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Nonlinear Control of Mechanical Systems with an
Unactuated Cyclic Variable

J.W. Grizzle,Fellow, IEEE,C.H. Moog,Senior Member, IEEE,and C. Chevallereau

Abstract— Numerous robotic tasks associated with underactu-
ation have been studied in the literature. For a large number of
these in the plane, the mechanical models have a cyclic variable,
the cyclic variable is unactuated, and all shape variables are
independently actuated. This paper formulates and solves two
control problems for this class of models. If the generalized
momentum conjugate to the cyclic variable is not conserved,
conditions are found for the existence of a set of outputs that
yields a system with a one-dimensional exponentially stable
zero dynamics — i.e. an exponentially minimum-phase system
— along with a dynamic extension that renders the system
locally input-output decouplable. If the generalized momentum
conjugate to the cyclic variable is conserved, a reduced system
is constructed and conditions are found for the existence of
a set of outputs that yields an empty zero dynamics, along
with a dynamic extension that renders the system feedback
linearizable. A common element in these two feedback problems
is the construction of a scalar function of the configuration
variables that has relative degree three with respect to one of the
input components. The function arises by partially integrating
the conjugate momentum. The results are illustrated on two
balancing tasks and on a ballistic flip motion.

I. I NTRODUCTION

Underactuated mechanical systems have fewer actuators
than degrees of freedom. Underactuation is naturally associ-
ated with dexterity. For example, the act of standing with one
foot flat on the ground is not viewed as particulary dexterous,
whereas a headstand orsur les pointes(ballet) are considered
dexterous. In the first case, since the foot is not in rotation
with respect to the ground, the point of rotation is the ankle,
which is actuated, as are each of the joints further up the
tree; that is to say, normal standing involves a fully actuated
system. On the other hand, in headstands or when onpointe,
the contact point between the body and ground is acting as
a pivot without actuation. These are underactuated systems.
In these examples, a typical control task would be to hold
an equilibrium pose with (asymptotic) stability, or to execute
a motion (e.g., arelev́e lent, battement) without falling over
(i.e., with internally bounded states).

Motions that include a ballistic phase are also often viewed
as dexterous. Examples include dismounting from a high bar or
platform diving. In these cases, the underactuation is manifest
in the lack of contact with any surface. The ballistic phase is
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normally of short duration since reestablishing contact with a
surface (e.g., ground, mat, water, ...) is an objective of the
maneuver. A typical control problem would be to execute
a predefined motion, with emphasis on achieving a final
state that is compatible with an elegant landing on a mat
(no rebounding or slipping), or re-entry into the water (no
splash). Similar things can be said for back flips, tumbling,
and somersaults.

The objective of this paper is to contribute to the control
of mechanical systems that are capable of executing such
dexterous maneuvers in the plane. The literature on underactu-
ated (a.k.a. super-articulated [50]) systems and nonholonomic
systems is vast. A few representative control works include
the study of accessibility in [44], stabilization of equilibria
through passivity techniques in [40] and energy shaping in
[3], stabilization and tracking via backstepping in [24, 25, 50],
the use of virtual constraints to achieve stabilization of orbits
in [51], and path planning in [4]. Representative works in the
robotics area are cited in Section II. One of the novelties ofthe
present paper is to recognize that balancing on a pivot while
executing a motion and planning a back flip share a common
mathematical problem: designing a set of outputs that result in
a minimal zero dynamics: exponentially minimum phase and
one dimensional in the first case, and empty, in the second.
In part, this is of course related to themaximal feedback
linearization problem, which has been solved completely when
static state feedback is considered [31], while only partial
results are known when dynamic state feedback is allowed,
c.f. [12, 29] and references therein. The additional requirement
being achieved here is that the “non-feedback linearizable
part” of the system is exponentially stable, and no general
results are available on this aspect.

Section II identifies a special class of mechanical systems
with one degree of underactuation that underlies the study of
dexterous maneuvers in the plane as discussed previously. The
key feature is that the systems possess a cyclic variable andthis
variable is unactuated [38]. Section III formulates and solves
two related control problems. If the generalized momentum
conjugate to the cyclic variable is not conserved, conditions
are found for the existence of a set of outputs that yields an
exponentially minimum phase system with a one-dimensional
zero dynamics, along with a dynamic extension that renders
the system locally input-output decouplable. When these two
properties are met, it is well known that asymptotic tracking of
an open set of output trajectories is possible, with all internal
states remaining bounded [22]. If the generalized momentum
conjugate to the cyclic variable is conserved, a reduced system
is constructed and conditions are found for the existence of
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a set of outputs that yields an empty zero dynamics, along
with a dynamic extension that renders the system input-output
decouplable. When these two properties are met, is well known
that local dynamic state feedback linearization is possible [22].
In both of these feedback problems, the principal contribution
is the construction of a scalar function of the configuration
variables that has relative degree three with respect to oneof
the input components[5]. The theoretical results are illustrated
on three simple examples in Section IV. The paper is wrapped
up with some additional discussion of the results in Section
V and concluding remarks in Section VI.

II. M OTIVATING CLASSES OFSYSTEMS

This section uses two classes of systems to set the stage for
the mathematical and control developments that follow. The
first class consists ofN ≥ 2 planar rigid bodies connected in
a tree structure—no closed kinematic chains—with the base
attached to an inertial reference frame via a pivot, that is,
an unactuated revolute joint. It is supposed that each link
has nonzero mass, and that each connection of two links is
independently actuated so that the system has one degree of
underactuation (N degrees of freedom withN−1 independent
actuators). It is further supposed that all joints are frictionless,
but this assumption is really only important at the pivot. Figure
1 shows an example of such a system. Though not indicated in
the figure, massless springs may be attached between links and
between links and the inertial reference frame; prismatic joints
between links are also allowed. This class of systems clearly
includes the Acrobot [2, 36, 52], the brachiating robots of [15,
34, 35, 46], the gymnast robots of [32, 39, 57] when pivoting
on a high bar, and the stance phase models of Raibert’s one-
legged hopper [1, 6, 14, 26, 33, 42] as well as RABBIT [7–10,
41]. The control objectives will be to stabilize the system about
an equilibrium point or to track a set of reference trajectories
with internal stability. The second class of systems consists
of N ≥ 2 planar rigid bodies, once again connected in a tree
structure, but this time, it is assumed that the mechanism is
undergoing ballistic motion. As before, it is supposed thatthat
each link has nonzero mass and each connection of two links is
independently actuated. In addition, it is assumed that there are
no springs between any link and an inertial reference frame.
Such a system has three degrees of underactuation:N + 2
degrees of freedom andN − 1 independent actuators. Figure
2 shows an example of such a system. This class of systems
clearly includes the gymnast robot of [32] when dismounting
from the high bar, the planar diver of [17], the flip gait of
the robot in [16], the ballistic phase of the 4-link planar robot
in [47], and the ballistic phase of running in planar biped
robots [8] and Raibert’s hopper [1, 6, 14, 26, 42]. The control
objective will be to maximally linearize the system so as to
facilitate the construction of a trajectory that transfersthe state
of the system from one point to another in finite time.

Consider theN -link system shown in Figure 1, along with
the indicated coordinates,q = (q0, q1, · · · , qN−1), where, for
convenience, the reference frame has been attached at the pivot
point. The kinetic energy is quadratic,K = 1

2 q̇T D(q)q̇, with
D positive definite. Since the kinetic energy is independent

q0

q1

qk

qk+1

Fig. 1. A planar tree structure attached to an inertial frame via a freely acting
pivot. All joints are actuated except the attachment at the pivot. A coordinate
convention is indicated. Though not shown, prismatic jointsand springs can
also be included.

q0

q1

qk

qk+1

xc

yc

Fig. 2. A planar tree structure in ballistic motion. All joints are actuated.
A coordinate convention is indicated. Though not shown, prismatic joints can
be included as can springs that act between links but not between a link and
the inertial frame.

of the orientation of the reference frame,D is independent of
q0; that is ∂D(q)

∂q0

≡ 0. The coordinateq0 is said to becyclic
[18] (a.k.a. external in [37]) whereas(q1, ..., qN−1) are called
shape variables. The form of the potential energyV depends
on whether the system is evolving under the action of gravity
(for example, in a vertical plane versus a horizontal plane)
and whether or not springs have been attached at the joints.
Electromagnetic and electrostatic forces are excluded, and
hence, the potential energy depends only on the configuration
variables. Mechanical systems where the kinetic energy is
quadratic in the velocities and the potential energy depends
only on the configuration variables are said to besimple.

Denote the Lagrangian byL = K−V , and assume that the
system is actuated such that

d

dt

∂L

∂q̇k

− ∂L

∂qk

=

{

0 k = 0
uk k = 1, · · · , N − 1

, (1)
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with uk taking values inIR. The model thus takes the form

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu, (2)

whereB =

[

0
I

]

.

Consider next theN -link system shown in Figure 2, along
with the indicated coordinates,qe = (q, xc, yc), where(xc, yc)
are the Cartesian coordinates of the center of mass. Suppose
further that there are no springs between a link and an inertial
reference frame. Then the equations of motion decompose as

D̄(q)q̈ + C̄(q, q̇)q̇ + Ḡ(q) = Bu
ẍc = 0
ÿc = g0,

(3)

where in a vertical planeg0 is the gravitational constant and if
the system is evolving on a horizontal plane without friction,
then g0 = 0. As in the first class of systems considered,q0

is also a cyclic variable of̄D because the kinetic energy is
independent of the chosen orientation of the inertial reference
frame.

