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RABBIT: A Testbed for Advanced Control Theory

C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E.R. Westervelt,
C. Canudas-de-Wit, and J.W. Grizzle

Introduction

RABBIT is a bipedal robot specifically designed to advance the fundamental understanding of con-

trolled legged locomotion. The motivation for studying walking robots arises from diverse sociological

and commercial interests, ranging from the desire to replace humans in hazardous occupations (de-

mining, nuclear power plant inspection, military interventions, etc.), to the restoration of motion in the

disabled (dynamically-controlled lower-limb prostheses, and FNS/FES), and the appeal of machines

that operate in anthropomorphic or animal-like ways (well-known biped and quadruped toys). From a

control design perspective, the challenges in legged robots arise from the many degrees of freedom in

the mechanisms, the intermittent nature of the contact conditions with the environment, and underac-

tuation. This article describes the development of our walking robot prototype, some key aspects of its

mathematical model, our progress in developing novel control strategies for this interesting hybrid sys-

tem, and some initial experiments. Supplemental material related to the article—such as photographs

of the mechanism, detailed model equations, and videos of the experiments—are available on-line at

[1].

Most robot control strategies are built around trajectory tracking, with the trajectories being gen-

erated either off-line during a path-planning phase, or on-line through a high-level motion planner.

Bipedal robots should clearly be an exception to this as stability is an overriding concern. The com-

bination of highly interactive dynamics, intermittent ground contact, and underactuation makes the

planning of asymptotically stabilizable, dynamic motions extremely difficult.

An impressive amount of technology has been amassed and specifically developed to build walking

robot prototypes. A quick search of the literature, see for example [2], reveals over a hundred walking

mechanisms built by public research laboratories, universities and major companies. Nevertheless,

conceptual control breakthroughs have not been keeping pace with the technological developments.

There is an amazing deficit in fundamental concepts in comparison to the amount of accumulated

technology. The result is a heavy reliance on heuristics, such as the zero moment point (ZMP) principle

[3], [4]. This heuristic oversimplifies the stability of the robot’s dynamics to a set of steady-state force-

balance equations, thereby reducing the notion of a stable motion to the naive and limited view of a

frozen dynamics. As a result, only slow motions may be achieved in a stable manner. Truly dynamic

motions, such as balancing, running or fast walking, are clearly excluded with this approach [5]. Indeed,

for a robot like RABBIT without feet, the ZMP criterion says that the robot is never stable when
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moving!

A canonical problem in bipedal robots is how to design a controller that generates closed-loop

motions, such as walking, running, or balancing, that are periodic and stable (i.e., limit cycles). Due

to the inherent underactuation and the changing contact conditions with the ground, this task is far

from being solved through existing control methods. New paradigms, concepts and control analysis

are thus needed to deal with this problem. There is also a need to build testbeds with a reasonable

level of complexity (degrees of freedom) so that these new concepts can be experimentally verified and

refined.

The RABBIT testbed shown in Fig. 1 is the result of a joint effort by several French research

laboratories, encompassing mechanical engineering, automatic control, and robotics [6]; the University

of Michigan joined in the control effort in late 1998, as the result of a sabbatical in Strasbourg. The

project is funded by the CNRS and the National Research Council. Initiated in 1997, its central mission

is to build a prototype for studying truly dynamic motion control. In particular, the mechanism was

designed to allow for high speed walking and running. RABBIT’s lateral stabilization is assured by

a rotating bar, and thus only 2-D motion in the sagittal plane is considered (loosely speaking, this is

the plane of forward motion, or said another way, it is the plane that divides the body into left and

right halves). Except for this limitation, the prototype captures the main difficulties inherent in this

type of nonlinear system: underactuation (no feet), variable structure (the state dimension varies as a

function of the motion phase), and state jumps (sudden state variations resulting from impacts with

the ground). To some extent, this mechanism can be seen as a hybrid system (or a system with a

switching structure) that is not everywhere locally controllable. Asymptotically stable motion is thus

only achievable through a detailed study of the full dynamics, including impact phases.

To-date, two major achievements of the project are the concept of virtual constraints (VC), and

the concept of hybrid zero dynamics (HZD). Virtual constraints are relations among the links of the

mechanism that are dynamically imposed through feedback control. Their function is to coordinate

the evolution of the various links throughout a step, which is another way of saying that they reduce

the degrees of freedom, with the goal of achieving a closed-loop mechanism that naturally gives rise

to a desired periodic motion. The mathematical model that describes the reduced-order mechanism

is called the hybrid zero dynamics; its hybrid nature is due to the same impacts experienced by the

full-order mechanism during locomotion. For a biped robot such as RABBIT that has one degree of

underactuation (difference between the number of degrees of freedom and the number of independent

actuators), the hybrid zero dynamics evolve on a two-dimensional invariant surface. The result is that

the stability of the full-order closed-loop system can be studied on the basis of a nonlinear, two-state

differential equation with jumps.

The concepts of virtual constraints and hybrid zero dynamics form a powerful analytical basis for
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designing periodic walking motions. These concepts can also be used in more complex tasks where the

walking speed varies during the robot’s motion, in balancing phases where the robot is dynamically

standing on one leg, and, probably, in the near future, in running as well. Moreover, these concepts

can be applied to a wide variety of robot designs and structures when the degree of underactuation is

equal to one; extensions to higher degrees of underactuation seem possible. This article is devoted to

describing the process we followed to design, build and control the biped robot, RABBIT. In particular,

we intend to underline the advances in control theory that this testbed has inspired.

Description of the Mechanism

RABBIT was conceived to be the simplest mechanical structure that is still representative of human

walking. The requirement of mechanical simplicity naturally led to restricting its motion to the

sagittal plane, with lateral stabilization being achieved by external means. However, many of the

other design decisions that went into the prototype are less obvious, involving numerous tradeoffs to

achieve dynamic performance, scientific objectives, simplicity, and robustness at a cost compatible

with a university budget. This section gives an overview of the key design decisions that went into the

conception and construction of RABBIT. Photographs of the mechanism are available at [1]. Some of

the components are specified in Table I.

How RABBIT came to have five links and no feet. Work conducted in recent years on

passive bipedal walking has shown that it is possible to design three-dimensional, anthropomorphic

robots that can walk stably down a sloped surface without any actuation whatsoever [7], [8]! One

must therefore reflect on the essential role of each link in the design of a walking mechanism, and, in

particular, one must ask the question of whether a given joint needs to be actuated or not.

Numerous studies on controlled biped robots have shown that actuation of the hips and knees is

essential for providing locomotive power to the robot for walking on a flat or upwardly sloped surface,

and for ensuring clearance of the swing leg during a step. However, the case for including actuation at

the ankles is less clear. From the start of the RABBIT project, we had the goal of demonstrating that

actuated ankles are not absolutely necessary for the existence of asymptotically stable locomotion,

and thus RABBIT has no feet. Without actuated ankles, lighter feet can be designed, which is more

efficient for walking and running. If the robot can still be shown to achieve stable walking or running

over a wide range of speeds on flat ground, then actuation of the ankles must be justified on the

basis of improved adherence with the walking surface, better adaptability over non-smooth surfaces,

or for ameliorating the shocks associated with the feet impacting the ground. Finally, without feet, the

ZMP heuristic is not applicable, and thus underactuation must be explicitly addressed in the feedback

control design, leading to the development of new feedback stabilization methods.

For the RABBIT project, we wanted a robot that could run as well as walk. Since we also sought a

robot that could perform anthropomorphic gaits, RABBIT had to have at least a hip and two knees,
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giving a minimum of four links. For the robot to be able to carry a load, a torso was necessary, making

a total of five links. RABBIT is thus a seven degree of freedom mechanism, with four degrees of

actuation. In the upright position, with both legs together and straight, the hip is 80 cm above the

ground and the tip of the torso is at 1.425 m. Table II specifies the lengths, masses and inertias of

each link of the robot.

Why RABBIT walks in a circle and has wheels orthogonal to its sagittal plane. Without

active lateral stabilization [9], a biped walker can still be designed to maintain its lateral stability by

means of “laterally pointing feet”, that is, bars or plates attached at the leg ends that extend laterally

and prevent the robot from tipping over sideways [10], [7], [8]. But in the case of a runner, where a

flight phase exists (i.e., ballistic motion—no contact with the walking surface), some means is required

to maintain lateral stability. In order for this external stabilization device not to limit the displacement

of the robot, the choice of a circular path was made. Hence, our biped robot is guided around a central

column by means of a radial bar; see Fig. 2. The same solution for lateral stabilization has already

been implemented at the MIT LegLab; see for example [11], [12]. The robot is attached to the radial

bar via a revolute joint that is aligned with the axes of the hips, and it is attached to the central

column with a universal joint.

With this lateral support device, the robot’s sagittal plane is tangent to a sphere centered on the

universal joint. As explained in Fig. 3, it follows that the distance between the stance leg end and

the central column must be allowed to vary with the position of the hip. To permit frictionless radial

displacement of the supporting leg end, wheels directed in the frontal plane (i.e., normal to the sagittal

plane) are used. In this way, no mobility of the leg end exists in the sagittal plane of the robot, and

thus, with a sufficiently long radial bar (we use one three meters in length), we can accurately model

the motion of the robot tangential to the sphere as that of a perfectly planar robot.

