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Abstract

This paper presents a control law for the tracking of a cyclic reference path by an under-actuated biped robot.
The robot studied is a five-link planar biped. The degree of under-actuation is one during the single support phase.
The control law is defined in such a way that only the geometric evolution of the biped configuration is controlled,
but not the temporal evolution. To achieve this objective, we consider a parametrized control. When a joint path
is given, a five degree of freedom biped in single support becomes similar to a one degree of freedom inverted
pendulum. The temporal evolution during the geometric tracking is completely defined and can be analyzed through
the study of a model with one degree of freedom. Simple analytical conditions, which guarantee the existence of a
cyclic motion and the convergence towards this motion, are deduced. These conditions are defined on the reference
trajectory path. The analytical considerations are illustrated with some simulation results.

Index Terms

Biped robot, walking, under-actuated system, reference joint path, control, limit cycle, stability.

I. INTRODUCTION

The human walking is composed of disequilibrium phases caused by the gravity effect and the:
phases make the dynamics of the motion. For a biped, in fact, static equilibrium at each time instant
not necessary. To study this point specifically, a biped with unactuated ankles is interesting because
statically stable gait can be obtained. The reduction of the number of actuators is also a step towa
simpler and cheaper robots. As a consequence, we choose to study a planar biped with only four actuat
two on the haunch and two on the knees. During the single support phase, the configuration of the bif
is defined by five independent variables, but there are only four actuators. Hence, the biped is an unc
actuated system. This simplification in terms of mechanics makes the design of the control law difficul

Various studies exist about the control of an under-actuated biped. One method is based on the definit
of the reference trajectory fon outputs (wheren is the number of actuators), not as a function of time,
but as a function of a configuration variable independent ofstheutputs. With such a control, the
configuration of the biped at impact time is the desired configuration, but its velocities can differ from th
desired velocities. The convergence of the motion towards a cyclic motion is studied numerically usir
the Poincag’ criterion in [1], [2]. Another approach involves parameterized reference trajectories. In thi
case, one derivative of the parameter can be used as a "supplementary input”, as it was shown in [3], |
[5], [6]. In [4], the parameter is used to satisfy some constraints on the ground reaction applied to tt
supporting foot. In [7], a parameter involved in the zero dynamics is used as a supplementary input.

In the present paper, like in [1], [2], only the geometric evolution of the robot is controlled, not the
temporal evolution. To achieve this objective the reference trajectory is parameterized by a scalar p:



ACCEPTED FOR PUBLICATION IN ROBOTICA PUBLISHED BY CAMBRIDGE UNIVERSITY PRESS 2

parameter: the arc length A time scaling control is defined as in [8] and [9]. The second derivative of
s is considered as a "supplementary control input”. Thus, we deal with a model, for which the numbe
of inputs and the number of independent configuration variables are equal. For a given reference jo
path, the model of the five-dof-biped is reduced to a one-dof-model described by varidbie model is
similar to one-link-pendulum model. Through the study of this dynamic model, the evolution of paramete
s can be analyzed. In fact, the evolution of the second derivatiselefined by the choice of the evolution
of the configuration variables or, in other words, by the choice of the reference path. A condition on tt
reference path is defined to assure the existence of a cyclic motion of the robot. When a cyclic moti
exists, a condition to ensure the convergence towards the cyclic motion is deduced from this analys
This condition is also related to the reference path. Moreover, the ground reaction force applied to tl
supporting leg is unilateral, the limits on the motion induced by this constraint are also taken into accour
In Section II, the model of the biped is presented. In Section Il the reference path and the contr
law are defined. The admissible reference motions are defined in Section 1V, the condition of existen
and uniqueness of a cyclic reference motion is presented in this section as well. A condition for tr
convergence towards the cyclic motion is deduced in Section V. Section VI presents some simulati
results. The conditions for a cyclic motion to exist and for the convergence towards the cyclic motio
are showed to be inequalities. These characteristics induce some robustness properties of the propt
control which are also illustrated in Section VI. Section VIl concludes the paper.

