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Stochastic methodology for the study of an epidemic decay

phase, based on a branching model

Sophie Pénisson∗ and Christine Jacob†

Abstract

We present a stochastic methodology to study the decay phase of an epidemic. It is based
on a general stochastic epidemic process with memory, suitable to model the spread in a
large open population with births of any rare transmissible disease with a random incubation
period and a Reed-Frost type infection. This model, which belongs to the class of multitype
branching processes in discrete time, enables us to predict the incidences of cases and to
derive the probability distributions of the extinction time and of the future epidemic size. We
also study the epidemic evolution in the worst-case scenario of a very late extinction time,
making use of the Q-process. We provide in addition an estimator of the key parameter of
the epidemic model quantifying the infection, and finally illustrate this methodology with the
study of the Bovine Spongiform Encephalopathy epidemic in Great Britain after the 1988
feed ban law.

Keywords: stochastic epidemic - branching process - Q-process - SEIR disease - worst-case
scenario - Bovine Spongiform Encephalopathy

1 Introduction

Outbreaks of infectious diseases of animals or humans are subject, when possible, to control
measures aiming at curbing their spread. Effective measures should force the epidemic to enter its
decay phase and to reach extinction. The decay phase can then be simply detected by a decrease
of the number of cases, when this decrease is obvious. However this is not always the case, and this
rough qualitative information might not be sufficient to evaluate accurately the effectiveness of the
proposed measures to reduce the final size and duration of the outbreak. The goal of this article
is to present a stochastic methodology in discrete time to study more accurately the decay phase
of an epidemic. Our framework is the spread, in a large open population, of a rare transmissible
disease such that the infection process may be assumed to follow a Reed-Frost type model, with a
probability for a susceptible to become infected by a given dose of pathogens inversely proportional
to the total population size. Moreover the latent period (during which an individual is infected
but not yet infectious) may be random and long compared to the generation time. Questions
about the decay phase include: which quantitative criteria can ensure that the disease has entered
an extinction phase? What is the probability distribution of the epidemic extinction time, of the
epidemic final size, of the incidence of infected individuals? Finally, what would be the evolution
of the epidemic in the event of a very late extinction of the disease?

From a practical point of view, it is generally impossible to observe all infections. Susceptible
and infected but not yet infectious individuals are most often not distinguishable, being both
apparently healthy. This leads to the fact that the only available observations correspond to the
incidence of individuals with clinical symptoms. One way to deal with this lack of information
was proposed in [20] by Panaretos, who used a model taking into account two types of infected
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individuals, the observed and the unobserved. In order to answer the previous questions, we choose
here a different approach, considering a stochastic model depending on the sole incidences {Xn}n
of infectives at each time. We assume that an infective can transmit the disease during one given
time unit at most. Therefore the incidence of infectives corresponds to the incidence of cases.
The process then describes in a recursive way how one single infective can indirectly generate new
infectives (so-called ”secondary cases”) k time units later, where 1 6 k 6 d. We assume that this
number of secondary cases follows a Poisson probability distribution with parameter Ψk > 0. The
recursive formula defining {Xn}n is then the following,

Xn =

d∑

k=1

Xn−k∑

i=1

Yn−k,n,i, (1.1)

where the variable Yn−k,n,i is the incidence of secondary cases produced at time n with a delay k
(latent period) by individual i infectious at time n−k. The {Yn−k,n,i}i,k are assumed independent

given Fn−1 := σ ({Xn−k}k>1), and the {Yn−k,n,i}i are assumed i.i.d. (identically and indepen-
dently distributed) given Fn−1, with a common Poisson distribution with parameter Ψk. This
model is therefore time-homogeneous, and is in this sense less general than the one introduced in
[24], which describes the spread of infectious animal diseases in a varying environment. However
since we focus on the extinction phase only, the assumption of a constant environment with no
new control measure is well-founded, and enables us to describe more accurately the decay phase.
This process is the generalisation of the well-known single-type BGW (Bienaymé-Galton-Watson)
branching process, limit, as the total population size tends to infinity, of the process describing
the spread in a closed population of an infectious disease with a negligible latent period and a
probability to become infected following a Reed-Frost model (see e.g. [2, 3] and citations therein).

The core of the article lies in Section 2, where the whole methodology is presented. We
first formulate the epidemic model {Xn}n as a multitype branching processes with Poissonian
transitions, the types representing the memory of the process. This formulation provides useful
analytical results such as an extinction criteria, and the distributions of the extinction time and
of the epidemic size (Subsections 2.1-2.3). Then, in order to investigate the worst-case scenario of
an extreme late extinction of the epidemic, we introduce in Subsection 2.4 the Q-process {X∗

n}n,
obtained by conditioning {Xn}n on a very late extinction. Using this process, we focus the study
on the early behaviour of the decay phase in the worst-case scenario, rather that on its long range
behaviour, which would have little meaning in our setting. Motivated by practical applications
to real epidemics, for which we want to predict the processes {Xn}n and {X∗

n}n, as well as the
derived distributions above, we need to know the values of the parameters {Ψk}k. We may write

Ψk =
∑am−k

a=1 θaPinc,a (k)Page (a+ k), where θa is the mean number of individuals infected at age
a by an infective by direct or indirect transmission, am is the largest survival age, Pinc,a (k) is
the probability for the individual aged a at infection to have a latent period equal to k (given
his survival), and Page (a+ k) is the probability to be aged a+ k at the end of the latent period.
Parameters {θa}a are the key quantities for the spread of the disease and can be subject to
changes due to control measures during the epidemic. We assume here that θa = θ0+pa, where pa
is constant over time, while θ0 may change with control measures. A typical example is when θ0
is the mean number of individuals infected by an infective by horizontal route at age a, assumed
independent of a > 2, and p1 represents the maternal transmission probability pmat. In this case

Ψk = θ0

am∑

a=k+1

Pinc,a−k (k)Page (a) + pmatPinc,1 (k)Page (k + 1) . (1.2)

So we assume here that, except for θ0, the other parameters of the {Ψk}k are constant over
time and are known (generally estimated) from previous experiences or from the study of the
whole epidemic evolution, in particular its growth phase. We moreover assume that each Ψk

depends affinely on θ0 (see Subsection 3.1). In Subsections 2.5 and 2.6, we provide optimal
WCLSE (Weighted Conditional Least Squares Estimators) of θ0 in the decay phase, in the frame
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of {Xn}n as well as in the frame of the associated conditioned process {X∗
n}n, and prove the strong

consistency and the asymptotic normality of these estimators.
The final Section 3 is devoted to the application of this method to real epidemics. We first

present in Subsection 3.1 some general conditions under which the spread of a SEIR disease (Sus-
ceptible, Exposed (latent), Infectious, Removed) can be approximated by our epidemic process
defined by (1.1), and give an explicit derivation of the parameters {Ψk}k. We then illustrate the
methodology in Subsection 3.2 with the decay phase of the BSE (Bovine Spongiform Encephalopa-
thy) epidemic in Great-Britain. According to the available data [19], the epidemic is obviously
fading out. We assume that the {Ψk}k satisfy (1.2). Then thanks to the stochastic tools developed
here, we provide in addition to this rough information, short- and long-term predictions about the
future spread of the disease as well as an estimation of a potentially remaining horizontal infection
route after the 1988 feed ban law.

2 Methodology for the study of an epidemic decay phase

In this section we present a general methodology to study the decay phase of a SEIR disease in a
large population, modeled by the process (1.1) defined in Section 1. Our main goal is to provide
analytical tools to evaluate the efficiency of the last control measures taken prior to the considered
time period. Most of our results are derived from the fact that this epidemic model can be seen
as a multitype branching process. Indeed, {Xn}n defined by (1.1) is a Markovian process of order
d. Consequently, the d-dimensional process {Xn}n defined by

Xn := (Xn, Xn−1, . . . , Xn−d+1) , (2.1)

is Markovian of order 1, and it stems directly from (1.1) that {Xn}n is a multitype Bienaymé-
Galton-Watson (BGW) process with d types (see e.g. [1]). Note that the d types in this branching
process do not correspond to any attribute of the individuals in the population, which is usually
the case in mathematical biology (see e.g. [12]), but simply correspond to the memory of the
process {Xn}n. The information provided by the d-dimensional Markovian process {Xn}n is
therefore the same as the one given by the 1-dimensional d-Markovian process {Xn}n, but the
multitype branching process setting gives us powerful mathematical tools and results stemming
from the branching processes theory [1]). The first basic tool is the generating function of the
offspring distribution of {Xn}n, f := (f1, . . . , fd), defined on [0, 1]d by fi (r) := E

[
rX1 |X0 = ei

]
,

where ei := (0, . . . , 1, . . . , 0) denotes the ith basis vector of Nd and uv :=
∏d

i=1 u
vi
i for u,v ∈ N

d.
For all r ∈ [0, 1]d, we have here:

{
fi(r) := e−(1−r1)Ψiri+1, i = 1 . . . d− 1,

fd(r) := e−(1−r1)Ψd .
(2.2)

The second basic tool is the mean matrix M defined by E(Xn|Fn−1) = Xn−1M, which is here

M =




Ψ1 1 0 . . . 0
Ψ2 0 1 . . . 0
...

...
. . .

...
Ψd−1 0 . . . . . . 1
Ψd 0 . . . . . . 0




. (2.3)

Let us notice that, since Ψk > 0 for each k = 1 . . . d, then {Xn}n is nonsingular, positive regular
(see [1]) and satisfies the X logX condition,

E [‖X1‖ ln ‖X1‖ |X0 = ei] < ∞, i = 1, . . . , d, (2.4)

where ‖.‖ denotes the sup norm in R
d.
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2.1 Extinction of the epidemic

Almost sure extinction. Since the single-type process {Xn}n has a memory of size d, it
becomes extinct when it is null at d successive times, or equivalently as soon as the d-dimensional
process {Xn}n reaches the d-dimensional null vector 0. According to the theory of multitype
positive regular and nonsingular BGW processes ([1]), the extinction of the process {Xn}n occurs
almost surely (a.s.), if and only if ρ 6 1, where ρ is the dominant eigenvalue (also called the

Perron’s root) of the mean matrix M. Thus ρ is solution of
∑d

k=1 Ψkρ
−k = 1. In general for

d > 1, ρ has no explicit expression. However,
∑d

k=1 Ψkρ
−k = 1 leads directly to the following

explicit threshold criteria.

Proposition 2.1. The epidemic becomes extinct almost surely if and only if R0 6 1, where

R0 :=
∑d

k=1 Ψk is the total mean number of secondary cases generated by one infective in a SEIR
disease. We call R0 the basic reproduction number.

Moreover, when ρ 6 1, then R0 6 ρ with equality if and only if either ρ = 1 or d = 1, and
when ρ > 1, then R0 > ρ with equality if and only if d = 1.

