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Abstract

This paper presents a control law for the tracking of a cyclic reference path by an under-actuated biped robot.
The robot studied is a five-link planar biped. The degree of under-actuation is one during the single support phase.
The control law is defined in such a way that only the geometric evolution of the biped configuration is controlled,
but not the temporal evolution. To achieve this objective, we consider a parametrized control. When a joint path
is given, a five degree of freedom biped in single support becomes similar to a one degree of freedom inverted
pendulum. The temporal evolution during the geometric tracking is completely defined and can be analyzed through
the study of a model with one degree of freedom. Simple analytical conditions, which guarantee the existence of a
cyclic motion and the convergence towards this motion, are deduced. These conditions are defined on the reference
trajectory path. The analytical considerations are illustrated with some simulation results.

Index Terms

Biped robot, walking, under-actuated system, reference joint path, control, limit cycle, stability.

I. INTRODUCTION

The human walking is composed of disequilibrium phases caused by the gravity effect and these
phases make the dynamics of the motion. For a biped, in fact, static equilibrium at each time instant is
not necessary. To study this point specifically, a biped with unactuated ankles is interesting because no
statically stable gait can be obtained. The reduction of the number of actuators is also a step towards
simpler and cheaper robots. As a consequence, we choose to study a planar biped with only four actuators:
two on the haunch and two on the knees. During the single support phase, the configuration of the biped
is defined by five independent variables, but there are only four actuators. Hence, the biped is an under-
actuated system. This simplification in terms of mechanics makes the design of the control law difficult.

Various studies exist about the control of an under-actuated biped. One method is based on the definition
of the reference trajectory for� outputs (where� is the number of actuators), not as a function of time,
but as a function of a configuration variable independent of the� outputs. With such a control, the
configuration of the biped at impact time is the desired configuration, but its velocities can differ from the
desired velocities. The convergence of the motion towards a cyclic motion is studied numerically using
the Poincar´e criterion in [1], [2]. Another approach involves parameterized reference trajectories. In this
case, one derivative of the parameter can be used as a ”supplementary input”, as it was shown in [3], [4],
[5], [6]. In [4], the parameter is used to satisfy some constraints on the ground reaction applied to the
supporting foot. In [7], a parameter involved in the zero dynamics is used as a supplementary input.

In the present paper, like in [1], [2], only the geometric evolution of the robot is controlled, not the
temporal evolution. To achieve this objective the reference trajectory is parameterized by a scalar path
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parameter: the arc length�. A time scaling control is defined as in [8] and [9]. The second derivative of
� is considered as a ”supplementary control input”. Thus, we deal with a model, for which the number
of inputs and the number of independent configuration variables are equal. For a given reference joint
path, the model of the five-dof-biped is reduced to a one-dof-model described by variable�. This model is
similar to one-link-pendulum model. Through the study of this dynamic model, the evolution of parameter
� can be analyzed. In fact, the evolution of the second derivative�� is defined by the choice of the evolution
of the configuration variables or, in other words, by the choice of the reference path. A condition on the
reference path is defined to assure the existence of a cyclic motion of the robot. When a cyclic motion
exists, a condition to ensure the convergence towards the cyclic motion is deduced from this analysis.
This condition is also related to the reference path. Moreover, the ground reaction force applied to the
supporting leg is unilateral, the limits on the motion induced by this constraint are also taken into account.

In Section II, the model of the biped is presented. In Section III the reference path and the control
law are defined. The admissible reference motions are defined in Section IV, the condition of existence
and uniqueness of a cyclic reference motion is presented in this section as well. A condition for the
convergence towards the cyclic motion is deduced in Section V. Section VI presents some simulation
results. The conditions for a cyclic motion to exist and for the convergence towards the cyclic motion
are showed to be inequalities. These characteristics induce some robustness properties of the proposed
control which are also illustrated in Section VI. Section VII concludes the paper.

II. THE BIPED MODELLING

A. The biped

The biped studied walks in a vertical sagittalxz plane. It is composed of a torso and two identical
legs. Each leg is composed of two links articulated by a knee. The knees and the hips are one-degree-of-
freedom rotational ideal (without friction) joints. The walk is composed of single support phases separated
by impact phases (instantaneous double support phases). Vector�� � ���� ��� ��� ���

� of ”internal” variables
(figure 1a) describes the shape of the biped. To define completely the biped position in the vertical plane
with respect to a fixed frame, we add three coordinates��� ��� ��, where�� is the absolute orientation of
the trunk,�� and �� are the abscissa and the ordinate of the robot mass centre respectively. The vector
of all coordinates of the robot is� � ���� ��� ��� ��� ��� ��� ���

� and the vector of the angular coordinates
is � � ���� ��� ��� ��� ���

� .
All links are assumed massive and rigid. In the simulation, we use the following biped parameters.

The lengths of the thighs and of the shins are����. However, their masses are different:����	 for each
thigh and	�
�	 for each shin. The length of the torso is���
�� and its mass is
��	. The total mass
of the biped is� � ���	. A prototype with these characteristics is under construction [10]. The inertia
moments of the links are also taken into account.� is the�� 
 vector of the torques applied in the hip
and in the knee joints (figure 1b).