Choice of actuation. Specifying the actuation is a key step in the design process of a robot. This

includes the choice and sizing of actuation technology. The use of electric motors allows for simpler

control, higher bandwidth, and easier construction than hydraulic or pneumatic drives. The choice of

the type of electric motor usually comes down to quality measures, such as power to weight ratio [13],

[14]. We chose DC motors with Samarium Cobalt magnets, though nearly identical performance in

terms of torque density and peak torque could have been had with brushless motors. A gear reducer

and belt were used to connect the motors to each of the four actuated joints. The motors for the knees

were mounted as close as possible to the hips in order to minimize the inertia of the legs; this decreases

the coupling in the dynamic model as well as the required motor torques.

How simulation aided the design process. Once the motor technology was selected, sizing was

determined on the basis of dynamic simulations and off-line trajectory optimization [15], [16]. Indeed,

in order to check if the proposed structure would be able to walk and run, a simulation study was
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conducted. Feasible trajectories were computed, along with the torque needed to achieve them in open

loop. One difficulty is that in both flight and single support, our robot is underactuated. During the

single support phase, the degree of underactuation is one (five degrees of motion freedom due to the

constraint that the stance leg end does not slip, and four actuators), while during the flight phase,

the degree of underactuation is three (seven degrees of motion freedom and four actuators). Hence,

even though a given motion of the robot may be kinematically realizable, it may not be dynamically

feasible [17], so a kinematic analysis combined with an inverse torque model is definitely not sufficient

for determining possible walking and running motions.

From a global perspective, we would like the robot to be able to walk and run efficiently, in the

sense that the energy cost for a given motion will be as small as possible. Thus, dynamic optimization

[18] was used to compute optimal walking and running trajectories, assuming nominal values for the

mechanical parameters as well as for the motor characteristics, specifically their torque and speed

limits. Reaction forces at the leg ends were calculated to check that all contact conditions were met

(the stance leg remains in contact with the walking surface and does not slip). These calculations

allowed us to evaluate for each joint the torque-speed curve as a function of walking and running

speed, as illustrated in Figs. 4 and 5. By carrying out this analysis for a wide range of walking

and running speeds, we were able to determine the total operating range required of each motor, and

thereby arrive at its required size. These specifications were then matched to off-the-shelf components,

both for the motors and the gear reducers. In the end, Rabbit was designed to be able to walk with

an average forward speed of at least 5 km/h and to run at more than 12 km/h.

Impacts, shocks and how to damp them out. An impact or shock occurs in the majority of

cases when the swing leg contacts the ground. The only way to avoid a shock is for the velocity of the

leg end to be zero at the contact moment. Shocks have obvious deleterious effects on the durability

and life time of a mechanical system.

The most affected components are the bearings, gear-reducers, belts and sensors. It is therefore

indispensable from the beginning to plan for a source of damping in the system in order to prevent the

transmission of large shocks to the most sensitive parts. The magnitude of the shock is determined

by the nature of the walking surface (hard, soft, absorbing) and the material used at the end of the

leg. The frontal wheels on the leg ends were therefore constructed of a stiff, shock absorbing, polymer.

The belts between the motors and the gear boxes were designed to provide additional protection.

Bandwidth and sensing. The speed of response or bandwidth of each axis of the robot is deter-

mined by the transfer function of the mechanical powertrain (motors, gears, and belts) and the power

amplifiers that drive each motor. In the case of RABBIT, we have approximately a 12 Hz bandwidth

in the mechanical portion of the axes and approximately 250 Hz for the amplifiers.

Because RABBIT is an experimental apparatus, we installed a maximal sensor set. The four actuated
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joints of the robot are each equipped with two encoders to measure angular position; velocity must

be calculated from position. One encoder is attached directly to the motor shaft, while the second is

attached to the shaft of the gear-reducer; this configuration allows any compliance between the motor

and the joint angle to be detected, though subsequent experimentation has shown that the connection

is adequately rigid for control purposes. Identical encoders are used at each joint. The mechanism

has three additional encoders. One measures the angle of the torso with respect to a vertical axis

established by the central column around which RABBIT walks. The second measures the horizontal

(surge) angle of the stabilizing bar with respect to the central column; this allows the distance travelled

by the robot to be computed. The final encoder measures the pitch angle of the stabilizing bar, which

allows the height of the hips to be measured; in single or double support, this information is redundant,

but when both feet are off the ground, as in running, it is not.

The robot was initially equipped with two force sensors, one at the end of each leg, to measure the

tangential and normal components of the forces exerted at the contact of the robot and the ground.

These turned out to be insufficiently robust, and were replaced with contact switches. The support

leg and double support phases are easily distinguished through the positions of the contact switches.

Estimating contact moment through swing leg height as determined by the position measurements is

not sufficiently accurate.

Mathematical Model

RABBIT is modeled as a planar robot, consisting of five rigid links with mass, connected through

rigid, revolute joints. Actuation is provided at the hips and knees, but not at the leg ends. This

section describes the mathematical model used for studying walking and running of this mechanism

on a flat surface. The key point is that the model is necessarily hybrid, with the dynamics changing

as a function of the contact conditions of the legs with the ground.

A walking motion consists of successive phases of single support (meaning the stance leg end is

touching the walking surface and the swing leg is not) and double support (both legs are in contact

with the walking surface), while running consists of successive phases of single support and flight (there

is no contact with the walking surface); see Fig. 6. For the control designs considered here, the double

support phase of walking will be modeled as instantaneous, and a rigid impact will be used to model

the contact of the swing leg with the ground; these two assumptions simplify the analysis. For a

human with feet, the double support phase represents approximately 20% of a walking cycle [19] and

the contact is compliant. Control with a non-instantaneous double support phase has been considered

in [20], and compliant contact models have been studied in [21]. However, the experimental section will

show that our simplifying assumptions of an instantaneous double support phase and a rigid contact

model are reasonable for a robot with point feet.

The different phases of walking and running naturally lead to distinct mathematical models, with
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the logic for switching among them determined by the number of legs in contact with the ground and

the nature of that contact (contact conditions depend on whether or not a foot is slipping, rebounding,

etc.). For walking with an instantaneous double support phase, the mathematical model of the biped

consists of two parts: the differential equations describing the system during the single support phase,

and an algebraic model of the impact.

Seven DOF model. We begin with the most general model of the robot, and then point out special

cases as we proceed. A planar mechanism consisting of five rigid links connected via revolute joints

in a tree structure with no contacts or constraints has seven degrees of freedom (DOF): a degree of

freedom associated with the orientation of each link, plus two DOF associated with the horizontal and

vertical displacement of the center of mass within the sagittal plane. The state vector of the dynamical

model is thus 14-dimensional: there are seven configuration variables required to describe the position

of the robot, plus the associated velocities. A convenient choice of configuration variables is depicted

in Fig. 6, namely, qe consists of the two relative angles between the torso and femurs, the two relative

angles at the knees, the angle of the torso with respect to the vertical, and the cartesian position of

the hips, (xH , yH); the velocity is denoted by q̇e. These choices are arbitrary and other choices are

common; for example, it is sometimes convenient to attach the cartesian coordinates at the center of

mass instead of the hips, or determine all of the angles with respect to a common reference frame.

The model is easily obtained with the method of Lagrange, which consists of first computing the

kinetic energy and potential energy of each link, and then summing terms to compute the total kinetic

energy, K, and the total potential energy, V [22], [23], [24]. The Lagrangian is defined as L = K − V,

and a second order dynamical model immediately follows from Lagrange’s equation

d

dt

∂L

∂q̇e

− ∂L

∂qe

= Γ,

where Γ is the vector of generalized forces and torques applied to the robot. This leads to a model of

the form

De(qe) · q̈e + Ce(qe, q̇e) · q̇e + Ge(qe) = Be · u + Ee(qe) · F ext, (1)

where, De is the inertia matrix, the matrix Ce contains Coriolis and centrifugal terms, and Ge is the

gravity vector; the matrices Be and Ee are derived from the principle of virtual work and define how

the joint torques, u, and external forces, F ext, enter the model. The reader is invited to download the

model at [1].

The joint torques are relatively straightforward to model as they consist of the motor torques plus

friction in the gear drive. The external forces, on the other hand, represent the forces on the leg ends

due to intermittent contact with the walking surface, and how one models them is dependent on the

assumed contact conditions. One approach is to model the normal forces on the legs as a compliant

contact with the ground via a nonlinear spring-damper [25], [26], and the tangential forces as dynamic



8 PAPER NUMBER CSM-02-038 REVISION 08/JUNE/2003 IEEE CONTROL SYSTEMS MAGAZINE

friction [27], [28], [29]. The advantages of this model are that the dynamics are continuous, consisting

of ordinary differential equations, and the double support phase is easily addressed. However, there

are important drawbacks. For one, a walking surface is usually quite stiff (almost non-compliant),

which leads to integration problems for the differential equations. Secondly, no one really knows how

to choose reasonable parameters for a compliant contact model, so even though the model seems

realistic, it may not be. Finally, the overall model becomes high order and is extremely difficult to

analyze.

