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Time scaling control for an underactuated biped robot

C. Chevallereau

Abstract— This paper presents a control law for the tracking of a
cyclic reference trajectory by an under-actuated biped robot. The robot
studied is a five-link planar robot. The degree of under-actuation is one
during the single support phase. The control law is defined in such a
way that only the geometric evolution of the robot is controlled, not the
temporal evolution. To achieve this objective, we consider a time scaling
control. But, for a given reference path, the temporal evolution during
the geometric tracking is completely defined and can be analyzed through
the study of the dynamic model. A simple analytical condition is deduced
that guarantees convergence towards the cyclic reference trajectory. This
condition implies temporal convergence after the geometric convergence.
This condition is defined on the cyclic reference path. The control law is
stable if the angular momentum around the contact point is greater at
the end of the single support phase than at the beginning of the single
support phase.

Index Terms— Biped robot, under-actuated system, control, stability,
walking, limit cycle.

I. INTRODUCTION

The reduction of the number of actuators of a walking robot is a
step towards simpler and cheaper robots. The suppression of the feet
and of the actuated ankle seems to be a reasonable way to simplify the
mechanical design of the robot. But a consequence is that only purely
dynamic walking can be achieved, i.e motion without mechanical
equilibrium (neither static nor dynamic). We choose to study a planar
biped with only four actuators, two on the haunch, two on the knees.
During the single support phase, the configuration of the robot is
defined by five independent variables but there are only four actuators.
Hence, the robot is under-actuated. This simplification in terms of
mechanics makes the design of the control law difficult.

One classical way to control a robotic system consists in two
steps. During the first step, an open loop joint reference trajectory
is designed. In the second step, a control law is defined to track
this reference trajectory. In such a context, a reference trajectory was
obtained by an optimization technique for the biped [1] and now a
new control law is proposed in this paper for the second step.

There exist various studies about the control of an under-actuated
biped. A first method is based on the definition of the reference
trajectory for

�
outputs (where

�
is the number of actuators), not

as a function of time but as a function of a configuration variable
independent of the

�
outputs. With such a control, the configuration of

the robot at impact time is the desired configuration but its velocities
can differ from the desired velocities. The convergence of the motion
towards a cyclic motion is studied numerically using the Poincaré
criterion [2], [3]. Another approach involves parameterized reference
trajectories. In that case, one derivative of the parameter is used as a
supplementary input, as it was shown in [4]-[7]. In [4], the parameter
is used to satisfy some constraints on the reaction between the feet
and the ground. In [6], a parameter involved in the zero dynamics is
used as a supplementary input.

In the present paper like in [2], [3], only the geometric evolution
of the robot is controlled, not the temporal evolution. To achieve this
objective, a set of reference trajectories parameterized by a virtual
time is considered. A time scaling control is defined as in [9] and
[10]. The second derivative of the virtual time is considered as a
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supplementary control input. Thus, we deal with a model for which
the number of inputs and the number of independent configuration
variables are equal. A non linear control law is defined to ensure the
geometrical tracking of the reference path. After the convergence of
this control law, the study of the dynamic model provides a relation
between the virtual time, its derivatives and the reference path; the
evolution of the virtual time can be analyzed. A condition to ensure a
convergence towards the cyclic reference trajectory is deduced from
this analysis. This condition is defined on the reference path. For
the optimal walking of a biped presented in [1] this condition is
naturally satisfied. The domain of attraction is also studied; its size
also depends on the reference path.

In section 2, the modelling of the robot and an optimal reference
trajectory are presented. In section 3, the control law is defined. The
evolution of the virtual time is analyzed in section 4 and a condition
of convergence is deduced.

II. THE ROBOT MODELLING

A. The robot

The biped we consider walks in a vertical xz plane. It is composed
of a torso and two identical legs. Each leg is composed of two links
articulated by a knee. The knees and the hips are one-degree-of-
freedom rotational joints. The walk is composed of single support
phases separated by impact phases. During the single support phase,
the vector �������	��
���
�
�����
�����
�������� (Fig. 1) describes the configura-
tion of the biped. Variables ��� and ��
 describe the stance leg and
variables ��� and ��� describe the swing leg.
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Fig. 1. The studied biped

All links are assumed massive and rigid. The lengths of the thighs
and of the shins are 0.4 m. However, their masses are different: 6
Kg for each thigh and 4 kg for each shin. The length of the torso is
0.625 m and its mass is 20 kg. These values correspond to the Robot
Rabbit characteristics [11]. The inertia of the links is also taken into
account. � is the vector of the torques applied at the hip and at the
knee joints.