B. Dynamic modelling

1) The complete model: In the literature, different dynamic models of the biped are developed. In this
paper, we present the dynamic model using the variable� that involves the biped mass centre coordinates,
the trunk orientation coordinate and four relative joint variables. This particular choice of the coordinates
is useful to highlight the role of the angular momentum and to derive easily the linear momentum theorem.

The 
�� line of the dynamic model can be written using the Lagrange’s formalism, for
 � 
� � � � � � (��
is the 
�� element of vector�):

�

��

�

�


 ���

�
� 
�


��
�

�


��
� �� (1)

where� is the kinetic energy,� is the potential energy. The virtual workÆ� of the external torques
and forces, given by expressionÆ� �

�
��Æ�� � �� Æ�, defines the vector� of the generalized forces.
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Fig. 1. The studied biped: a) generalized coordinates, b) applied torques and ground reaction.

When leg� is on the ground, a reaction force�� � ���� ��	�
� is applied to the leg tip�� by the ground

(figure 1b).When leg� is not on the ground,�� � ��
�, where��
� is the� � 
 zero-matrix.
The position of the mass centre of the biped can be expressed as function of the position of the leg tip

�� and on the angular coordinates vector�:�
��
��

�
�

�
���
���

�
�

�
������
��	���

�
(2)

The vector-function����� � ������� ��	����
� depends on vector� and on the biped parameters (lengths

of the links, masses, positions of the mass centres).
Using equation (2), we can deduce that the virtual displacement of the leg tip�� is:�

Æ���
Æ���

�
�
�
�
�����


�
��
�
Æ� (3)

where 
�����

�

is a 
� � matrix, �� is �� � identity matrix.
With our choice of coordinates, we have:

� � ���
�
����� ��
�
��
� ���

�
��� � � �	��� � �

�
��
��
�

�
� �

�
���
�

�
�
�����

�


�

��

�
�� (4)

where� is the mass of the biped,	 is the gravity acceleration,����� is a � � � matrix. The presented
model is convenient for all phases of planar bipedal locomotion. For double support phases, the both
ground reactions are not zero. For single support phases, only one reaction force is not zero. For flight
phases, both reaction forces are zero.

Remarks:
� The kinetic energy� is independent of the coordinate frame chosen. Since coordinates��� ��� ��

define only the position and orientation of the biped as a rigid body, the inertia matrix is independent
of these three variables, it depends only on vector�� of ”internal” variables.

� The fifth equation of system (1) describes the change of the angular momentum of the biped around
its mass centre, corresponding to the angular momentum theorem.

� The last two equations of system (1) correspond to the linear momentum theorem for the biped.
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2) The single support phase model: The ground and the robot links are assumed rigid. During the
single support phase, supporting leg tip� is on the ground, thus��� � ��� are constant in equation (2) (no
sliding), and equation (3) gives:

Æ� �

�
��


�����

�

�
Æ�� �� �

�
��


�����

�

�
�� (5)

The various terms of the corresponding dynamic model can be expressed only as functions of�, we
obtain:

� � ���
�
����� ��


�����


�

�

�����


�

�
��� � � �	��	���� � �

�
��
��
�

�
� (6)

As the supporting leg tip is motionless, the virtual work of the reaction force is zero.
The first four lines of this dynamic model can be grouped into different matrices and vectors to write:

������ � ���� ��� � � (7)

where���� is a ��� �� matrix and vector���� ��� contains the centrifugal, Coriolis and gravity forces.
We pay more attention to the fifth line of the dynamic model, which characterizes the under-actuation

of the biped. As mentioned previously, the inertia matrix is independent of the coordinate frame chosen.
For the single support also, angle�� describes the orientation of the biped relative to the coordinate frame
and not the shape of the robot. Thus� in (6) is independent of angle��, and the fifth equation of system
becomes:

�

��

�

�


 ���

�
�

�


��
� � (8)

For our planar biped and our choice of the coordinates in the single support, the term
�

 	��

is the biped
angular momentum around the stance leg tip��. We denote this term by�. Thus we have:


�


 ���
� � � ����� �� (9)

where����� is the fifth line of matrix������ ��
�����

�

� 
�����

�

�.
The expression
�


��
is equal to�	��������. Thus the fifth equation of the dynamic model of the biped

in the single support can be written in the following simple form:

�� � ������� � ���

�����


�
�� � �	��� � ���� (10)

3) The reaction force during the single support phase: When the leg� is on the ground, reaction force
�� exists (see figure (1b)). The last two lines of general model (1) make it possible to calculate this force:

�

�
���
���

�
��	

�
�



�
� �� (11)

In the single support phase, equation (11) can also be written:

�

������

�

�� �� ��� 
�������

��

�� � ���

�

������

�

�� �� ��� 
�������

��

�� ��	 � ��	

(12)

where 
�������

��

and 
�������

��

are (�� �) matrices.
The reaction force exerted by the ground can be directed upward only, and to avoid the sliding of the

biped, the reaction force must be inside the friction cone. These conditions can be written at each time
by:

��� � ���	 � �
���� � ���	 � �
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where� is the friction coefficient (positive). It follows from these two inequalities that��	 � �. These
two scalar inequalities can be expressed by the following matrix inequality:

��� � � (13)

with � �

�

 �
�
 �

�
. For the single support phase, these constraints can be written using equation (12):