The important point is that the dynamics of the body
coordinates,q, and the Cartesian coordinates of the center
of mass,(xc, yc), are decoupled. Since the center of mass
coordinates are unactuated, the control of the system (3) can
be reduced to the control of a system having one degree of
underactuation as in (2) by eliminating the trivial dynamics
ẍc = 0, ÿc = g0. In this sense, the two systems in Figures 1
and 2 are very similar: they give rise to control problems for
systems withN ≥ 2 DOF, (N − 1) actuators, and the cyclic
coordinate is unactuated. One way in which the systems are
often different is that angular momentum about the center of
mass of (3) is always conserved, whereas (2) may or may
not have a conserved quantity depending on the potential
energy. For example, consider a system as in Figure 1 in a
horizontal plane without friction; suppose furthermore there
are no springs between any link and the inertial reference
frame. Then the angular momentum about the pivot point is
a conserved quantity, and thus this feature—conservation of
angular momentum—is possible in (2) as well. Conservation
of angular momentum gives rise to a nonholonomic constraint
[27] and changes fundamentally the nature of the control
problem.

In summary, the models of the simple mechanical systems
represented by Figures 1 and 2 present the common feature of
an unactuated, cyclic variable. The system (2) has one degree
of underactuation whereas even though the system (3) has
three degrees of underactuation, in the proper coordinates, the
control problem decouples into the control of a system of the
form (2) plus keeping track of the evolution of the center of
mass variables. These observations are used in the next section
to motivate the class of models analyzed. As a final remark, it
is worth noting that [38] has shown quite clearly that even for
systems with two degrees of freedom, if the cyclic coordinate
and the unactuated coordinate do not coincide—such as in the
inverted pendulum on a cart—then the system possesses quite
different properties from a control point of view.

III. C ONTROL OFSIMPLE MECHANICAL SYSTEMS WITH

AN UNACTUATED CYCLIC VARIABLE

Consider the classes of mechanical systems motivated in
Section II. Roughly speaking, the goal is to determine a set
of outputs that gives rise to a zero dynamics of “smallest
possible” dimension, and if this dimension is non-zero, also
to assure that the zero dynamics is stable [5]. More precisely,
in the case of a system where the generalized momentum
conjugate to the cyclic variable is not conserved, a set of
outputs will be found that leads to local dynamic input-output
decouplability and a one-dimensional exponentially stable zero
dynamics, and for systems where the conjugate momentum is
conserved, a set of flat outputs [13, 45] will be determined;
that is, a set of outputs will be found that leads to the
construction of a regular dynamic feedback and a local change
of coordinates in which the system is linear.

Before proceeding, it is worth noting that if outputs are
chosen to correspond to the actuated variables, that is,yi = qi

, for i = 1, · · · , N − 1, then each component has relative
degree two and the associated decoupling matrix is invertible
(one says the system has vector relative degree(2, · · · , 2)
[22]). Such a choice leads to a two-dimensional zero dynamics,
which, moreover, can be shown to be once again a Lagrangian
system [56], and thus can never have an asymptotically
stable equilibrium. One way to get around this problem is
to construct a set of outputs such that the associated zero
dynamics has dimension one, and hence is not Lagrangian. For
special cases, [5] shows how to construct an output component
that has relative degree three with respect to one of the input
components. This idea is developed in much more generality
here.

A. Partial integration of a one-form

This subsection presents a key result that will lead to the
construction of outputs for the system (2) so that the associated
zero dynamics has dimension one, and hence may admit an
asymptotically stable equilibrium point. As will be seen in
the next subsection, the abstract one-form considered here
naturally arises from consideration of momentum. The result
formalizes and extends previous work of [5] and [38].

The following lemma can be viewed as a special case of the
Pfaff-Darboux Theorem, whose role in control systems theory
was first highlighted in [21]. As a point of notation, given
a collection of smooth real-valued functions{fi|1 ≤ i ≤ k}
defined on some open setO, span {dfi|1 ≤ i ≤ k} denotes
the corresponding codistribution as defined in [22]; that is,
the span is computed point-wise overIR.

Lemma 1: Consider a smooth N-dimensional manifoldQ.
Let ω ∈ T ∗Q be a smooth one-form onQ and suppose there
is a set of coordinates(q0, q1, · · · , qN−1) defined in an open
neighborhoodO of a point(q∗0 , q∗1 · · · , q∗N−1) in which ω has
the form

ω = dq0 +
N−1
∑

k=1

αk(q1, · · · , qN−1)dqk. (4)
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Then for any1 ≤ m ≤ N − 1, there exists a smooth function
pm : O → IR such that at each point ofO
ω = dpm mod span {dqi|1 ≤ i ≤ N − 1, i 6= m} . (5)

Moreover, in the coordinates(q0, q1, · · · , qN−1), one such
function is

pm = q0−q∗0+

∫ qm

q∗

m

αm(q1, · · · , qm−1, τ, qm+1, · · · , qN−1)dτ.

(6)
Proof: Becauseω is smooth, the functionsαk are smooth

on O. The integral in (6) is well-defined at each point inO
because the integrand is smooth and the integral is evaluated
over a closed and bounded interval. Since

dpm = dq0 + αm(q1, · · · , qN−1)dqm+
N−1
∑

k=1,k 6=m

∫ qm

q∗

m

∂αm(q1, · · · , qm−1, τ, qm+1, · · · , qN−1)

∂qk

dτ dqk,

it follows immediately that, at each point inO,

ω − dpm ∈ span {dqi|1 ≤ i ≤ N − 1, i 6= m} . (7)

Remark 1: The N -tuple (pm, q1, · · · , qN−1) is a valid set
of coordinates onO. Indeed,

q0 = q∗0+pm−
∫ qm

q∗

m

αm(q1, · · · , qm−1, τ, qm+1, · · · , qN−1)dτ.

Said another way, the map that takes(q0, q1, · · · , qN−1) to
(pm, q1, · · · , qN−1) is a diffeomorphism. Note that ifO is all
of Q, then the result of Lemma 1 is global.

B. Model class and a normal form

Consider a simple1 N ≥ 2 DOF Lagrangian system with
N −1 independent actuators, where the unactuated variable is
a cyclic coordinate of the kinetic energy. Specifically, letthe
configuration space beQ, an open connected subset ofIRN ,
with local coordinates denoted byq = (q0, q1, · · · , qN−1),
and take canonical coordinates(q, q̇) on TQ. Let the kinetic
energy be given byK = 1

2 q̇T D(q)q̇, where D is positive
definite and smooth everywhere onQ, and satisfies∂D(q)

∂q0

≡ 0
(i.e., q0 is cyclic). Let the potential energy,V, depend only
on the configuration variables and be smooth. Denote the
Lagrangian byL = K − V and assume that the system is
actuated according to (1). The model can then be written as in
(2). Subsequent analysis and feedback design are more easily
accomplished if the system is first transformed into the normal
form [44, 53]

q̈0 =
∑N−1

k=1 Jk(q1, · · · , qN−1)vk + R(q, q̇)
q̈1 = v1

...
q̈N−1 = vN−1,

(8)

whereJk = −d0,k

d0,0
, d0,k, k = 0, · · · , N − 1 are the entries in

the first row ofD. The definition ofR(q, q̇) and the required

1Recall that simple means that the kinetic energy is quadratic in the
velocities and the potential energy depends only on the configuration variables.

(regular) static state feedback transformation are given in the
Appendix. Note that everywhereD is positive definite,d0,0 is
never zero. Note also thatJk does not depend onq0 because
q0 is cyclic.

Denote the generalized momentum conjugate toq0 [18] by
σ = ∂L

∂q̇0

. Because the kinetic energy is quadratic and the
potential energy depends only on the configuration variables,
it follows that

σ =

N−1
∑

k=0

d0,k(q1, · · · , qN−1)q̇k. (9)

From the assumption on the actuation and the assumption that
q0 is cyclic,

σ̇ = − ∂V

∂q0
(q). (10)

For later use, note that (10) implies that the relative degree of
σ is at least three2. Using (9) and (10) to express the normal
form in terms of the state variablesq0, q1, . . . , qN , σ, q̇1 . . . q̇N ,
instead ofq0, · · · , qN , q̇0, · · · , q̇N , shows that (2) is (globally)
static state feedback equivalent to

q̇0 = σ
d0,0(q1,··· ,qN−1)

+
∑N−1

k=1 Jk(q1, · · · , qN−1)q̇k

σ̇ = − ∂V
∂q0

(q)

q̈j = vj , j = 1, · · · , N − 1,
(11)

which was introduced in [37] and will be called themodified
normal form. Since only a change of state variables has been
made, the feedback required to go from (2) to (11) is the same
as that used in (8).

Associate toσ the one-form

ω̃ =

N−1
∑

k=0

d0,k(q1, · · · , qN−1)dqk,

and the normalized one-form

ω = dq0 +
N−1
∑

k=1

d0,k

d0,0
(q1, · · · , qN−1)dqk.

