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ABSTRACT

This paper describes an original method to detect XFP-thgge-
teins in time-lapse microscopy. Non-local measurements &b
capture spatial intensity variations are incorporatechiwita Con-
ditional Random Field (CRF) framework to localize the olgeaf
interest. The minimization of the related energy is perfednby a
min-cut/max-flow algorithm. Furthermore, we estimate thuevly/
varying background at each time step. The difference betlee
current image and the estimated background provides neweand
liable measurements for object detection. Experimentllte on
simulated and real data demonstrate the performance ofdpeged
method.

Fig. 1. Left: topographic map representing the image as a 3D objgttt: topo-
graphic map corresponding to measurements based on thal spnsity variations
computed from the image shown on the left.

Index Terms— Object detection, fluorescence, biomedical mi-

croscopy, conditional random fields, min-cut/max-flow mirga-
tion.

1. INTRODUCTION
The recent developments in optic hardware, electronic ésagsors
and fluorescent probes enable to observe molecular dynamids-
teractions in live cells at both the microscopic and nanpcscales.
With these technologies, a vast amount of data is colleateddoeo-
cessing automatically image sequences is tremendoustiedee
In video-microscopy, object detection is of major impotearn
many biological studies since objects of interest have totaized
and precisely delineated. Object detection is also neesteabject
tracking, a very challenging goal in time-lapse microscepwly-
sis since the trajectories of individual objects have todmovered
[1, 2, 3]. If the objects are moving against a uniform backagid
simple intensity thresholdings can be applied. Unfortalyatmost

of real image sequences are generally more complex and the i

age background containing additional structures can veey time.
Other methods were developed for handling these challgrgin-
ditions. Typically, wavelet-based methods enable to deibects
of a given size if the wavelet plane is carefully chosen. €hasth-
ods are fast and have been succesfully applied in videcestopy
[2, 4]. However, structures in the background may have tiheesa
size as the objects to be extracted, which hampers the ietect
Template matching [5] is another approach to perform oljest
tection. Typically, the template is defined from the intengirofile
of an imaged particle or from its theoretical profile. An exdi®n
is the Gaussian mixture model adapted to multiple partietection
[6]. This method is powerful but quite time consuming. Moreo

it locates only the object centroids and expansions, bus doede-
termine the precise object boundaries in the image. Thisbeaa
limitation for some applications.

In this paper, we propose a probabilistic framework and & ves
cle detection method based on non-local measurementsssipye
the fluorescence spatial intensity variations. The key ig¢hat, in
fluorescence microscopy, objects of interest (e.g. vesisleow sig-
nificant intensity variations with respect to their neighimod. For
example, in Fig. 1 (left), three peaks of intensity corregping to
three vesicles clearly appear out from a more uniform bamkap.
We propose to exploit this property within a Conditional Bam
Field (CRF) framework for object detection. CRFs are knowbe:
very flexible for incorporating data-dependent spatial tamdporal
regularization terms and expressing non-local data-drigems [7].
The corresponding objective energy functional is minirdizeth a
min-cut/max-flow to guarantee a fast computation of the gllatini-
mum. We then extend this approach to be able to separatejgeob
of interest from a slowly varying background componentidjig to
improved detection results. Experimental results on sitihs and

rﬁeal data demonstrate the performance of the proposed thetho

2. CRF-BASED OBJECT DETECTION

Modeling framework Markov Random Field (MRF) models allow
one to incorporate contextual information, and thereftiney are
used for image segmentation in many computer vision aggita
In the MRF framework, the posterior probability distritartifunc-
tion given the data is usually derived from the Bayes ruleis Té-
quires to specify the likelihood function but the latter cahcapture
all the useful information. Consequently, it may be morecefit to
directly model the posterior distribution in the ConditdfiRandom
Field (CRF) framework [8, 7]. It enables to define energy ®fm
a flexible way and then to exploit non local measurements et ea
pixel. More formally, lety; = {yi }:cs be the observed data from
an input image sequence, whefds the intensity value at siteand
time ¢, andS the set of sites. Leff = (S, E) be a graph wheré&’



denotes the set of edges connecting the sités bkt x; = {2} }ics

be the binary label field to be estimated that indicates if/tgicle is
present¢: = 1) or not (¢ = —1) in the image at time. The couple
(x¢,y+) defines a CRF if, when conditioned g#, the random vari-

whereg(.) is the sigmoid function, implying that the valdiép (=} =
., y¢) is in the rangg0, 1]. The local interaction potentials are re-

spectively spatial and temporal Ising potentials defined as

ablesz! follow the Markov property with respect to the neighbor-

hood indexed on the graph: p(zily:, x5 ') = p(aily:,x\),
whereS — {i} is the set of all nodes i except node and.\; is

the set of neighbors of noden G.