 ����� � ! ��� ��� �� � � (14)

with

 ��� � �

�����

�

� ! ��� ��� � �

	

 ��� 
�������


��
��

��� 
�������

��

��

�
� � � � 	�

�
�



�

4) The impact model: When the swing leg" touches the ground at the end of single support, an impact
takes place. We assume that the ground reaction at the instant of impact is described by a Dirac delta-
function with intensity��

�
. This impact is assumed inelastic. This means that the velocity of the foot"

becomes zero just after the impact. Two kinds of impact can occur depending on whether the stance leg
takes off or not. We study the gait with instantaneous double support phases. Thus during an impact the
stance leg� takes off and��

�
� � at the instant of impact. The robot configuration� is assumed to be

constant at the instant of double support, and there are jumps in the velocities. The velocity vectors just
before and just after impact, are denoted���, ��� and ��
, ��
 respectively. The torques��� 
 � 
� � � � � �
are limited, thus they do not influence the instantaneous double support. Using general model (1) and
expressions (4) the impact model can be written [11], [12]:�

����� ��
�
��
� ���

� 

��
 � ���

�
�

�
�
�����

�


�

��

�
��

�
(15)

Vector ��
�

of the ground reaction intensities can be expressed using the last two lines of matrix equation
(15). Substituting this expression into the first five lines (15) we obtain:

�����


��
 � ���

�
� ��
�����

�


�

��
��
�
��
�

�
�
�

����
����

��
(16)

Before impact, leg� is in contact with the ground, and after impact, leg" is in contact with the ground.
Thus the linear velocity of the mass centre, before and after the impact, can be expressed as function of
the angular velocities (see the last two lines of (5)) and instead of (16) we obtain:

�����


��
 � ���

�
� ��
�����

�


�

�

�����


�
��
 � 
�����


�
���
�

(17)

Thus the biped angular velocity vectors before and after impact are related by a linear equation:

��
 �

�
����� ��


�����


�

�

�����


�

��� �
����� ��


�����
�


�


�����


�

�
��� (18)

This equation will be simply noted:
��
 � ���� ��� (19)

Intensity���
of the impulsive reaction force exerted by the ground can be calculated using the last two

lines of matrix equation (15) and equation (5):

���
� �

�

�����


�
����� 
�����


�

�
���
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This ground reaction force must be directed upward and be inside the friction cone. Thus the velocity���

must satisfy the following matrix inequality:

�

�

�����


�
����� 
�����


�

�
��� � �

To ensure a take-off of leg�, the vertical velocity component of leg tip�� must be positive. Using the mass
centre vertical velocity as intermediate expression and due to the definition of the functions��	���� ��	���,
this condition can be written: �


��	���


�
� 
��	���


�

�
���� ��� � �

These two types of constraint can be grouped into:

#��� ��� � � (20)

where#��� is a 	� � matrix.

III. T HE PROPOSEDCONTROL LAW

The desired walking is essentially composed of single support phases. During these phases, the biped
is an under-actuated system. The objective of the control law presented in this section is not to track a
reference motion but only the associated path: only a geometrical tracking is desired and a time scaling
control [8] is used. A reference joint path is assumed to be known. Thus the desired configuration� of
the biped is not expressed as a function of time but as a function of the scalar path parameter, the arc
length �: �����. The desired walking of the robot corresponds to an increasing function����. In other
words, function���� defines the sequence of the biped configurations in time.

A. Reference joint path for the walking biped

Let us prescribe the desired configuration of the biped under the form:

����� � �������� (21)

where����� is a given vector-function of scalar parameter�.
Only cyclic walk of the biped is desired. The legs swap their roles from one step to the next one, so

the reference path can be defined for one step only. For the first step, the scalar path parameter� varies
from � to 
. The single support phase stands for� $ � $ 
 and the impact occurs on the desired path for
� � 
. Vectors����� and ���
� describe the initial and final biped configurations of the single support,
respectively. As the legs swap their roles from one step to the following one the desired configurations
are such that���
� � %����� where% is a permutation matrix describing the leg exchange. For the���

step parameter� varies from� � 
 to �. Here� is positive integer. We define a cyclic path, thus�����
has to satisfy the following condition of periodicity:

����� �� � %������

where� � � � 
 and%� � ��.
For � � 
 $ ���� $ �, the robot configuration����� is such that the free leg tip is above the ground.

The biped touches the ground at� � � exactly. In consequence for any function����, the configuration
of the biped at the impact instant is the expected one.

The reference velocity of the robot������ �
���������

��
�� is proportional to��. If parameter� increases strictly

monotonically with respect to time, then this parameter can be chosen as independent variable. In this
case, the reference velocity can be rewritten as:������ �

������
��

�����. Derivative ������
��

is a discontinuous
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vector-function at points� � �� 
� 
� � � �. The notation�� (respectively�
) means just before (respectively
after) ��� impact. Just before and after the impact, the velocities are:

�����
�� � �������

��
������� �����


� � �������
��

����
�

In order to obtain a cyclic path, the reference path����� has to satisfy the impact equation (19):

�����

�

��
����
� � ��������

�����
��

��
������

where����� is a vector and�� is a scalar. Thus����� can not be arbitrary chosen. We choose this vector-
function to have:

�������
��

� ��������
�������

��
&'

�������
��

� %�����
��
�������

��
(22)

With this choice we have the following equality:����
� � ������. As a consequence time derivative�� is
a continuous function of parameter�.