Applying Lemma 1 form = 1, define the function

p1 = q0 − q∗0 +

∫ q1

q∗

1

d0,1

d0,0
(τ, q2, · · · , qN−1)dτ. (12)

Direct computation then leads to

dp1

dt
=

σ

d0,0(q1, · · · , qN−1)
+

N−1
∑

k=2

βk(q1, · · · , qN−1)q̇k, (13)

where,

βk(q1, · · · , qN−1) =
∫ q1

q∗

1

∂
∂qk

d0,1

d0,0
(τ, q2, · · · , qN−1)dτ

−d0,k

d0,0
(q1, · · · , qN−1).

Note that sincėp1 does not depend oṅq1, it must be differen-
tiated at least twice more beforev1 appears; in other words,
p1 has at least relative degree three with respect tov1.

This concludes the preliminary analysis required for subse-
quent feedback design.

2If friction were allowed at the unactuated joint, then the relative degree
would in general be only one.
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C. Systems where the generalized momentum conjugate to the
cyclic variable is not conserved

It is first assumed thatσ, the generalized momentum con-
jugate toq0, is not constant along solutions of the model (1);
that is

G0(q) := − ∂V

∂q0
(q) 6≡ 0. (14)

It is also assumed that there exists a static equilibrium point
(qe, 0) corresponding to some constant value of the control,
and that when definingp1 via (12), q∗ is taken asqe so that
p1 vanishes3 at the equilibrium point. In this case, conditions
will be identified under which the set of outputs,

y1 = Kp1 + σ
y2 = q2 − qe

2
...

yN−1 = qN−1 − qe
N−1,

(15)

K ∈ IR a constant, yields an exponentially minimum phase
system. More precisely, conditions will be given such that the
zero dynamics is well defined in a neighborhood of the given
equilibrium point, has dimension one, and is exponentially
stable for allK > 0, and moreover, the system is dynamically
input-output decouplable (equivalently, invertible).

Before proceeding with the analysis, the intuition behind
this choice of outputs is discussed. As stated earlier, a more
standard choice of outputs would beyi = qi − qe

i , for
i = 1, · · · , N − 1, where each component has relative
degree two. Such a choice leads to a two-dimensional zero
dynamics, which can be shown to be once again a Lagrangian
system [56], and thus can never have an asymptotically stable
equilibrium. By seeking an output component with a relative
degree higher than two, the dimension of the zero dynamics
can be reduced, opening up the possibility of either having
no zero dynamics at all, or, of creating one that is scalar
and asymptotically stable. For the class of systems being
studied, no output function of relative degree four has been
found (see Section V-B for more discussion on this point).
The most obvious relative degree three function available is
the conjugate momentum,σ, which is a linear combination
of the velocity components. If the first component of the
outputs were modified toy1 = σ, the resulting zero dynamics
manifold would include a one-dimensional submanifold of
equilibria associated withG0(q0, q1, q

e
2, · · · , qe

N−1) = 0, and
thus asymptotic stability of the zero dynamics would be
impossible. Inspired by [5], by associatingσ to a one-form
and then partially integrating it, a functionp1 was determined
that depends only on the configuration variables and has at
least relative degree three with respect to one of the input
components (after a static feedback was used to put the system
in normal form). Henceany function of p1 andσ has at least
relative degree three with respect to that input component.
Moreover, by (13), ifq̇i = 0 , for i = 2, · · · , N − 1, thenσ is
proportional toṗ1 through the strictly positive quantityd0,0.
Thus the choicey1 = Kp1 + σ, K > 0, andyi = qi − qe

i ,

3Alternatively, let q∗ be arbitrary, for example, zero, and definey1 =
K(p1 − pe

1
) + σ, wherepe

1
is the value at the equilibrium point,qe.

for 2 = 1, · · · , N − 1, should lead to the exponentially stable
zero dynamicsṗ1 = −Kp1/d0,0.

The main result is now stated.
Theorem 1: Consider the simple mechanical system (2)

with N ≥ 2 DOF, N − 1 independent actuators and the
unactuated coordinate is cyclic. Associate to the system the
outputs defined in (15), withK > 0, and define

M1,1 = −K
σ

d2
0,0

∂d0,0

∂q1
+K

N−1
∑

k=2

(

∂βk

∂q1
q̇k

)

−∂2V

∂q2
0

J1−
∂2V

∂q1∂q0
.

(16)
Then in a neighborhood of any equilibrium point at which
M1,1 is non-zero, the system is

i) exponentially minimum phase and
ii) dynamically, input-output decouplable.

Moreover, once the system is transformed into the normal form
of (8), or into the modified normal form of (11), then the
dynamic extension

v1 = w1

v̇2 = w2

...
v̇N−1 = wN−1.

(17)

renders it statically input-output decouplable.
Proof: The zero dynamics is invariant under regular static

state feedback and dynamic extensions [22]. Hence, assume
the system has already been transformed into the normal form
(11) and then apply the dynamic extension (17). It follows that
y
(3)
k = wk, for 2 ≤ k ≤ N − 1. It remains to differentiate the

first output component. Equation (13) yields

dy1

dt
= K

[

σ

d0,0(q1, · · · , qN−1)
+

N−1
∑

k=2

βk(q1, · · · , qN−1)q̇k

]

− ∂V (q)

∂q0
.

(18)
The arguments(q1, · · · , qN−1) will now be dropped so that the
formulas remain compact and readable. Differentiating (18)
again yields

d2y1

dt2
= K

[

σ̇

d0,0
− σ

d2
0,0

ḋ0,0 +

N−1
∑

k=2

(

β̇k q̇k + βk q̈k

)

]

− ∂2V (q)

∂q∂q0
q̇.

(19)

Due to the dynamic extension (17),(q2, · · · , qN−1) have at
least relative degree three andq1 has at least relative degree
two, thus the inputs do not appear ind2y1

dt2
. Differentiating once

more and keeping track only of the terms where the inputs
appear yield

d3y1

dt3
= (∗) + M1,1w1 +

N−1
∑

k=2

Kβkwk (20)

whereM1,1 is given in (16). Therefore the decoupling matrix
is

M :=

[

M1,1 K [β2, · · · , βN−1]
0 I(N−2)×(N−2)

]

, (21)
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and is invertible at a given point if, and only if,M1,1 is non-
zero at that point. In a neighborhood of an equilibrium point
(qe, 0), M1,1 is non-zero if, and only if,

(

∂2V

∂q2
0

d0,1

d0,0
− ∂2V

∂q1∂q0

)∣

∣

∣

∣

qe

6= 0. (22)

Wherever the decoupling matrix is invertible, the zero
dynamics is locally well defined and the set of differentials,
{dy

(j)
k , j = 0, 1, 2; 1 ≤ k ≤ N − 1}, is independent [22],

and hence has dimension3N − 3. The system (11) with the
dynamic extension (17) has dimension3N − 2, and thus the
zero dynamics has dimension one. To determine the zero
dynamics, it is enough to find a function whose differential
is independent of{dy

(j)
k , j = 0, 1, 2, 1 ≤ k ≤ N −1}. In the

Appendix, it is shown thatp1 is an appropriate choice. On the
zero dynamics manifold (that is, wheny ≡ 0), σ = −Kp1,
q1 = q1(p1, q

e), andqk −qe
k = q̇k = 0, 2 ≤ k ≤ N −1. Thus,

from (13) (see also (78) in the Appendix), in a neighborhood
of an equilibrium point whereM1,1 6= 0, the zero dynamics
is

ṗ1 = − K

d0,0(q1(p1, qe), qe
2, · · · , qe

N−1)
p1. (23)

Sinced0,0 is positive, the zero dynamics is exponentially stable
for all K > 0.

Remark 2: Note that an integrator has not been added on
v1. This is becausep1 is designed to have relative degree three
with respect tov1, while it only has relative degree two with
respect tov2, · · · , vN−1. With the dynamic extension,p1 has
relative degree three with respect tow.

Remark 3: From [22], exponential minimum phase plus
local static input-output decouplability after a dynamic ex-
tension implies the existence of a feedback that induces
local asymptotic tracking of output trajectories with internally
bounded states. See the three-link robot in Section IV-C.2 for
an example.

Remark 4: If pm in (12) is selected withm 6= 1, then the
dynamic extension becomes

vm = wm

v̇k = wk, 1 ≤ k ≤ N − 1, k 6= m,
(24)

d3y1

dt3
= (∗) +

{

−K σ
d2

0,0

∂d0,0

∂qm
+ K

∑N−1
k=1,k 6=m

∂βk

∂qm
q̇k

−∂2V
∂q2

0

Jm − ∂2V
∂qm∂q0

}

wm +
∑N−1

k=1,k 6=m Kβkwk,

and the decoupling matrix is invertible in a neighborhood of
an equilibrium point(qe, 0) if, and only if,

(

∂2V

∂q2
0

d0,m

d0,0
− ∂2V

∂qm∂q0

)∣

∣

∣

∣

qe

6= 0. (25)

Choosing different values ofm may be useful for avoiding
singularities.

Remark 5: The results of the Theorem 1 are inherently
local for two reasons. First of all, the decoupling matrix
typically has singularities away from the equilibrium point (see
the examples in Section IV). Secondly, even if the decoupling
matrix were globally invertible and if the zero dynamics were
globally exponentially stable, global asymptotic stabilizabil-
ity of an equilibrium does not necessarily follow; see [22,

Chap. 9]. A global feedforward representation of the system
is discussed in Section V-A; see also [37].