B. Dynamic modelling

The walking studied is composed of single support phases sepa-
rated by instantaneous double support phases. In single support, the
dynamic model can be written as:

� ���	�	���� �!���"
$#�	�%�'&(� (1)

where
�

(5 x 5) is the inertia matrix, � (5 x 1) is the vector of
Coriolis, centrifugal and gravity effects and & is a (5 x 4) matrix. The
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number of torques is four but there are five independent configuration
variables. Thus, a relation independent of the torques can be written.
A simple way to find such a relation is to write the equilibrium of
the robot in rotation around the stance leg tip � . Because the motion
of the biped is planar, the angular momentum is perpendicular to the
motion plane. It is denoted � . The torque around � is produced by
the gravity effects only:

#� ����� ���	��
���
�� (2)

where � is the mass of the robot, � is the gravity acceleration, ��
 is
the abscissa of the contact point, ��� is the abscissa of the robot mass
center. This equation is characteristic of the under-actuated motion
of the robot. It can also be obtained from the dynamic model (1).
The matrix & is a ��������� full rank matrix. Thus there exist ���������
matrices denoted &�� such that &�� & ��� . For a special choice of
&�� , in fact, � can be calculated by:� � & � � ���	� #� (3)

When the swing leg � touches the ground at the end of single support,
an impact takes place. This impact is assumed instantaneous and
inelastic. This means that the velocity of foot j in contact with the
ground is zero after the impact. But during the impact the stance leg �
(with ���� � ) takes off. The velocities just before and just after impact,
denoted #�"! and #�$# respectively, are related by a linear equation [12]:

#� # �&% ���	� #� ! (4)

C. A cyclic reference trajectory

The proposed control will be illustrated for the tracking of a cyclic
trajectory. This cyclic trajectory has been obtained by an optimization
technique described in [1]. The motion velocity of the robot is �'�)(+*
and the integral of the norm of the torque is minimized according to
the actuators limits. The duration of a step is denoted , . The legs
swap roles from one step to the next, thus the optimal trajectory �.-
is such that:

�/-	�0, # �%�&1 �/-	�0, ! � (5)

where E allows to take into account the exchange of legs, � and
 designed respectively just after and just before the impact. The
optimal trajectory is known by numerical values for a given sampling
time. For each time instant between � and , , the joint configuration
�/-	�02�� , the joint velocity 354�687 9�:3;9 and the joint acceleration 3;<54�687 9�:3;9 < are
recorded. The motion is cyclic, thus:

�/-	�02 � =>, �%� �/-	�02��
where �@? 2A? , and = is a positive integer. This relation permits to
define the optimal reference trajectory for any time 2ABC� . Condition
(4) is satisfied for the impacts.D �/-	�0,�# �D 2 ��% ���/-��0, ! � � D �/-��0,E! �D 2 (6)

The stick diagram corresponding to the studied reference trajectory
is presented in Fig. 2.

For this optimal trajectory, the evolution of the angular momentum� can be calculated as a function of �.-	�02�� and 354�687 9�:3;9 and is denoted��- . ��-	�02�� �'& � � ���/-	�02�� � D �/-��02��D 2 (7)

��- is periodic, it is presented in Fig. 3 for a step.
For the studied reference trajectories, the abscissa of the mass

center is an increasing function. The single support begins with ���E?��
 and finishes with �	�FBG��
 . During the first part of the motion,
the kinetic momentum decreases (see equation (2)) and its initial
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Fig. 2. Two steps of an optimal motion
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Fig. 3. Angular momentum for one step of the optimal trajectory

angular momentum must be high enough to reach a configuration
such that �	�HBG��
 . Otherwise, the robot falls backwards [13]. The
gravity makes the robot slow down. The instant such that ��� ����

and hence 35I86.7 �.J :3;9 �&� , is denoted ,LK . After ,LK , �	�EBM��
 and the
angular momentum increases. The gravity is a help for the motion.
Thus, for any cyclic walking of a biped, the evolution of the kinetic
momentum is close to the evolution presented in Fig. 3 and never
crosses zero.