Note that when d > 1, R0 only provides information about the threshold level, whereas ρ
provides an additional information about the speed of extinction of the process, as shown in the
next two paragraphs.

Speed of extinction. Thanks to well-known results in the literature about multitype branching
processes and more particularly to the Perron-Frobenius theorem (see e.g. [1]), we can deduce the
expected incidence of infectives in the population at time n, for n large. Denoting by u and v

the right and left eigenvectors of M associated to the Perron’s root ρ, that is, MuT = ρuT and
vM = ρv, with the normalization convention u · 1 = u · v = 1, where u · v stands for the usual
scalar product in R

d and where the superscript T denotes the transposition, then E (Xn|X0) =
X0M

n ∼
n→∞

ρnX0u
Tv. The first coordinate in the latter formula becomes for the epidemic process

ρn
∑d

i=1 X−i+1uiv1. Computing explicitly u and v, we obtain that for all i = 1 . . . d,

ui =

∑d
k=i Ψkρ

−k+i

∑d
j=1

∑d
k=j Ψkρ−k+j

, vi = ρ−i

∑d
j=1

∑d
k=j Ψkρ

−k+j

∑d
j=1

∑d
k=j Ψkρ−k

, (2.5)

which leads to the following asymptotic result

E (Xn|X0) ∼
n→∞

ρn
d∑

i=1

X−i+1

∑d
k=i Ψkρ

−k+i−1

∑d
j=1

∑d
k=j Ψkρ−k

. (2.6)

Hence if ρ < 1, the mean number of infectives decreases exponentially at the rate ρ. In the
following section, we provide a much finer result on the estimation of the disease extinction time
in the population.

Extinction time of the epidemic. The extinction time distribution can be derived as a func-
tion of the offspring generating function. As usual in stochastic processes, this quantity is calcu-
lated conditionally on the initial value X0 = (X0, X−1, . . . , X−d+1), but for the sake of simplicity
we do not let it appear in the notations. Note that since we are building tools for the pre-
diction of the spread of the disease, the time origin 0 corresponds here to the time of the last
available data (generally the current date). Let T := inf {n > 1,Xn = 0} denote the extinction
time of the process {Xn}n, and let fn := f ◦ fn−1 be the nth iterate of the generating function
f given by (2.2). We denote fn := (fn,1, . . . , fn,d). Then, by the branching property of the pro-
cess ([1]), the probability of extinction of the epidemic before time n is immediately given by

P (T 6 n) = P (Xn = 0) = fn (0)
X0 , that is to say,

P (T 6 n) = (fn,1 (0))
X0 (fn,2 (0))

X−1 . . . (fn,d (0))
X−d+1 . (2.7)
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It can be immediately deduced from convergence results for fn (0) as n → ∞ ([17]), that if
ρ = 1, P (T 6 n) ∼ 1− (nη)−1X0 ·u, while if ρ < 1, P (T 6 n) ∼ 1−ρnγX0 ·u, for some constants
η, γ > 0. As a consequence, the closer ρ is to unity, the longer the time to extinction will be in most
realizations. More specifically, formula (2.7) enables the exact computation (resp. estimation) of
P (T 6 n) for any n by the iterative computation of fn, X0 being given, when the parameters Ψk

of (1.1) are known (resp. estimated). Moreover, since for ρ 6 1 the epidemic becomes extinct in
an a.s. finite time and P (T 6 n) րn→∞ 1, then for any given probability p ∈ [0, 1[ there exists
n ∈ N such that P (T 6 n) > p. So in practice, for any p ∈ [0, 1[, (2.7) enables us to compute the
p-quantile nT

p of the extinction time,

nT
p := min{n > 1 : P (T 6 n) > p}. (2.8)

2.2 Total size of the epidemic

Under the assumption ρ 6 1 and the independence of the {Yn−l,n,i}i,l,n (we previously assumed
the independence of the {Yn−l,n,i}i,l, for each n), we derive the distribution of the future total

size N :=
∑T

n=1 Xn of the epidemic until its extinction, i.e. the future total number of infectives
until the extinction of the disease. It can be shown ([16]) that, given the initial value X0, the time
origin being the same as in Subsection 2.1, the probability distribution of N is

N
D
=

d∑

k=1

X−k+1∑

i=1




Yk,i∑

j=1

Nk,i,j


 , Yk,i :=

d∑

l=k

Y−k+1,−k+1+l,i, (2.9)

where
D
= denotes the equality in distribution, an empty sum is by convention 0, the {Yk,i}k,i are

independent, the {Yk,i}i and the {Nk,i,j}k,i,j are i.i.d with

Yk,i
D
= Poiss

(
d∑

l=k

Ψl

)
, Nk,i,j

D
= Borel− T anner

(
d∑

l=1

Ψl, 1

)
, (2.10)

that is, for each n > 1, P (Nk,i,j = n) = e−n
∑

d
l=1 Ψl(n

∑d
l=1 Ψl)

n−1(n!)−1. Consequently, under
the convention that an empty product is 1, the probability distribution of N is, for any n ∈ N,

P (N = n) =
∑

{06yk,i6n,{16nk,i,j6n}j}i,k:

∑
d
k=1

∑X−k+1
i=1

∑yk,i
j=1 nk,i,j=n

d∏

k=1

X−k+1∏

i=1

e−
∑

d
l=k Ψl

(∑d
l=k Ψl

)yk,i

yk,i!

×
yk,i∏

j=1

e−nk,i,j

∑
d
l=1 Ψl

(
nk,i,j

∑d
l=1 Ψl

)nk,i,j−1

nk,i,j !
, (2.11)

which may be calculated (resp. estimated), replacing the Ψk by their values (resp. estimations).
In practice, for any p ∈ [0, 1[, (2.11) enables to compute the p-quantile nN

p of the total epidemic
size,

nN
p := min{n > 1 : P (N 6 n) > p}. (2.12)

We obtain moreover an explicit formula for the mean value and variance of the size of the epidemic,

E (N) =

∑d
k=1 X−k+1

∑d
l=k Ψl

1−∑d
l=1 Ψl

, Var (N) =

∑d
k=1 X−k+1

∑d
l=k Ψl(

1−∑d
l=1 Ψl

)3 . (2.13)
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2.3 Exposed population

Depending on the disease, it might also be crucial to study and predict the evolution of the
incidence of exposed individuals in the population, which is generally unobservable. We assume

that this information is given by the process {Zn}n defined by the conditional distribution Zn|Xn
D
=

Poiss (Ψ0Xn), where Ψ0 is the mean number of individuals infected at time n by an infective of
this time (see Subsection 3.1). This property enables on the one hand to reconstruct the whole past
epidemic (i.e. the incidence of infectives as well as of exposed individuals) thanks to the observable
data. On the other hand, it allows to simulate the evolution of the incidence of exposed individuals
in the future, based on predictions of the evolution of the epidemic process {Xn}n.

2.4 Worst-case scenario: very late extinction of the epidemic

Even in the case when the epidemic dies out almost surely (ρ 6 1), and although one can provide
the p-quantile nT

p of the extinction time with the probability p as large as wanted (see (2.8)), the
epidemic might become extinct after this time with a small but non null probability of order 1−p.
This raises the following question: how would the incidences of infectious and exposed individuals
evolve in the (unlikely) case of a very late extinction? In terms of risk analysis, this issue appears
to be crucial to evaluate the risks associated with this worst-case scenario. The tools developed in
the previous subsections allow to evaluate the probability of all possible outcomes. But since the
worst ones, typically a very late extinction, have a negligible probability, these tools do not bring
any information in these worst cases, and in particular do not inform on the evolution at each
time-step of the spread of the disease (would it decrease extremely slowly, stay at a constant rate
for a very long time, present several peaks in its evolution etc.). In order to study the propagation
of the epidemic in the decay phase, assuming that extinction occurs very late, we are interested
in the distribution of the process {Xn}n conditionally on the event that the epidemic has not
become extinct at time k, where k is very large. We therefore consider for any n1, n2, . . . ∈ N and
any i0, i1, i2, . . . ∈ N

d the conditioned probability Pi0 (Xn1 = i1, . . . ,Xnr
= ir |Xk 6= 0), where the

subscript i0 denotes the initial value. If k is finite this distribution cannot be easily handled due to
its time-inhomogeneity. However, when ρ 6 1, it is known ([7]) that this conditioned distribution
converges, as k → ∞, to the distribution of a d-dimensional Markov process {X∗

n}n:
lim
k→∞

Pi0 (Xn1 = i1, . . . ,Xnr
= ir |Xk 6= 0) = Pi0

(
X∗

n1
= i1, . . . ,X

∗
nr

= ir
)
. (2.14)

We shall further discuss in Proposition 2.5 the relevancy of approximating the conditioned prob-
ability for k fixed by the limiting object (2.14). The conditioned process {X∗

n}n defined by (2.14)
is known in the literature as the Q-process associated with {Xn}n, also described as the process
conditioned on “not being extinct in the distant future”. It has the following transition probability
([7]): for every n > 1, i, j ∈ N

d, i 6= 0,

P
(
X∗

n = j |X∗
n−1 = i

)
=

1

ρ

j · u
i · uP (Xn = j |Xn−1 = i) , (2.15)

where u is the normalized right eigenvector of M associated to the Perron’s root ρ as introduced
in Subsection 2.1, and computed explicitly in (2.5). In the same way as for the process {Xn}n,
we define the 1-dimensional process X∗

n := X∗
n,1. By construction we then have X∗

n,i = X∗
n−i+1,

for each n and each i = 1 . . . d.

Proposition 2.2. The stochastic process {X∗
n}n is, conditionally on its past, distributed as the

sum of two independent Poisson and Bernoulli random variables:

X∗
n|X∗

n−1
D
= Poiss

(
X∗

n−1 ·Ψ
)
∗ B
(
p
(
X∗

n−1

))
, (2.16)

where Ψ := (Ψ1, . . . ,Ψd), ∗ is the convolution product symbol, and

p
(
X∗

n−1

)
:=

u1X
∗
n−1 ·Ψ

u1X
∗
n−1 ·Ψ+

∑d
k=2 X

∗
n−k+1uk

. (2.17)
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Proof. Applying (1.1) and (2.15), we obtain that for all j ∈ N,

P
(
X∗

n = j|X∗
n−1

)

= P

(
X∗

n = (j,X∗
n−1, . . . , X

∗
n−(d−1))|X∗

n−1

)

=
ju1 +

∑d
k=2 X

∗
n−k+1uk

ρX∗
n−1 · u

P

(
Xn = (j,X∗

n−1, . . . , X
∗
n−(d−1))|Xn−1 = X∗

n−1

)

=
ju1 +

∑d
k=2 X

∗
n−k+1uk

ρX∗
n−1 · u

(
X∗

n−1 ·Ψ
)j

j!
e−X∗

n−1·Ψ

=
u1X

∗
n−1 ·Ψ

ρX∗
n−1 · u

(
X∗

n−1 ·Ψ
)j−1

(j − 1)!
e−X∗

n−1·Ψ +

∑d
k=2 X

∗
n−k+1uk

ρX∗
n−1 · u

(
X∗

n−1 ·Ψ
)j

j!
e−X∗

n−1·Ψ.