During the impact, the ground reaction must be directed upwards and be inside the friction cone, the
stance leg must take off, thus function����� must be chosen such that (see inequality (20)):

#�������
�����

��

��
� � (23)

Thus the reference joint path����� has to satisfy relations (22), (23) and the condition of periodicity.

B. Definition of the control law

It follows from (21) that the desired velocity and desired acceleration of the joint variables are:

������ �
���������

��
��

������ �
���������

��
��� ����������

���
���

(24)

So we assume that the reference path is a chosen periodical vector-function����� that is twice differentiable
except for the integer value of�.

The increasing function���� defines the desired motion, but since the control objective is only to track
a reference path, the evolution���� is free and the second derivative�� will be treated as a ”supplementary
control input”. Thus, the control law will be designed for a system with equal number of inputs and
outputs. The control inputs are the four torques��� " � 
� � � � � �, plus ��. The chosen outputs are the five
angular variables of vector�.

The control law is a non-linear control law classically used in robotics. But in order to obtain a finite-
time stabilization around one of the desired trajectories, the feedback function proposed in [13], [2] is
used. The tracking errors are defined with respect to the trajectories satisfying (21):

(���� � ��������� ����
�(���� �

���������
��

��� �����
(25)

The desired behaviour in closed loop is:

�� � ��� �



)�
* (26)

where* is a vector of five components*�� 
 � 
� � � � � � with:

*� � ���	��) �(�� �) �(���� � ��	��+���+��� (27)

and � $ , $ 
, ) � �, +� � (�� �
�

��� ��	��) �(����) �(������, , and ) are parameters to adjust the settling
time of the controller. Taking into account expression (21) of the reference motion, equation (26) can be
rewritten as:

�� �
������

��
��� -��� ��� �� ��� (28)
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with

-��� ��� �� ��� �
�������

���
��� �




)�
*

The dynamic model of the robot is described by equations (7) and (10), thus the control law must be
such that:

�����������
��

��� -� � ���� ��� � �

������
������
��

��� -� � ��� 
�����

�

�� � �	��� � ����
(29)

We can deduce that, in order to obtain the desired closed loop behaviour, it is necessary and sufficient
to choose:

�� �
�������� 	��

	
����
	�

	�
�������
��
�����

������
��

� ������������
��

��� -� � ���� ���
(30)

If �����
������
��

�� �, the control law (30) ensures that���� converges to�������� in a finite time, which
can be chosen as less than the duration of one step [13], [2]. Without initial errors, a perfect tracking of
�������� is obtained.

The first equation (30) defines��. The evolution� can be calculated from this equation (but not chosen),
if ���� and ����� are known. We choose���� � � and we define����� to minimize the error on the joint
velocity . � � ������ �������� � � ������ ���������

��
�������. Thus, ����� is such that ��

� 	����
� �. We obtain:

����� �
������ ������

��

������
��

� ������
��

(31)

C. The singularities for the proposed control law

It follows from the first equation (30) that for the proposed control law, a singularity occurs if�����
������
��

�
�. For the reference motion���� � �����, we define:

���� � ��������
������

��

In fact, matrix� depends only on the first four components of vector����� (see equation (9)), but here
the notation�������� is used for simplicity.

If for the reference path, function���� is sufficiently far from zero, and if the tracking error is sufficiently
small, no singularity occurs.

IV. EXISTENCE AND UNIQUENESS OF ACYCLIC MOTION

Our main goal is to design a control strategy, which ensures a stable periodic motion of the biped. The
control law (30) ensures that the motion of the biped converges in a finite time towards a reference path
described by (21). This time can be chosen to be less than the duration of the first step. With this choice,
the biped with control law (30) follows perfectly the reference path, starting from the second step.

In this section, the five degree of freedom biped model is reduced to a one degree of freedom model
with respect to variable� using the given reference path. This model is similar to the model of an inverted
pendulum. Then we study the properties of this simpler model. Like a stable cyclic motion of the biped
is desired, we study the conditions of existence and uniqueness of cyclic admissible reference motions.
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A. Properties of the admissible reference motion

During the single support phase, the biped is an under-actuated system, thus it cannot follow any desired
motion�����. We denote ”admissible reference motion”, the motion�������� satisfying the dynamic model
(7), (10).

Analyzing the angular momentum� is sufficient to study the evolution of parameter�. The motion
of the robot can in turn be deduced from the evolution of parameter�. The angular momentum� is
linear with respect to vector�� (see equation (9)) and for the reference motion the velocity of the robot is
proportional to �� (see first equation (24)). Thus, the angular momentum can be expressed by:

� � ���� �� (32)

Scalar function���� depends on vector����� and on the biped parameters. Let us assume that function
����� and the biped parameters are such that���� �� � for � � � � 
. If ���� �� � in the interval� � � � 
,
then ���� $ � or ���� � � in this interval. The sign of���� changes with the sense of the axis/. In
the following we assume that����� is such that���� � �. Some examples of function���� are given in
section VI. If ���� �� �, we obtain from (32):

�� �
�

����
(33)

If vector-function ����� is given, then the abscissa�� of the mass centre is known as function of
parameter�: �� � �����. In this case, equation (10) can be rewritten as:

�� � �	������� ���� (34)

Under a given joint path, model (33), (34) is equivalent to the dynamic model (7), (10). Thus, both
equations (33), (34) define the admissible reference motion. Functions���� and ���� can be calculated
from system (33), (34), when their initial values are known.