III. THE PROPOSED CONTROL LAW

The optimal trajectory is essentially composed of single support
phases. During these phases, the robot is under-actuated. The objec-
tive of the control law presented in this section is not to precisely
track the reference trajectory but only the associated path: only a
geometrical tracking is desired and a time scaling control [9] is used.

A. A set of reference trajectories

We consider a set of trajectories defined by:NO P � 3 �02��%� �/-	��Q$�02�� �#� 3 �02��%�R354�6.7 S+7 9�:0:3;S #Q
�� 3 �02��%�R354�687 S+7 9�:0:3;S �Q ��3;<54�687 S+7 9�:0:3;S < #Q 
 (8)

where Q is a function of time called ”virtual time”. Given Q$�02�� , a
unique trajectory is defined. Any trajectory defined by (8) corresponds
to the same path in the joint space as the optimal trajectory, but the
evolution of the robot with respect to time may differ. The optimal
trajectory belongs to the considered set of reference trajectories with:Q(��2 , #Q �T� , �Q(�&� . The desired configuration of the robot at time2 is the optimal configuration at time Q$�02�� . Thus, for all trajectories
defined by (8), the free leg tip does not touch the ground for any time 2
such that Q$�02��U? , . But at time 2 � such that Q$�02 � �%�C, , the height of
the free leg tip is zero and an impact with the ground takes place. As a
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consequence, an impact occurs for step = at time 2�� such that Q$�02����%�=>, . The configuration at impact is the same as the configuration of
the optimal trajectory � 3 �02���� �'�/-	� =>, � but the velocities can differ
from the optimal velocities. All the reference trajectories (8) satisfy
impact equation (4) and #Q is continuous at the impact time. This
property is obtained because (i) the optimal trajectory is cyclic and
takes into account the impact and (ii) the velocity after the impact is
linear with respect to the velocity before the impact (see equation (4)).
The second derivative �Q will be treated as a supplementary control
input. Thus, the control law will be designed for a system for which
the number of outputs and inputs are equal. The chosen outputs are
simply the five joint variables � . The control inputs are the four
torques � plus �Q .
B. The control law

The control law is a non-linear control law classically used in
robotics. But in order to obtain finite time stabilization around one
of the desired trajectories, the feedback function proposed in [3], [14]
is used. The tracking errors are defined with respect to the trajectories
belonging to (8): � 4 �02��%� �/-	��Q$�02�� �L
 � �02��#� 4 �02��%�R354�6.7 S+7 9�:0:3;S #Q@
 #� �02�� (9)

The desired behavior in closed loop is:

�� � �� 3 � �� 
 � (10)

where
�

is a vector of 5 components
���

(the indices � denotes the� 9	� component of a vector) with:�
� �T
 *'�����%� � #� 4 � ��
 � #� 4 � 
 � 
 *'�����%��� � ��
 � � 
 � (11)

and � ?���? � , � BC� , � � � � 4 � � �
 ! � *'�����%� � #� 4 � ��
 � #� 4 � 
 
 ! � ,� and � are parameters to adjust the settling time of the controller.
With this choice of close loop behavior, the error � 4 converges to
zero in finite time [3], [14].

Taking into account expression (8) of the reference trajectory,
equation (10) can be rewritten as:

�� �
D �/-	��Q$�02�� �D Q �Q ��� ��Q 
 #Q 
 �"
 #�	� (12)

with � ��Q 
 #Q 
 �"
$#�	�%� D 
 �/-	��Q$�02�� �D Q 
 #Q 
 � �� 
 �
The dynamic model of the robot is described by equation (1), thus
the control law must be such that:

� ���	� �
D �/-���Q$�02�� �D Q �Q ��� ��Q 
 #Q 
 �"
 #�	� � � �!���"
$#�	� � &(� (13)

Because the matrix
� ���	� is invertible, the desired closed loop

behavior is obtained if equation (13) is satisfied.
But the matrix & is not invertible. & is a (5 x 4) full rank matrix,

thus its pseudo inverse & # is such that & # & � %�� . By definition

of & # and &�� , the matrix

�
&��
&�#�� is a (5 x 5) invertible matrix.