The equality MuT = ρuT implies that for all k = 1 . . . d − 1, ρuk = Ψku1 + uk+1, and that

ρud = Ψdu1. Consequently, ρX
∗
n−1 · u = u1X

∗
n−1 ·Ψ+

∑d
k=2 X

∗
n−k+1uk, and thus

P
(
X∗

n = j|X∗
n−1

)
=

u1X
∗
n−1 ·Ψ

u1X
∗
n−1 ·Ψ+

∑d
k=2 X

∗
n−k+1uk

(
X∗

n−1 ·Ψ
)j−1

(j − 1)!
e−X∗

n−1·Ψ

+

(
1− u1X

∗
n−1 ·Ψ

u1X
∗
n−1 ·Ψ+

∑d
k=2 X

∗
n−k+1uk

) (
X∗

n−1 ·Ψ
)j

j!
e−X∗

n−1·Ψ

=

[
Poiss

(
X∗

n−1 ·Ψ
)
∗ B
(

u1X
∗
n−1 ·Ψ

u1X
∗
n−1 ·Ψ+

∑d
k=2 X

∗
n−k+1uk

)]
(j) .

Remark 2.3. Note that if one compares (2.16) with the transition probability of the unconditioned

process Xn|Xn−1
D
= Poiss (Xn−1 ·Ψ), it appears that {X∗

n}n behaves at each time step like
{Xn}n, according to a Poisson distribution, except that it has the possibility at each time step
to add one unit or not, according to a Bernoulli random variable. Moreover, if X∗

n−1 = . . . =
X∗

n−(d−1) = 0, then according to (2.17), p(X∗
n−1) = 1, which implies that at time n, the probability

to add one unit is equal to one, thus preventing the extinction of the process.

Proposition 2.4. The process {X∗
n}n admits a stationary probability measure π with finite first

and second-order moments.

Proof. Since the multitype branching process {Xn}n satisfies property (2.4), it is known ([7]) that
the Q-process {X∗

n}n is positive recurrent with a stationary probability measure π given by,

π(i) :=
i · u ν(i)∑

k∈Nd k · u ν(k)
, i ∈ N

d, (2.18)

where ν is the Yaglom distribution of the process {Xn}n, uniquely defined by the following prop-
erty: for all i, j ∈ N

d \ {0}, limn→∞ P (Xn = i|X0 = j, Xn 6= 0) = ν(i). In the literature, this
stationary measure for the conditioned process {X∗

n}n is also referred to as the doubly-limiting
conditional probability. Moreover, by Proposition 2.2,

E (X∗
n) = E

[
E
(
X∗

n|X∗
n−1

)]
= E

[
X∗

n−1 ·Ψ+ p(X∗
n−1)

]
6

d∑

k=1

E
(
X∗

n−k

)
Ψk + 1,

which implies that limn→∞ E (X∗
n) 6 (1 −∑d

k=1 Ψk)
−1 < ∞. We consequently obtain by means

of Fatou’s lemma that, for every i = 1 . . . d,
∑

j∈Nd

jiπ(j) = E

(
lim
n→∞

X∗
n,i

)
= E

(
lim
n→∞

X∗
n−i+1

)
= E

(
lim
n→∞

X∗
n

)
6 lim

n→∞
E (X∗

n) < ∞. (2.19)
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We similarly prove that π has finite second-order moments by writing

Var
(
X∗

n|X∗
n−1

)
= X∗

n−1 ·Ψ+
u1X

∗
n−1 ·Ψ

∑d
k=2 X

∗
n−k+1uk

(
u1X

∗
n−1 ·Ψ+

∑d
k=2 X

∗
n−k+1uk

)2 6 X∗
n−1 ·Ψ+

1

4
.

Let us discuss the relevancy of approximating the epidemic process {Xn}n conditioned on non-
extinction at some finite time k, for k large, by the Q-process {X∗

n}n obtained by letting k → ∞.
When considering the case of late extinction, one works under an hypothetical assumption based
on the unknown future, hence in practice one does not focus on a specific value k for the survival
of the disease in the population. We therefore might consider that k is chosen large enough such
that the approximation of the process {Xn}n conditioned on the event {Xk 6= 0} by the process
{X∗

n}n is valid. Of course, the order of magnitude of such k will depend on the rate of convergence
of the conditioned process to {X∗

n}n.

Proposition 2.5. Let n1 6 . . . 6 nr 6 k and i0, . . . , ir ∈ N
d \ {0}. Then the difference∣∣Pi0 (Xn1 = i1, . . . ,Xnr

= ir |Xk 6= 0)− Pi0

(
X∗

n1
= i1, . . . ,X

∗
nr

= ir
)∣∣ decreases, as k → ∞, with

max{ks−1(|λ|ρ−1)k/2, ρk/2}, where λ is an eigenvalue of M such that ρ > |λ| > |λ3| > |λ4| > . . .,
the λi being the other eigenvalues of M. In case |λ| = |λ3|, we stipulate that the multiplicity s of

λ is at least as great as the multiplicity of λ3.

Proof. Thanks to (2.15) and to the Markov property together with the fact that Pi (Xn = 0) =

fn (0)
i
, we have

∣∣Pi0 (Xn1 = i1, . . . ,Xnr
= ir |Xk 6= 0)− Pi0

(
X∗

n1
= i1, . . . ,X

∗
nr

= ir
)∣∣

=

∣∣∣∣∣
1− fk−nr

(0)
ir

1− fk (0)
i0

− 1

ρnr

ir · u
i0 · u

∣∣∣∣∣Pi0 (Xn1 = i1, . . . ,Xnr
= ir) . (2.20)

The right term of (2.20) is known to converge to 0, as k → ∞, thanks to the property that
limk ak = γu, for some γ > 0, where ak := ρ−k(1 − fk(0)) (see [17]). This stems from two
convergences, namely limk bk = γ, where bk := ρ−k(v · (1 − fk(0))), and limk akb

−1
k = u. Let us

write ak = γu+ εk, where limk εk = 0. Since bk = v · ak and u · v = 1, it comes

akb
−1
k =

γu+ εk

γ + v · εk
∼k→∞ u+ γ−1 [εk − (v · εk)u] . (2.21)

It thus appears that the rate of convergence of ak to γu is of the same order of magnitude as the
one of akb

−1
k to u. Let us determine this rate in an accurate way. We use the following inequality

produced by Joffe and Spitzer in [17]: for each k > n > 1,

∥∥akb−1
k − u

∥∥ =

∥∥∥∥
1− fk (0)

v · (1− fk (0))
− u

∥∥∥∥ 6
2δn +

∑k
j=k−n+1 αj

1− δn −∑k
j=k−n+1 αj

, (2.22)

where we are going to replace δn and αn by some explicit formulae function of ρ and n. For this
purpose, we use a detailed asymptotic behavior of Mk, as k → ∞, presented for instance in [8]:
we have Mk = ρkR+ O(ks−1|λ|k), where R = uTv. For the sake of clarity the symbol O (.) will
denote either a scalar or a matrix with all the entries satisfying the associated property. This
implies the existence of some constant a > 0 such that, for all k ∈ N, (1 − δk)R 6 ρ−kMk 6

(1 + δk)R, where δk := aks−1(ρ−1|λ|)k. Moreover, following [17], let us write, for all r ∈ [0, 1]d,
1 − f(r) = (M − E(r))(1 − r), where 0 6 E(r) 6 M, and E(r) = O(‖1 − r‖) as r → 1. Then
ρ−1E(fk−1(0)) = ρ−1O(‖1 − fk−1(0)‖) = O(ρk−2), which implies the existence of some constant
b > 0 such that, for all k ∈ N, 0 6 ρ−1E(fk−1(0)) 6 αkR, with αk := bρk−2. We thus have
provided an explicit formula for the sequences (δk)k and (αk)k introduced by Joffe and Spitzer
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in [17]. Finally let us apply (2.22) to n = ⌊k
2 ⌋ and replace in this inequality δn and αn by their

explicit expressions that we got. We obtain that, for all k ∈ N,

∥∥∥∥
1− fk (0)

v · (1− fk (0))
− u

∥∥∥∥ 6
22−saks−1( |λ|ρ )

k
2 + b

ρ(1−ρ)ρ
k
2

1− 21−saks−1( |λ|ρ )
k
2 − b

ρ(1−ρ)ρ
k
2

. (2.23)

Consequently, the right member of (2.20) will decrease with max{ks−1(|λ|ρ−1)
k
2 , b(ρ (1− ρ))−1ρ

k
2 },

as k → ∞.

Hence the concept of the Q-process will have most practical relevance to approximate the very
late extinction case if ρ is near to zero and if |λ| is small compared with ρ. Note however that
the very late extinction scenario is more likely to happen if ρ is near to unity because the time to
extinction in most realisations will then be long (see Subsection 2.1).

2.5 Estimation of the infection parameter

We assume for this subsection that the parameters Ψk of the epidemic model (1.1)-(2.1) are not
entirely known. More precisely, we assume that the Ψk are of the form, for all k = 1 . . . d,

Ψk (θ0) = akθ0 + bk, (2.24)

where ak > 0 and bk > 0 are constants, and θ0 is an unknown real parameter. We will write in
what follows Ψ (θ0) = aθ0 +b, where Ψ(θ0) := (Ψ1(θ0), . . . ,Ψd(θ0)) etc. This general assumption
corresponds in particular to the case where the Ψk are of the form (1.2).

We estimate θ0 by the following WCLSE in model (1.1)-(2.1). This estimator generalizes the
well-known Harris estimator [13] in a BGW process. Let Θ :=]θ1, θ2[, θ2 > θ1 > 0, such that
θ0 ∈ Θ. The WCLSE is based on the normalized process Yn := Xn/

√
a ·Xn−1 and is defined by

θ̂|X0| := argmin
θ∈Θ

n∑

k=1

(Yk − Eθ (Yk|Xk−1))
2
= argmin

θ∈Θ

n∑

k=1

(Xk −Ψ(θ) ·Xk−1)
2

a ·Xk−1
. (2.25)

We easily derive the following explicit form

θ̂|X0| =

∑n
k=1 (Xk − b ·Xk−1)∑n

k=1 a ·Xk−1
. (2.26)

The normalization of the process Xn by
√
a ·Xn−1 appears to be the most natural and suitable

for the following reasons. First, this normalization generalizes the normalization Xn/
√
aXn−1 in

the monotype case, which is the one leading to the Harris estimator m̂ of m0 = aθ0 + b since we
have, for d = 1, aθ̂X0 + b = m̂. It also corresponds, in the linear case b = 0, to the maximum
likelihood estimator of θ0. In addition, defining for any vector x, x := mini xi and x := maxi xi,
we have

θ0 +
b

a
6 Eθ0

(
(Yk − Eθ0 (Yk|Xk−1))

2 |Xk−1

)
= θ0 +

b ·Xk−1

a ·Xk−1
6 θ0 +

b

a
, (2.27)

hence the conditional variance of the error term Yk − Eθ0 (Yk|Xk−1) in the stochastic regression
equation Yk = Eθ0 (Yk|Xk−1) + Yk − Eθ0 (Yk|Xk−1) is invariant under multiplication of the whole

process, and bounded respectively to {Xn}n, leading to the quasi-optimality of θ̂|X0| at finite |X0|
and n, in the sense of [11].