Let Hi(x:|y:,X:—1) be the energy functional associated to

the CRF given the observations and the previously estimateds
X:—1. The estimatiorx; is the minimization of an energy functional
defined as:

X; =min
Xt

i€S <i,j>€S

+ar ) HT(xiﬁ{_l)} :

<i,j>€S

where Hp (zi,y) is a discriminative potential for object detection,

Hs(z},2]) is a spatial regularization potentidfr(z;, =] ,) is a
temporal regularization potentiat; i, j > denotes the set of cliques

Vil

Hs( v,

xtvmt) = TiTy_q,

o o 1
zix] andHr(xt, z]_)) = Ay
1

where| ;| is the number (4 or 8) of neighbors. The potential en-
courages spatial regularization afigd- encourages the central pixel
to get the same label as the nearby pixels estimated at timie The
energy functional (1) is minimized by a min cut/max flow aigfom
[10], providing the global minimum of{; with fast convergence.

Ha(xelye, Xe-1) =Y Hp(xt,y:) +as Y Hs(wf, )

Experimental results To evaluate the performance of our method,
we first simulated several realistic 2D image sequencesh Eat

(1) ulation containsl70 images $82 x 380 pixels) showing moving

vesicles generated with the method described in [11] ovemére
uous background. A typical illustration is given in Fig. 3ofer
row). The background is manually extracted from a real insge
quence showing GFP-Rab6 proteins. Cells expressing GBB-Ra
include vesicles heterogeneously moving along the mibrdaunet-

and as and ar are positive constants used to balance the energwork from the Golgi Apparatus (region of high intensity lele
terms.Hp is a non local potential since it may involve a large set of cated at the cell center) to Endoplasmic Reticulum (locatethe

data.

In fluorescence imaging, the objects of interest (vesicasyw
varying intensity profiles (Fig. 1). On the contrary, adufi@l ob-
jects are visible in the background with potentially the sasize
but depicting small intensity variations. In the sequel,exploit a
detection term based on the spatial intensity variatioresadl inves-
tigated in [9]. Hp then involves the following measurement:

I

lu(yi) — w(yl)

402 ’

Pi(ye) = > (n—2)log (Jluli) - uvd)ll) -

JEN;

whereu(y;) is the,/n x 1/n patch centered at siieat timet ando>
is the estimated noise variance. In the followings set to9. The

cell periphery). GFP-Rab6 are either free (diffusion) ia tytosol
(background component), or anchored to the vesicle meralaad
microtubules (foreground component), or located at thippery of
the Golgi membrane. It is difficult to state if the proteinsdted at
the Golgi membrane belong to the foreground or to the backgto
Actually, the Golgi corresponds to the traffic origin for GRRb6
proteins. In the Golgi region, the proteins are not traffickiet.
Consequently, we evaluate separately the detections iGokg re-
gion and the vesicle detection in the remaining cell part.

In our framework, the weighting factorss andar have to be
fixed. As the measuremedit; incorporated in the discriminative po-
tential varies smoothly over the image, small valuesofer= 0.15
andar = 0.05 are typical settings to obtain satisfying regularized

measuremend®. is illustrated on a typical image region shown in results. We have compared the results obtained with a “as'trou

Fig. 1. ®, takes high values at vesicle locations and small ones in t
background. Thesholding this non-local and contextualsmesacan
be performed to discriminate the two classes corresponiripe
background and foreground components. Consequently, tee-de
mine a suitable threshold by examining the histograof ®,. The
two classes are identified by two bounding boxes applidd t®he
optimal threshold at timeminimizes the Matusita metric (known to
be equivalent to the Bhattacharyya distance) between #tegnam
and the two bounding boxes (Fig. 2 right)). More formally, nave:

Tt
T: = min E ,
Tt
u=0

I - i+ 3 (V) — R

U=T¢

where N is the maximum value of the measuremeédt, h,
SUp,, (o, Pt (u) and hf = Sup,e(- N 2 (u). At each timet, a

hwavelet-based (ATW) method (the 2nd “a trous” wavelet plane
manually thresholded) and our CRF method without taking au-
count the Golgi region. Three criteria are then specifiedefal-
uation: i) the Probability of Correct Detections (PCD) (rhen of
correct detections normalized by the total real number tdad®ns)
accounts for the correctly detected vesicles; ii) the Podiba of
False Negatives (PFN) expresses the proportion of missades;
iii) the Probability of False Alarms (PFA) is the ratio of wigly de-
tected detections. These criteria for the two methods egpé the
simulated image sequence of Fig. 3 are reported in Fig. R [Efte
higher PCD value (resp. lower PFN value) is obtained withGR&
method. The detected regions are larger than the ones eféteith
the ATW method thanks to the regularization terms and théapa
regularity of the measuremedd, considered in the discriminative
term. Indeed, as shown in Fig. 3 (lower row), the number oftevhi
pixels (resp. green pixels) is greater (resp. lower) with @RF