D. Systems where the generalized momentum conjugate to the
cyclic variable is conserved

It is now assumed thatσ, the generalized momentum
conjugate toq0, is constant along solutions of the model; that
is

G0(q) := − ∂V

∂q0
(q) ≡ 0, (26)

which is equivalent toσ̇ ≡ 0. In (11), σ can be treated as a
constant, yielding the reduced order model

q̇0 = σ
d0,0(q1,··· ,qN−1)

+
∑N−1

k=1 Jk(q1, · · · , qN−1)q̇k

q̈j = vj , j = 1 . . . N − 1.
(27)

Let q∗ ∈ Q be given and definep1 as in (12). In this case,
conditions will be given such that the system (27) with outputs

y1 = p1

y2 = q2 − q∗2
...

yN−1 = qN−1 − q∗N−1,

(28)

is locally, dynamically, feedback linearizable. Note that(28)
is a simplification of (15) arising froṁσ ≡ 0.

Theorem 2: Consider a simple mechanical system (2) with
N ≥ 2 DOF, N −1 independent actuators, and the unactuated
coordinate is cyclic. Suppose that the generalized momentum
conjugate to the cyclic coordinate is conserved along the
motions of the system so that the reduced system (27) can
be defined. Associate to (27) the outputs defined in (28) and
define

M1,1 = − σ

d2
0,0

∂d0,0

∂q1
+

N−1
∑

k=2

(

∂βk

∂q1
q̇k

)

. (29)

Then in a neighborhood of any point at whichM1,1 is non-
zero, the following hold:

i) the system (27) is dynamically feedback equivalent to a
controllable linear system;

ii) the system (27) is the strongly accessible part of (2),
and σ̇ = 0 can be viewed as a representation of the
uncontrollable part;

iii) the system (2) is dynamically feedback equivalent to
a linear system with a one-dimensional uncontrollable
part; and

iv) the system (27) with outputs (28) is dynamically input-
output decouplable and has no zero dynamics.

Moreover, the dynamic extension (17) renders (27) statically
feedback linearizable.

Proof: As in the proof of Theorem 1, apply the dynamic
extension (17) to (27). Once again,y

(3)
k = wk, for 2 ≤ k ≤

N−1 and it remains to differentiate the first output component.
From (18)-(20), by takingK = 1 and ∂V

∂q0

(q) ≡ 0, it follows
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that

dy1

dt
=

σ

d0,0
+

N−1
∑

k=2

βk q̇k (30)

d2y1

dt2
= − σ

d2
0,0

ḋ0,0 +
N−1
∑

k=2

(

β̇k q̇k + βk q̈k

)

(31)

d3y1

dt3
= (∗) + M1,1w1 +

N−1
∑

k=2

βkwk. (32)

Thus, the decoupling matrix is

M :=

[

M1,1 [β2, · · · , βN−1]
0 I(N−2)×(N−2)

]

(33)

and is invertible in a neighborhood of a given point if, and
only if, M1,1 is non-zero at that point. In a neighborhood of
a point where the decoupling matrix is invertible, the sum of
the relative degrees of the outputs is3(N − 1), which equals
the sum of the dimensions of (27) and (17). It follows that
(27) with outputs (28) has no zero dynamics [22], and thus
any regular static feedback that locally input-output linearizes
(27), (28) and (17), also renders the closed-loop system locally
input-to-state linear in the coordinates(y(j)

k |1 ≤ k ≤ N −
1, 0 ≤ j ≤ 2); the associated Brunovsky canonical form is
y
(3)
k = w̄k, 1 ≤ k ≤ N − 1.
Corollary 1: The same results hold for (3) with the excep-

tion that the uncontrollable part has dimension five:

σ̇ = 0

ẍc = 0 (34)

ÿc = g0,

whereg0 is a constant.

IV. EXAMPLES

This section will illustrate the theoretical results of Section
III on systems of the type depicted in Figures 1 and 2. The
systems are chosen to be simple enough that the calculations
are straightforward and sufficiently complex to illustratea
range of possible applications of the main theorems. The
first example treats a robot with two rigid links connected
via an actuated revolute joint and attached at one end to a
pivot; that is, the Acrobot. A novel feature is that the robot
is placed on a frictionless horizontal plane to remove gravity.
If nothing else were done, the angular momentum about the
attachment point would be conserved, so stabilization about an
equilibrium would not be possible. A spring is therefore added
between the world frame and the first link, and a stabilizing
controller is then designed through the use of Theorem 1. The
second example treats a robot consisting of three serial links
connected by independently actuated revolute joints, attached
to a pivot, and constrained to evolve in a vertical plane. Forthis
system, the results of [5, 38] are not applicable for designing
a stabilizing controller. Theorem 1 is applied to design a
controller that achieves stabilization about an equilibrium
point and asymptotic tracking of trajectories. The last problem
studied focuses on ballistic motion in a vertical plane, which is
a key part of a model of running. The model assumes a robot

with two rigid links connected via an actuated revolute joint.
The angular momentum about the center of mass is conserved,
creating a nonholonomic constraint. Corollary 1 is appliedto
feedback linearize the accessible part of the system. The linear
representation of the dynamics is shown to be advantageous
for path planning. The singularities that prevent the system
from being globally linearized are explicitly noted and howto
plan a path through such a singularity is illustrated.

A. Computing the outputs

The key to applying the results of Section III is the explicit
computation of the functionp1 in (12) used to define the
outputs. For all of the examples treated here, plus a wide
range of other examples, the computation of this function is
handled by the following lemma. The proof by direct symbolic
integration is not given.

Lemma 2: Consider a simple mechanical system of the
form (2), with N ≥ 2 DOF and mass inertia matrixD.
Suppose thatd0,0 andd0,1 can be expressed as

d0,0 = a00 + a01 cos(q1) + a02 sin(q1)
d0,1 = a10 + a11 cos(q1) + a12 sin(q1),

(35)

whereaij = aij(q2, · · · , qN−1), and thata2
01+a2

02 > 0. Then,
for q∗ = 0 and−π < q1 < π, (12) can be evaluated explicitly
as

p1 = q0 +
c1

c2
q1 + ϕ1 ◦ tan(

q1

2
) + ϕ2 ◦ tan(

q1

2
), (36)

where,

ϕ1(x) = 2(a10

c3

− a00c1

c2c3

) arctan
(

(a00−a01)x+a02

c3

)

ϕ2(x) = (a02a11−a01a12)
c2

ln(a00(1 + x2) + a01(1 − x2)

+2a02x) − a02a11

c2

ln(1 + x2)

c1 = a01a11 + a12a02

c2 = a2
01 + a2

02

c3 =
√

a2
00 − a2

01 − a2
02.

(37)
Remark 6: Write

a01 cos(q1) + a02 sin(q1) =
√

a2
01 + a2

02 cos(q1 + θ),

so thata01 =
√

a2
01 + a2

02 cos(θ) and

a02 = −
√

a2
01 + a2

02 sin(θ).

Hence, everywhere thatd0,0 > 0, it follows that a00 −
√

a2
01 + a2

02 > 0 and a00 − a01 > 0. Therefore,c3 is a
positive real number everywhere thatd0,0 > 0. The minimum
value of a00(1 + x2) + a01(1 − x2) + 2a02x over x ∈ IR is
equal to(a2

00−a2
01−a2

02)/(a00−a01), which is therefore also
positive everywhere thatd0,0 > 0. Thearctan corresponds to
the principal value. Ifa2

01+a2
02 ≡ 0, then (12) can be evaluated

explicitly asp1 = q0 + a10

a00

q1 + a11

a00

sin(q1) − a12

a00

cos(q1).
Remark 7: If N = 2 and eithera02 = a12 = 0 or a01 =

a11 = 0, thenϕ2 ≡ 0. In this case, the results simplify to the
results obtained in [38].

Remark 8: For a general point of interestq∗ 6= 0, (12) can
be evaluated as

p1 = (q0 − q∗0) + c1

c2

(q1 − q∗1) + ϕ1 ◦ tan( q1

2 )

+ϕ2 ◦ tan( q1

2 ) − ϕ1 ◦ tan(
q∗

1

2 ) − ϕ2 ◦ tan(
q∗

1

2 ),



GRIZZLE, MOOG, AND CHEVALLEREAU FINAL VERSION 21/OCT/2004 IEEE TAC 8

which is justp1 in (36) minus the same function evaluated at
q∗.

B. Planar Two-link Structure Attached to a Pivot

The purpose of the example is to emphasize the role
of the potential energy in determining whether generalized
momentum is conserved, and to demonstrate in the simplest
possible setting the computations needed to apply Theorem 1
in order to achieve asymptotic stabilization of an equilibrium.
The robot consists of two point masses connected by two rigid,
massless links, with the links joined by an actuated revolute
joint (the use of a distributed mass model would not change
any of the following analysis). The connection to the pivot is
unactuated and frictionless.

The configuration variables are chosen asq0 andq1, whereF
q0 is the angle of the first link referenced to a world frame
attached to the pivot point andq1 is the relative angle between
links one and two. A linear spring of stiffnessKs is introduced
between the first link and the world frame, with rest position
q0 = 0. The plane of movement is assumed to be horizontal,
and thus the acceleration due to gravity isg0 = 0. The case
where the gravity is non zero can be found in [5].