Let us provide asymptotic results for the estimator θ̂|X0| defined by (2.26), as the initial

population size |X0| = X0 + X−1 + . . . + X−d+1 tends to infinity. We denote by m
(k)
ij (θ) the

(i, j)-th entry in the k-th power of the matrix M(θ) given by (2.3).
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Theorem 2.6. Let us assume that, for each i = 1 . . . d, there exists some αi ∈ [0, 1] such that

lim|X0|→∞ X0,i |X0|−1
= αi. Then θ̂|X0| is strongly consistent, that is lim|X0|→∞ θ̂|X0|

a.s.
= θ0, and

is asymptotically normally distributed:

lim
|X0|→∞

√∑n
k=1 a ·Xk−1

σ2(θ̂|X0|)

(
θ̂|X0| − θ0

)
D
= N (0, 1) , (2.28)

where

σ2 (θ) := θ +

∑n
k=1

∑d
j=1

∑d
i=1 αjbim

(k−1)
ji (θ)

∑n
k=1

∑d
j=1

∑d
i=1 αjaim

(k−1)
ji (θ)

. (2.29)

Proof. Let us first prove that, for each k = 1 . . . n and each i = 1 . . . d,

lim
|X0|→∞

Xk,i

|X0|
a.s.
=

d∑

j=1

αjm
(k)
ji (θ0). (2.30)

Using the branching property of the process {Xn}n ([1]) we write

Xk,i =

X0,1∑

j=1

X
(1)
k,i,j + . . .+

X0,d∑

j=1

X
(d)
k,i,j ,

where, for all l = 1 . . . d and j = 1 . . .X0,l, X
(l)
k,i,j is the i-th coordinate of a d-type branching

process at time k initialized by a single particle of type l. For k, i and l fixed the random variables

{X(l)
k,i,j}j are i.i.d. with mean value m

(k)
li (θ0). According to the strong law of large numbers and

under the theorem assumption, we have, for every l = 1 . . . d such that X0,l 6= 0,

lim
|X0|→∞

∑X0,l

j=1 X
(l)
k,i,j

X0,l

a.s.
= m

(k)
li (θ0),

which together with the theorem assumption leads to (2.30).

To prove the consistency of θ̂|X0| we apply (2.30) to (2.26), using the fact that Xk = Xk,1 and
Xk−i = Xk−1,i, and obtain

lim
|X0|→∞

θ̂|X0|
a.s.
=

∑n
k=1

∑d
j=1 αj

(
m

(k)
j1 (θ0)−

∑d
i=1 bim

(k−1)
ji (θ0)

)

∑n
k=1

∑d
i=1

∑d
j=1 aiαjm

(k−1)
ji (θ0)

. (2.31)

By definition,

m
(k)
j1 (θ0) =

d∑

i=1

m
(k−1)
ji (θ0)mi1(θ0) =

d∑

i=1

m
(k−1)
ji (θ0) (aiθ0 + bi) ,

hence (2.31) immediately leads to the strong consistency.

We are now interested in the asymptotic distribution of θ̂|X0| − θ0. We derive from (2.26) that

√√√√
n∑

k=1

a ·Xk−1

(
θ̂|X0| − θ0

)
=

∑n
k=1 (Xk −Ψ(θ0) ·Xk−1)√∑n

k=1 a ·Xk−1

. (2.32)

By (1.1),

Xk −Ψ(θ0) ·Xk−1 =
d∑

i=1

Xk−i∑

j=1

(Yk−i,k,j −Ψi (θ0)) =:
d∑

i=1

Xk−i∑

j=1

Y̊k−i,k,j , (2.33)
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where the {Yk−i,k,j}j are i.i.d. given Fk−1, following a Poisson distribution with parameter Ψi(θ0),

and the {Yk−i,k,j}i,j are independent given Fk−1. Renumbering the Y̊k−i,k,j we then obtain

n∑

k=1

(Xk −Ψ(θ0) ·Xk−1) =

d∑

i=1

∑
n
k=1 Xk−i∑

j=1

Y̊k−i,k,j . (2.34)

Applying a central limit theorem for the sum of a random number of independent random variables
(see e.g. [5]), we obtain that, for all i = 1 . . . d,

lim
|X0|→∞

∑∑
n
k=1 Xk−i

j=1 ζ̊k−i,k,j√∑n
k=1 Xk−i

D
= N (0, aiθ0 + bi) . (2.35)

We have used the fact that |X0| is a real positive sequence growing to infinity, and
∑n

k=1 Xk−i a
sequence of integer-valued random variables such that

∑n
k=1 Xk−i/ |X0| converges in probability

to a finite random variable. In our case the limit is actually deterministic, since we have shown in
(2.30) that

lim
|X0|→∞

∑n
k=1 Xk−i

|X0|
a.s.
=

n∑

k=1

d∑

j=1

αjm
(k−1)
ji (θ0).

Using (2.34) in (2.32), we write

√√√√
n∑

k=1

a ·Xk−1

(
θ̂|X0| − θ0

)
=

d∑

i=1

∑∑n
k=1 Xk−i

j=1 ζ̊k−i,k,j√∑n
k=1 Xk−i

√∑n
k=1 Xk−i√∑n

k=1 a ·Xk−1

. (2.36)

Using again (2.30),

lim
|X0|→∞

√∑n
k=1 Xk−i√∑n

k=1 a ·Xk−1

a.s.
=

√√√√
∑n

k=1

∑d
j=1 αjm

(k−1)
ji (θ0)

∑n
k=1

∑d
j=1

∑d
l=1 αjalm

(k−1)
jl (θ0)

,

which, combined to (2.35) and (2.36), implies by Slutsky’s theorem that

lim
|X0|→∞

√√√√
n∑

k=1

a ·Xk−1

(
θ̂|X0| − θ0

)
D
= N

(
0, σ2 (θ0)

)
. (2.37)

By (2.29) and the strong consistency, lim|X0|

√
σ2(θ0)/

√
σ2(θ̂|X0|)

a.s.
= 1, from which we finally

deduce (2.28).

2.6 Estimation of the infection parameter in the worst-case scenario

In order to make predictions of the evolution of the epidemic in case of a very late extinction,
i.e. in order to make predictions of the behavior of the conditioned process {X∗

n}n introduced in
Subsection 2.4, we need to estimate the parameter θ0 in the setting of this conditioned process.
We point out that θ0 does not play the same role in the conditioned process {X∗

n}n and in the
unconditioned process {Xn}n, since, as shown in Proposition 2.2, this parameter interferes not
only in the Poisson random variable but also in the Bernoulli one. It would thus be irrelevant to
estimate θ0 with an estimator aimed for the unconditioned process, such as θ̂|X0|. Let us notice
that, according to (2.16), the process {X∗

n}n could be written as a multitype branching process
with state-dependent immigration. Because of this state-dependence, and since the parameter
θ0 acts in a nonlinear way in the immigration, the methods developed in estimation theory for
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branching processes with immigration (see e.g. [22]) cannot be directly applied here. Similarly as
in Subsection 2.5 we consider the WCLSE based on the process Y ∗

n := X∗
n/
√
a ·X∗

n−1, namely

θ̂∗n := argmin
θ∈Θ

Sn(θ), Sn(θ) :=
n∑

k=1

(
Y ∗
k − f(θ,X∗

k−1)
)2

, (2.38)

where Θ is defined in Subsection 2.5, and where

f(θ0,X
∗
k−1) := Eθ0

(
Y ∗
k

∣∣∣X∗
k−1

)
=

X∗
k−1 ·Ψ(θ0) + p

(
θ0,X

∗
k−1

)
√
a ·X∗

k−1

. (2.39)

Let ε∗k := Y ∗
k − f(θ0,X

∗
k−1) be the error term between the normalized process and its conditional

expectation. We obtain that

g
(
θ0,X

∗
k−1

)
:= Eθ0

(
(ε∗k)

2 |X∗
k−1

)
=

X∗
k−1 ·Ψ(θ0) + p

(
θ0,X

∗
k−1

) (
1− p

(
θ0,X

∗
k−1

))

a ·X∗
k−1

, (2.40)

which implies

θ0 +
b

a
6 Eθ0

(
(ε∗k)

2 |X∗
k−1

)
6 θ0 +

b+ 1

a
. (2.41)

In what follows, we denote by f ′ the derivative of f with respect to θ, and similarly for the other
quantities depending on θ.

Theorem 2.7. The estimator θ̂∗n is strongly consistent, that is limn→∞ θ̂∗n
a.s.
= θ0, and has the

following asymptotic distribution,

lim
n→∞

∑n
k=0 f

′(θ̂∗n,X
∗
k)

2

√∑n
k=0 f

′(θ̂∗n,X
∗
k)

2g(θ̂∗n,X
∗
k)

(
θ̂∗n − θ0

)
D
= N (0, 1) . (2.42)

Remark 2.8. Note that (2.42) involves the function f ′, and thus requires the knowledge of the
derivative of the function uj given in (2.5), and which is not an explicit function of θ since ρ is

not either. However, ρ′ satisfies ρ′ =
∑d

k=1 akρ
−k[
∑d

k=1 k(akθ + bk)ρ
−k−1]−1, hence u′

j is known
as soon as ρ can be computed. Consequently, denoting ρ by ρ(θ) when θ is the parameter of the

model, (2.42) can be used as soon as ρ(θ̂∗obsn ) is known: for this purpose one can for instance

numerically approximate the largest solution ρ of
∑d

k=1 Ψk(θ̂
∗obs
n )ρ−k = 1.

Proof. The proof heavily relies on a strong law of large numbers for homogeneous irreducible
positive recurrent Markov chains applied to the conditioned process {X∗

n}n and its stationary
distribution πθ0 (given by Proposition 2.4), which states ([4]) that, for every πθ0-integrable function
h : Nd \ {0} → R,

lim
n→∞

1

n

n−1∑

k=0

h(X∗
k)

a.s.
=
∑

j∈Nd

h(j)πθ0(j). (2.43)

Note that the Perron’s root ρ(θ) of M(θ) as well as the associated right normalized eigenvector
u(θ) are C∞-functions of θ.