The system of second order (33), (34) is similar to the system describing the motion of usual physical
pendulum with one degree of freedom [14]. Thus it has an integral similar to the energy integral of the
pendulum motion:

�� � ���� � � � 0&��� (35)

where,

���� � 
�	

��
��

����1�� ������1��1 (36)

Using equation (32), we can rewrite relation (35) in the form:

� ���� ������� ���� � � � 0&���

or
� ���� ������� � ���
� �����
� � ���� (37)

The functions���� and ���� can be calculated when����� is known. These functions are periodic,
with period equal to 1. Thus the characteristics of the robot behaviour can be studied only for one step,
� � � � 
.

For human gait, abscissa�� of the mass centre increases during walking. In order to be close to the
human gait, we choose function����� such that abscissa�� increases when parameter� increases from�
to 
. The single support begins with�� $ ��� and finishes with�� � ��� . Figure 2 illustrates the action of
the gravity during the single support and the behaviour of the angular momentum according to equation
(34).

Functions���� are shown in figure 3 for some biped parameters [10] and some vector-functions�����:
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Fig. 2. The effect of gravity for one step: a) the gravity slows down the motion, b) the gravity accelerates the motion.

� Function���� initially decreases (see equation (36)) strictly monotonically, starting from zero.
� The negative minimal value��:

�� ����
����� ���� � ����� (38)

is reached at� � ��, such that������ � ���
� After, �� � ��� and function���� increases strictly monotonically.

In fact, under the described above properties of function�����, the shape of function���� is always the
same as in figure 3.

� � 
 � �
� �

� � � � �

� � �

� � � � �

� 


� � �
�

� � 

� �

� � � � 


� � �

� � � � �

� 


� � �

� �

�

Fig. 3. Two typical behaviours of���� for one step: in case a)���� � �, in case b)���� � ��

At the end of the single support phase, the angular momentum is greater than at the beginning if
��
� � �, and smaller if��
� $ � (see integral (35))

B. Minimal angular momentum to achieve a step

We have shown in previous section that at the beginning of the single support, the angular momentum
decreases due to the gravity effect. Now we will show that the initial angular momentum����, or the
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initial velocity �����, must be high enough to reach the configuration such that�� � ��� . When�� � ��� ,
the angular momentum increases due to gravity.

Using integral (35) and above mentioned properties of function����, it is easy to define the trajectories
of system (33), (34). These trajectories are drawn for� � � � 
 in the phase plane��� �� in figure 4. The
arrows indicate the direction in which the point representing the motion moves as time increases.

�
�

�� �

�

� �

	

� �� �

Fig. 4. The phase portrait of system (33), (34) in the plane (�,�), corresponding to the function���� given in figure 3a.

Equations (33), (34), and the phase portrait in figure 4 show that the behaviour of the biped with the
given joint path is similar to the behaviour of an inverted pendulum. The phase portrait is symmetric
with respect to axis�. The point� � ��� � � � is a saddle point or col, it corresponds to an unstable
equilibrium of the biped. Two separatrices intersect at the saddle point. The ordinates of these separatrices
are� � ����� at � � �. Each separatrix is close to a straight line because the graph of function����
is close to a parabola. Phase portrait in figure 4 shows that:

� If ���� $
����, then the curve���� defined by equation (35) crosses axis� � � for � $ ��,

after angular momentum becomes negative as velocity��; the parameter� decreases and the biped
according to the given path����� falls backward.

� If ���� �
����, the motion converges asymptotically when� � 	 to the unstable equilibrium:

� � ��� � � �.
� If ���� �

����, the step can be achieved because the angular momentum� and the velocity�� are
positive during all the step� � � � 
.

The results are summarized in the following theorem.
Theorem 1: The path ����� with � $ � $ � � 
 can be achieved by the biped, if and only if ���
� ����� or ����
� �

�
���

�����
.

C. Conditions of existence and uniqueness of cyclic motion

A cyclic admissible reference motion is defined by a cyclic evolution of angular momentum� or
equivalently of a cyclic velocity�� denoted by���. All the admissible reference motions are defined by
equations (35) or (37). Thus a cyclic admissible reference motion exists if and only if there exists an
initial angular momentum���
� such that:��� � 

� � ���
�, or in another words, if and only if
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there exists an initial velocity����� denoted by ������, such that� increases when time increases and
���� � 
� � ����� � ������ � ������ (note that ����� is a continuous function at� � �). Under these
conditions, the states of the biped are identical at the beginning of the steps� and � � 
 (but the legs
swap their role).