threshold7; is estimated and we define a unique threshold for thenethod than with the ATW method. For the same reasons, the PFA

whole sequence & = min{7o,...,7r}, whereT is the number
of images in the sequence. Finally, the discriminative e is
defined forz; = 1 andx; = —1 as:

o 7

—~

~ i
T — P}

=

HD(ﬁ:—l,yt):g( )aHD(xz::l?yt):g(

value is higher with the CRF method than with the ATW method.

Actually, the wrongly detected objects (red pixels in Figll&ver

row)) are more regular, and consequently are larger. Regatde

Golgi region, the CRF method extracts a single large regibitew

the ATW method detects fragmented objects. Hence, the mhav
» of the CRF method is better.



ATW | CRF =
PCD | 0.24 | 067 £
PFN | 0.76 | 0.33
PFA | 001 | 0.06

T By
Fig. 2. Left: comparative evaluation of the ATW method and the CREhoe on the

simulated image sequence shown in Fig. 3; right: histograd pand the correspond-
ing estimated bounding boxes leading to the threskpld

3. BACKGROUND AND VESICLE ESTIMATION

CRF for joint vesicle and background estimation Motion de-
tection by background subtraction is a classical problemideo-
surveillance [12]. The idea is to detect the moving foregou
objects by analyzing the difference between the curremédrand a
reference image corresponding to the static backgrounournase,
the background is not static but slowly varies over time. i hbe
difference between the current image and the estimatedjbawokd
can provide a new measurement to detect vesicles.
should indicate high probability of the presence of vesicleonse-
guently, we estimate the background at each time step wdinte a
new discrimination term in the energy functional (1).

More formally, letb, = {b:}.cs be the estimated background
whereb; £ Lizt) Cuevn Wuld)yi + IL@;::A)yZ otherwise,
with 1 the indicator function. As usualp, (i) € [0,1] is an
exponential form of thel, distance between the siteand sites
u € V(i), andV (i) is the set of sites in the neighborhood iof
subject tozy = —1,u € V(i). Hence, the neighbors forming the

High sralu
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>

Fig. 3. Upper row: images #50 and #100 taken from a simulated imageesee
(a gamma correction is applied for a better visualizatitmper row: results provided
by ATW method (left) and by CRF method (right) applied to theage #50 of the
simulated image sequence. The blue labeled pixels comespathe Golgi region, the
white labeled pixels to the correct detections, the grekeléa pixels to false negatives,
and the red labeled pixels to false alarms.

area while the ATW method extracts several smaller regidrse
evaluation criteria PCD, PFN and PFA for the ATW method ared th

setV/(i) (orange region in Fig. 4 right)) are located at the peripherycrrFBE method applied to the simulated image sequence oBFig.

of the connected component containing the pixels suchathat 1
(white region in Fig. 4 right)). The new energy functioftél is then
defined as:

Ha(xt, belys, Re-1) = ) (Hp(mi,yt) +ﬂHB(bi,$i,yf)>
ies
+ Z(asHS(ﬂfi,-T{)+GTHT(-T§}§§Q1)>7

<i,j>

whereH 5 (b}, zi, yi) = 2(g((yi—bi)?)—0.5), B is a balance param-
eter andy(.) is the sigmoid function to guarantee tiék (b:, zi, yi)
is in the rangd0, 1]. The joint estimation ob; andx; is performed
by alternately minimizing2 (min-cut/max-flow algorithm) wrt the
two variables for several iterations till convergence. t&tationk,
we have:

{ XY mine, Ha(xe, by |y, Ri-1),

bik“)

= minp, Ho (xffcﬂ)7 bi|yt, Xe—1).

are reported in Fig. 4 left). The PCD and PFN values are nélaely
same for the two methods. With a closer look at the resultaisho
in Fig. 5 (lower row), the detected blobs for the vesicleshvitie
CRFBE method are larger than with the ATW method. In addjtion
the vesicles are not all detected with the ATW method (at iidytet r
bottom of the cell) while at least a few points for each vesare re-
covered with the CRFBE method. Moreover, numerous regioais t
do not correspond to vesicles are detected with the ATW naetho
leading to a very high PFA value. In contrast, the CRFBE ntho
detects few pixels that do not belong to vesicles and the BRfuch
more lower.