In order to prove the strong consistency of θ̂∗n as n → ∞, since f ′′(.,X∗
k−1) is not linear, we

cannot use the general standard method based on the first order expansion of S′
n(θ̂

∗
n) at θ0, and

on the strong law of large numbers for martingales applied to S′
n(θ0) correctly normalized. We

consequently use the following conditions given in [14]:

(i) f(.,X∗
k−1) is Lipschitz on Θ, i.e. there exists a nonnegative F∗

k−1-measurable function Ak

(where F∗
k−1 := σ(X∗

0, . . . ,X
∗
k−1)), satisfying, for all δ1, δ2 ∈ Θ,

∣∣f(δ1,X∗
k−1)− f(δ2,X

∗
k−1)

∣∣ 6
Ak |δ1 − δ2| a.s.,

12



(ii) limk→∞Eθ0

(
(ε∗k)

2 |X∗
k−1

)
a.s.
< ∞.

(iii) limn→∞ inf θ∈Θ
|θ−θ0|>δ

∑n
k=1

(
f(θ0,X

∗
k−1)− f(θ,X∗

k−1)
)2 a.s.

= ∞.

Let us note that, in the frame of a general model f , since Θ is compact, (i) is satisfied as soon as
f(θ,X∗

k−1) has a first derivative in θ with supθ∈Θ f ′(θ,X∗
k−1) < ∞, (ii) is satisfied for any optimal

estimator in the sense of [11] and moreover could be weakened (see [14]), and (iii) is a necessary

condition. First, for all θ ∈ Θ and j ∈ N
d, j 6= 0, f ′ (θ, j) = (a · j+ p′ (θ, j)) (a · j)−1/2

, where p′

denotes the derivative of p with respect to θ, which thanks to (2.17) is bounded on Θ. Condition
(i) is thus satisfied. Condition (ii) follows from (2.41). Condition (iii) comes from the fact that,
for every δ > 0 and every θ ∈ Θ such that |θ − θ0| > δ, applying the mean value theorem to the
C1-function p(.,X∗

k−1),

n∑

k=1

(
f(θ0,X

∗
k−1)− f(θ,X∗

k−1)
)2

= (θ0 − θ)
2

n∑

k=1

a ·X∗
k−1

(
1 +

p
(
θ0,X

∗
k−1

)
− p

(
θ,X∗

k−1

)

(θ0 − θ)a ·X∗
k−1

)2

> δ2
n∑

k=1

a ·X∗
k−1 inf

θ∈Θ

(
1 +

p′(θ,X∗
k−1)

a ·X∗
k−1

)2

.

Let us show that the function j 7→ a · j infθ∈Θ(1+ p′(θ, j)/a · j)2 is πθ0 -integrable. For every θ ∈ Θ,

j ∈ N
d and j 6= 0, denoting Ξ := supi,θ∈Θ {ui(θ), |u′

i(θ)|} < ∞ (by continuity of u′
i(θ) on Θγ ⊃ Θ),

and u := mini,θ∈Θ ui(θ) > 0,

|p′ (θ, j) | =

∣∣∣∣∣∣∣

(
u′
1(θ)j ·Ψ(θ) + u1(θ)j · a

)∑d
i=2 jiui(θ)− u1(θ)j ·Ψ(θ)

∑d
i=2 jiu

′
i(θ)

(
u1(θ)j ·Ψ(θ) +

∑d
i=2 jiui(θ)

)2

∣∣∣∣∣∣∣

6
Ξ2

u2

3j ·Ψ(θ)
∑d

i=2 ji(
j ·Ψ(θ) +

∑d
i=2 ji

)2 6
3Ξ2

4u2
=: C1. (2.44)

Hence, for all j 6= 0, |a · j infθ∈Θ(1+p′(θ, j)/a · j)2| 6 (1 + C1/a)
2
a · j, and applying (2.43) together

with (2.19) we obtain that

lim
n→∞

1

n+ 1

n∑

k=1

a ·X∗
k−1 inf

θ∈Θ

(
1 +

p′(θ,X∗
k−1)

a ·X∗
k−1

)2
a.s.
=
∑

j∈Nd

a · j inf
θ∈Θ

(
1 +

p′(θ, j)

a · j

)2

πθ0(j). (2.45)

Let j 6= 0 fixed. Since, for all θ ∈ Θ, p′(θ, j) 6= −a · j, the extreme value theorem implies that

infθ∈Θ (1 + p′(θ, j)/a · j)2 > 0. Hence the right term in (2.45) is strictly positive, which together
with (2.45) leads to (iii).

Let us now consider the asymptotic distribution of θ̂∗n − θ0. For this purpose, we follow the

steps of the proof of Proposition 6.1 in [14]. Writing the Taylor expansion of S′
n(θ̂

∗
n) at θ0 we

obtain that θ̂∗n − θ0 = −S′
n(θ0)/S

′′
n(θ̃n), for some θ̃n = θ0 + tn(θ̂

∗
n − θ0), with tn ∈ ]0, 1[. Since

S′
n(θ0) = −2

∑n
k=1 ε

∗
kf

′(θ0,X
∗
k−1), we can write

√
n
(
θ̂∗n − θ0

)
=

∑n
k=1 ε

∗
kf

′(θ0,X
∗
k−1)√

n

(
Fn

n

)−1
(
1

2

S′′
n(θ̃n)

Fn

)−1

, (2.46)

where Fn :=
∑n

k=1

(
f ′(θ0,X

∗
k−1)

)2
. Let us first show that

lim
n→∞

Fn

n

a.s.
=
∑

j∈Nd

(f ′(θ0, j))
2
πθ0(j). (2.47)
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This is an application of (2.43) and (2.19), since, for all j ∈ N
d, j 6= 0,

(f ′(θ0, j))
2
6 a · j+ 2C1 +

C2
1

a
. (2.48)

In view of (2.46), we now prove that

lim
n→∞

S′′
n(θ̃n)

Fn

a.s.
= 2. (2.49)

Computing S′′
n thanks to the formula Sn(θ) =

∑n
k=1

(
ε∗k + f(θ0,X

∗
k−1)− f(θ,X∗

k−1)
)2
, it appears

that (2.49) is true, as soon as the following holds:

lim
n→∞

sup
θ∈Θ

∣∣∣
∑n

k=1 ε
∗
k f

′′(θ,X∗
k−1)

∣∣∣
Fn

a.s.
= 0, (2.50)

lim
n→∞

∑n
k=1

(
f ′(θ̃n,X

∗
k−1)

)2

Fn

a.s.
= 1, (2.51)

and

lim
n→∞

∑n
k=1

(
f(θ0,X

∗
k−1)− f(θ̃n,X

∗
k−1)

)
f ′′(θ̃n,X

∗
k−1)

Fn

a.s.
= 0. (2.52)

Let us prove (2.50)-(2.52). First, (2.50) is given by a strong law of large numbers proved in

[14], Proposition 5.1. The latter can be indeed applied since limn Fn
a.s.
= ∞ (as an immediate

consequence of the stronger result (2.47)), and since f ′′(.,X∗
k−1) fulfils the required Lipschitz

condition. Indeed we proved earlier that u′′′
i (θ) is continuous on the compact set Θ and is thus

bounded on Θ, which implies that f ′′′(.,X∗
k−1) = p′′′

(
.,X∗

k−1

)
(a · X∗

k−1)
−1/2 is bounded by a

F∗
k−1-measurable function. In view of (2.51), we consider the function f(θ, j)2 and its derivative

2f ′(θ, j)f ′′(θ, j). Similarly as for (2.44), one can show that there exists a constant C2 > 0 such
that for all θ ∈ Θ, and all j 6= 0, |p′′ (θ, j) | 6 C2. This implies

|2f ′(θ, j)f ′′(θ, j)| 6 2

∣∣∣∣
(a · j+ p′(θ, j)) p′′(θ, j)

a · j

∣∣∣∣ 6 2C2

(
1 +

C1

a

)
. (2.53)

Consequently,
∣∣∣∣
∑n

k=1

(
f ′(θ̃n,X

∗
k−1)

)2
−
(
f ′(θ0,X

∗
k−1)

)2
∣∣∣∣

Fn
6 2C2

(
1 +

C1

a

) ∣∣∣θ̂∗n − θ0

∣∣∣
(
Fn

n

)−1

, (2.54)

which by (2.47) and the strong consistency of θ̂∗n almost surely tends to 0. Writing

∑n
k=1 f(θ̃n,X

∗
k−1)

2

Fn
= 1 +

∑n
k=1

((
f ′(θ̃n,X

∗
k−1)

)2
−
(
f ′(θ0,X

∗
k−1)

)2
)

Fn
,

this implies (2.51). It now remains to prove (2.52). We write
∣∣∣
∑n

k=1

(
f(θ0,X

∗
k−1)− f(θ̃n,X

∗
k−1)

)
f ′′(θ̃n,X

∗
k−1)

∣∣∣
Fn

6
1

Fn

n∑

k=1

a ·X∗
k−1|θ0 − θ̃n|+ |p(θ0,X∗

k−1)− p(θ̃n,X
∗
k−1)|

a ·X∗
k−1

|p′′(θ̃n,X∗
k−1)|

6
1

Fn

n∑

k=1

(
|θ0 − θ̃n|+

C1|θ0 − θ̃n|
a

)
C2 6 |θ0 − θ̂∗n|C2

(
1 +

C1

a

)(
Fn

n

)−1

,
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which thanks to (2.47) and the strong consistency of θ̂∗n implies (2.52). In view of (2.46), we
finally want to prove that

∑n
k=1 ε

∗
kf

′(θ0,X
∗
k−1)/

√
n converges in distribution. For this purpose we

make use of a central limit theorem for martingale difference arrays ([23, 21]): if {M (n)
k , F (n)

k , 1 6

k 6 n}, n > 1 is a sequence of square integrable martingales with associated Meyer process

〈M〉(n) = (〈M〉(n)k )16k6n satisfying limn→∞ 〈Mn〉(n) P
= c2 for some constant c, and such that, for

all ε > 0,

lim
n→∞

n∑

k=1

E

[∣∣∣M (n)
k −M

(n)
k−1

∣∣∣
2

1{∣∣∣M(n)
k

−M
(n)
k−1

∣∣∣>ε
}
∣∣∣∣F

(n)
k−1

]
P
= 0,

then limn→∞ M
(n)
n

D
= N (0, c2). Let us define M

(n)
k :=

∑k
l=1 ε

∗
l f

′(θ0,X
∗
l−1)/

√
n, for every k 6 n.