Since the functions���� and���� are cyclic, writing equation (37) for� � � � 
� or for � � 
�

implies that the initial velocity������ is such that:

� ��
�� ������
� � � ���
� ������� � ��
�� (39)

Analyzing equation (39), we conclude:
� If ���
� � ��
�� and ��
�� � �, then any initial value����� � ��� produces a cyclic reference

motion.
� If ���
� � ��
�� and��
�� �� � or if values��
�� and� ��
��� � ���
� have different signs, then

equation (39) has no solution, and consequently there is no cyclic reference motion.
� Equation (39) has a unique solution������:

������ �

���� ��
��

� ��
��� � ���
� (40)

if and only if values��
�� and� ��
��� � ���
� have the same sign.
According to Theorem 1, solution (40) is the initial velocity for the cyclic reference motion if and only

if ������ �
�
���

�����
. Using equation (40), the following theorem can be formulated.

Theorem 2: A unique cyclic reference motion exists if and only if �����
������������� �

��

������
� �. The initial

cyclic velocity for one step is defined by equation (40).

Remark: If ���
���� ���
� � �, then the angular momentum decreases during the impact (the supporting
leg changes); in opposite case, it increases. If��
�� � � the angular momentum increases during the
single support phase; in opposite case, it decreases. A cycle is achieved only when an increase (decrease)
of the angular momentum at the impact instant is compensated by a decrease (increase) during the single
support motion.

V. CONVERGENCETOWARDS THE CYCLIC REFERENCEMOTION

In this section, a condition of convergence of the admissible reference motion to the cyclic motion is
obtained.

We assume that a unique cyclic reference motion exists and that the initial velocity�� is high enough
to have a monotonic evolution of parameter�. The relative difference between velocity����� and cyclic
velocity ������, which is referred to as ”velocity difference”, is defined by:

(��� �
������ ������

������
(41)

The biped motion converges towards the cyclic one if and only if����� converges towards������ or
equivalently if(��� converges to� when��	.

A. Evolution of the ”velocity difference” (���

Under definition (41), the velocity����� can be expressed using the cyclic velocity as:

����� � �������
 � (���� (42)

The cyclic motion is an admissible reference motion. Thus equation (37) can be written for the cyclic
motion, in the following form (� $ � $ � � 
):

� ���� �������� � ���
� ������� � ���� (43)
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Taking equation (42) into account in equation (37), and using equation (43), we have:

�� ���
� ������
� � ������
 � (����� � � ���
� ��������
 � (����� � ����

Then(��� can be expressed as function of(��� for � $ � $ � � 
:

(��� �

����
 � (����(��� � 
�
� ���
� �������

� ���
� ������� � ����
� 
 (44)

The function(��� includes a square root and is defined only for:

(��� �

����

���
� ������
� 
 (45)

This condition is equivalent to inequality����� �
�
���

�����
(see Theorem 1).

The evolution of the velocity difference(��� for one step can be directly deduced from the evolution of
����. For the evolution of���� given in figure 3, the velocity difference evolutions are shown in figure
5.

� �
� � �

� � 	

� � 


� � �

� �

�

� �

� � � �

� �

� � 	

� � 


� � �

� � � �

� �

�

� �

Fig. 5. Two typical evolutions���� for one step: in case a)���� � ����, in case b)���� � ����.

� For � $ � $ � � ��, �(���� increases because���� decreases (see equation (44)).
� For � � � � ��, �(���� has a maximum,
� For � � �� $ � $ � � 
, �(���� decreases because���� increases.
From the beginning of the step to its end, the error increases or decreases depending on the sign of

��
�.
Function���� is cyclic but not continuous at� � �, thus formula (44) is convenient only for one step

� $ � $ � � 
. Velocity difference(��� (see (41)) is a continuous function at� � � because����� and
������ are continuous functions at� � �. Using equation (39), we obtain the iterative formula from one
step to the following one:

(�� � 
� �

����
 � (����(��� � 
�

�
���
�

��
��

��

� 
 (46)
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B. Condition of convergence

The following theorem can be proved.
Theorem 3: The admissible reference motion converges towards the cyclic admissible reference motion

if and only if ����� �
�
���

�����
and ���
� $ ��
�� (or equivalently ��
�� � �).

Proof: With � $ � $ � � 
, if � � 	 then error(��� � � uniformly for any �, if and only if
(��� � � when � � 	 because(��� is defined by equation (44) and the function�

����� 	������

������ 	������
����
is

cyclic and bounded. Thus, to prove that the biped motion converges to the cyclic admissible reference
motion, it is necessary and sufficient to prove the convergence of(��� towards� when� �	.

If ���
� $ ��
��, then using equation (46) and inequality���� � �, we can deduce that:

�(�� � 
�� � ���
�

��
��
�(���� (47)

And we can conclude that(���� � when� �	.
It follows from equation (46) that if���
� � ��
��, then(�� � 
� � (���.
If ���
� � ��
��, then �(�� � 
�� 
 �����

�����
�(���� and there is no convergence.

The condition����� �
�
���

�����
ensures that���� is an increasing function during the first step. If���
� $

��
��, the condition����� �
�
���

�����
will be satisfied for all�, and the function���� increases for all steps.

Remark 1: The convergence of the admissible reference motion can also be shown using a section of
the Poincar´e map as in [1] or [2]. Equation (46) allows to draw easily(���
� as a function of(���. The
linearization of equation (46) around point(��� � � defines the convergence ratio from one step to the

next one around the cyclic motion. After linearization, we have:(�� � 
� �


�����
�����

��
(���. This equation

describes a geometrical progression with ratio


�����
�����

��
, which is less than the ratio in equation (47). The

lower the ratio


�����
�����

��
, the faster the convergence.