II. THE BIPED MODELLING
A. The biped

The biped studied walks in a vertical sagittal plane. It is composed of a torso and two identical
legs. Each leg is composed of two links articulated by a knee. The knees and the hips are one-degree
freedom rotational ideal (without friction) joints. The walk is composed of single support phases separatt
by impact phases (instantaneous double support phases). ¥eetdr, ¢, g3, ¢4]” of "internal” variables
(figure 1a) describes the shape of the biped. To define completely the biped position in the vertical pla
with respect to a fixed frame, we add three coordinates,, z,, whereg; is the absolute orientation of
the trunk,z, and z, are the abscissa and the ordinate of the robot mass centre respectively. The vect
of all coordinates of the robot i8 = [¢1, ¢2, g3, ¢, G5, T4, 24" @nd the vector of the angular coordinates
is ¢ = [q1,¢2, 3, qa, g5]"

All links are assumed massive and rigid. In the simulation, we use the following biped parameter:
The lengths of the thighs and of the shins arén. However, their masses are differe6i8%g for each
thigh and3.2kg for each shin. The length of the torso(i$25m and its mass i20kg. The total mass
of the biped ism = 40kg. A prototype with these characteristics is under construction [10]. The inertia
moments of the links are also taken into accouhis the4 x 1 vector of the torques applied in the hip
and in the knee joints (figure 1b).

B. Dynamic modelling

1) The complete model: In the literature, different dynamic models of the biped are developed. In this
paper, we present the dynamic model using the varialleat involves the biped mass centre coordinates,
the trunk orientation coordinate and four relative joint variables. This particular choice of the coordinate
is useful to highlight the role of the angular momentum and to derive easily the linear momentum theorer

The ™" line of the dynamic model can be written using the Lagrange’s formalism, fot, ..., 7 (;
is the » element of vector):

d (0K oK 0P

Bl il B R 1

dt (3.%[) 3$l 83:1 Ql ( )
where K is the kinetic energyp is the potential energy. The virtual wolV of the external torques
and forces, given by expressiohl’ = Y- Q;0z; = Q7 6z, defines the vectof) of the generalized forces.
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a) b)

Fig. 1. The studied biped: a) generalized coordinates, b) applied torques and ground reaction.

When legi is on the ground, a reaction forde = [R;, R;,]” is applied to the leg ti5; by the ground
(figure 1b).When leg is not on the groundR; = 05, where(,; is thek x [ zero-matrix.

The position of the mass centre of the biped can be expressed as function of the position of the leg
S; and on the angular coordinates vecgor

xg — xs; fm:(Q) 2
EEarei @
The vector-functionf;(q) = [fi.(q¢) fi.(¢)]* depends on vectay and on the biped parameters (lengths

of the links, masses, positions of the mass centres).
Using equation (2), we can deduce that the virtual displacement of the |&§ t§p

[ (SIL'Si

5o | =[50 B oo @3)

Where%flq) is a2 x 5 matrix, I,, is n x n identity matrix.
With our choice of coordinates, we have:

_25@”
K:x'TlA(qC) 0572155, P =mgz, Qz[A]FJrZ[ % ]Ri 4)
i=1,2

02,5 mly 03,4 9

wherem is the mass of the biped, is the gravity accelerationd(q.) is a5 x 5 matrix. The presented
model is convenient for all phases of planar bipedal locomotion. For double support phases, the bc
ground reactions are not zero. For single support phases, only one reaction force is not zero. For flig
phases, both reaction forces are zero.

Remarks:

« The kinetic energyK is independent of the coordinate frame chosen. Since coordinates, z,
define only the position and orientation of the biped as a rigid body, the inertia matrix is independer
of these three variables, it depends only on vegtoof "internal” variables.

. The fifth equation of system (1) describes the change of the angular momentum of the biped arou
its mass centre, corresponding to the angular momentum theorem.

« The last two equations of system (1) correspond to the linear momentum theorem for the biped.
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2) The single support phase model: The ground and the robot links are assumed rigid. During the
single support phase, supporting leg tifs on the ground, thusg,, zs, are constant in equation (2) (no
sliding), and equation (3) gives:

Is : Iy |,
0r = | afile) |04, T=| asla |G ®)
Bq dq
The various terms of the corresponding dynamic model can be expressed only as funcygongeof
obtain:

K = qT A(QC) +m

dfia)" 0fi(a)] . I,
P = iz ) = r 6
As the supporting leg tip is motionless, the virtual work of the reaction force is zero.
The first four lines of this dynamic model can be grouped into different matrices and vectors to write