An alternative model for the external forces due to contact with the ground assumes a rigid contact.

This assumption gives a simple algebraic relation for computing the ground reaction forces. In our

opinion, the rigid contact model is best for control law design and analysis, while a compliant model is

very useful for verifying that the resulting control law is not too dependent on the idealized assumptions

used in the rigid contact model; see [21].

Five and three degree of freedom models. Consider the robot in single support on a flat,

rigid surface, as in Fig. 6 (a). There are obviously no forces on the swing leg end. If we assume that

the stance leg end is stationary (i.e., in contact with the walking surface and not slipping), then the

external forces acting on it are easily determined. Indeed, let (x1, y1) denote the cartesian coordinates

of the stance leg end (see Fig. 6),[
x1

y1

]
=

[
xH − L2 sin(q1 + q32) − L1 sin(q1 + q32 + q42)
yH + L2 cos(q1 + q32) + L1 cos(q1 + q32 + q42)

]
, (2)

and assume that single support corresponds to (x1, y1) = (0, 0). Computing the accelerations, (ẍ1, ÿ1),

and equating them to zero allows one to solve for the leg reaction forces as explicit functions of (qe, q̇e)

and the joint torques: [
F ext

1

F ext
2

]
= R(qe, q̇e, u); (3)

this is the vector of forces necessary for the contact constraint to be maintained [30].

The set of equations (1) and (3) completely specifies the model in single support if the stance leg end

is stationary. When solving the equations, one monitors the forces in (3) to ensure that the vertical

force is upward, F ext
1 > 0, and the ratio |F ext

2 /F ext
1 | is less than the assumed static friction coefficient.

Otherwise, the robot is either in flight, so the reaction forces are zero, or slipping, so a dynamic friction

model is required.

When designing a controller for walking or running, one normally seeks a solution with no slipping

of the stance leg in single support. In this case, it is clear that the hip position is constrained by

the angular positions, and thus the robot has only five degrees of freedom. Letting q denote the five

angular coordinates depicted in Fig. 6 (a), one can either eliminate the constrained variables from

(1), or directly apply the method of Lagrange to the reduced set of coordinates to derive the lower

dimensional model

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu. (4)
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The reaction forces necessary for this model to be valid are still given by (3), with the hip position

(xH , yH) obtained from (2). This form of the model is much easier to use and analyze for control

design in the single support phase. We note that the degree of underactuation in (4) is equal to one.

If the robot is in double support and appropriate contact hypotheses are made, then a similar

analysis can be performed to arrive at a three degree of freedom model (the two additional constraints

on the other leg eliminate two more degrees of freedom). In this case, the robot has one degree of over

actuation, which can be advantageous for control design [20], [31].

Rigid impact model and leg swapping. An impact occurs when the swing leg end touches the

walking surface. For control design, we have used a rigid contact model. It is assumed that: the impact

is instantaneous; the impulsive forces due to the impact may result in an instantaneous change in the

velocities, but there is no instantaneous change in the positions; and, the contact of the swing leg

end with the ground results in no rebound and no slipping of the swing leg, and the stance leg lifting

from the ground without interaction. This results in the double support phase being instantaneous.

Under these assumptions, the seven degree of freedom dynamic model (1) can be used to determine an

expression for q̇+, the vector of angular velocities just after impact, in terms of the configuration of the

robot at impact and q̇−, the vector of angular velocities just before impact [32], [33]. The post-impact

velocity is then used to re-initialize the model for the next step. Since the model (4) made a choice of

the stance leg, a change of coordinates is necessary since the former swing leg must now become the

stance leg and vice versa. It is convenient to include this coordinate swap as part of the impact map.

The final result is an expression for x+ = (q+, q̇+) in terms of x− = (q−, q̇−), which is written as

x+ = ∆(x−). (5)

It is possible to derive a similar model that allows a non-trivial interval of time for the double support

phase.

A hybrid model of walking. Walking is modeled as the alternation of phases of single support

and double support, where the double support phase is instantaneous, and no slipping occurs during

the single support phase. Letting x = (q, q̇), the dynamic model (4) and the rigid impact model

(5) together yield a nonlinear system with impulse effects [34]. Assume that the system trajectories

possess finite left and right limits, and denote them by x−(t) := limτ↗t x(τ) and x+(t) := limτ↘t x(τ),

respectively. The model is then:

ẋ = f(x) + g(x)u, x− /∈ S,
x+ = ∆(x−), x− ∈ S,

(6)

where

S := {(q, q̇)| y2(q) = 0} (7)

is the set of points where the swing leg touches the ground. In simple words, a solution of the model is

specified by the single support model until an impact occurs. Impact occurs when the state attains the
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set S (swing leg touches the ground), which represents the walking surface. At this point, the impact

with the ground results in a very rapid change in the velocity components of the state vector. The

impulse model, ∆, compresses the impact event into an instantaneous moment in time, resulting in a

discontinuity in the velocities. The ultimate result of the impact model is a new initial condition from

which the single support model evolves until the next impact. In order for the state not to be obliged

to take on two values at the “impact time”, the impact event is described in terms of the values of the

state just prior to impact at time t−, and just after impact at time t+. These values are represented

by x− and x+, respectively. A representation of the model as a simple hybrid system is shown in Fig.

7.

An Interesting Property of the Model, or, The Role of Gravity in
Walking

RABBIT has no actuation at the leg ends. So, what causes the robot to rotate about the support

leg end and thus advance forward in a step? The answer is gravity! Let σ be the angular momentum

of the robot about the stance leg end, which is assumed to act as a pivot (i.e., it does not slip and

remains in contact with the walking surface). The angular momentum balance theorem says that the

time derivative of the angular momentum about a fixed point equals the sum of the moments of the

external forces about that point. Since the motor torques act internally to the robot, their contribution

to the moment balance is zero, leaving only gravity:

σ̇ = M · g · xc, (8)

where, xc is the difference between the x-coordinate of the stance leg end and the x-coordinate of the

center of mass of the robot, M is the total mass of the biped, and g is the gravity constant. In this

regard, RABBIT functions just like a passive bipedal walker [7], [8].

So what is the role of the actuators at the hips and knees? The actuators directly act on the shape

or posture of the robot, thereby changing the position of the center of mass, and, thus, the moment

arm through which gravity acts on the robot. In addition, the posture of the robot has a large effect

on the energy lost at impact [35] and whether or not the required contact conditions at the leg ends

are respected. The challenge is to bring all of this together in a manner that ensures the creation of a

desired asymptotically stable, periodic motion.

What would change if the robot had feet and actuation at the ankle? Then, the additional torque

could potentially be used to allow for faster locomotion and even larger basins of attraction [36]. On

the other hand, the control authority of the ankle is limited by the contact constraints of the foot

and the ground [5], and thus a sophisticated control law design is required to take full advantage of

an actuated foot. Three of the most technologically advanced biped robots today, namely, Honda’s

Asimo, Sony’s SDR-4X, and the University of Munich’s Jogging Johnnie, are walking on the basis
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of the ZMP heuristic, which imposes a conservative walking motion where the support foot remains

flat on the ground throughout the stance phase. This is done specifically to avoid dealing with the

underactuation that occurs when the foot rotates about the toe in an anthropomorphic gait; see Fig.

8 (as motivation for allowing toe roll, it is interesting to note that analytical work in [37] shows that

plantarflexion of the ankle, which initiates toe roll, is an efficient method to reduce energy loss at

the subsequent impact of the swing leg). Our work on point feet forces us to deal directly with this

underactuation; indeed, conceptually, a point foot corresponds to continuous rotation about the toe

throughout the entire stance phase (e.g., walking like a ballerina). A more complex hybrid model of

walking with feet is also indicated in Fig. 8.

What’s Behind Stable Walking: The Hybrid Zero Dynamics

To properly control RABBIT, we need a control theory for a class of systems with both continuous

and discrete dynamics, and fewer actuators than degrees of freedom; in addition, we want asymptot-

ically stable orbits rather than equilibrium points, and we have multiple objectives, such as walking,

running, and balancing. In this section and the next we attempt to summarize in as non-mathematical

terms as possible the key control ideas we have developed for walking and balancing, while still con-

veying a sense of what it takes to achieve provably stable control solutions; the reader wishing a

complete mathematical treatment is referred to more technical publications at appropriate places. All

of our stability claims will be local as global stability probably does not make much sense for bipedal

mechanisms. The literature on biped robots is quite extensive. The reader seeking a general overview

would do well to start with [38], [3], [39], [40], in that order. Some control-oriented works that we have

found especially illuminating, because of their emphasis on analytical aspects of walking, running, and

balancing are [41], [42], [43], [44], [36], [9], [45], [46]. For an insightful analysis of another system that

exhibits limit cycles and impacts, see [47].