Remark 2: Theorem 3 concerns in factorbital stability of the admissible reference cyclic motion,
because in this theorem, we consider parameter� as independent variable but we do not consider time�.

Combining theorems 1, 2 and 3, the following corollary can be deduced.
Corollary: The admissible reference cyclic motion is orbitally asymptotically stable if and only if the

reference joint path is such that:���
� $ ��
�� and��
��� ���
� � ����
��
��� � ���
�� � �.

These conditions may be not satisfied for some reference joint paths. Figure 6 presents the different
occurring cases.
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� ! � � � �
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� � � � � 
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Fig. 6. Existence and stability of cyclic motion in different cases.
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� In figure 6, the first quadrant corresponds to the cases satisfying the condition of the corollary.
� In the second and fourth quadrants �����

������������� �
��

������
$ �, the condition of theorem 2 is not

satisfied, thus there is no cyclic motion.
� In the third quadrant �����

������������� �
��

������
� �, the condition of theorem 2 is satisfied, but� ��
���

� ���
� $ �, so the condition of theorem 3 is not satisfied, thus there is an unstable cyclic motion.
� In the origin � ��
�� � � ���
� � � and��
�� � �, thus any initial velocity����� provides a cyclic

motion.
Only stable cyclic motions are interesting for the biped control design. These motions will be illustrated

in section VI devoted to the simulation.

C. Unilateral contact

For an admissible reference motion to be followed, it must be such that the reaction force satisfies
inequality (14). For example if the initial velocity is too large, the centrifugal forces are higher than the
gravitational forces and a take-off of the biped occurs.

For an admissible reference motion the constraint (14) becomes:

 ����

�
���

��
�� �

����

���
���
�
� ! ����

���

��
� ��� �� � �

Using equations (10) and (32), the acceleration�� can be calculated by:

�� � � 


����

�����

��
��� �

�	

����
����������� ����

Thus, the constraint can be written:�
� �������

��




����

�����

��
� ! ���

���

��
� �  ����

����

���

�
��� �  ����

���

��

�	

����
����������� ���� �� � � (48)

But the evolution of�� is defined by the initial velocity for the step by equation (37):

������ �
� ���
� ������ � ����

� ����
(49)

Thus, combining equations (48) and (49), the conditions for������ to satisfy the constraint on the
reaction forces, have the form:

2��� ������ � 3��� � � (50)

We recall that2��� and3��� are
�
 vector-functions:2��� � �2�����, 3��� � �3�����. Vectorial inequality
(50) is equivalent to the following two scalar inequalities:

2���� ������ � 3���� � �� " � 
� 
 (51)

Different cases exist depending on the signs of the functions2����� 3����. Let us introduce the following
three sets:

 � � �� � ��� 
� � 2���� � � and 3���� � �

!� � �� � ��� 
� � 2���� $ � and 3���� � �

�� � �� � ��� 
� � 2���� � � and 3���� � �


� If there exists at least one index" such that � �� �, then inequality (51) for this index", and
consequently inequality (50), cannot be satisfied for any value�����.

� If for all ",  � � � and�� � �, and if there exists at least one index" such that!� �� �, then the

reaction forces satisfy the constraints if and only if����� $
�
������
��������


������
 ����

�
.
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� If for all ",  � � � and!� � �, and if there exists at least one index" such that�� �� �, then the

reaction forces satisfy the constraints if and only if����� �
�
������
������!�


������
 ����

�
.

� If for all ",  � � � and if there exists at least one index" such that!� �� � and one index
 such
that�� � �, then the reaction forces satisfy the constraints if and only if�������

���
�
���
��!�

��3����

2����

�
$ ����� $

�������
���
�

���
����

��3����

2����

�
�

� If for all ",  � � �, �� � � and!� � �, then the reaction forces satisfy the constraints for any
positive �����.

The size of the attraction domain is important for practical applications. The larger this domain, the
more robust the control law. This domain is also interesting to study possible changes of the velocity for
the robot walking. The constraint on the torque limits can be taken into account in a similar way.

D. Control law

We have defined the conditions such that a joint path corresponds to a stable admissible cyclic motion.
The attraction region of this cyclic motion has been found, this region is based on the value of the angular
momentum. The constraints on the reaction force (no take-off, no sliding) give also some limits on the
initial velocity (or angular momentum).

Control law (30) ensures that the motion of the biped converges in a finite time towards a reference
path. Thus, the robot follows an admissible reference motion. And the following assertion is correct:

The control law (30) ensures an orbitally asymptotically stable motion of the robot if and only if the
reference joint path is such that: ���
� $ ��
�� and��
��� ���
� � ����

��
��� � ���
�� � �, and the
angular momentum at the beginning of the walking is within some limits.

Remark: If the control law converges to the reference path during the first step, the limits on the velocity
�� (and consequently on the angular momentum) at the beginning of the second step are���
� �

�
���

�����

plus the limits defined in the previous subsection V-C.