1) Mathematical representation:The dynamic model is
easily obtained with the method of Lagrange and verifies
that q0 is a cyclic variable. The complete dynamic model is
not given; instead, the system is immediately written in the
modified normal form (11) as

q̇0 = σ
d0,0

− d0,1

d0,0
q̇1

σ̇ = G0

q̈1 = v1

(38)

where,

d0,0 = a00 + a01 cos(q1)
d0,1 = a10 + a11 cos(q1)
a00 = (m1 + m2)L

2
1 + m2L

2
2

a01 = 2a11

a10 = m2L
2
2

a11 = m2L1L2

G0 = − ∂V
∂q0

= −Ksq0.

(39)

In the above, note thatσ, given by (9), is the usual angular
momentum of the robot about the attachment point. Since the
robot is constrained to a horizontal plane, if the spring constant
were zero, then angular momentum would be conserved and
asymptotic stabilization to an equilibrium point would be
impossible.

2) Control Law Design:The control law design consists
of the preliminary feedback needed to place the system in
the (modified) normal form (as explained in the Appendix),
the definition of an output, and a second static state feedback
used to linearize and stabilize the resulting input-outputmap.
For the two-link robot, the output is selected as

y = K(p1 − pe
1) + σ, (40)

Spring
q0

−q1

Fig. 3. A two-link robot attached to a pivot and constrained to move in a
horizontal plane. The jointq1 is actuated, whileq0 is passive; a linear spring
with stiffnessKs is attached with rest positionq0 = 0. From left to right,
the links have lengthL1 andL2 and the masses arem1, m2.

whereK > 0 is to be chosen,

p1 = q0 + a11

a01

q1 + 2

(

a10√
a2

00
−a2

01

− a00a11

a01

√
a2

00
−a2

01

)

·

· arctan

(

a00−a01√
a2

00
−a2

01

tan( q1

2 )

)

,

(41)
andpe

1 is the value ofp1 at the equilibrium of interest,qe.
For single-input systems, the dynamic extension (17) is

trivial: v1 = w1. Since it only amounts to relabelling the input,
it is dropped. Direct calculation confirms thaty has relative
degree three:

ẏ = K σ
d0,0

+ Ksq0

ÿ = K
[

Ks
q0

d0,0
− σ

d2

0,0

∂d0,0

∂q1

q̇1

]

+ Ks

[

σ−d0,1q̇1

d0,0

]

y(3) = Mv + N,
(42)

where,

M = −K σ
d2

0,0

∂d0,0

∂q1

− Ks
d0,1

d0,0

N = K
[

Ks
q̇0

d0,0
− 2Ks

q0

d2

0,0

∂d0,0

∂q1

q̇1 + σ
d3

0,0

(
∂d0,0

∂q1

q̇1)
2

− σ
d2

0,0

∂2d0,0

∂2q1

q̇2
1

]

+

Ks

[

Ks
q0

d0,0
− ∂d0,1

∂q1

q̇2

1

d0,0
− (

σ−d0,1q̇1

d2

0,0

)
∂d0,0

∂q1

q̇1

]

.

(43)
Suppose thatM(qe) 6= 0. Let real scalarsK̄2, K̄1 and K̄0

be chosen such thaty(3) +
∑2

j=0 K̄jy
(j) = 0 is exponentially

stable. Then (43) leads to the locally input-output linearizing
and exponentially stabilizing control law [22]

v =
1

M(q)

[

−N(q, q̇) − K̄2ÿ − K̄1ẏ − K̄0y
]

. (44)

The actual torque applied to the actuated joint is computed
from (75) of the Appendix.

3) Simulation: For the simulations, the robot is assumed
constrained to a horizontal plane (g0 = 0), the spring attaching
the first link to the reference frame is assumed linear with
stiffnessKs = 5, and the model parameters are selected as
L1 = 0.5, L2 = 0.75, m1 = 7, andm2 = 7. The equilibrium
point was chosen asqe

0 = 0, qe
1 = −π/4, which corresponds to
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pe
1 = −0.4068, and satisfiesM(qe) 6= 0. The scalarsK̄j were

arbitrarily chosen to place the eigenvalues of the error equation
at−1.3. The free parameter in the output was arbitrarily set to
K = 4. Sinced0,0(q

e) ≈ 5, the zero dynamics has a slightly
slower speed of convergence than the output error equation.

The state feedback controller (44) was simulated for the
initial condition q0 = π/4, q1 = π/4, q̇0 = 0, q̇1 = 0.
Figure 4 shows the evolution of the commanded output and
its derivatives along with the evolution of the configuration
variables of the robot. The output rapidly converges to zeroand
the configuration variables converge to the desired equilibrium
point. An animation of the motion is available at [19].

0 2 4 6 8 10
−5

0

5

10

0 2 4 6 8 10
−6

−4

−2

0

2

0 2 4 6 8 10
−5

0

5

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

y
1

ẏ
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Fig. 4. Stabilization to an equilibrium. The figure shows the convergence
of the commanded output, its first two derivatives, and the configuration
variables.

C. Planar Three-Link Serial Structure Attached to a Pivot

This example treats the planar three-link robot depicted in
Figure 5. The robot consists of three point masses connected
by three rigid, massless links, with the links joined by an
actuated revolute joint. The connection to the pivot is unac-
tuated and frictionless. The links are labelledL1 throughL3

starting from the pivot and the masses are similarly labelled
m1 throughm3. The parameter values given in Table I were
selected to approximate the biped robot RABBIT with the legs
held together [7]. The configuration variables are chosen asq0

throughq2, whereq0 is the angle of the first link referenced
to a world frame attached to the pivot point,q1 is the relative
angle between links one and two, andq2 is the relative angle
between links two and three. No springs are used. The plane of
movement is assumed to be vertical, and thus the acceleration
due to gravity isg0 = 9.81.

The example further illustrates the application of Theorem
1 through the use of an output component that has relative
degree three with respect to only one of the input components
and the use of a non-trivial dynamic extension in the design
of the feedback controller. Both local asymptotic trackingand
exponential stabilization to an equilibrium point are demon-
strated.

1) Mathematical representation:The complete dynamic
model is easily obtained using the method of Lagrange and

(a) (b)

Fig. 5. Three-link mechanism, connected at a pivot, consisting of point
masses and massless bars. The links have lengthL1 throughL3 starting at
the pivot; the masses arem1 throughm3. (a) shows an equilibrium pose with
the center of gravity centered over the pivot; (b) shows the initial condition
used in the simulation, with the equilibrium position superimposed in the
background.

yields immediately the modified normal form (11) as

q̇0 = σ
d0,0

− d0,1

d0,0
q̇1 − d0,2

d0,0
q̇2

σ̇ = G0

q̈1 = v1

q̈2 = v2,

(45)

where,

a00 = (m1 + m2 + m3)L
2
1 + (m2 + m3)L

2
2 + m3L

2
3

+2m3L2L3 cos(q2)

a01 = 2(m2 + m3)L1L2 + 2m3L1L3 cos(q2)

a02 = −2m3L1L3 sin(q2)

a10 = (m2 + m3)L
2
2 + m3L

2
3 + m3L

2
3

+2m3L2L3 cos(q2)

a11 = (m2 + m3)L1L2 + m3L1L3 cos(q2)

a12 = −m3L1L3 sin(q2)

d0,2 = m3L3(L2 cos(q2) + L1 cos(q1 + q2))

G0 = − ∂V
∂q0

(q) = g0(m1 + m2 + m3)L1 cos(q0)

+g0(m2 + m3)L2 cos(q0 + q1)
+g0m3L3 cos(q0 + q1 + q2),

(46)
with d0,0, d0,1 as given in Lemma 2, (35). Note thatσ is the
angular momentum of the robot about the attachment point
and is computed from the above data via (9).

2) Control Law Design:The goal is to demonstrate local
exponential stability and asymptotic tracking about an equi-
librium point. An equilibrium point(qe, 0) was found from
∂V
∂q0

(q)(qe) = 0, qe
0 = π/3, andqe

0 + qe
1 + qe

2 = π/3, resulting
in qe = (1.0472, 1.4522,−1.4522); see Figure 5 (a).

The control law design consists of the preliminary feedback
needed to place the system in the (modified) normal form (as
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Link 1 Link 2 Link 3
length (m) 0.4 0.4 0.3
mass (kg) 6.4 13.6 12.0

TABLE I

MASS AND LENGTH PARAMETERS FOR THREE-LINK MECHANISM .

explained in the Appendix), the selection of two outputs, the
dynamic extension that renders the system statically decou-
plable (and hence statically input-output linearizable),and a
second static state feedback used to linearize and stabilize the
input-output map. For the three-link robot, the outputs have
been selected as

y1 = Kp1 + σ
y2 = q2 − qe

2,
(47)

where K > 0 is to be chosen, and the functionp1 is
determined this time via Remark 8. The dynamic extension
is

v1 = w1

v̇2 = w2,
(48)

which consists of adding a single integrator onv2. Introduce
a state vectorx = (q0, σ, q1, q̇1, q2, q̇2, v2), and express the
composition of (45), (47), and (48) as

ẋ = f(x) + g(x)w
y = h(x).

(49)

Direct calculation confirms thaty has (vector) relative degree
three [22] with respect tow. Indeed, using Lie derivative
notation, the output derivatives are

ẏ = Lfh(x)

ÿ = L2
fh(x)

y(3) = L3
fh(x) + LgL

2
fh(x)w,

(50)

whereLgL
2
fh corresponds to the decoupling matrixM in (21).