Time-invariance, or, self-clocking of periodic motions. The controller designs that we propose

for walking do not involve trajectory tracking. Why? We mentioned one reason in the Introduction;

here is another reason. In a controller based upon tracking, if a disturbance affects the robot and

causes its motion to be retarded with respect to the planned motion, for example, the feedback system

is obliged to play catch up in order to regain synchrony with the reference trajectory. Presumably,

what is more important is the orbit of the robot’s motion, that is, the path in state space traced out

by the robot, and not the slavish notion of time imposed by a reference trajectory (think about how

you respond to a heavy gust of wind when walking). A preferable situation, therefore, would be for

the robot in response to a disturbance to converge back to the periodic orbit, but not to attempt

otherwise re-synchronizing itself with time. One way to achieve this is by parameterizing the orbit

(i.e., the walking motion) with respect to (a scalar-valued function of) the state of the robot, instead

of time [48], [49], [50]. In this way, when a disturbance perturbs the motion of the robot, the feedback



12 PAPER NUMBER CSM-02-038 REVISION 08/JUNE/2003 IEEE CONTROL SYSTEMS MAGAZINE

controller can focus solely on maintaining limb positions and velocities that are appropriate for that

point of the orbit, without the additional burden of re-synchronizing with an external clock. As a

bonus, the controller is time invariant, which helps analytical tractability.

Feedback as a mechanical design tool: the notion of virtual constraints. Let us start by

considering something more familiar and less complicated than a biped. Fig. 9 (a) depicts a planar

piston in an open cylinder. The system has one DOF, which means that a model can be given in terms

of the angle of the “crank”, θ1, and its derivatives. Fig. 9 (b) represents the planar piston without

the constraints imposed by the walls of the cylinder. The system now has three degrees of freedom

involving three coupled equations in the angles θ1, θ2, θ3, and their derivatives. One degree of motion

freedom is imposed on the three degree of freedom model through two constraints: (a) the center of

the piston lies always on a vertical line passing through the rotation point of the crank and (b), the

angle of the piston head is horizontal throughout the stroke. Mathematically, this is “equivalent” to

imposing
0 =
π =

L1 cos(θ1) + L2 cos(θ1 + θ2),
θ1 + θ2 + θ3,

(9)

where L1 is the length of the crank, and L2 is the length of the second link (due to the existence of

multiple solutions, one must choose the solution corresponding to the piston being above the crank).

These two constraints can be imposed through the physical means of the cylinder walls shown in Fig.

9 (a), or, through the use of additional links as shown in Fig. 9 (c).

If the system is appropriately actuated, the constraints can also be asymptotically imposed through

feedback control. To see this, assume that the joints θ2 and θ3 are actuated. Define two outputs in

such a way that zeroing the outputs is equivalent to satisfying the constraints; for example

y1 =
y2 =

L1 cos(θ1) + L2 cos(θ1 + θ2),
θ1 + θ2 + θ3 − π.

(10)

The constraints will then be asymptotically imposed by any feedback controller that asymptotically

drives y1 and y2 to zero; for the design of the feedback controller, one could use computed torque, PD

control, etc.

The outputs (10) are expressed as implicit functions of the actuated joint angles. Sometimes it is

more convenient to express them in an explicit form. As long as L1 < L2, the constraints (9) can also

be re-written as explicit functions of the crank angle, θ1, per

θ2 =
θ3 =

π − θ1 − arccos(L1

L2
cos(θ1)),

arccos(L1

L2
cos(θ1)),

(11)

leading to the alternate output functions

y1 =
y2 =

θ2 − (π − θ1 − arccos(L1

L2
cos(θ1))),

θ3 − arccos(L1

L2
cos(θ1)).

(12)

We have used both explicit and implicit forms of the constraints when controlling the biped.
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When constraints are imposed on a system via feedback control, we call them virtual constraints.

The planar three DOF piston of Fig. 9 (b) can be virtually constrained to achieve asymptotically

the same kinematic behavior as the one DOF piston in Fig. 9 (a); the resulting dynamic models are

different because the constraint forces are applied at different points of the 3 DOF piston. The virtual

constraints can be imposed through the virtual constraints given by (9) or those in (11). In the case of a

robot, the advantage of imposing the constraints on the mechanism virtually (i.e, via feedback control)

rather than physically (i.e, through complicated couplings between the links or the environment), is

evident: the robot can then be “electronically reconfigured” to achieve different tasks, such as walking

at different speeds, going up stairs, and running.

Constraint forces and torques. There are forces or torques associated with imposing virtual

constraints on a system [51], just as there are with physical constraints [30]. To see this, suppose that

the outputs (12) have been successfully zeroed by some feedback controller. Then y(t) ≡ 0 implies

that all of its derivatives are identically zero as well. Since the torques show up in the accelerations,

the interesting equation is ÿ(t) ≡ 0. Upon substitution of the model equations and the constraints, and

after verifying that certain matrix inverses exist, one arrives at an expression for the torque required

to maintain the constraints as a function of the unactuated variable, θ1, given by

u = u∗(θ1, θ̇1). (13)

Since u∗ is also the asymptotic value of any feedback controller that asymptotically imposes the

constraints, making it small over a given motion is clearly related to efficient walking, running or

balancing. For more details, see the Appendix.

Swing-phase control of RABBIT through virtual constraints. Consider now our 5-link,

4-actuator, planar, bipedal walker, RABBIT, in single support. Several different constraint choices

have been explored, with the common element being that four independent outputs are regulated

since the robot has four actuators. In [21], a largely Cartesian view is taken. The choice was made

to regulate the angle of the torso, the height of the hips, and the position of the end of the swing leg

(both horizontal and vertical components). Over each step of a normal walking gait, the horizontal

position of the hips is monotonically increasing. Hence, along a step, the desired torso angle, hip

height and swing leg end position were expressed as functions of the horizontal position of the hip.

These four functions were chosen so that, as the hips advance, the torso is erect at a nearly vertical

angle, the height of the hips rises and falls during the step, the swing leg advances from behind the

stance leg to in front of it, tracing a parabolic trajectory. In [52], [53], [54], the desired motion of

the robot is described in terms of the evolution of relative joint angles. The four outputs are selected

to be colocated with the actuators: the two relative angles of the torso with the femurs and the two

relative angles of the knees. Two additional choices have been used for the monotonic parameter. The

angle of the virtual support leg, that is, the line connecting the stance leg end to the hips, is clearly
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monotonic over a step whenever the horizontal component of the hips is monotonic; see Fig. 10. The

angle of the stance tibia with respect to the ground seems to be monotonic as well over most walking

gaits. Consequently, the four relative angles can be virtually constrained as explicit functions of the

angle of the virtual support leg, or the support tibia.

Mathematically, four outputs of the form

y = h0(q) − hd(θ(q)) (14)

are constructed. The function h0 specifies four independent quantities that are to be controlled, while

θ(q) is a scalar function of the configuration variables that is independent of h0 and is monotonically

increasing along a non-pathological step. The function hd(θ(q)) specifies the virtual constraints as a

function of θ(q). The condition y ≡ 0 imposes the constraints. One may interpret the quantity θ(q)

as playing the role of time and the function hd as taking the place of a desired time trajectory; in

this way, the evolution of the posture or “shape” of the robot will be “synchronized” to an internal

variable.

It is hoped that the general principles of how a control law can be constructed are starting to become

clear; all of the details can be found in [53]. What probably remains unclear at this point is: how

the impacts come into the picture; how to determine if a given set of constraints leads to a walking

motion, and if it does, is the walking motion stable; how to design the constraints so that a walking

motion is efficient in a certain sense; and how to ensure that contact conditions at the leg ends are

met. These issues are addressed through the hybrid zero dynamics HZD.

The hybrid zero dynamics: a low-dimensional description of the closed-loop, hybrid

mechanism. Once again, let us begin the discussion with the planar piston instead of the biped, and

for definiteness, let us consider the three DOF piston of Fig. 9 (b), along with the set of outputs (12).

The dynamics of the system compatible with the outputs being identically zero, that is, the constraints

(11) being perfectly respected, is called the zero dynamics [51]. In the case of the planar piston, it is

clear that the zero dynamics has one degree of freedom. This example illustrates again the important

and well-known principle that an N degree of freedom mechanical system plus M (independent and

holonomic) constraints leads to an N − M degree of freedom mechanical system [22]. When the

constraints are applied virtually instead of physically, the zero dynamics describe the exact behavior of

the closed-loop system whenever the system is initialized so that the constraints are exactly satisfied,

and the applied feedback controller maintains the outputs exactly zeroed; otherwise, the zero dynamics

describe the asymptotic behavior of the closed-loop system as long as it is initialized sufficiently well

that the feedback controller manages to drive the outputs asymptotically to zero.