M(q)§ + h(g,4) =T 7)

where M(q) is a (4 x 5) matrix and vector(q, ¢) contains the centrifugal, Coriolis and gravity forces.
We pay more attention to the fifth line of the dynamic model, which characterizes the under-actuatic
of the biped. As mentioned previously, the inertia matrix is independent of the coordinate frame chose
For the single support also, angledescribes the orientation of the biped relative to the coordinate frame
and not the shape of the robot. Thigsin (6) is independent of anglg,, and the fifth equation of system

becomes: - op
it (w) * o 0 ®

For our planar biped and our choice of the coordinates in the single support, th(—%*felmthe biped
angular momentum around the stance legSjpWe denote this term by. Thus we have:

oK
_— = =N ¢ ] 9
a5, ~ ¢~ Nla)d 9)
- e - o) T 05i(q
where N(q.) is the fifth line of matrix(A(g,) + m 2.2 0" i),

The expressrorgf is equal tomg(zg, —z,). Thus the fifth equation of the dynamic model of the biped
in the single support can be written in the following simple form:

& =N(g)j+q ar\(;gqc)q =my(zy — zs,) (10)

3) The reaction force during the single support phase: When the leg is on the ground, reaction force
R; exists (see figure (1b)). The last two lines of general model (1) make it possible to calculate this forc

iy 0 _
m[ég]qug[l]—Rz (11)
In the single support phase, equation (11) can also be written:

mafw( )q+qu8 fw( )q — R

3fu( ) T 02 fi2(q) )

12
G+ mq 542 qg+mg=R;, (12)

m——--

where 2 f“g and Z1:(0 are ¢ x 5) matrices.

The reactron force exerted by the ground can be directed upward only, and to avoid the sliding of tt
biped, the reaction force must be inside the friction cone. These conditions can be written at each tir
by:
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where ;. is the friction coefficient (positive). It follows from these two inequalities tRat > 0. These
two scalar inequalities can be expressed by the following matrix inequality:

CR; >0 (13)

with C' = [ _11 Z ] For the single support phase, these constraints can be written using equation (12

Ulg)g+Vig,q) +W >0 (14)
with
U( ) ¢ 5q ’ V(q7Q):C .T32fi(q). ’ W:gol 1 ]
[q ag> qJ

4) The impact model: When the swing leg touches the ground at the end of single support, an impact
takes place. We assume that the ground reaction at the instant of impact is described by a Dirac de
function with |nten5|tyIR This impact is assumed inelastic. This means that the velocity of thejfoot
becomes zero just after’the impact. Two kinds of impact can occur depending on whether the stance
takes off or not. We study the gait with instantaneous double support phases. Thus during an impact 1
stance leg takes off and/r = 0 at the instant of impact. The robot configuratigns assumed to be
constant at the instant of double support, and there are jumps in the velocities. The velocity vectors |t
before and just after impact, are denoted, ¢ andz™, ¢ respectively. The torques;,l = 1,...,4
are limited, thus they do not influence the instantaneous double support. Using general model (1) a
expressions (4) the impact model can be written [11], [12]:

afi(@T
l Alge) 0sp ] (fr _ j—) _ l _[a—q ] I, (15)

02,5 mIQ 9

Vector IR of the ground reaction intensities can be expressed using the last two lines of matrix equatic
(15). Substltutlng this expression into the first five lines (15) we obtain:

e =o) - ([ 5] -[ 2 ) o

Before impact, leg is in contact with the ground, and after impact, e in contact with the ground.
Thus the linear velocity of the mass centre, before and after the impact, can be expressed as functior
the angular velocities (see the last two lines of (5)) and instead of (16) we obtain:

L ofi(@)" (0fi(@) .. 9filg) .
A + _ J J + 17
(g0) (4" =47 ) =—m 9 9g U g ¢ 17
Thus the biped angular velocity vectors before and after impact are related by a linear equation:
-1
. 0fi(a)" 9f,(9) 0fi(@)" 9fi(a)\ .-
+ _ J J J
= (0 + 2D OBDY 4y PR ) 8)
This equation will be simply noted:

T =1I(q)q" (19)

Intensity I, of the impulsive reaction force exerted by the ground can be calculated using the last tw
lines of matrix equation (15) and equation (5):