Evaluating the right hand side of (22) at the equilibrium point
gives−2.35, and thus the decoupling matrix is invertible in a
neighborhood of this point. It follows that a feedback law that
provides asymptotic tracking is [22]

w =
[

LgL
2
fh

]−1



y(3)
r − L3

fh +
2

∑

j=0

K̄j

(

y(j)
r − Lj

fh
)



 ,

(51)
for any constant matrices̄Kj that render the error equation
exponentially stable:e(3) +

∑2
j=0 K̄je

(j) = 0, for e :=
(yr − y) .

For the simulation, the matrices̄Kj were arbitrarily chosen
to be diagonal and to place all of the eigenvalues of the
error equation at−1. The free parameter in the output was
arbitrarily chosen asK = 5. Sinced0,0(q

e) ≈ 14.5, the zero
dynamics is about one third as fast as the output error equation.

3) Simulation results:The simulation demonstrates asymp-
totic tracking and exponential stabilization. The initialcondi-
tion was taken as(1.1, 1.42,−1.80, 0, 0, 0), and is depicted
in Figure 5 (b). For the first forty seconds, the robot is
commanded to track sinusoidal references that cause it to
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Fig. 6. Demonstration of asymptotic tracking and stabilization for the three-
link mechanism. For the first forty seconds, the motion consistsof an initial
transient, followed by tracking of sinusoidal trajectories that correspond to
knee bends. At forty seconds, the reference trajectory is abruptly set to zero,
thereby commanding the system to an equilibrium point.

execute a form of calisthenics, namely, deep knee bends;
at forty seconds, the references are abruptly set to constant
values corresponding to the equilibrium pointqe in order
to demonstrate convergence to a constant set point. The
asymptotic convergence of the outputs to the commanded
references is shown in Figure??, along with the evolution
of the configuration variables and the applied joint torques.
An animation of the motion is available at [19].

D. Planar Two-Link Structure in Ballistic Motion

This examples illustrates how the locally linearizing coordi-
nates of Theorem 2 can be used to advantage in planning a flip
gait in a planar two link structure undergoing ballistic motion.
The boundary constraints chosen in the flip gait are motivated
by bipedal running [8]. The singularities in the decoupling
matrix will be explicitly computed and related to configuration
changes of the mechanism.

As shown in Figure 7, the mechanism consists of three point
masses joined by two massless bars in an actuated, revolute
joint. The four configuration variables are selected asq0, q1,
xc, andyc, whereq0 relates the orientation of the mechanism
to a world frame andq1 is the relative angle between the
two links. The mechanism’s position with respect to a world
frame is represented by the Cartesian coordinates of its center
of mass. The point masses are given bym0, m1, m2; the bar
connectingm0 to m1 has lengthL1 and that connectingm1

to m2 has lengthL2.
1) Mathematical representation:The complete dynamic

model is easily obtained using the method of Lagrange and
yields immediately the modified normal form (11)

q̇0 =
σ−d0,1(q1)q̇1

d0,0(q1)

σ̇ = 0
q̈1 = v
ẍc = 0
ÿc = g0,

(52)
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q0

−q1

xc

yc

Fig. 7. A two-link robot undergoing ballistic motion in a vertical plane.
Only the jointq1 is actuated. From left to right, the links have lengthL1 and
L2 and the masses arem0, m1, m2.

with control v and

d0,0(q1) = a00 + a01 cos(q1)
d0,1(q1) = a10 + a11 cos(q1)

a00 =
m0(m1+m2)L

2

1
+m2(m0+m1)L

2

2

m0+m1+m2

a01 = 2a11

a10 =
m2(m0+m1)L

2

2

m0+m1+m2

a11 = m0m2L1L2

m0+m1+m2

.

(53)

The strongly accessible portion of the model has dimension
three, and involvesq0, q1, q̇1. Due to ballistic motion, there is
a five dimensional uncontrollable subsystem that is completely
decoupled from the actuated portion of the model, and this is
given by xc, yc, σ, ẋc, ẏc. How these two parts interact in a
path planning problem is explained next.

2) Interaction through boundary conditions:The flight
phases of a gymnastic robot, such as a tumbler or a bipedal
runner, are typically short-term motions that alternate with
single support phases4. The creation of an overall satisfactory
motion is closely tied to achieving correct boundary conditions
at the interfaces of the flight and single support phases. The
state of the robot at the end of a flight phase determines the ini-
tial conditions for the single support phase, and consequently
the state of the robot at the end of a flight phase is typically
more important than the exact trajectory followed during the
flight phase.

At the beginning and end of a flight phase, the robot is in
contact with a surface, assumed here to be identified with the
horizontal component of the world frame. Assume furthermore
that the robot is in single support, with the contact point
being either the massm0 or m2. In single support, there are
two holonomic constraints that tie the position and velocity
of the center of mass to those of the angular coordinates;
in other words, there is a loss of two degrees of freedom.
Conservation of angular momentum throughσ̇ = 0 yields an
additional (nonholonomic) constraint on the angular velocities.
In particular, the desired final joint velocities must be chosen
to satisfy this constraint.

4That is, one end of the mechanism is in contact with a rigid surface, and
the contact point is neither slipping nor rebounding; in other words the contact
point is acting as a pivot.

The duration of the flight phase,T, is determined from̈yc =
g0, with the initial conditions coming from the initial positions
and velocities of the angular coordinates at lift-off, and the end
condition of the height of the center mass coming from the
desired final configuration of the angular coordinates at touch-
down. Once the flight time is known, determining whether or
not there exists a solution of the reduced model,

q̇0 =
σ−d0,1(q1)q̇1

d0,0(q1)

q̈1 = v,
(54)

that is compatible with a given set of initial and final con-
ditions is a difficult problem: once a trajectory forq1(t) is
chosen,q̇0 must be numerically integrated, and ifq0(T ) does
not have the desired value, thenq1(t) must be altered. Such an
iterative procedure is poorly adapted to on-line computations.
Theorem 2 will be applied to simplify this task. It should be
noted that the value of the momentumσ is unknown before
the start of the flight phase, and thus it is not even possible to
determine the reduced model (54) before the initial condition
of the robot is known at lift-off.

3) Determining a ballistic motion trajectory in linearizing
coordinates: Local, input-output linearizing coordinates for
the reduced model (54) are constructed fromy = p1 and its
first two derivatives. Definep1 by (41). Direct computation
leads to

ṗ1 =
σ

d0,0(q1)
=

σ

a00 + a01 cos(q1)
(55)

p̈1 =
σ d

dq1

d0,0(q1)

d0,0(q1)2
q̇1 =

σa01 sin(q1)

(a00 + a01 cos(q1))2
q̇1. (56)

To determine the linearizing control, one more derivative is
needed

p
(3)
1 = σa01

(2a01 + a00 cos(q1) − a01 cos2(q1))

(a00 + a01 cos(q1))3
q̇2
1

+ M1,1v (57)

M1,1 =
σ d

dq1

d0,0(q1)

d0,0(q1)2
=

σa01 sin(q1)

(a00 + a01 cos(q1))2
. (58)

WhereverM1,1 6= 0, a linearizing feedback can be constructed
such that

p
(3)
1 = w. (59)

For arbitrary initial and final conditions of the linear model
(59), it is trivial to define a feasible trajectory. Indeed, it
suffices to define a three-times continuously differentiable
function passing from given initial values to given final values.
One could even use a polynomial of order five or greater.

Since the change of coordinates going from (54) to (59) is
local, not every solution of (59) can be mapped back onto a
solution of (54). From (55),p1, the “global” orientation of the
robot, can only be changed through modification of the inertia
parameter,d0,0, because the angular momentum is constant.
The inertia termd0,0 can only be changed through variation of
the internal angle,q1. Sinced0,0 is bounded, so iṡp1. These
kinds of constraints, which must be applied point-wise in time
on the trajectories of (59), are made explicit by computing the
inverse of the coordinate change.
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4) Constraints point-wise in time associated with the lin-
earizing coordinates:The calculation ofq0, q1, q̇1 in terms of
p1, ṗ1, p̈1 yields

q1 = arccos(

σ
ṗ1

− a00

a01
) (60)

q0 = p1 −
a11

a01
q1 − 2

(

a10
√

a2
00 − a2

01

− a00a11

a01

√

a2
00 − a2

01

)

·

· arctan

(

a00 − a11
√

a2
00 − a2

01

tan(
q1

2
)

)

(61)

q̇1 =
p̈1(a00 + a01 cos(q1))

2

σa01 sin(q1)
(62)

The first equation only admits a solution for σ
a00−a01

≤ ṗ1 ≤
σ

a00+a01

, and then has two solutions: one for0 ≤ q1 < π
and another for−π ≤ q1 < 0. These two domains for the
cosine define two “configuration classes” of the robot, with
the extreme points of the domains corresponding to the links
being completely folded or unfolded. At the extreme points
of the domains,̇p1 attains an extremum and consequently,p̈1

is zero. At an extreme point ofq1, q̇1 cannot be determined
from (62), which takes the forṁq1 = 0

0 . SinceM1,1 vanishes
at an extreme point, (57) is used withM1,1 = 0 to obtain

q̇1 = ±
√

p
(3)
1

(a00 + a01 cos(q1))3

σa01(2a01 − a01 cos2(q1) + a00 cos(q1))
,

(63)
with the sign of q̇1 being determined by continuity (with
torque control, there cannot be discontinuities in the velocity).
The robot will then pass through the singularity, and change
configuration classes.