These same general ideas are true of the biped when walking, with one important difference: the

biped model is hybrid, since it has a swing phase and an impact phase; consequently, the notion of

the zero dynamics must be extended to allow for impacts. This situation has been analyzed carefully
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in [53], leading to the notion of the hybrid zero dynamics. The basic idea is the following: Let Z be

the surface of all points in the state space of the swing phase model of the robot corresponding to the

outputs being identically zero. Because of the manner in which we have chosen the virtual constraints,

this is a two dimensional surface. The swing phase zero dynamics are the dynamics of the swing

phase model restricted to Z; that is, subject to the virtual constraints being exactly imposed. Since

the swing phase model has five DOF and there are four constraints, the swing phase zero dynamics

has one DOF. It follows that the swing phase zero dynamics may be written as a pair of first order

equations, and, with a little help from the angular momentum balance theorem, they can be shown to

have the special form

θ̇ =
σ̇Z =

1
I(θ)

σZ ,

Mgxc(θ),
(15)

where σZ is the angular momentum of the robot about the pivot point of the stance leg, restricted to

Z, and I(θ) plays the role of an inertia.

Since every solution of the zero dynamics corresponds to a solution of the five degree of freedom

model, we must consider what happens at the moment when the swing leg touches the ground in

the corresponding solution of the five degree of freedom model. At the contact instant, the impact

model must be applied, resulting in a new initial condition of the five DOF model. If this new initial

condition lies outside of Z, then the swing-phase zero dynamics cannot be used to compute the next

phase of the solution to the model. If, on the other hand, the initial condition resulting from the

impact model lies in Z, then a solution of the zero dynamics can be continued, and the evolution of

the high degree of freedom robot is exactly and completely described by the one degree of freedom

model; see Fig. 11. In the latter case, where impacts in Z are mapped back into new initial conditions

in Z, the constraints are said to be invariant under the impact map. Achieving this requires that extra

care be taken when the constraints are designed [53]; from now on, we assume that this has been done.

The hybrid zero dynamics consist of the zero dynamics of the swing phase in combination with the

impact map, yielding a one degree of freedom hybrid system. Upon defining z = (θ, σZ), the hybrid

zero dynamics are written as

ż = fzero(z), z− /∈ S ∩ Z,

z+ =

[
θ+

δzero · σ−
Z

]
, z− ∈ S ∩ Z,

(16)

where fzero is given by (15) and δzero is a constant that is computed from restricting ∆ to Z. This one

DOF hybrid model is of the form (6).

Determining the existence and stability of limit cycles. The hybrid zero dynamics are

extremely valuable as an analytical tool, and, as will be seen in the next subsection, also as a feedback

design tool. Determining the existence and stability properties of limit cycles is typically a very difficult

task for a system as complex as RABBIT. The standard application of Poincaré’s method requires
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knowledge of the solutions of the closed-loop system between two nine-dimensional surfaces; see Fig.

12 (a). Since the system is very nonlinear, the required computations can only be done numerically

and do not yield much insight for feedback design. However, thanks to the hybrid zero dynamics, the

stability analysis can be rigorously decomposed into two parts [49], [53]: first making sure that the

feedback controller asymptotically drives the outputs to zero (see Fig. 12 (b)), which is a relatively

easy thing to do, and then determining the existence and stability of limit cycles in the hybrid zero

dynamics; see Fig. 12 (c)-(d). (References [49], [53] assume that the errors are driven to zero in finite

time [55]; when the virtual constraints are invariant under the impact map, it seems that sufficiently

fast exponential convergence is enough, though such a result has not been published.) Since the hybrid

zero dynamics are two dimensional, a complete stability analysis is possible; indeed, the Poincaré map,

ρzero, can be computed in closed form [53]. We present the main results of doing this in two steps:

a) there exists a periodic solution to the hybrid zero dynamics if, and only if, δ2
zero �= 1 and

δ2
zero

1 − δ2
zero

Vzero(θ
−) + V max

zero < 0, (17)

where

Vzero(θ) := −
∫ θ

θ+
I(ξ)Mgxc(ξ) · dξ

V max
zero := max

θ+≤θ≤θ−
Vzero(θ).

b) there exists an exponentially stable periodic solution if and only if (17) holds and

0 < δ2
zero < 1. (18)

These formulas are mentioned for two reasons: i) they provide simple analytical expressions that can

be profitably used in feedback design; and ii), because the stability conditions involve inequalities,

they are robust to a certain amount of modelling error. Fig. 13 depicts a typical limit cycle induced

by the controller.

A physical interpretation of the necessary and sufficient conditions for the existence of an exponen-

tially stable orbit involves the essential interplay of kinetic and potential energy that is taking place

throughout a step. Analyzing this may help to make the inherent robustness more clear [56]. The zero

dynamics (15) are Lagrangian, with kinetic energy Kzero := 1
2
σ2

Z = 1
2

(
I(θ)θ̇

)2
, and potential energy

Vzero(θ) [53]. (Note that the kinetic and potential energy terms of the zero dynamics are NOT the

kinetic and potential energy terms of the robot model restricted to the zero dynamics manifold! As

they have been written here, they do not have units of energy. This could be accomplished by scaling

both terms by I(θ−), for example.) Between impacts, the total energy Kzero + Vzero is conserved along

solutions of the zero dynamics [22]; it follows that energy may be gained or lost only at impacts. This

property is similar to the energy conservation in the case of an inverted pendulum subject only to
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gravity. For the studied gait, the angular momentum, σZ , is always positive. In the beginning of the

single support phase, the center of mass of the robot is behind the support leg end. Thus, by (8)

and (15), gravity initially decreases the angular momentum of the robot, and Vzero(θ) increases. If the

angular momentum is not large enough, then the angular momentum goes to zero while the center of

mass is still behind the support leg end, and, due to gravity, the robot falls backward. If the initial an-

gular momentum is sufficiently large to overcome the potential energy barrier corresponding to V max
zero ,

the center of mass will move past the support leg end, inducing the reverse exchange of energy, until

the swing leg impacts the ground, see Fig. 14. An impact induces a change in the total energy in two

ways. A constant change of Vzero occurs at impact, from Vzero(θ
−) at the end of the step to Vzero(θ

+) at

the beginning of the step; see Fig. 14. The angular momentum changes also, through multiplication

by δzero. From this, one can compute an angular momentum just before impact, σ∗
Z , that results in

the conservation of the total energy during the impact, so that periodicity is enforced. Condition (17)

stipulates that δzeroσ
∗
Z must be large enough to overcome the barrier posed by gravity V max

zero . For the

periodic orbit, the total energy has a constant value Vzero(θ
−) + 1

2
(σ∗

Z)2. Since the angular momentum

is scaled by δzero at impact, the same is true of the difference between the angular momentum and its

value on the periodic orbit, given by σ−
Z − σ∗

Z . Thus, if angular momentum decreases at impacts, then

it converges to σ∗
Z . Exponential stability is thus ensured by condition (18).

From the above analysis, it follows that once an exponentially stable orbit exists for the model of

the robot, modeling errors will tend to destroy it only if they are sufficiently large to drive the angular

momentum of the robot to zero before its center of mass is above the support leg end. Interpreted

loosely, deliberate forward gaits, that is, gaits with a periodic motion that has significant angular

momentum reserve at the point of maximum potential energy, will be quite robust; modelling error

will significantly alter the average walking speed before it destabilizes the robot.

Designing a good walking motion. We have developed two approaches to designing virtual

constraints that result in good walking motions, in the sense that they are energetically efficient,

require low peak torques, respect all required contact conditions, and achieve a desired average walking

speed. One method uses directly the hybrid zero dynamics, while the second only uses them indirectly

to verify closed-loop stability. The direct method is presented first.

In [53], Bézier polynomials are used to parameterize the output (14), yielding

y = h0(q) − hd(θ(q), a), (19)

where a is a vector of real coefficients. The Bézier polynomials make it very easy to satisfy the

invariance condition, so that the hybrid zero dynamics are guaranteed to exist. A cost function of the

form

J(a) :=
1

sl(T )

∫ T

0
||u∗(t, a)||2dt, (20)
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is posed, where T is the time to complete a step, sl(T ) corresponds to step length, and u∗(t, a) is the

vector of constraint torques that result from zeroing the output (19); see (13). A sequential, quadratic

programming package is used to minimize J(a) with respect to a, subject to a number of optimization

constraints: the existence of an asymptotically stable orbit, i.e, inequalities (17) and (18); a desired

walking rate; adequate contact conditions; maximum deflection of stance leg and swing leg knees;

and actuator limitations. Whenever the optimization problem has a feasible solution, the result is an

asymptotically stable, closed-loop system that meets natural kinematic and dynamic constraints. We

have used this to design controllers that achieve asymptotically stable walking for a wide range of

speeds [57].

The indirect method is based on first computing a periodic solution to the model equations that

is optimal with respect to energy consumption, for example, and respects actuator limitations and

contact conditions [58]. In a second step, output functions are constructed, based on the idea of

virtual constraints, that are zero along the periodic solution [21]. The periodicity of the solution

automatically guarantees that the resulting virtual constraints will be invariant under the impact map

and that condition (17) is satisfied. Furthermore, for all trajectories analyzed to-date, condition (18)

is also satisfied, which guarantees closed-loop stability.

An alternative design method. A quite different way to go from a periodic solution of the

model equations to a time-invariant controller has been developed in [56]; see also [59], [60]. Consider

a periodic solution of the model as a curve in the configuration space of the robot for a single step.