Thus, equation (13) is equivalent to the following set of equations:

&���� � ���	� �/354�6.7 S+7 9�:0:3;S �Q ��� ��Q 
 #Q 
 �"
 #�	� � � �!���"
$#�	� � �&�
& # � � ���	� �/354�6.7 S+7 9�:0:3;S �Q ��� ��Q 
 #Q 
 �"
$#�	� � � �!���"
 #�	� �%� � (14)

We can deduce that, in order to obtain the desired closed loop
behavior, it is necessary and sufficient to choose:

�Q � !���� 7 � 7 45: �.7 S �"!S#� 4��$!45: #&% 7 4��"!4 :0:� � � 7 45: '�( 6 ) * ) +-, ,' *� � & # � � ���	� �/354�6.7 S+7 9�:0:3;S �Q ��� ��Q 
 #Q 
 �"
 #�	� � � �!���"
$#�	� � (15)

The matrix & is constant, thus & # and &�� are constant and can
be calculated off-line. With no singularity nor modelling error, the
control law ensures that � �02�� converges to �.-	��Q$�02�� � . With no initial
error, a perfect tracking of �.-	��Q$�02�� � is obtained.

The proposed control law defines �Q . The evolution of Q$�02�� can be
calculated (but not chosen) if Q$� �	� and #Q � �	� are known. We chooseQ$� �	�%�&� . #Q � �	� is defined to minimize the error on the joint velocity. �/
 #� � �	� 
 #�/-�� �	��
 
 �0
�#� � �	� 
T354�687 S+7 1 :0:3;S #Q � �	��
 
 . Thus, #Q$� �	� is such
that 3�23 !S+7 1 : �&� . We obtain:

#Q$� �	�%� #� � �	� 9 354�687 1 :3;S354�687 1 :3;S 9 354�687 1 :3;S (16)

1) The singularities for this control law: A singularity occurs if
&�� � ���	�+354�687 S+7 9�:0:3;S � � . This expression is not exactly the angular
momentum of the robot, which is defined by (3) but, for a trajectory
belonging to the set described by equation (8), the condition becomes:

& � � ���/-	��Q$�02�� � � D �/-���Q$�02�� �D Q �&�
which is exactly ��-	��Q$�02�� � �&�

Thus, for a perfect tracking of the reference path � �02��%� �.-	��Q$�02�� � ,
no singularity occurs if the angular momentum for the optimal motion��- is always far from zero (see Fig. 3). Consequently, no singularity
appears if the tracking errors are small enough.

IV. CONVERGENCE TOWARDS THE OPTIMAL TRAJECTORY

The control law ensures that the motion of the robot will converge
in a finite time towards a reference trajectory described by (8). During
the first step, �Q is calculated to zero error � 4 and the temporal
evolution of the robot depends on � 4 . As soon as the control has
converged, we have: � 4 �02��%�&� , � �02��%� �/-	��Q$�02�� � , #� �02��%� #�/-	��Q$�02�� 
 #Q � ,�� �02��%� #�/-	��Q$�02�� 
 #Q 
	�Q � and these properties will be maintained for all
subsequent steps. Due to the definition of the reference trajectory (see
section III-A), the impact does not introduce any tracking error � 4 .
The geometric evolution of the robot is known, the temporal evolution
of the robot can be studied. In the following section, the behavior
of the robot is studied after the convergence of the control law that
is when the robot follows a trajectory satisfying (8). The robot
velocity is #� �02�� � 354�687 S+7 9�:0:3;S #Q and the optimal velocity is 354�687 S+7 9�:0:3;S .
The difference between the two velocities is proportional to � � #Q 
E� .� is referred to as ”velocity difference”. The robot converges towards
the optimal trajectory if and only if #Q converges to � or equivalently
if and only if � converges to � .
A. Evolution of the virtual time

During the single support phase, the robot is under-actuated. Thus
it cannot follow any trajectory described by (8). The control law
imposes the path of the robot in the joint space. The gravity defines
the motion of the robot along this path. The motion of the robot, in
turn, can be deduced from the evolution of Q . To study the evolution
of Q , it is sufficient to analyze the angular momentum � . The angular
momentum � is linear with respect to the component of #� and the
real velocity vector #� �02�� is proportional to the optimal velocity vector
#�/-	��Q$�02�� � . Thus, the angular momentum can be expressed by:� �02��%����-���Q$�02�� � #Q (17)