First, for any k 6 n, Eθ0

(
ε∗kf

′(θ0,X
∗
k−1)/

√
n|X∗

k−1

)
= 0. Second,

Eθ0

((
ε∗kf

′(θ0,X
∗
k−1)√

n

)2 ∣∣∣X∗
k−1

)
=

(
f ′(θ0,X

∗
k−1)

)2
g
(
θ0,X

∗
k−1

)

n
,

hence {M (n)
k }k6n is a sequence of square integrable martingales. Moreover, using inequalities

(2.41) and (2.48), we obtain by (2.19),

∑

j∈Nd

(f ′ (θ0, j))
2
g (θ0, j) πθ0(j) 6

(
θ0 +

b+ 1

a

)

∑

j∈Nd

a · jπθ0(j) + 2C1 +
C2

1

a


 < ∞. (2.55)

So, by means of (2.43),

lim
n→∞

〈Mn〉(n) = lim
n→∞

n∑

k=1

Eθ0

((
εkf

′(θ0,X
∗
k−1)√

n

)2 ∣∣∣X∗
k−1

)

a.s.
=
∑

j∈Nd

(f ′ (θ0, j))
2
g (θ0, j)πθ0(j).

Third, using Cauchy-Schwarz and Bienaymé-Chebyshev inequalities,

n∑

k=1

Eθ0

[∣∣∣∣
ε∗kf

′(θ0,X
∗
k−1)√

n

∣∣∣∣
2

1{∣∣∣∣
ε∗
k
f′(θ0,X∗

k−1
)

√
n

∣∣∣∣>ε

}
∣∣∣X∗

k−1

]

6

n∑

k=1

(
Eθ0

[∣∣∣∣
ε∗kf

′(θ0,X
∗
k−1)√

n

∣∣∣∣
4 ∣∣∣X∗

k−1

]) 1
2 (

Pθ0

[∣∣∣∣
ε∗kf

′(θ0,X
∗
k−1)√

n

∣∣∣∣ > ε
∣∣∣X∗

k−1

]) 1
2

6
1

n
3
2 ε

n∑

k=1

∣∣f ′(θ0,X
∗
k−1)

∣∣3
(
Eθ0

[
(ε∗k)

4 |X∗
k−1

]) 1
2
(
Eθ0

[
(ε∗k)

2 |X∗
k−1

]) 1
2

. (2.56)

Let us compute Eθ0

(
(ε∗k)

4|X∗
k−1

)
. We can show that the 4th central moment of the independent

sum of a Poisson and a Bernoulli random variables equals µ4 + 6µ2γ2 + γ4, where µi and γi
denote the ith central moment of the Poisson and of the Bernoulli variable. If these variables have
parameter λ and p, respectively, then µ4 = λ(1 + 3λ), µ2 = λ, γ4 = p(1− p)(3p2 − 3p+1) ∈ [0, 1],
and γ2 = p(1− p) ∈ [0, 1]. We thus obtain

∣∣∣Eθ0

(
(ε∗k)

4 |X∗
k−1

)∣∣∣ 6
Ψ(θ0) ·X∗

k−1

(
7 + 3Ψ(θ0) ·X∗

k−1

)
+ 1

(
a ·X∗

k−1

)2 .

Hence

|f∗′
(θ0,X

∗
k−1)|3

(
Eθ0

[
ε4k|X∗

k−1

]) 1
2
(
Eθ0

[
ε2k|X∗

k−1

]) 1
2

6

(√
a ·X∗

k−1 +
C1√
a

)3

√
Ψ(θ0) ·X∗

k−1

(
7 + 3Ψ(θ0) ·X∗

k−1

)
+ 1

a ·X∗
k−1

(
θ0 +

b+ 1

a

) 1
2

. (2.57)
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Since the highest power of X∗
n involved in (2.57) is 3/2, and since by Proposition 2.4 the stationary

distribution πθ0 has finite second-moments, we can apply (2.43) to (2.56) and obtain that

lim
n→∞

n∑

k=1

Eθ0

[∣∣∣∣
ε∗kf

′(θ0,X
∗
k−1)√

n

∣∣∣∣
2

1{∣∣∣∣
ε∗
k
f′(θ0,X∗

k−1
)

√
n

∣∣∣∣>ε

}
∣∣∣∣X

∗
k−1

]
a.s.
= 0.

It then ensues from the central limit theorem mentioned above that

lim
n→∞

∑n
k=1 ε

∗
kf

′(θ0,X
∗
k−1)√

n

D
= N


0,

∑

j∈Nd

(f ′ (θ0, j))
2
g (θ0, j)πθ0(j)


 . (2.58)

Finally, (2.46) together with (2.47), (2.49), (2.58) and Slutsky’s theorem imply that

lim
n→∞

√
n
(
θ̂∗n − θ0

)
D
= N


0,

∑
j∈Nd (f ′ (θ0, j))

2
g (θ0, j)πθ0(j)(∑

j∈Nd (f ′ (θ0, j))
2
πθ0(j)

)2


 , (2.59)

which leads to

lim
n→∞

√√√√√n

(∑
j∈Nd f ′(θ0, j)2πθ0(j)

)2

∑
j∈Nd f ′(θ0, j)2g(θ0, j)πθ0(j)

(
θ̂∗n − θ0

)
D
= N (0, 1) . (2.60)

It now remains to prove the asymptotic distribution (2.42). Thanks to what precedes, this
result is immediate as soon as we prove that

lim
n→∞

1

n+ 1

n∑

k=0

(
f ′(θ̂∗n,X

∗
k)
)2

g
(
θ̂∗n,X

∗
k

)
a.s.
=
∑

j∈Nd

(f ′ (θ0, j))
2
g (θ0, j)πθ0 (j) , (2.61)

as well as the equivalent result for the numerator. For this purpose, we write

n∑

k=0

(
f ′(θ̂∗n,X

∗
k)
)2

g
(
θ̂∗n,X

∗
k

)
=

n∑

k=0

(f ′(θ0,X
∗
k))

2
g (θ0,X

∗
k)

+

n∑

k=0

[(
f ′(θ̂∗n,X

∗
k)
)2

g
(
θ̂∗n,X

∗
k

)
− (f ′(θ0,X

∗
k))

2
g (θ0,X

∗
k)

]
, (2.62)

and show that (f ′ (., j))2g (., j) has a bounded derivative and is thus Lipschitz. We have indeed

|g′(θ, j)| = |a · j+ p′(θ, j)| (a · j)−1
6 1 + C1a

−1, hence

∣∣2f ′′(θ, j)f ′(θ, j)g(θ, j) + (f ′(θ, j))2g′(θ, j)
∣∣

6 2C2

(
1 + C1a

−1
)
a−1 (Ψ(θ) · j+ 1) +

(
1 + C1a

−1
)2

(a · j+ C1) 6 C3Ψ(θ2) · j,

for some constant C3 > 0. This enables to write

1

n+ 1

n∑

k=0

∣∣∣∣
(
f ′(θ̂∗n,X

∗
k)
)2

g
(
θ̂∗n,X

∗
k

)
− (f ′(θ0,X

∗
k))

2
g (θ0,X

∗
k)

∣∣∣∣

6

∣∣∣θ̂∗n − θ0

∣∣∣C3
1

n+ 1

n∑

k=0

Ψ(θ2) ·X∗
k. (2.63)

By the strong consistency of θ̂∗n together with (2.43) and (2.19), (2.63) almost surely tends to zero.
Combined with (2.43) and (2.55) in (2.62), this implies (2.61).
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3 Application to real epidemics

3.1 Explicit epidemic model

Although the epidemic model (1.1) has a clear interpretation in terms of the disease propagation, it
can be also proved ([16]) that it is the limit process, as the initial population size tends to infinity, of
the incidence of infectives described by a thorough process in a large branching population, taking
into account all the health states of the disease and describing in detail the infection and latent
processes for each individual in the population. This detailed process is a multitype branching
process with age and population size dependence, taking into account the variability of many
individual factors such as the reproduction, the survival, the transmission of the disease and the
latent time. We assume a disease of the general SEIR type. We also assume a random latent
period and, for the sake of simplicity, a duration of the state I of one time unit only. Hence the
incidence of infectives exactly corresponds to the incidence of cases.

The main assumptions for the construction of the limit model {Xn}n are, concerning the
disease: (i) at the initial time the disease is rare and the total population size is large, (ii) the
infection via horizontal route is of Reed-Frost type, with the probability for a susceptible individual
to become infected by a given dose of pathogens being inversely proportional to the total population
size, (iii) the individual survival law is the same for E and S individuals and is independent of the
population and of the time, (iv) the latent time law given the individual survival is independent of
the time, the individual age, and of the infectives population during the latent period. This last
property is possible if we assume that overinfection during the incubation has a negligible effect
on the latent time. We moreover assume that the whole healthy population size is relatively stable
over time.

The limit process (1.1) is then obtained in an inductive way as the limit in distribution of {In}n
as the initial total population size |N0| → ∞, where In denotes the number of new infectives at
time n. More precisely, denoting by En the incidence of exposed individuals at time n and by am

the largest individual survival age, we obtain that {Xn, Zn}n
D
= limN0→∞ {In, En}n, with

Xn| (Xn−1, . . . , Xn−am+1)
D
= Poiss

( am−1∑

k=1

ΨkXn−k

)
, (3.1)

Zn|Xn
D
= Poiss (Ψ0Xn) , (3.2)

and where for all k = 1 . . . am − 1, Ψk satisfies (1.2) in Section 1, the latent period distribution
given survival, Pinc,a, assumed independent of a, being denoted by Pinc. Thus

Ψk = θ0Pinc (k)

am∑

a=k+1

Page (a) + pmatPinc (k)Page (k + 1) , (3.3)

and similarly,

Ψ0 = θ0 + pmatPage (1) . (3.4)

Moreover, when assuming a relatively stable population size and denoting by S (a) the individual

survival probability until age a at least, then Page (a) is equal to S (a) (
∑am

a′=1 S (a′))
−1

.

3.2 Illustration: the BSE epidemic in Great-Britain

In this section we provide an illustration of the methodology developed in Section 2 by studying
the decay phase of the BSE epidemic in Great-Britain, based on the observations of the yearly
diagnosed cases from 1989 until 2011, 1988 being the date of the main control measure. The
disease that was first officially identified in 1986 ([25]), reached its peak in 1992 (36682 cases) and
is obviously now in its decay phase. Since only a very few cases were recently reported ([19]),
namely 11 in 2010 and 5 in 2011, the spread of the disease should a priori “soon” come to an end.
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It has been accepted that the epidemic is fading out, with a very low level of risk for cattle and
humans. However it might be interesting to have a more precise idea of the extinction phase of
the disease, for instance of its length and of its intensity.