_ (919 0fila)\ .-
Ip; =m (Tq[(Q) - Tq) q
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This ground reaction force must be directed upward and be inside the friction cone. Thus the velocity
must satisfy the following matrix inequality:

9fi(q) ofila) .-
C<Tq[(Q)—Tq>q >0

To ensure a take-off of leg the vertical velocity component of leg tigy must be positive. Using the mass
centre vertical velocity as intermediate expression and due to the definition of the fungtions/f;.(q),
this condition can be written:

<3sz((]) _ 0fi=(q)

2 2 >I(Q)q‘>0

These two types of constraint can be grouped into:
D(q)¢~ >0 (20)

where D(q) is a3 x 5 matrix.

[Il. THE PROPOSEDCONTROL LAW

The desired walking is essentially composed of single support phases. During these phases, the bi
is an under-actuated system. The objective of the control law presented in this section is not to track
reference motion but only the associated path: only a geometrical tracking is desired and a time scall
control [8] is used. A reference joint path is assumed to be known. Thus the desired configgration
the biped is not expressed as a function of time but as a function of the scalar path parameter, the
length s: ¢,(s). The desired walking of the robot corresponds to an increasing funetion In other
words, functions(t) defines the sequence of the biped configurations in time.

A. Reference joint path for the walking biped
Let us prescribe the desired configuration of the biped under the form:

qa(t) = q-(s(t)) (21)

wheregq, (s) is a given vector-function of scalar parameter

Only cyclic walk of the biped is desired. The legs swap their roles from one step to the next one, <
the reference path can be defined for one step only. For the first step, the scalar path paraarétsr
from 0 to 1. The single support phase stands @o. s < 1 and the impact occurs on the desired path for
s = 1. Vectorsq,.(0) and ¢, (1) describe the initial and final biped configurations of the single support,
respectively. As the legs swap their roles from one step to the following one the desired configuratiol
are such that, (1) = Fq,(0) where E is a permutation matrix describing the leg exchange. Forkthe
step parametes varies fromk — 1 to k. Herek is positive integer. We define a cyclic path, thy$s)
has to satisfy the following condition of periodicity:

¢ (s +k) = E¥q.(s)

where0 < s <1 and E? = I.

Fork — 1 < s(t) < k, the robot configuration, (s) is such that the free leg tip is above the ground.
The biped touches the ground ait= k£ exactly. In consequence for any functie(t), the configuration
of the biped at the impact instant is the expected one.

The reference velocity of the rob@i(t) = %s is proportional tos. If parameters increases strictly
monotonically with respect to time, then this parameter can be chosen as independent variable. In t

case, the reference velocity can be rewrittendas) = 2= 5(s). Derivative “2(*) is a discontinuous
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vector-function at points = 0, 1,2, . ... The notationk~ (respectivelyk ™) means just before (respectively
after) k"* impact. Just before and after the impact, the velocities are:

o =) rg . +) .

Ga(k™) = 2ED5(k),  qa(k*) = D 5(k)

ds s
In order to obtain a cyclic path, the reference patfs) has to satisfy the impact equation (19):

dqr(k+) S\ dqr(k_) S
B 5(0) = () ™ 5(0)

whereg,(s) is a vector and; is a scalar. Thug,(s) can not be arbitrary chosen. We choose this vector-
function to have:

o) — I(gr (k) i) or 4= = EI(q, (1)) %0 (22)

ds ds ds -

With this choice we have the following equality{k*) = $(k~). As a consequence time derivatives
a continuous function of parameter
During the impact, the ground reaction must be directed upwards and be inside the friction cone, t
stance leg must take off, thus functigp(s) must be chosen such that (see inequality (20)):
dg, (k™)

D(g(k))—— >0 (23)

Thus the reference joint path(s) has to satisfy relations (22), (23) and the condition of periodicity.

B. Definition of the control law
It follows from (21) that the desired velocity and desired acceleration of the joint variables are:

Iy
. s . 5 2 (8 .
Qd(t) _ d‘hgs(t))s + d qugZ(t)) 32

So we assume that the reference path is a chosen periodical vector-fupctiptinat is twice differentiable
except for the integer value ot

The increasing function(t) defines the desired motion, but since the control objective is only to track
a reference path, the evolutie(t) is free and the second derivativewill be treated as a "supplementary
control input”. Thus, the control law will be designed for a system with equal number of inputs anc
outputs. The control inputs are the four torqugs; = 1,...,4, plus 5. The chosen outputs are the five
angular variables of vectar.