Using this equation, the derivative of the angular momentum can be
written as:

#� �02�� � D ��-	��Q$�02�� �D Q #Q 
 � ��-	��Q$�02�� ���Q (18)



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 1, NO. 8, AUGUST 2002 4

But the derivative of the angular momentum depends only on the
configuration of the robot (see equation (2)). Since the configuration
of the robot is the optimal one � �02��%� �/-	��Q$�02�� � , we have:

#� �02�� �&��� ���	�	��� �02�� � 
 ��
��%����� ���	�����/-	��Q$�02�� � �L
 ��
�� (19)

We can also write equation (2) for the optimal trajectory. Thus, we
deduce that: #�%�02��%�R35I86.7 S+7 9�:0:3;S and equation (18) becomes:D ��-���Q$�02�� �D Q �"#Q 
 
M��� � ��-���Q$�02�� ���Q(�&� (20)

The ”velocity difference” was defined as: � � #Q�
)� , so its derivative
is #� � �Q . From equation (20), the behavior of the velocity difference
is:

#� ��
 35I86.7 S+7 9�:0:3;S��-���Q$�02�� � �"#Q ����� � (21)

Since �"#Q ����� � #Q � 
 #��� #�� � , equation (21) is rewritten as:

#�� � � � �� � � �%�T
 #��-���Q$�02�� ���-���Q$�02�� � (22)

��- is a periodic function, but ��- is discontinuous at the impact time.
So equation (22) can only be integrated over one step. For 2��E? 2A?2�� # � , the integration during step = gives:� 9

9�� #� ��*��� ��*�� � � � � ��*��� � � ��*�� � D * �T
 � 99�� #��-	��Q$��*�� ���-	��Q$��*�� � D * (23)

���� ��	 � � � � ����� 
 
 ����
 99�� ��
 � ��	 � ����-���Q � ��
 99�� (24)

To simplify the notation, the velocity difference at the beginning of
step = , � �02���� , is denoted � � . Using the initial condition, we have, for2��E? 2A? 2�� # � :� �02�� �
� � � � �"� � � � � ��� ��-�� �	���-	��Q$�02�� ��� 
 
M� (25)

this function includes a square root and is defined only if � �EB � K�� �
with: � K�� �(�T
 � ��� � 
�� ��-	�0,LK ���-�� �	��� 
 (26)

A typical evolution of � �02�� is presented in Fig. 4.
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Fig. 4. Typical evolution of the velocity difference ��������! for one step" For =>, ?MQH?C=>, �H,LK , the mass center of the robot is behind
the leg tip. Thus, the gravity makes the robot slow down, that
is ��-	��Q � decreases and thus 
 � 
 increases." For Q �&=>, � ,LK , 
 � 
 has a maximum denoted � K � .

� �02 �K �%�
� � � � �"� � ��� � ��� ��-	� �	���-��0,LK �#� 
 
M� (27)

" For ,LK � =>, ?MQH? � = �C����, , the mass center of the robot is
in front of the leg tip. Thus the gravity accelerates the motion,
that is ��-	��Q � increases and thus 
 � 
 decreases.

Just before impact = �M� , the robot velocity satisfies (8). Thus we
have:

#� �02 !� # � �%� D �/-	� � = ������, ! �D Q #Q$�02 !� # � �
After impact, the robot velocity is calculated by impact model (4):

#� �02 #� # � �%��% ��� � � = ������, ! � � #� �02 !� # � �
Since the discontinuity is properly taken into account in the cyclic
reference trajectory (6), we have #Q$�02 !� # � �%� #Q$�02 #� # � � . The value of #Q
is continuous during the impact and the velocity difference � is also
continuous.