The curve has a beginning and an end determined by the double support condition. Introduce a

parameter, s, that is similar to arc-length in that s = 0 at the beginning of the curve and s = 1 at

the end, with intermediate values of s parameterizing the posture of the robot, qd(s), as it progresses

from the beginning of a step to the end. The condition q(s) − qd(s) defines the virtual constraints to

be imposed by the control law. The freedom in how s itself evolves as a function of time, from its

initial value of zero to its final value of one, can be used to augment the four joint torques (already

available for control) with the acceleration s̈; this makes the system now look like it is fully actuated:

five degrees of motion freedom and five controls. Consequently, a dynamic state feedback controller

can be found that drives a vector of five outputs, y = q(s) − qd(s), asymptotically to zero.

An advantage of this approach is that a monotonic parameter that replaces time is automatically

produced, so the control designer does not have to find one a priori. From a theoretical perspective,

this idea may be especially useful for applying the method of virtual constraints to mechanisms with

many more degrees of freedom than RABBIT. A potential disadvantage is that, since the evolution of

s must be determined from the model, it is unclear how sensitive the closed-loop system may be to

model uncertainty. Further work may clarify this issue. We will experiment with this method on the

prototype.
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Initial Walking Experiments Under HZD Control

A controller based on virtual constraints and the hybrid zero dynamics (HZD) was implemented

on RABBIT, and it led to successful walking on the first try! To our knowledge, this is the first

implementation of an analytically derived control law on a bipedal robot with actuated knees and

torso, as well as the first time such a robot has successfully walked on the very first attempt. The first

two sets of walking experiments that we have completed and the experimental set-up are described

here.

Experimental environment. To implement the HZD control algorithm, a dSPACE system was

selected as the real-time control platform. With dSPACE, run-time software is created by automatic

translation and cross-compiling of SIMULINK diagrams, allowing the controller software to be devel-

oped in a high-level language. In addition, dSPACE provides low-level computation, digital-to-analog

and analog-to-digital conversion, as well as a user interface, all in a single package. This obviates

the need for low-level I/O programming and facilitates debugging. The control computations were

performed with a sample period of 1.5 ms (667 Hz).

During the first set of experiments, RABBIT’s workspace was limited to approximately 120◦ of

rotation about the central tower, and the lateral support bar was set at 1.5 m. This allowed RABBIT

to take at most nine or ten steps, which is not enough to demonstrate stability of the walking motion.

This will be addressed in the second set of experiments.

The system model versus reality. Modelling error is a concern with any control scheme. As

RABBIT is a complex mechanism, there are many sources of error between the idealized Lagrangian

dynamics and the actual system. These include:

• friction in the motor-belt-gear reducer system that is used at each joint, as well as friction at the

universal joint of the tower that supports the power electronics and the dSPACE system;

• unmodeled flex dynamics caused by cabling, torsion of the gears in the joints, and flexing of the

counter-balance bar;

• parameter inaccuracies due to poor estimates of link inertias and the additional inertia of the

tower that contains the dSPACE module and power electronics;

• non-rigid impacts due to compliance at the end of the leg and in the walking surface; and

• digital implementation issues such as sampling effects, quantization, velocity estimation from

position measurements.

Our control designs have not explicitly taken into account any of these potential problems. Hence,

will the closed-loop system be sufficiently robust to these sorts of uncertainties? To the extent pos-

sible, this was verified through a detailed simulation model of the robot where many of these model

imperfections were applied to the robot in closed-loop with the HZD controller. For example, it was

easy to check that friction in the knee and hip joints could be overcome with a robust design of the
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controller used to zero the outputs. Simulation work reported in [21] showed that significant changes

in the impact model may result in the robot’s average speed changing, but asymptotic stability was

apparently maintained. An exhaustive study of the effects of changing all mass and inertia parameters

by ±20% showed a similar result, in that, while the average walking speed and peak torques generally

changed, stability was always preserved. The same was true for applying a constant force at the hips

to simulate static friction in the universal joint of the central tower. These simulation studies sup-

ported our qualitative analysis of the closed-loop stability conditions (recall Fig. 14) and gave us the

confidence to proceed with the initial control experiments even prior to completion of the parameter

identification phase of the project.

Controller selection and implementation. As described previously, the hybrid zero dynamics

are a finitely parameterized, low-dimensional description of the closed-loop dynamics during walking.

This enables us to tune the walking motions for efficiency, while respecting kinematic constraints, such

as minimum hip height and step length, and dynamic constraints, such as walking rate and stability.

We designed an HZD controller with a step length of 0.39 m and an average forward velocity of 0.75

m/s. An animation of the designed walking motion is available at [1]. The controlled variables are

the relative knee angles and the relative angles between the torso and femurs. In other words, the

controlled variables h0(q) correspond to the actuated variables.

For all of the reported experiments, the outputs were zeroed by independent, joint-level, PD con-

trol; see Fig. 15. This was feasible due to the high gear ratio of 50:1 between the motors and the

links [61, p.85]. The use of a decoupled controller for zeroing the outputs had a number of benefits.

Between experiments, RABBIT would be secured with the feet off the ground, since, without power,

the mechanism would obviously fall. It turned out that a set of gains for the PD controllers could

be found that resulted in stable operation for all three possible contact conditions: double support

(initial pose on the ground), single support (normal walking) and flight (robot secured in the air).

Finally, swing leg touchdown was determined by measuring the forces applied to the leg ends. When

touchdown was detected, the robot’s coordinates were permuted so that the same controller could be

used independently of whether the inside or outside leg was the current stance leg.

The first walking experiment. Prior to placing the robot on the ground, basic implementation

issues such as measurement conventions, amplifier gains, and tuning of the PD controller gains were

resolved. The experiment presented here was the first experiment where RABBIT was placed on the

ground and required to take more than one step forward or backward.

The experiment began with the robot elevated in the air. The links were servoed to a nominal

open stance position; the state feedback controller was then activated and the robot was placed on the

ground. The closed-loop system is asymptotically stable in double support with zero forward velocity

(θ̇ = 0). To initiate walking, an external force was applied to RABBIT by means of pulling on a rope
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attached to its hip. Application of this force, while crude in the way it was applied, was a means to

provide the robot with an initial forward velocity sufficient to enter the basin of attraction of the 0.75

m/s controller. The velocity of the hips at the point of maximum hip height for the first step was

approximately 0.38 m/s.

To our delight, once walking was initiated, RABBIT continued to walk until the limited workspace

was exhausted; this corresponded to 1.89 m or five steps. To prevent RABBIT from walking into a

wall, an external force was applied; one of us simply caught RABBIT’s torso in his hand, bringing

the robot to a stop. Again, this was crude, but effective. We immediately arranged for room in the

lab and repeated the experiment, this time allowing the robot to travel 3.4 m or nine steps. While

this limited range of motion does not validate the stability of the closed-loop system, our simulation

experience tells us that, if the mechanism is going to fall, it usually does so by the third step or so.

Videos of the both experiments are available at [1].

For the initial experiments, the robot was equipped with sensors to measure the tangential and

normal components of the forces exerted on each leg end. The support leg and swing leg are therefore

easily distinguished, as are the single support and double support phases; this facilitates the logic

required for leg commutation. Fig. (16) shows typical normal forces recorded during our walking

experiments. The flat sections correspond to the leg being off the ground. From these plots, it can

be seen that the double support phase is very short (less than 20 ms), indicating that a rigid impact

model seems to be appropriate. After several experiments, the force senors degraded; apparently they

were unable to withstand the forces due to impact. This degradation can be seen in the drifting zero

values recorded for the forces.

A nice bonus: reverse is built into the controller. When RABBIT is under HZD control,

an additional feature that may be a bit unexpected at first glance is the ability to make RABBIT

walk backward simply by pushing on the torso; a video of this is available at [1]. This ability arises

because the hybrid zero dynamics are parameterized by the robot’s unactuated state, θ. By applying

a sufficiently large force on the robot’s torso opposite to the direction of forward walking, θ decreases;

recall that we only have to overcome the moment arm due to gravity in order to stop the robot’s

center of mass from rotating about the stance leg end, which stops the robot from advancing. The

feedback controller still enforces the virtual constraints, so RABBIT nicely raises the swing leg and

walks backward! We believe that the ability to stop the robot’s forward motion by simply applying a

force on the torso also increases the safety of performing experiments on RABBIT.

The second walking experiment. In this experiment, the robot has been moved to a laboratory

that permitted us to use a 3 m bar. The force sensors have been removed and contact switches installed

at the leg ends for the purpose of detecting impact with the ground. A nominal controller was designed

to achieve a walking speed of 0.7 m/s. The robot was first raised off the floor and servoed to a nominal
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open stance position; the state feedback controller was then activated and the robot was placed on

the floor. To initiate walking, one of us simply gripped the robot’s torso and gave it a push forward.

This provided adequate forward velocity to attain the basin of attraction of the closed-loop system.