Choice of the epidemic model. BSE is a transmissible disease through ingestion of prions
(horizontal route) and through maternal route. It is commonly accepted (see e.g. [18]) that the
infectious phase (including the clinical state) lasts at most one year, while the latent state can
be of several years. If one compares the epidemic data with the total population of around 9
million cattle in Great-Britain, it is reasonable to assume that, even at the peak time, BSE may
be considered as a rare disease in a large population. We moreover assume that the probability
for an animal to become infected by a horizontal route follows a Reed-Frost type model as in (ii)
of Subsection 3.1, and that the probability for a calf to become infected by its dam is nonnull and
constant over time. Moreover, for the sake of simplicity and parsimony, we do not take into account
potential heterogeneity factors such as the different regulations from 1989 (the main regulation
was the feed ban of July 1988, and was shown to be quite efficient [15]), the different types of
breeding, of races, the age for animals older than one year, the evolution of the surveillance system
and of diagnosis tests. So the process {Xn}n defined by (3.1)-(3.4) appears relevant to model the
spread of this fatal disease after the 1988 ban, where the infectious state I corresponds to the
end of the incubation period and the clinical state, and R corresponds to the death (assumed
to be either by routine slaughtering for E and S cattle, and control slaughtering for I cattle).
Choosing a time step of one year, Xn then represents the yearly incidence of notified cases, which
corresponds to the available data provided by the World Organisation for Animal Health ([19]).

Choice of the model parameters. In order to predict the future epidemic evolution, we
need to evaluate all the parameters involved in (3.3). These parameters were already studied
in previous works [6, 9, 10, 15] using different models, amounts of observations, and kinds of
estimators. Since it might have a crucial role in the decay phase of the disease, we focus here
on θ0 the infection parameter from 1989 via a horizontal route of transmission (i.e. the mean
number per infective and per year of newly infected). Until the 1988 feed ban regulation, the main
routes of transmission of BSE were horizontal via protein supplements (Meat and Bone Meal, milk
replacers), and maternal from a dam to its calf. Since a previous statistical study [15] concluded
to the full efficiency of the 1988 ban and since most of cattle are slaughtered before the age of
10 years, the fact that cases of BSE are still observed more than 20 years later could suggest the
existence of a remaining source of infection, either via a maternal transmission route, or via a
horizontal one, for example via the ingestion of excreted prions from alive infected animals, or
from prions left in the environment. The prediction of the future disease spread thus strongly
relies on the intensity of this infection, quantified by the parameter θ0. We provide an estimation
of θ0 together with a confidence interval, which will be used for prediction estimations. We
provide in addition a sensitivity analysis to the other parameters of the model, which are chosen
as follows. First, the maximal age of the individuals in the population am is set to am = 10,
which corresponds to the largest reported survival age with a non-negligible probability. Next,
we set pmat = 0.1, which is the largest order of magnitude commonly accepted for the maternal
infection probability ([6, 10]). Following a previous work, [15], we assume here a discretizedWeibull
distribution with parameters α, β for the distribution of the latent period, that is to say for each

k > 1, Pinc (k) := e−
α−1
αβα (k−1)α −e−

α−1
αβα kα

, where α is a shape parameter, and β is the mode of the
probability density of the corresponding continuous Weibull distribution. The parameters α and
β have a very bad identifiability with the infection parameters on a sole monotonous phase, and
are consequently estimated in [15] on the whole epidemic series (growth and decay), by Bayesian

maximum a posteriori (MAP) estimations. We set α = α̂MAP = 3.84 and β = β̂MAP = 7.46.
Since the death of susceptible and exposed animals is mostly due to routine slaughtering, the
survival probability S (k) (probability for an apparently healthy animal to survive at least until k
years) corresponds to the probability of being slaughtered after the age of k years. It is derived
from existing literature [9].
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Figure 1: Yearly number of cases of BSE reported in Great Britain from 1987 to 2011 ([19]). Our
study only takes into account the data from 1989, after the 1988 feed ban law.

Estimation of the infection parameter. Our study is based on the yearly number of cases of
BSE reported in Great Britain from 1989 until 2011 (Figure 1) provided by the World Organisation
for Animal Health [19], denoted by Xobs

n for each year n. We set d = am − 1 = 9 and denote by
Xobs

n the d dimensional vector (Xobs
n , . . . , Xobs

n−d+1). We choose the first time n = 1 of the epidemic
model such that the model with its initial values covers the period starting from 1989, which we
consider here as a time-homogeneous period. Hence X−d+1 = Xobs

1989, and n = 1 corresponds to
the year 1989 + d = 1998. We estimate θ0 by the WCLSE (2.26) in model (1.1)-(3.3), where
{pmat, α, β, {S(k)}k} are given by the previous values, and where X0 = Xobs

1997. According to
[19], |X0| = |Xobs

1997| = 167977. We are thus close to the asymptotic |X0| → ∞. The number

of observations is n = 14. The estimator (2.26) provides the estimation θ̂obs|X0|
= 2.4324. We

point out that this estimation is of the same order of magnitude as the maximum a posteriori

Bayesian estimation θ̂MAP = 2.43 based on the whole epidemic until 2007, assuming a uniform
prior probability ([15]). Using (2.28) we obtain the following confidence interval [θ̂min, θ̂max]

with asymptotic probability 95%, where θ̂min := θ̂|X0| − 1.96ĉ−1
1 , θ̂max := θ̂|X0| + 1.96ĉ−1

1 , ĉ1 :=

(
∑n

k=1 a·Xk−1/σ
2(θ̂|X0|))

1/2. Assuming αi = Xobs
1997−i+1|Xobs

1997|−1, we get ĉobs1 = 40.7343 (observed
value of ĉ1), and

P

(
θ0 ∈

[
θ̂min, θ̂max

] )
≃ 95%, θ̂obsmin = 2.3842, θ̂obsmax = 2.4805. (3.5)

Although this confidence interval is an asymptotic one, as |X0| → ∞, it is a very good approx-
imation of the true confidence interval for a finite |X0|, since |X0| is here very large. Since the
estimation of θ0 relies on the values given to the other model parameters {pmat, α, β}, we eval-
uate in addition its sensitivity to the values of these parameters. For this purpose, we compute
the estimation of θ0 and the associated confidence interval with asymptotic probability 95%, for
different values of (pmat, α, β) (Table 1). The first line of the table corresponds to the parameters
chosen for the model. In each of the four following lines, we fix two coordinates and choose an
extremal (unrealistic) value for the third one. It appears that the estimation of θ0 is almost in-
dependent of the value of the maternal infection parameter. However, the estimation seems more
strongly dependent on the parameters of the latent period distribution. Nevertheless, even for
very unrealistic values (α, β), all the estimations of θ0 remain in the same order of magnitude of
several units. This is really small compared to estimations obtained for the infection via Meat
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pmat α β θ̂obs|X0|
[θ̂obsmin, θ̂

obs
max]

0.1 3.84 7.46 2.4324 [2.3842, 2.4805]
0 3.84 7.46 2.4860 [2.4379, 2.5342]
1 3.84 7.46 1.9492 [1.9014, 1.9970]
0.1 2 7.46 2.7835 [2.7287, 2.8382]
0.1 20 7.46 4.0186 [3.9395, 4.0977]
0.1 3.84 1 1.0127 [0.9925, 1.0329]
0.1 3.84 10 6.2128 [6.0914, 6.3341]
0.1 3 6 1.5402 [1.5095, 1.5710]
0.1 4 5 1.0227 [1.0020, 1.0434]

Table 1: Sensitivity analysis. Estimation of the infection parameter θ0, and its confidence interval
[θ̂obsmin, θ̂

obs
max] with asymptotic probability 95%, for different values of the maternal infection param-

eter pmat and of the latency parameters (α, β). The values (3.84, 7.46) correspond to the Bayesian

MAP estimations (α̂MAP , β̂MAP ), and 0.1 to the largest commonly accepted order of magnitude
for pmat. The estimations of θ0 are based on the observed data over the years 1989–2011.

and Bone Meal or lactoreplacers (before 1989) which are of the order of 1000 ([15]). However,
although these estimations are all very small, θ0 seems non null. This could suggest the existence
of a minor but non null infection source which is not of maternal type.

Extinction of the epidemic. We know thanks to Proposition 2.1 that {Xn}n becomes ex-

tinct almost surely if and only if R0 =
∑d

k=1 Ψk(θ0) 6 1. The estimated basic reproduc-

tion is here R0(θ̂
obs
|X0|

) = 0.1072. Moreover, solving with a computing program the equation
∑d

k=1 Ψk(θ̂
obs
|X0|

)ρ−k = 1, we obtain the following value for the Perron’s root ρ(θ̂obs|X0|
) = 0.6665,

which provides the speed of decay of the expected yearly incidence of cases (see (2.6)): from a
certain time, the expected number of new cases will decrease from around 33% every year.

Prediction of the incidences of cases and incidences of infected cattle. Let us predict
the spread of the disease from 2012 by means of simulations of {Xn}n, where θ0 is replaced by

its previous estimation θ̂obs|X0|
= 2.4324, and where the initial time of the model is 2011, that is

X0 = Xobs
2011. The simulations are done recursively using the transition law (3.1). We point out that

the model initialized by X0 = Xobs
1997 provides quite realistic simulations on the period 1998–2011

compared to the real observations on the same period, as illustrated in Figure 2.1. The epidemic
process {Xn}n thus seems to provide a satisfying prediction of the overall evolution of the real
epidemic. In order to predict the incidences of futures cases, we simulate 1000 trajectories of {Xn}n
initialized by the observed values Xobs

2011, with the estimated infection parameter θ̂obs|X0|
= 2.4324.

We illustrate in Figure 2.3, for each year from 2012, the maximum, minimum, median, 2.5% and
97.5% quantiles associated with these 1000 realizations. It is also relevant to study and predict
the evolution of the incidence of infected cattle in the population, which represents the hidden face
of the epidemic. The incidence Zn of infected cattle at time n, conditionally on the number Xn

of cases at that time, is given by the Poisson distribution (3.2). For every n > 2012 and for each
of the 1000 previously simulated values Xn, we generate one realization of Zn. We then illustrate
in Figure 2.4, the yearly maximum, minimum, median, 2.5% and 97.5% quantiles associated with
the 1000 realizations.

Prediction of the year of extinction. Let T := 2011 + inf {n > 1,Xn = 0} denote the ex-
tinction year of the epidemic process {Xn}n. According to (2.7) and denoting by fθ0 the offspring
generating function of {Xn}n defined in (2.2) (from now on we let the dependence in θ0 appear

in the notation), we have Pθ0 (T 6 2011 + n) = fθ0,n (0)
Xobs

2011 , for every n > 1, which by iterating
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Figure 2: Figure 2.1: 10 simulations of {Xn}n initialized by Xobs
1997, and comparison with the

observations on the period 1998–2011. Figure 2.2: 5 simulations of {Xn}n initialised by Xobs
2011.