The different steps can be taken into account using the following
iterative equation:� � # � �
� � � � ��� � ��� � ��� ��-�� �	���-	�0, �#� 
 
 � (28)

Remark: Minimum initial velocity for one step. The definition
of parameterized reference trajectories implicitly assumes that the
parameter is monotonic. In the case studied, the parameter is a virtual
time so it must increase. In fact, if Q decreases, this means that
the robot moves backwards. The evolution of Q is monotonic if
#QCBR� or � B 
 � . Since � �02�� is expressed by equation (25), � �02��
is always greater than 
 � when it is defined. Thus, the condition of
monotonicity is � �)B � K�� � . For the studied optimal trajectory, the
minimum velocity difference is � K�� � �T
��%$ � � .
B. Temporal convergence

With the proposed control for the robot and the gait studied, the
motion of the robot converges to the set of reference trajectories (8)
in a finite time that can be chosen to be less than the duration of one
step.

Theorem 1: The robot motion tends towards the optimal reference

trajectory if and only if � ��B � K�� � and &UI86.7 1 :I86.7 � :(' ? � .
Proof: Since I$<6 7 1 :I <6 7 S+7 9�:0: is a bounded periodic function, equation

(25) shows that � �02�� for 2��E? 2A? 2�� # � converges to � if and only if� � converges to � . Thus, it is necessary and sufficient to prove that� � converges to � asymptotically.
The error � � # � is related to the error � � by (28). Thus, by definition

of the absolute value of an expression, the following inequality is
satisfied:)
� � � � 
� 
 � 
 � � 
 � ��-�� �	� 
��-	�0, � 
+* � � # � � � * ) � � � � 
� � � 
 � � 
 � ��-	� �	� 
��-��0, � 

If I8687 1 :I8687 � : ? � , we have:, � � ��
� I86.7 1 : <I86.7 � : < 
 � 
 � � 
5I86.7 1 :I86.7 � : * � � # � ���* , � � � 
� I86.7 1 : <I86.7 � : < � � 
 � � 
5I8687 1 :I8687 � :

or ��
�
 � � 
 ��-�� �	���-	�0, � * � � # � ��� * � � 
 � � 
 ��-	� �	���-	�0, �
it can be deduced that: 
 � � # � 
 * 
 � � 
 ��-�� �	���-	�0, �
or: 
 � � # � 
 * � ��-	� �	���-��0, �-� � ! � 
 � � 
 (29)
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thus � ��� � when =���� .
If I86.7 1 :I86.7 � : B � , similar calculations give 
 � � # � 
�� I86.7 1 :I86.7 � : 
 � � 
 . If
 � � 
���&� , 
 � � 
���� when =	��� and the robot motion diverges.
Condition � ��B � K�� � ensures that Q$�02�� increases during the second

step. If I86.7 1 :I86.7 � : ? � , since � K�� �C?R� , the inequality � ��B � K�� � is
satisfied for all = , thus the function Q$�02�� increases for all 2ABC� .

1) Convergence ratio: The convergence of the control law can
also be shown using a Poincaré section as in [2] and [3]. Equation
(28) allows to draw easily the evolution of � � # � as a function of� � . The linearization of equation (28) around � � � � defines the
convergence ratio for one step around the cyclic motion. We have:� � # � � &AI86.7 1 :I8687 � : ' 
 � � . The lower the ratio &AI86.7 1 :I86.7 � : ' 
 , the faster the

convergence of the control law.
2) Maximum initial velocity: The study of the control law defines

some minimum initial velocity given by � K�� � . No maximum velocity
appears in this study. But if the initial velocity is too large, the
centrifugal forces are higher than the gravitational forces and a take-
off of the robot is observed. In the case studied, the maximum velocity
difference is � K�

� � �%$ �8�$� . Consequently, the domain of attraction
is defined by 
��%$ � � ? � � ?C�%$ �8�$� . The size of the attraction domain
is important for the practical application. The larger this domain, the
more robust the control law. This domain is also interesting to study
possible changes of velocity for the robot walking. In the definition
of the cyclic reference trajectory [1], a constraint on the minimal
value of the reaction force has been taken into account. A minimal
value of �/�+��� has been chosen. This choice has a direct effect on
the maximal initial velocity.