To complete the evaluation, we propose to compare the perfor
mances obtained with the ATW and CRFBE methods on a real im-
age sequence. This latter corresponds to 3D+T fluoresceiice s
ning disk confocal microscopy on a micropatterned cell¢ésbow”
shape). This sequence is first denoised and then convetiea in
2D+T sequence by averaging along thexis (Fig. 6 a)). The im-
ages are coded in 2 bytes and the voxel sizgli§ x 64.5 x 300

Experimental results We have simulated another image sequencenm®. The frame rate is equal to 1 frame/second. Obtaining a groun
(Fig. 5) to compare the performances of the ATW method and théruth (hand labeling) for testing vesicle detection is adftask since
CRF method with background estimation (CRFBE) described pr too many objects are moving on an irregular background. €he r

viously. The sequence contain§0 images $80 x 380) and is
generated as the previous one, but in that case the vesieldssa
contrasted with respect to the background. We have evalsae-
arately the Golgi region and the vesicles. As mentioned itiSe
2, ag is set t00.15 andar to 0.05. The weighting facto is set

sults obtained with the two methods are illustrated in Fig).6The
weighting factors are defined as befores(= 0.15, ar = 0.05
and( = 0.5). In the considered sequence, the Golgi region is di-
vided into four different regions (one larger area in thegmaenter,
and three smaller ones on the right). Once again, thesensegie

to 0.5. Experimentally, we noticed that the results obtained withcompactly detected with the CRFBE method while the ATW métho

3 € [0.3;0.6] are similar. Settingd < 0.3 inhibits the influence of
the energy potentiali 5 and3 > 0.6 leads to overdetection. Con-
cerning the Golgi detection, the results are consisteitt thig previ-
ous ones (Section 2), that is the CRFBE method detects adarge

detects several fragmented regions for the larger areadielp to
the Golgi. The results for vesicle detection are similahwite two
methods. However, the temporal behaviour differs for eaethod.
Indeed, when considering the small region surrounded ie biu



ATW | CRFBE
PCD | 0.23 0.49
PFN 0.77 0.51
PFA 0.28 0.08

Fig. 4. Left: comparative evaluation of the ATW method and the CRF&&hod on
the simulated image sequence of Fig. 5; right: the regioelébin white corresponds
to a detected vesicle. The background in this region is polated with the intensity
values observed in the orange surrounding region.

Fig. 5. Upper row: images #50 and #100 taken from a simulated imageesee
(a gamma correction is applied for a better visualizatidmyer row: results provided
by ATW method (left) and by CRF method (right) applied to theage #100 of the
simulated image sequence. The blue labeled pixels comesjathe Golgi region, the
white labeled pixels to the correct detections, the grekeléal pixels to false negatives,
and the red labeled pixels to false alarms.

Fig. 6 b) during eight consecutive time steps (Fig. 6 c)tp vesi-
cle that is moving from the right top to the left bottom of thegion
is correctly detected with the CRFBE method. In return, wite

ATW method, the vesicle is not detected on images #42 and #43[

and is partially detected on images #39, #40 and #41. It touts
that the temporal regularization and mostly the new eneaigrp

tial Hp are appropriate in our application. Furthermore, the CRFBE

provides the background component (Fig. 6 k)) and the foregt
component (Fig. 6 1)) results from the difference betweendtigi-
nal image sequence and the background component.

4. CONCLUSION

In this paper, we have proposed a CRF framework exploiting no

local measurements for object detection in fluorescenceostopy

image sequences. We have also estimated the backgrouna-comp

nent to incorporate a new detection term defined as the elifter be-
tween the current frame and the estimated temporally varyack-

ground. This stage enables to improve the detection on oné ha

and to provide the background/foreground components oottiesr

hand. In practice, the energy parameters involved in theggrere

tested artificial and real image sequences. Learning tresengters
[7] from a set of realistic simulations will be consideredrtprove

again the results in future works.

k I
Fig. 6. a) image #37 taken from a re)al image sequence; b) resultidpby th)e
ATW method and by the CRFBE method applied to the image a). Wiite labeled
pixels correspond to pixels detected with the two methokls,green labeled pixels
to pixels only detected with the CRFBE method, and the redl&bpixels to pixels
only detected with the ATW method; c)-j) results provided AW and by CRFBE
methods on the region surrounded in blue in image b) from @#8Y to image #44; k)
background component estimated with the CRFBE method éintlage a) (time #37);
1) foreground component resulting from the difference lesw the image a) and the
background k) (a gamma correction is applied on images and)) for visualization).
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