The robot completed more than 70 steps before being deliberately stopped; for a video, see [1]. The

speed of the robot was deliberately varied by adjusting the angle of the torso (increased forward lean

provides increased walking speed). Figs. 17 and 18 report typical time-traces for the joint angles and

the commanded torques while the torso angle is held constant. It is seen that the virtual constraints

are being accurately enforced. From the video, it is clear that the closed-loop system consisting of the

robot and the HZD controller has achieved asymptotically stable walking.

Initial lessons learned. From a control design point of view, it was very important that algorithm

development started at least three years before the robot was ready for testing. This gave us time to

consider new ideas and lay the foundation for a completely new theory of walking for this particular

biped. Had the robot been ready sooner, there would have been too much temptation to just try stuff,

leading to a hack-attack approach to control design.

The experiments have confirmed that our basic approach to control design yields a remarkably

robust closed-loop system. The domain of attraction of our designed limit-cycles is sufficiently large

that a simple push on the torso suffices to initiate walking. The friction present in the joints due to

the gear reducers consumes over 15% of the power applied through the motors. However, this has

almost no effect on the walking motion as long as the virtual constraints are adequately imposed via

feedback. We saw on the mechanism that the virtual constraints could be very accurately imposed

through decentralized PD control plus friction compensation (recall Fig. 17). The control law is

relatively insensitive to parameter variations in the single support model; in an experiment to be

reported elsewhere, we increased the mass of the torso by 10 Kg; stable walking was maintained,

though the averaging walking speed was perturbed. For a given set of virtual constraints, Fig. 14

and formula [53, Eq. 55] suggest that average walking speed should vary significantly with the amount

of energy lost at impact. Consequently, unless the impact model is accurate, the achieved walking

speed will be different than the designed walking speed, and this is what we observed. Furthermore,

the laboratory floor is concrete with channels covered by metal grates. We have noted differences in

walking speed as the robot passed over the grates. More effort is needed to improve the impact model

used in our work.

RABBIT and the overall experimental facility have performed exceptionally well in the initial round

of tests. Of course, improvements are always possible. The 3 m lateral stabilization bar needs to be

stiffer; we plan to either shorten the bar or build another one of other material. In addition, the inertia

of the bars and cables is significant and needs to be taken into account in the model of the robot.

RABBIT’s shins were designed to be very close together in order to better approximate a planar robot;
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in hind sight, they are maybe too close as vibrations from hard impacts can cause them to knock into

one another; an easy solution is to widen the hips by 2 or 3 cm. A new set of force sensors will be

investigated for the leg ends. Doing leg commutation on the basis of contact switches proved to be

quite feasible, but it lacks the flexibility that can be achieved when more than binary information is

available; also, it is more difficult to improve the impact model without a measurement of the forces

on the leg ends. At one point in our experiments, the encoder that measures the orientation of the

torso with respect to the vertical, as established by the lateral stabilization bar, began to rotate with

respect to the bar. This drift had a significant destabilizing effect on the closed-loop system. Other

means of establishing the orientation of the torso need to be investigated.

Beyond Walking at a Fixed Rate

There is of course more to bipedal robot control than just walking or running at a fixed rate. How

to start and stop the robot, how to change walking speeds, and how to transition between walking

and running come immediately to mind. In addition, motions which reverse directions present special

challenges and motivate the study of periodic balancing. We very briefly discuss how our work extends

to some of these tasks.

Walking at multiple speeds. The work presented on the virtual constraints and the hybrid zero

dynamics provided analytical control solutions for stable walking at a fixed rate. In [57], we have

extended these results to design a controller that takes the robot from a standing position, through

a range of walking speeds, and back to a standing position, while providing local stabilization and

disturbance rejection. The controller designs are based on two basic ideas: switching control and PI

control. The switching controller design is motivated by an idea presented in [62]; the main additional

challenge is that the domains of attraction of any two of the individual HZD-controllers may have an

empty intersection, and hence a transition controller was required to steer the robot from the region

of attraction of one HZD-controller into the region of attraction of a second, nearby, HZD-controller.

This provided for walking at multiple discrete speeds. Walking at a continuum of speeds was obtained

via an event-based PI controller. The novelty here is that the controller uses integral action to adjust

the parameters in an exponentially stabilizing HZD-controller. Parameter adjustment takes place just

after impact (swing leg touching the ground). The analysis of the controller is based on the restricted

Poincaré map of the hybrid zero dynamics.

On a closely related though slightly different topic, [54] has investigated methods to enhance the

rate of convergence to a limit cycle. The analysis, which is also based on the Poincaré map, has shown

that both torso angle and step length adjustments are effective for accomplishing this.

Balancing. Balancing consists, to some extent, in viewing the robot in single support as a multi-

link inverted pendulum. The goal is to find a feedback control law that induces a non-trivial, limit

cycle in the high-dimensional inverted pendulum. We may also wish to move from one limit cycle
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to another, possibly by just changing the period or the amplitude of the motion, or both. The key

difficulty is that the admissible limit cycles are not completely free: they must respect the constraints

imposed by the physics of the workspace and contact forces at the leg end. These restrictions disqualify

feedbacks leading to the natural homoclinic orbits (orbits with constant energy levels), that may induce

inadmissible motions out of the joint workspace.

What makes this control problem quite different from walking is that ground impacts are not consid-

ered in balancing. At first glance, this may seem to simplify the problem, but, upon further reflection,

this is not the case. The difficulty lies in the fact that the class of stable, periodic motions that can be

achieved by balancing seems to be much smaller that what can be achieved through allowing impacts

[35].

The balancing problem has been studied in [63]. Employing the concept of virtual constraints

developed earlier, an output of the form y = h0(q) − hd(θ(q), a) is formed and zeroed by a feedback

controller. In this case, the resulting zero dynamics is no longer hybrid because there are no impacts.

The balancing problem may be restated as finding a set of parameters a that induce a stable orbit. As

opposed to walking, where the parameters were held constant during a step, here, a is viewed as an

additional control variable (dynamic state feedback) that can be adjusted on line so as to match an

exo-system that describes the desired orbit. This idea, which is still under investigation, also allows

for the possibility of moving from one orbit to another in a stable manner.

Conclusions

The theoretical and experimental work completed so far has proven that it is possible to achieve

asymptotically stable walking on a flat surface without an actuated ankle. This may be a first step

toward the realization of bipedal walking robots that are mechanically simpler and less costly than

existing robots.

The underactuation of the robot in single support led us to a complete re-thinking of the control

problem. Part of the solution was to track “trajectories” that were parameterized by the state of

the robot instead of by time; more precisely, these should be called invariant manifolds or surfaces

and not trajectories. In this regard, the notions of virtual constraints and hybrid zero dynamics were

developed. This led to a control design that simplified the demands placed on the robot, since it did

not have to re-synchronize with time after a perturbation, as well those placed on the control designer,

by reducing analysis and design to a two-state model. The stability of the closed-loop system was

analytically verifiable through easy computations.

The work conducted in the context of this project has shed light on many things that were previously

unknown to us. These include the important role of gravity in generating walking motions for a robot

such as RABBIT, and how to quantify stability in terms of the tradeoff of potential energy and kinetic

energy throughout a periodic orbit. This deeper physical understanding of the behavior of the robot
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under closed-loop control led us to experiment with simpler feedback implementations than those used

in the analysis, and this led to satisfying experimental results: both because the robot walked well

and because we understood the stability mechanism of the controllers. The properties of the invariant

surfaces that are created by our controllers were exploited in the development of feedback strategies

for changing walking speeds and to accelerate the rate of convergence to the periodic orbit. These

strategies will be evaluated soon on the prototype.

We plan to extend our work to more complex problems, such as walking on an uneven surface

and avoiding obstacles, both of which require a modification of the periodic walking cycles that we

have studied so far. We also plan to study three dimensional walking, with one or two degrees of

underactuation. And, finally, we will not limit ourselves to only robots without feet, but will eventually

consider integrating foot placement and ankle torque control with various aspects of walking, running

and balancing.
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Appendix

Consider the model (6) and output (14). Differentiating twice yields

ÿ = L2
fh(x) + LgLfh(x)u,

where, Lfh(x) := ∂h(x)
∂x

f(x), L2
fh(x) :=

∂Lf h(x)

∂x
f(x), and LgLfh(x) :=

∂Lf h(x)

∂x
g(x). It is easy to check

that since (6) comes from (4), the decoupling matrix, LgLfh is given by ∂h
∂q

(q)D−1(q)B, and thus only

depends on the configuration variables. If the decoupling matrix is invertible on a given open set O
[51], then several things hold:

• Z := {x ∈ O | h(x) = 0, Lfh(x) = 0} is a smooth submanifold; that is, the constraint surface is

nicely regular.

• Setting ÿ = 0 yields the torques necessary to identically null the outputs, and hence the torques

necessary to satisfy the constraints:

u∗(x) = −(LgLfh(x))−1L2
fh(x).

• Let Ψ(y, ẏ) be such that ÿ = Ψ(y, ẏ) has a desired evolution. Then this is achieved on the model (6)

by

u(x) := (LgLfh(x))−1
(
Ψ(h(x), Lfh(x)) − L2

fh(x)
)
.