C. Simulation results

è & 3 ( r d / s )

- 1 . 4 2 - 1 . 4 - 1 . 3 8 - 1 . 3 6
- 1 . 2

- 0 . 8

- 0 . 4

0

0 . 4

I n i t i a l  s t a t e

q 3 ( r d )

Fig. 5. Phase plane evolution of the torso orientation during 15 steps

0 2 4 60 . 4
0 . 6
0 . 8
1

1 . 2

t ( s )

t &

Fig. 6. Evolution of �� during 15 steps

The behavior obtained in simulation for a large initial velocity
error is presented. The initial state of the robot does not belong to
the set of reference trajectories. During the first step, the tracking
error on the parameterized reference trajectory converges to zero. At
the end of the first step there is no configuration error but the cyclic

velocity is not yet reached. After this first step, the robot follows
the parameterized reference trajectory without error and converges
towards the optimal trajectory. In figure 5, the torso evolution is
shown for 15 steps in its phase plane. In figure 6 the evolution of
#Q is presented. #Q converges towards the function #Q �R� . The robot
motion converges to the cyclic reference trajectory. The increasing
and decreasing phases of the velocity difference � � #Q 
 � for each
step appear clearly. During the first step, the evolution of #Q is slightly
perturbed.

D. Scope of our method

Unlike the Honda Robot [15], the robot studied has no feet. The
proposed approach is developed especially for robots with point
contact with the ground. Methods based on the ZMP cannot be used
for such robots. There are many such devices (anchored so that they
cannot fall aside) and all belong to the category of under-actuated
systems in single support. They have only one passive joint. Our
control law will be tested on our prototype [11] during next year.
The extension to the spatial motion of a biped is straightforward if
the degree of under-actuation is still one, by considering the angular
momentum around the passive axis. The problem is more difficult
for a higher degree of under-actuation. To the author’s knowledge,
this problem is still open.

For a robot that has point contact with the ground, the introduction
of non-instantaneous double support phases in the walk is not very
interesting from an energetic point of view. Since the contact points
are fixed (the heel cannot take-off), these phases cannot prepare the
subsequent single support phases. However, these phases can help to
stabilize the motion because the robot is over-actuated during double
supports. The proposed control law can be extended without any
difficulty to the tracking of cyclic walking trajectories including finite
duration double support phases (not instantaneous). The proposed
strategy will be applied during single support phases only. An
important characteristics of the control is that no configuration error
exists at the end of single support phases. The distance between the
leg tips is the expected distance. During double support phases, the
robot is not under-actuated. Thus a classical control can be used.
The conditions of the theorem � ��B � K�� � and &AI86.7 1 :I8687 � : ' ? � become

sufficient conditions only (not necessary) because the double support
phase also permits to decrease the velocity difference.

This work is presently theoretical but the relation between the ref-
erence trajectories and the performance of the control law presented
in this paper is really important for practical applications. It has been
shown that the ratio I8687 � :I8687 1 : characterizes the convergence towards the
cyclic reference trajectory. This value is essential for the proposed
control law. The ratio I8687 �.J :I86.7 1 : is also very important because it limits
the admissible velocities and constitutes a rating of robustness.

The condition for convergence, the rate of convergence and the
minimal initial velocity difference are defined by very simple ana-
lytical expressions. Consequently, some bounds on these expressions
can be fixed during the design of optimal trajectories to obtain robust
optimal reference trajectories.

V. CONCLUSION

The robot studied is a planar biped mechanically simple, low
cost and under-actuated during the single support phases. A cyclic
reference trajectory satisfying the dynamic equations is assumed to be
known. The reference trajectory is composed of single support phases
separated by passive impacts. It is defined by position, velocity and
acceleration as functions of time.

An original control law for the tracking of a desired joint reference
trajectory has been proposed and analyzed. The degree of under-
actuation is compensated by one degree of freedom in the tracking



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 1, NO. 8, AUGUST 2002 6

of the reference trajectory because only a geometrical tracking is
defined, not a temporal tracking. When the control has converged,
the time evolution of the robot can be deduced from the dynamic
model and the properties of the reference path. It has been proved
that a stable tracking of the reference trajectory is obtained if and
only if the reference path is such that I86.7 1 :I86.7 � : ? � where ��- is the
angular momentum around the contact point with the ground for the
cyclic motion and , is the expected duration of the single support.

The proposed control law ensures only a geometrical tracking of
the reference trajectory. However, if the aforementioned property is
satisfied, the temporal tracking of the reference trajectory is naturally
obtained.

This result is very interesting because the condition can be easily
tested or used to modify a given reference trajectory. It has been
observed that, for the robot presented in this paper, the optimal
motion for an energetic criterion naturally satisfies the convergence
condition.
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