Consequently, when generating a motion, two cases can
present themselves, according to whether the motion stays
always in the same configuration class or not. If the initial
and final configuration are in the same configuration class,
then a trajectory can be generated by imposingσ

a00−a01

<
ṗ1(t) < σ

a00+a01

. Both open-loop and feedback controls are
equally easily computed starting from the linear model. If the
initial and final configurations are in different configuration
classes, a trajectory can be computed that passes through a
singularity at a single time instance,0 ≤ t0 ≤ T, whereM1,1

vanishes. An open-loop control can be determined as before.
On the other hand, a feedback implementation is not possible
based on invertingM1,1 in (58). However, since the flight
phase is typically of short duration and the input is calculated
as a function of the initial conditions, an open-loop control is
probably sufficient.

5) Simulation without passing through a singularity:The
model parameters were selected asL1 = 1.0, L2 = 1.0, m0 =
1.0, m1 = 2.0, m2 = 1.0 For this simulation, the massm0

of the robot is supposed initially in contact with the ground,
with configuration defined byq0 = 3π/4, q1 = −π/4, and
angular velocitieṡq0 = −5, q̇1 = 0. The objective is to transfer
the robot at the end of a flight phase so that when the mass
m2 of the robot touches the ground, its configuration isq0 =
−0.5, q1 = −π/4 with angular velocity proportional tȯq0 =
1, q̇1 = 0. The initial and final configurations are depicted

in Figure (8); they belong to the same configuration class.
From the initial conditions of the robot and the desired final
configuration, the flight time is computed asT = 0.5173.
Conservation of angular momentum implies thatq̇0(T ) = −5.

1 0.5 0 0.5 1 1.5 2
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1

1.5

2

Fig. 8. The motion of the robot passes from left to right without passing
through a singularity. The initial configuration (· − ·− green) and final
configuration (· − ·− red) belong to the same configuration class. The center
of gravity follows a parabolic trajectory.

The initial and final values ofp1 and its first two derivatives
were computed from (41), (55), and (56). A fifth-order polyno-
mial of t was defined that satisfied these boundary conditions.
The resulting trajectories ofp1, ṗ1, p̈1 are depicted in Figure
9; the point-wise in time constraints associated with (60),(61)
and (62) are met. The input torqueu for the system was
computed using (57) and (75) of the Appendix. The resulting
trajectories in terms ofq and q̇ are shown in Figure 10 and
the evolution of the robot in the vertical plane is presentedin
Figure 8. An animation of the motion is available at [19].
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Fig. 9. Based on the initial and final conditions of the flight phase, a
trajectory forp1 and its derivatives is derived. The plot shows thatṗ satisfies
the constraint σ

a00−a01
≤ ṗ1(t) ≤ σ

a00+a01

6) Simulation with passage through a singularity:For this
simulation, the massm0 of the robot is supposed initially
in contact with the ground, with configuration defined by
q0 = 3π/4, q1 = π/4 and angular velocitieṡq0 = −5, q̇1 = 0.
The objective is to transfer the robot at the end of a flight
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Fig. 10. The computed open-loop control transfers the robot from its initial
state to the desired final state (*).

phase so that when the massm2 of the robot touches the
ground, its configuration isq0 = −0.5, q1 = −π/4 with
angular velocity proportional tȯq0 = 0, q̇1 = 1. The initial
and final configurations are depicted in Figure (11); they do
not belong to the same configuration class. From the initial
conditions of the robot and the desired final configuration,
the flight time is computed asT = 0.7062s. Conservation of
angular momentum implies thatq̇0(T ) = −5.
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Fig. 11. The motion of the robot passes from left to right, witha singular
position occurring when the two links are aligned. The initial configuration (·−
·− green) and final configuration (·−·− red) belong to different configuration
classes.

The initial and final values ofp1 and its first two derivatives
were computed as before. So that the robot changes config-
uration class, atts = T/2, the trajectory was forced to pass
through a singularity corresponding toq1 = 0, that is,p̈1 = 0
and ṗ1 = σ/(a00 + a01). A seventh-order polynomial int
was defined that satisfied the six boundary conditions, plus
p̈1(ts) = 0, ṗ1(ts) = σ/(a00 + a01). The resulting trajectories
of p1, ṗ1, p̈1 are depicted in Figure 12. The corresponding
trajectories in terms ofq and q̇ are shown in Figure 13 and
the evolution of the robot in the plane is presented in Figure
11. An animation of the motion is available at [19].
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Fig. 12. Based on the initial and final conditions of the flightphase, a
trajectory forp1 and its derivatives is derived. The plot shows thatṗ1 hits
the constraint σ

a00+a01
in the middle of the flight phase, which allows the

change in the configuration class to occur.

0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8
−1.5

−1

−0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8
−8

−6

−4

−2

0

0 0.2 0.4 0.6 0.8
−10

−5

0

5

10

Time (sec)Time (sec)

Time (sec)Time (sec)

q
0

q
1

q̇
0

q̇
1

Fig. 13. The computed open-loop control transfers the robot from its initial
state to the desired final state (*).

V. A DDITIONAL TECHNICAL POINTS

This section provides additional discussion on a few points
that would have broken the flow of the main developments.

A. A cascade structure

The feedback designs of Section III-C that have been
illustrated on the two-link and three-link models have sin-
gularities where the decoupling matrix looses rank. Results
in [20] show that (within the category of analytic systems
and compensators) achieving an invertible decoupling matrix
via dynamic compensation is a necessary condition for the
existence of a compensator that achieves asymptotic tracking
of an open set of reference trajectories. Hence, while it is not
necessary that the particular decoupling matrix constructed in
(21) be invertible, at least some other decoupling matrix would
have to be invertible for asymptotic tracking to be possibleon
a larger set.

If one is only trying to accomplish stabilization on a
large set and not asymptotic tracking, it is then interesting
to consider feedback designs that avoid the requirement of
an invertible decoupling matrix. One way that this may be
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approached for the systems studied in Section III-C is the
following. First, use (13) to rewrite (11) in the coordinates
(p1, σ, q1, · · · , qN−1, q̇1 . . . q̇N−1) as

ṗ1 = σ
d0,0(q1,··· ,qN−1)

+
∑N−1

k=2 Jk(q1, · · · , qN−1)q̇k

σ̇ = Ḡ0(p1, q1, · · · , qN−1)

q̈j = vj , j = 1, · · · , N − 1,
(64)

where

Ḡ0(p1, q1, · · · , qN−1) :=

− ∂V
∂q0

(q0, q1, · · · , qN−1)
∣

∣

∣

q0=p1+qe
0
−

∫ q1
qe
1

d0,1

d0,0
(τ,q2,··· ,qN−1)dτ

.

(65)
Define x1 = (p1, σ)′, x2 = q1, x3 = q̇1, x4 =
(q2, · · · , qN−1)

′, x5 = (q̇2, · · · , q̇N−1)
′, v̄1 = v1 and v̄2 =

(v2, · · · , vN−1)
′. Then (64) takes the form of a feedforward

nonlinear system

ẋ1 = f1(x1, x2, x4) + g1(x2, x4)x5

ẋ2 = x3

ẋ3 = v̄1

ẋ4 = x5

ẋ5 = v̄2,

(66)

for which various feedback stabilization methods have been
developed [30, 48, 49, 55]. Backstepping suggests considering
x2 and x5 as virtual controls [28], leading to the simpler
(block-)feedforward system

ẋ1 = f1(x1, x2, x4) + g1(x2, x4)x5

ẋ4 = x5.
(67)

For a two-link system,x4 andx5 are empty, leading to the two
dimensional systeṁx1 = f1(x1, x2), the global asymptotic
stabilization5 of which has been studied in [36]. The problem
of asymptotically stabilizing (67) on large sets is open for
systems with three or more links.

B. Checking feedback linearizability

This subsection offers a few observations on the generic
non-feedback linearizability of the model class studied here
when generalized conjugate momentum is not conserved. The
reason to check this property is that if the systems were
feedback linearizable, then it would be possible to achieve
an empty zero dynamics instead of a zero dynamics with
dimension one. Recall that for single-input systems, it is
known that a system is dynamically feedback linearizable if,
and only if, it is statically feedback linearizable. For multi-
input systems, dynamic feedback does enlarge the class of
linearizable systems, but necessary and sufficient conditions
for dynamic feedback linearizability are not known. If one
restricts the outputs used to achieve dynamic feedback lineariz-
ability (often called flat outputs) to being only functions of the
configuration variables, however, then for mechanical systems
with one degree of underactuation, necessary and sufficient

5The Lyapunov function used in [36] was not shown to be proper or radially
unbounded. For the Acrobot, a periodicity property ofḠ0 can be used to fill
this lacuna when the dynamic model is extended in the obvious way to IR4.

conditions for dynamic feedback linearization are known [43];
in particular, for the class of systems being studied in this
paper, the conclusion is that there do not generally exist flat
outputs depending only on the configuration variables.

Consider first a 2-DOF system written in the form of (64),
and suppose that̄G0 6= 0. Such a system has a single input
and thus necessary and sufficient conditions for feedback
linearizability can be checked. Applying the method of [11],
the system is feedback linearizable if, and only if,

• either d
dq1

(d0,0) ≡ 0, in which casep1 is a linearizing (or
flat) output,

• or, d
dq1

(d0,0) 6≡ 0 and d
dq1

(β) ≡ 0, where β =
(

d2

0,0

d
dq1

(d0,0)
∂Ḡ0

∂q1

)

, in which caseσ2+2βp1 is a linearizing

(or flat) output.