Remark: For many interesting choices of the output, all of the indicated matrix inversions can be

avoided in the computation of the control.
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Component Model and/or Size Manufacturer
DC motors RS420J Parvex SA, Dijon, France
Motor current drives RS420 RTS10/20-60 Parvex SA, Dijon, France
Incremental Encoders (motors) C4, 250 counts/rev Parvex SA, Dijon, France
Absolute Encoders (joints) CHM 506 P426R/8192/16 Ideacod, Strasbourg, France

8192 counts/rev
Incremental Encoders (central tower) GHM5 Ideacod, Strasbourg, France
Gear Reducers HFUS-2UH, size: 25 Harmonic Drive Technologies,

ratio: 1/50 Peabody, MA, US
Real-time Controller DS1103 dSpace, Paderborn, Germany

400 MHz PowerPC 604e DSP

TABLE I
Components used in RABBIT.
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femur tibia torso
length in m 0.4 0.4 0.625
mass in kg 6.8 3.2 12.0

inertia in kg m2 0.47 0.20 1.33

TABLE II
Experimentally measured parameters for RABBIT.
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Fig. 1. Photo of RABBIT. The robot was designed to facilitate the development of theoretically-sound control algorithms
for walking, running and balancing.
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Fig. 2. RABBIT Walking in a Circle, While Looking Like a Planar Biped. The radial bar is attached at the robot’s hip,
via a revolute joint. The bar only provides lateral stabilization; it does not prevent the robot from falling forward,
backward or down. The counter balance can be used to offset the weight of the lateral stabilization bar or to modify
the effective gravitational field. Not shown are the dSPACE module and power electronics that are mounted on top
of the central tower.
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1

2

Fig. 3. Top View of RABBIT Walking in a Circle. To see why wheels in the frontal plane are necessary on the leg ends,
consider the robot when the hip is in position 1, and the stance leg is in front of the robot, as marked by the solid
dot. The leg end must lie on the robot’s sagittal plane, which is tanget to the circle, and thus the leg end is not on
the circle. However, as the robot advances to point 2 where the hips are now over the stance leg end, the leg end
now must touch the circle as shown by the un-filled dot. This mobility is supplied by a wheel that is directed normal
to the sagittal plane of the robot. A related but less significant effect is associated with changes in the height of the
hip; this bit of geometry is left to the reader.



34 PAPER NUMBER CSM-02-038 REVISION 08/JUNE/2003 IEEE CONTROL SYSTEMS MAGAZINE

0 1 2 3
0

1000

2000

3000

4000

Torque (Nm)

V
el

oc
ity

 (
re

v/
m

in
)

Knee Motors

0 1 2 3
0

1000

2000

3000

4000

Torque (Nm)

V
el

oc
ity

 (
re

v/
m

in
)

Hip Motors

Fig. 4. Plot of Speed Versus Torque for an Optimal Walking Motion. The average speed is 0.75 m/s; the gear ratio is
50:1.
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Fig. 5. Plot of Speed Versus Torque for an Optimal Running Motion. The average speed is 1.2 m/s; the gear ratio is
50:1.
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(a) (b) (c)

Fig. 6. Different Contact Conditions with the Walking Surface. The robot is shown in (a) single support, (b) double
support, and (c) flight phases. The torso is leaned backward in single support to show a positive q1. To avoid
clutter, the coordinate labels have been spread out over the single support and flight phases, even though they apply
to all three phases. The length of the tibias will be denoted by L1 and the length of the femurs by L2.
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ẋ = f(x) + g(x)u

ϕ(x) = 0

x+ = ∆(x−)

Fig. 7. Single-mode Hybrid Model Corresponding to RABBIT. Key elements are the continuous dynamics of the single
support phase, the switching or impact condition, ϕ = 0, which detects when the height of the swing leg above the
walking surface is zero, and the re-initialization rule coming from the impact map, ∆.
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(a)

ẋ1 = f1(x1) + g1(x1)u1

ϕ1(x1) = 0

x+
2 = ∆1(x−

1 )

ẋ2 = f2(x2) + g2(x2)u2

ϕ2(x2) = 0

x+
1 = ∆2(x−

2 )

(b)

Fig. 8. Multiple-mode Hybrid Model. (a) A robot with feet in single support with the foot flat on the ground, single
support with rotation of the foot about the toe, and double support. (b) If rotation of the foot is allowed, a hybrid
model of the robot has more than one mode to account for the different contact conditions of the foot with the
ground. Shown here is a two mode model corresponding to the gait depicted in part (a).
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(a) (b) (c)

Fig. 9. Virtual Constraints in a Simpler Context. The dots represent revolute joints. (a) Piston constrained to move
in a cylinder; this is a one degree of freedom mechanical system. (b) Piston without the constraints; this is a three
degree of freedom mechanical system. (c) Hypothetical, Rube Goldberg realization of the piston constrained via
additional links to evolve kinematically as the piston in a cylinder; the curved arrows represent the two cranks
rotating synchronously in opposite directions. By realizing link coordination on the robot via virtual constraints,
different gaits can be more easily programmed than if the links were coordinated by hardware constraints.
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Fig. 10. Virtual Support Leg. The virtual support leg is the fictive link (bold line) between the end of the support leg
and the hip. The angle of the virtual leg at the beginning of a step is denoted θ+ and its value at the end is θ−,
commensurate with the notation used in the hybrid model. Note that as the robot advances forward, θ increases.
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Fig. 11. Invariance of the Constraint Surface Under the Action of the Impact Map. In this case, the hybrid zero dynamics
can be defined. They provide a low-dimensional subsystem for studying stability of the closed-loop system. Recall
that Z is the constraint surface (i.e., zero dynamics manifold), S is the impact surface, and ∆ is the impact map.
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(a) (b)

(c) (d)

Fig. 12. The Method of Poincaré Sections. The stability analysis of periodic motions is normally performed by
computing the Poincaré return map on the full-order model, which is very difficult to do. Thanks to the hybrid
zero dynamics, an analysis of the Poincaré return map becomes tractable and insightful. (a) Poincaré surfaces
for the full order hybrid model of the biped; the surfaces S and ∆(S) are each nine dimensional. Computing the
Poincaré return map requires the flow from S to ∆(S), which is shown in the tube. (b) Conceptualization of the
outputs being driven to zero so that the system asymptotically converges to the two-dimensional surface, Z, where
the closed-loop system evolves according to the hybrid zero dynamics. (c) A phase plot of a trajectory of the hybrid
zero dynamics; a fixed-point (i.e., a limit cycle) occurs when δzeroσ

−
Z = σ+

Z . (d) Typical Poincaré return map for
the one degree of freedom hybrid zero dynamics of RABBIT; the fixed-point, σ∗

Z , is the angular momentum just
before impact of a stable periodic motion; the initial angular momentum would be δzeroσ

∗
Z .
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Fig. 13. Projection of a Limit Cycle into a 3-D Slice of the State Space. The simulation shows the controller responding
to a perturbation by driving the robot’s trajectory back to the limit cycle. The dotted portion is the jump in the
trajectory resulting from the impact map.



44 PAPER NUMBER CSM-02-038 REVISION 08/JUNE/2003 IEEE CONTROL SYSTEMS MAGAZINE

Vzero(θ) + 1
2(σZ)2

Vzero(θ−) + 1
2(σ∗

Z)2

V
ze

ro
(θ

)

1
2(σ−

Z )2

Impact
σ+

Z = δzeroσ
−
Z︸ ︷︷ ︸

1
2(σ+

Z )2

Vzero(θ−) θ

θ+θ+θ+ θ−θ−θ−

Fig. 14. A Qualitative Look at Stability Through Energy. The zero dynamics is Lagrangian, and thus throughout the
single support phase, the corresponding total energy Vzero(θ) + 1

2σ2
Z is constant. At impact, the change in total

energy depends on the angular momentum through δzeroσ
−
Z and the potential energy through Vzero(θ−). The total

energy corresponding to the periodic orbit is Vzero(θ−)+ 1
2 (σ∗

Z)2. Convergence to this total energy level occurs if the
angular momentum decreases during impact, namely, δzero < 1. From the expression for the existence of a periodic
orbit, δzero < 1 is equivalent to Vzero(θ−) < 0.
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Fig. 15. Block Diagram of the Control System. Contact switches are shown for detecting impacts and determining the
support leg. The same structure holds when force sensors are used in place of contact switches.
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Fig. 16. Normal Ground Reaction Forces as Measured by the Force Sensors. The flat sections correspond to the leg
end being off the ground. From these plots, it can be seen that the double support phase is very short (less than
20 ms), indicating that a rigid impact model is appropriate.
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Fig. 17. Comparison of the Measured Joint Trajectories (black) with Their Target Values (red) Arising from hd(θ).
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Fig. 18. Plot of the Commanded Control Values for Each Motor Over Two Steps. The peak torque for each knee
occurs during the stance phase on the corresponding leg. The relatively large torque during the swing phase is due
to friction in the gear-reducers. For these experiments, the controls were purposefully limited to 35 Nm in order to
enhance safety, both of the robot and the experimenters.
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