Figures 2.3 and 2.4: prediction, based on 1000 simulations of the process of the yearly incidences
of cases (resp. infected cattle) from 2012. 95% of the trajectories remain in the band delimited by

the blue dotted lines. All the simulations are done with the infection parameter θ̂obs|X0|
= 2.4324.
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n P
θ̂obsmax

(T 6 n) P
θ̂obs
min

(...) n P
θ̂obsmax

(...) P
θ̂obs
min

(...) n P
θ̂obsmax

(...) P
θ̂obs
min

(...)

2020 0.0000 0.0000 2030 0.7610 0.7807 2040 0.9950 0.9957
2021 0.0000 0.0000 2031 0.8310 0.8465 2041 0.9967 0.9972
2022 0.0010 0.0014 2032 0.8816 0.8934 2042 0.9978 0.9981
2023 0.0121 0.0152 2033 0.9186 0.9273 2043 0.9985 0.9988
2024 0.0496 0.0592 2034 0.9451 0.9513 2044 0.9990 0.9992
2025 0.1211 0.1390 2035 0.9633 0.9677 2045 0.9995 0.9994
2026 0.2325 0.2579 2036 0.9755 0.9786 2046 0.9996 0.9996
2027 0.3756 0.4047 2037 0.9835 0.9857 2047 0.9997 0.9998
2028 0.5303 0.5584 2038 0.9889 0.9904 2048 0.9998 0.9998
2029 0.6619 0.6862 2039 0.9925 0.9936 2049 0.9999 0.9999

Table 2: Cumulative distribution function of the year of extinction computed with the infection
parameters θ̂obsmin = 2.3842 and θ̂obsmax = 2.4805 defined by (3.5). The values in bold character
correspond to the p-quantiles nT

p for p = 0.5, 0.95 and 0.99, and to the asymptotic confidence

intervals of Pθ0

(
T 6 nT

p

)
based on (3.6).

fθ0 can be computed explicitly. We obtain in particular, for the estimated value θ̂obs|X0|
= 2.4324,

the following p-quantiles for the extinction time (see (2.8)): nT
0.5 = 2028, nT

0.95 = 2035 and
nT
0.99 = 2039. Keeping in mind that T corresponds to the complete extinction of the epidemic

(i.e. d = 9 consecutive years without any case), these results actually mean that for the infection
parameter θ0 = 2.4324, with probability larger than 50% (resp. 95% and 99%), no case will arise
in the population from year 2020 (resp. 2027 and 2031). Moreover, in order to take into account

the uncertainty around the estimation θ̂obs|X0|
of the infection parameter θ0, we make use of the

asymptotic confidence interval (3.5) of θ0 and of the fact that θ 7→ Pθ (T 6 n) is a decreasing
function of θ, which implies that for every n > 2011,

P

(
Pθ0 (T 6 n) ∈

[
Pθ̂max

(T 6 n) ,Pθ̂min
(T 6 n)

])
≃ 95%. (3.6)

We collect in Table 2 the observed interval [Pθ̂obs
max

(T 6 n) ,Pθ̂obs
min

(T 6 n)], for each n > 2020 (if

n < 2019 we have, conditionally on the initial value Xobs
2011, P (Xn = 0) = 0 because of the memory

which is not equal to 0). Note that these intervals are very narrow, leading to an accurate
estimation of Pθ0 (T 6 n).

Prediction of the epidemic size. Let N :=
∑T−2011

n=1 Xn be the total size of the future
epidemic from 2012 (total number of cases from 2012 until the extinction of the epidemic). We
compute the distribution ofN using (2.11), conditionally on the event {X0 = Xobs

2011}. We obtain in

particular, for the estimated value θ̂obs|X0|
= 2.4324, the following p-quantiles for the total epidemic

size (see (2.12)): nN
0.5 = 22, nN

0.95 = 31 and nN
0.99 = 35. From (2.13) we deduce that the mean

value and variance of N for the parameter θ̂obsmin (resp. θ̂obsmax) are 21 and 27 (resp. 22 and 28).
Moreover, we obtain similarly as for the extinction time and thanks to (3.5) a confidence interval
[Pθ̂max

(N 6 n),Pθ̂min
(N 6 n)] of Pθ0 (N 6 n), for every n ∈ N, with asymptotic probability 95%,

collected in Table 3.

Study of the very late extinction case. In order to predict the behavior of the “most
dangerous” evolution of the epidemic, we first need to compute the estimation θ̂∗obsn (2.38) based
on the data in Great Britain. The number of available observations is only n = 14, so we are
far from the asymptotic setting n → ∞ of Theorem 2.7. However, the large value of |X0| can
make us hope for a good accuracy. We point out that, by making use of the estimator θ̂∗n on
the real data, we make an unverifiable assumption on the future of the epidemic: we consider
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n P
θ̂obsmax

(N 6 n) P
θ̂obs
min

(N 6 n) n P
θ̂obsmax

(...) P
θ̂obs
min

(...) n P
θ̂obsmax

(...) P
θ̂obs
min

(...)

. . . . . . . . . 16 0.1293 0.1669 28 0.8702 0.9048
5 0.0001 0.0000 17 0.1795 0.2263 29 0.8942 0.9302
6 0.0002 0.0003 18 0.2373 0.2915 30 0.9283 0.9495
7 0.0005 0.0008 19 0.3025 0.3637 31 0.9480 0.9646

8 0.0013 0.0020 20 0.3741 0.4409 32 0.9635 0.9759
9 0.0027 0.0046 21 0.4486 0.5189 33 0.9742 0.9838
10 0.0060 0.0094 22 0.5231 0.5934 34 0.9824 0.9892
11 0.0119 0.0178 23 0.5975 0.6639 35 0.9881 0.9928

12 0.0214 0.0310 24 0.6655 0.7287 36 0.9917 0.9952
13 0.0365 0.0518 25 0.7282 0.7840 37 0.9945 0.9968
14 0.0585 0.0801 26 0.7829 0.8323 38 0.9964 0.9980
15 0.0891 0.1181 27 0.8304 0.8726 39 0.9977 0.9989

Table 3: Cumulative distribution function of the total size of the epidemic for the infection param-
eters θ̂obsmin = 2.3842 and θ̂obsmax = 2.4805 defined by (3.5). The values in bold character correspond
to the p-quantiles nN

p for p = 0.5, 0.95 and 0.99, and to the asymptotic confidence intervals of

Pθ0

(
N 6 nN

p

)
.

the data as if they were the beginning of a trajectory with very late extinction. This should
have the following consequence: the estimation provided by θ̂∗obsn should a priori be a bit smaller

than the value 2.4324 provided by θ̂obs|X0|
. Indeed we obtain θ̂∗obsn = 2.4305. Using this value, we

deduce from (2.42) the confidence interval [θ̂∗min, θ̂
∗
max] of θ0 with asymptotic probability 95%,

where θ̂∗min := θ̂∗n − 1.96ĉ−1
2 , θ̂∗max := θ̂∗n + 1.96ĉ−1

2 , and

ĉ2 :=

n∑

k=0

(f ′(θ̂∗n,X
∗
k))

2

[
n∑

k=0

(f ′(θ̂∗n,X
∗
k))

2g(θ̂∗n,X
∗
k)

]− 1
2

.

Therefore, ĉobs2 = 40.6988, and

P

(
θ0 ∈

[
θ̂∗min, θ̂

∗
max

])
≃ 95%, θ̂∗obsmin = 2.3823, θ̂∗obsmax = 2.4787, (3.7)

which is of the same magnitude order as the confidence interval [2.3842, 2.4805] obtained with
the unconditioned process (see (3.5)). Let us predict the most dangerous evolution thanks to the
transition law of the conditioned process given by Proposition 2.2. Note that if one computes the
eigenvalues ρ and λ introduced in Proposition 2.5, one obtains ρ(θ̂∗obs) = 0.6664 and |λ(θ̂∗obs)| =
0.5570. It thus appears that the convergence of the epidemic process conditioned on non-extinction
at time k to the Q-process as k → ∞ is not very fast. As a consequence the study of the Q-process
only provides information about the behaviour of the disease spread in the case of an extremely
late extinction. First, we see thanks to Figure 3.1 that the simulations provided by the conditioned
process initialized by X0 = Xobs

1997, and where θ0 is estimated by θ̂∗obsn = 2.4305, are true to the real
observations on the period 1999–2011. Figure 3.2 is an example of one simulation on the period
2012–2040 of the conditioned process, for X∗

0 = Xobs
2011. It appears that the values of this simulated

trajectory are rapidly very small, and of course are never equal to 0 for d = 9 consecutive times.
For a finer prediction, we simulate 1000 realizations of this process from 2012 until 2050, with
X∗

0 = Xobs
2011. Moreover, for every n > 2012 and for each of the 1000 simulated values X∗

n, we make
one realization of the incidence Zn of infected cattle at time n, according to the law given by (3.2).
Figures 3.3 and 3.4 represent the yearly maximum, minimum, median, 2.5% and 97.5% quantiles
associated with the 1000 realizations of respectively, the incidence of cases and infected cattle, in
case of an extreme late extinction. It appears thanks to Figures 3.3 and 3.4 that the supposedly
“most dangerous” trajectories nevertheless do not reach high values and do not present a new
peak of epidemic.
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Figure 3: Figure 3.1: 10 simulations of {X∗
n}n initialized by Xobs

1997, and comparison with the
observations on the period 1998–2011. Figure 3.2: one simulation of {X∗

n}n initialized by Xobs
2011.

Figures 3.3 and 3.4: prediction, based on 1000 simulations of the conditioned process of the yearly
incidences of cases (resp. infected cattle) from 2012. 95% of the trajectories remain in the band
delimited by the blue dotted lines. All the simulations are done with the infection parameter
θ̂∗obs|X0|

= 2.4305.
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Conclusion. The methodology developed in Section 2 thus applies well here and enables not
only to confirm mathematically what is commonly accepted, namely that BSE is fading out, but
also to predict, with a very large probability, that the last BSE case will occur before 2027, and
that until the complete extinction of the epidemic in the population, there will be less than 31
cases to come. We obtain moreover from Figure 2.4 the order of magnitude of the number of
infected cattle in the population. In addition, the estimation of the infection parameter concludes
to the possible existence of a minor but non null infection source which is not of maternal type, and
which is very small (only around 3 newly infected animal per year and per infective) compared to
the main source of horizontal infection until 1988 due to protein supplements. Finally, the study
of the worst-case scenario shows that even in the case of an extreme late extinction of the disease
in the population, the incidence of cases will decrease quite rapidly to 0, with afterwards only 1
or 2 yearly cases occurring regularly but sparsely, with no appearance of a new peak of epidemic.
We have shown with this example that the methodology developed in Section 2 provides accurate
tools to study the decay phase of an epidemic under the current sanitary measures, which would
help to make new policy decisions. This evaluation is all the more relevant since it is obtained
not by simply computing what should most probably happen, but also by taking into account the
variability of many factors (infection, incubation, survival), and by studying the potentially most
dangerous evolution.
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