These conditions are not generally satisfied for the class of
systems being studied; in particular, applying them to the two
link example of Section IV-B proves that it is not feedback
linearizable.

Consider next a system with 3-DOF written either in the
form (11) or (64). Applying once again the method in [11],
the system is statically feedback linearizable only if

∂J2

∂q1
≡ 0; (68)

moreover, the same obstruction persists if an integrator is
added onv2 so the dynamic extension used in the paper
does not render the system static feedback linearizable. The
obstruction (68) is present in the three link example of Section
IV-C.

We know of only two mechanical systems that meet the
conditions of this paper and are feedback linearizable: the
inertia wheel pendulum [54] and the RTAC or TORA (see
[23] and references therein). Both systems satisfy the condition

d
dq1

(d0,0) ≡ 0, and thusp1 is a linearizing output. The method
of this paper also finds the locally linearizing coordinates. This
is shown only for the inertia wheel pendulum.

In the coordinates of Figure 1, the modified normal form of
the inertia wheel pendulum is

q̇0 = σ
d0,0

− d0,1

d0,0
q̇1

σ̇ = G0

q̈1 = v1,

(69)

where
d0,0 = m1l

2
c1 + m2l

2
1 + I1 + I2

d0,1 = I1

G0 = m̄g0 cos(q0)
m̄ = m1lc1 + m2l1,

(70)

and the parameters are as defined in [54]. Sinced0,0 andd0,1

are constant, (6) is trivially integrated about the equilibrium
point qe = (π/2, 0, 0, 0) to obtain

p1 = (q0 − π/2) +
d0,1

d0,0
q1. (71)

Defining the output asy = Kp1 + σ and using (13) and
(18)-(20), the model (69) in the coordinates(x1, x2, x3, x4)
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= (y, ẏ, ÿ, p1) becomes

ẋ1 = x2

ẋ2 = x3

ẋ3 = ∗ + M1,1v1

ẋ4 = 1
d0,0

x1 − K
d0,0

x4.

(72)

At the upright equilibrium,M1,1 = m̄g0
d0,1

d0,0
6= 0, and hence

(72) is linear in the coordinates(x1, x2, x3, x4) after the
application of a static state feedback.

Remark 9: More generally, the underlying reason for the
static feedback linearizability of the inertia wheel pendulum
can be tied to be the following result, which applies toN
DOF mechanisms (2). Consider again the one-formω̃ =
∑N−1

k=0 d0,k(q1, · · · , qN−1)dqk associated with the generalized
conjugate momentum (9) and suppose thatω̃ is closed. Let
dθ = ω̃. Then a simple computation shows that: (a)θ has at
least relative degree four; (b) the outputsy1 = θ(q) − θ(qe),
yi = qi − qe

i , i = 2, · · · , N − 1 have decoupling matrix (21)
with K = 0; (c) when the decoupling matrix is invertible,
these outputs have vector relative degree(4, 2, · · · , 2) and
thus the system is static feedback linearizable; and (d) the
coordinate transformation required to linearize the system is
canonical and given bȳq = Φ(q), ˙̄q = ∂Φ

∂q
q̇, whereΦ(q) =

(y1,− ∂V
∂q0

, y2, · · · , yN−1)
′. For the inertia wheel pendulum̃ω

is closed because the first row of the inertia matrix is constant;
moreover, the relative degree four functionθ is proportional
to p1. In the case of the RTAC, the first row of the inertia
matrix is not constant in the appropriate coordinates, butω̃ is
still closed.

VI. CONCLUSIONS

Motivated by a large number of dexterous robots that have
been introduced in the literature over the past fifteen years,
this paper has analyzed simple planar mechanical systems
with an unactuated cyclic variable and an independent actuator
for each shape variable. This class of models is naturally
associated with balancing tasks and includesN -link extensions
of the Acrobot, the stance phase of Raibert’s hopper and many
other robots. Typical control objectives include stabilizing an
equilibrium and asymptotically tracking a pre-defined motion.
Through a simple decomposition procedure, models with an
unactuated cyclic variable and an independent actuator for
each shape variable also arise for certain systems executing
a ballistic motion, such as diving, dismounting from a high
bar, and tumbling. For these systems, since momentum is
conserved, since the initial conditions are usually determined
by the end of a single support phase, and since the ballistic
phase is usually of short duration, asymptotically tracking a
pre-defined motion is not a reasonable objective. Instead, the
main problem is to determine if a set of initial and final
conditions is compatible, and if so, to generate on-line a
trajectory that joins them.

The paper presented two novel control results. When the
generalized momentum conjugate to the cyclic variable was
not conserved, conditions were found for the existence of a
set of outputs that yielded a one-dimensional, exponentially
stable zero dynamics, along with a dynamic extension that

rendered the system locally input-output decouplable. By
existing results, a controller that achieves asymptotic stabi-
lization and tracking is then easily constructed. When the
generalized momentum conjugate to the cyclic variable was
conserved, a reduced system was constructed and conditions
were found for the existence of a set of outputs that yielded
an empty zero dynamics, along with a dynamic extension
that rendered the system locally input-output decouplable. By
existing results, a local coordinate transformation and dynamic
feedback controller that linearize the input-to-state mapare
then easily constructed. The solutions to these two control
problems had a common underlying element: the computation
of a function of the configuration variables that had relative
degree three with respect to one of the input components. It
was interesting that this function arose by partially integrating
a physical quantity, the conjugate momentum.

The theoretical results were illustrated on three simple
examples. Stabilization of an equilibrium was demonstrated
on a variant of the Acrobot without the influence of gravity.
The purpose of the example was to emphasize the role
of the potential energy in determining whether generalized
momentum is conserved, and to demonstrate the computations
needed to apply the results of the paper in the simplest
possible setting. Asymptotic stabilization about an equilibrium
and asymptotic tracking were both illustrated on a serial,
three-link, mechanism attached to a pivot and constrained to
evolve in a vertical plane. This example provided a non-trivial
illustration of the results for a system with multiple inputs. The
last example illustrated how locally linearizing coordinates can
simplify the path planning problem for a ballistic flip motion
of a two-link mechanism. The singularities in the decoupling
matrix were explicitly computed and related to configuration
changes of the mechanism.
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VII. A PPENDIX

The Normal Form:
The normal form is taken from [44, 53]. LetF (q, q̇) :=

C(q, q̇)q̇ + G and partition the generalized coordinates into
actuated and unactuated parts perq = (q0, q̄1), q̄1 =
(q1, · · · , qN−1). This induces a decomposition of the model
(2)

d0,0q̈0 + D0,1 ¨̄q1 + F0 = 0
D1,0q̈0 + D1,1 ¨̄q1 + F1 = u.

(73)

Define
D̄ = D1,1 − D1,0D0,1/d0,0

F̄ = F1 − D1,0F0/d0,0

R = −F0/d0,0.
(74)

The static state feedback taking (2) into (8) is

u = D̄v + F̄ . (75)

The feedback is regular because(det D̄)d0,0 = detD and
d0,0 6= 0.
Parameterization of the zero dynamics:
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From the choice of outputs (15),dy
(j)
k = dq

(j)
k , j =

0, 1, 2; 2 ≤ k ≤ N − 1. Hence, to determine the zero
dynamics, it is enough to find a function whose differential
is independent of{dy

(j)
1 , j = 0, 1, 2}, modulo

span{dq
(j)
k , j = 0, 1, 2; 2 ≤ k ≤ N − 1}. (76)

This is most easily done if the model is expressed in the
coordinatesq̃ := (p1, q1, · · · , qn). Then, the condition (22)
for the invertibility of the decoupling matrix at an equilibrium
becomes

∂2Ṽ

∂q1∂p1

∣

∣

∣

∣

∣

q̃e

6= 0, (77)

where, in the new coordinates,q̃e is the equilibrium point and
the potential energy is

Ṽ (p1, q1, · · · , qn) =
V (q0, q1, · · · , qn)|

q0=p1−
∫ q1

qe
1

d0,1

d0,0
(τ,q2,··· ,qN−1)dτ.

The model (8) with the dynamic extension (17) can be
rewritten as

ṗ1 = σ
d0,0(q1,··· ,qN−1)

+
∑N−1

k=2 βk(q1, · · · , qN−1)q̇k

σ̇ = − ∂Ṽ
∂p1

(p1, q1, · · · , qN−1)

q̈1 = w1

q
(3)
k = wk, 2 ≤ k ≤ N − 1.

(78)
Computing (y1, ẏ1) and evaluating their differentials at the
equilibrium point and modulo (76), results in

dy1 = Kdp1 + dσ

dẏ1 = K
d0,0

dσ − ∂2Ṽ
∂p2

1

dp1 − ∂2Ṽ
∂q1∂p1

dq1
(79)

and hencespan{dp1, dy1, dẏ1} = span{dp1, dσ, dq1} modulo
(76). Next, computing̈y1 and evaluating its differential at the
equilibrium point and modulo (76) andspan{dp1, dσ, dq1, }
yields

dÿ1 = − ∂2Ṽ

∂q1∂p1
dq̇1, (80)

and thus,span{dp1, dy1, dẏ1, dÿ1} = span{dp1, dσ, dq1, dq̇1}
modulo (76), proving thatp1 can be used to parameterize the
zero dynamics in a neighborhood of an equilibrium point.
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