VI. SIMULATION RESULTS

The proposed control law has been tested on the reference path presented under the stick-diagram form
in figure 7. The joint path����� is defined by a polynomial evolution� with respect to�. We use a fourth
order polynomial for each component of vector�.

The corresponding periodic functions���� and���� are plotted in figure 8.
For the chosen reference path���
� � 
��	�, ��
�� � 
���� and ��
��� ���
� � ����

��
�� �
� ���
�� � ��
�
, thus���
� $ ��
�� and��
��� ���
� � ����

��
�� � � ���
�� � �. In consequence,
the biped motion converges to a cyclic motion. The minimal value����� to achieve a complete step is (see
Theorem 1)��� � 
�
�. The constraints on the reaction force induce only a higher limit on the velocity
�����: this velocity must be less than
��� in order to avoid the sliding (� � ����) of the supporting leg.
For an initial velocity of the robot such that
�
� $ ����� $ 
���, the motion of the biped converges to
the cyclic motion defined by������ � 
��� (see equation (40)).

A. Perfect Modelling

Figure 9a shows the behaviour obtained in simulation with control law (30) for a ”large” initial velocity,
����� � 
��. The initial state of the biped belongs to the set of reference motions. Thus, the robot follows
the parameterized reference path without tracking error and converges towards the cyclic motion. In figure
9a, the velocity����� is shown. The function������ corresponding to the cyclic motion is also presented
in order to point out the convergence of the robot motion to the cyclic one. But our control ensures only
orbital stability, thus the velocity����� does not converge to������ as shown in figure 9b. In figure 10, the
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Fig. 7. The reference path.
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Fig. 8. Functions f(s) and����.

trunk orientation is drawn in its phase plane. This phase portrait allows us to illustrate the convergence
to the cyclic motion and the effect of the impact with the ground (there is a jump in the velocity in the
phase portrait).

B. Presence of modelling error

To illustrate some robustness property of the proposed approach, the following case is simulated:
� The mass errors are�
�� for the thighs,�	�� for the shins and���� for the trunk. The error on

the inertia moments are���� for the thighs,�
�� for the shins and�	�� for the trunk.
� The control law used is a classical computed torque control, thus the desired closed loop behaviour

is
�� � ��� ��� �(� ��"(� (52)

instead of equation (26).
� Since the reference path is designed with a false model of the robot, the velocity after the impact is

not the expected one.
The behaviour obtained in simulation is presented in figure 11. In this figure, velocity����� is shown. The

function ������ corresponding to the cyclic motion of the modelled robot is also presented. The velocity��
does not converge to the ”expected” motion because this motion is not compatible with the real dynamics
of the biped, but a cyclic stable motion is obtained.
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Fig. 9. The proposed control ensures orbital stability: a) evolution of velocity����� (solid line), and of cyclic velocity������ (dotted line)
for 15 steps, b) evolution of velocity����� (solid line), and of cyclic velocity������ (dotted line) for 15 steps.
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Fig. 10. Evolution in degrees of angle�� in its phase plane.

The simulation results show that the leg tip does not touch the ground during the single support (before
� � 
����), the ground reaction is directed upwards and is inside the friction cone. Some tracking errors
exist particularly at the beginning of each step due to the effect of impact, thus the path followed is not
exactly the expected one but the tracking errors in angular variables are cyclic and smaller than 0.005
rad.

VII. CONCLUSION

For a planar biped under-actuated during the single support phases, the proposed control strategy consists
in the tracking a reference path instead of a reference motion. The robot adapts its temporal evolution
according to the effect of gravity. In this context a complete study has been presented. Some analytical
conditions that can be easily tested have been proposed: conditions of existence and uniqueness of a
cyclic motion, condition of convergence towards this cyclic motion. These conditions are defined on the
reference path.

The conditions of a cyclic motion existence and convergence to it are inequalities. Thus some robustness
is naturally contains in the proposed control strategy. In spite of tracking errors and/or modelling error,



ACCEPTED FOR PUBLICATION IN ROBOTICA PUBLISHED BY CAMBRIDGE UNIVERSITY PRESS 19

� � � � � �
� � �

� � � 	

� � � �

� � � �

� � � 


� � �

� � � 	

� � � �

� � � �

� � � 


�

� �

Fig. 11. Evolution of velocity����� (solid line), and of cyclic velocity������ (dotted line) for 15 steps in presence of modelling error.

the behaviour of the robot converges to a cyclic motion, for a convenient reference path (i.e. satisfying
the inequality with some margins). In presence of modelling errors, the obtained cycle is slightly modified
with respect to the predicted cycle, but a stable walking is obtained as it has been observed in simulation.

Since a reference path must satisfy some conditions (inequalities) in order to produce a stable cyclic
walking, there exist some reference paths that can not be used with the proposed strategy. But we want to
point out that most of the tested paths are convenient with our control strategy. To correspond to a stable
motion, the path must satisfy the two following conditions. The angular momentum must decrease during
the impact phase (the contact point changes). During the single support phase, the sub-phase where the
gravity speeds up the motion, must have a higher contribution to the change of the angular momentum
than the sub-phase where the gravity slows down the motion (see figure 2).

All the cyclic optimal reference trajectories defined in [15] for this biped produce a path that corresponds
to a stable motion with the proposed control strategy.
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