is linear in the coordinateéz,,zs,z3,24) after the thz_it _rendered the system Ioc_ally Input-output _dec‘)“p'aB’}e
application of a static state feedback. existing results, a local cogrdmgte transformatlon anchdyic
Remark 9: More generally, the underlying reason for th%eedback. controller that linearize the input-to-state raa@
static feedback linearizability of the inertia wheel pelu hen easily constructed. The SO!UIIOHS to these two cont.rol
can be tied to be the following result, which applies to problems had a common_unde_rlymg e_Iement. the computa_tlon
DOF mechanisms (2). Consider again the one-fasm— of a function of_ the configuration varlabl_es that had refativ
Odegree three with respect to one of the input components. It

N—-1 . . .
_o do.x(q1,- -+ ,qn—1)dg; associated with the generalize ) ) ' . . L
gﬁft?gate (mc;mentum (2)) and suppose thais closed. Let was interesting that this function arose by partially iméeigng
a physical quantity, the conjugate momentum.

dd = &. Then a simple computation shows that: ¢ahas at X . .
“ P b e The theoretical results were illustrated on three simple

;eiaitqriel_at(;\g’e idzg;eg fc”ljj\; _(bi Lhaevg lgg?gi;”féq)m;g& ()2’1) examples. Stabilization of an equilibrium was demonstrate
with K = 0; (c) when the decoupling matrix is invertible,_?_rr‘]ea Vi:laonsteOfoﬁ‘hihécreoxt:r;Vthsvlgsthti Ir;f::]JeL];:izc’ef %Liv'%le
these outputs have vector relative degfde2,---,2) and . hp pose | . dp - h ph lized
thus the system is static feedback linearizable; and (d) tRet € poter_ma energy in determining whether generaiize
coordinate transformation required to linearize the sysie morgegtutm IS C(I)nstehrved, ar;td to fdeﬂTonstrate 'Fhet(r:]omputaflorj[s
canonical and given by = ®(q), ¢ = g—i’q, where ®(q) = needed 1o apply the Tesulls ol theé paper in the simples
oV , . . _ possible setting. Asymptotic stabilization about an ebriiim
.(yl’_a_%’yQ"" ’nyl? - For the Inertia vyheel pquulum and asymptotic tracking were both illustrated on a serial,
is closed because the first row of the merjua'matnx IS (.:G"Stathree-link, mechanism attached to a pivot and constrained t
moreover, the relative degree four functléns proporthnal . evolve in a vertical plane. This example provided a noridtiv
op L I_n the case of t_he RTAC, the_ first row _Of the mert'é}llustration of the results for a system with multiple inpuThe
matnx is not constant in the appropriate coordinates,ibist last example illustrated how locally linearizing coordiemcan
still closed. simplify the path planning problem for a ballistic flip matio
of a two-link mechanism. The singularities in the decouplin
VI. CONCLUSIONS matrix were explicitly computed and related to configunatio
Motivated by a large number of dexterous robots that haehanges of the mechanism.
been introduced in the literature over the past fifteen years
this paper has analyzed simple planar mechanical systems ACKNOWLEDGMENTS
with an unactuated cyclic variable and an independent B@tua The work of J.W. Grizzle was supported by NSF grant ECS-
for each shape variable. This class of models is naturajgoo395
associated with balancing tasks and includfebnk extensions
of the Acrobot, the stance phase of Raibert’s hopper and many VIl. A PPENDIX
other robots. Typical control objectives include staliigz an
equilibrium and asymptotically tracking a pre-defined rooti
Through a simple decomposition procedure, models with
unactuated cyclic variable and an independent actuator
each shape variable also arise for certain systems exgcu
a ballistic motion, such as diving, dismounting from a hig 1
bar, and tumbling. For these systems, since momentum

The Normal Form:
The normal form is taken from [44,53]. Lef'(q,q) :=
(¢,4)¢ + G and partition the generalized coordinates into
tuated and unactuated parts per= (q0,q1), 1 =

- ,qn—1). This induces a decomposition of the model

conserved, since the initial conditions are usually deiteech zl)o,qu i gmgl j: ?0 - 3 (73)
by the end of a single support phase, and since the ballistic 1,040 11 ! '
phase is usually of short duration, asymptotically tragkin Define _
_dafi S g D = Di1—D19Do1/doo
pre-defined motion is not a reasonable objective. Instdea, t P o pF_D R /d (74)
main problem is to determine if a set of initial and final R _ —lF dLO 0/%0,0
conditions is compatible, and if so, to generate on-line a - 0/do.o-
trajectory that joins them. The static state feedback taking (2) into (8) is
The paper presented two novel control results. When the w—Duv+F. (75)

generalized momentum conjugate to the cyclic variable was
not conserved, conditions were found for the existence ofTae feedback is regular becau&éet D)do,o = det D and
set of outputs that yielded a one-dimensional, expondptiatly o # 0.

stable zero dynamics, along with a dynamic extension thRarameterization of the zero dynamics:
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From the choice of outputs (15)iy." g, j = 6]

0,1,2; 2 < k < N — 1. Hence, to determine the zero
dynamics, it is enough to find a function whose differential

is independent o{dy%”, j=0,1,2}, modulo [7]

span{dq’, j=0,1,2; 2<k<N—1}.  (76)

This is most easily done if the model is expressed in thél
coordinatesq := (p1,q1, - ,¢n). Then, the condition (22)
for the invertibility of the decoupling matrix at an equilibm
becomes

El

92V [10]
— 0, 77
9q10p1 & (77

where, in the new coordinateg; is the equilibrium point and [11]
the potential energy is

V(plaqla" .
V(QOanv"'

) Qn) = (12]
do,1

’ qn)‘q():m*qufl m(‘ﬂ‘hr“ ~,qN—1)dT-

(13]
The model (8) with the dynamic extension (17) can be
rewritten as

(14]
. o N—1 .
P1 = Goetan Ty T k=2 Brlan - an—1)dr
. % 15
g = _g_;/l(pI;QIa"'7qN—l) [1s]
.. 16
i = w1 el
q,(f) = wg, 2<k<N-1.

(78) 7]
Computing (y1,91) and evaluating their differentials at the
equilibrium point and modulo (76), results in (18]

dy1 Kdp, + do
: K 22V o2V (79) [
djr = md" T dpy — dq10p1 dg

and hencepan{dp, dy1, dy1 } = span{dp1,do,dq;} modulo [20]
(76). Next, computingj; and evaluating its differential at the
equilibrium point and modulo (76) angban{dp,do,dq, }

yields

[21]
e

—dq,

0q10p1 N

and thusspan{dp, dy1, din, dih } = span{dp1,do,dq,,dd¢:}
modulo (76), proving thap; can be used to parameterize the
zero dynamics in a neighborhood of an equilibrium point. [24]

dijp = — (80) [22]

(23]

[25]
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