The control law is a non-linear control law classically used in robotics. But in order to obtain a finite-
time stabilization around one of the desired trajectories, the feedback function proposed in [13], [2]
used. The tracking errors are defined with respect to the trajectories satisfying (21):

eq(t) = ¢:(s(t)) — q(t) (25)

. dg. (s . .
éalt) = 25005 — ()

(24)

The desired behaviour in closed loop is:

L. 1
¢=da+ 59 (26)
where is a vector of five componentg;, [ = 1,...,5 with:
U = —sign(ecq|eéq |” — sign(e)|¢i]” (27)

and0 < v < 1,e >0, ¢ = e + 5—sign(eéy)|eéq,[*™, v and e are parameters to adjust the settling
time of the controller. Taking into account expression (21) of the reference motion, equation (26) can |
rewritten as:

dg,(s)

q: 75‘_‘_7}(87 SaQJQ) (28)
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with

d2
§§> + = w

The dynamic model of the robot is described by equatlons (7) and (10), thus the control law must &
such that:

,U(SJ S? QJ q.) -

M(q) ()5 + v) + h(q,q) =T

29
NG (825 +0) + 24 = mg(z, - o) )

We can deduce that, in order to obtain the desired closed loop behaviour, it is necessary and suffici

to choose:
—N(ge)v— qTMq+mg(:vg—:vs)

N(ge) (30)
T = M(q)(“=8 5 + v) + h(q, )

S =

If N(qc)d‘” # 0, the control law (30) ensures thaft) converges tay,.(s(¢)) in a finite time, which
can be chosen as less than the duration of one step [13], [2]. Without initial errors, a perfect tracking
q,(s(t)) is obtained.

The first equation (30) defings The evolutions can be calculated from this equation (but not chosen),
if s(0) and $(0) are known. We choosg(0) = 0 and we defines(0) to minimize the error on the joint
velocity £ = |¢(0) — ¢,(0)]*> = |¢(0) — % (0)]%. Thus, $(0) is such that#‘fo) = 0. We obtain:

5 t dgr (0)
dgr(0) t dgr(0)
ds ds

5(0) =

C. The singularities for the proposed control law

It follows from the first equation (30) that for the proposed control law, a singularity occhigif) <> d‘“ =
0. For the reference motiof(s) = ¢,(s), we define:
dg,(s)

£(5) = N{g ()

In fact, matrix N depends only on the first four components of veatdr) (see equation (9)), but here
the notationN (¢, (s)) is used for simplicity.

If for the reference path, functiofys) is sufficiently far from zero, and if the tracking error is sufficiently
small, no singularity occurs.

V. EXISTENCE AND UNIQUENESS OF ACYCLIC MOTION

Our main goal is to design a control strategy, which ensures a stable periodic motion of the biped. Tl
control law (30) ensures that the motion of the biped converges in a finite time towards a reference pe
described by (21). This time can be chosen to be less than the duration of the first step. With this choit
the biped with control law (30) follows perfectly the reference path, starting from the second step.

In this section, the five degree of freedom biped model is reduced to a one degree of freedom mox
with respect to variable using the given reference path. This model is similar to the model of an inverted
pendulum. Then we study the properties of this simpler model. Like a stable cyclic motion of the bipe
is desired, we study the conditions of existence and uniqueness of cyclic admissible reference motion
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A. Properties of the admissible reference motion

During the single support phase, the biped is an under-actuated system, thus it cannot follow any desi
motion¢,(t). We denote "admissible reference motion”, the moefs(¢)) satisfying the dynamic model
(7), (10).

Analyzing the angular momentum is sufficient to study the evolution of parameterThe motion
of the robot can in turn be deduced from the evolution of parametdihe angular momentura is
linear with respect to vectay (see equation (9)) and for the reference motion the velocity of the robot is
proportional tos (see first equation (24)). Thus, the angular momentum can be expressed by:

o= f(s)s$ (32)

Scalar functionf(s) depends on vectay,(s) and on the biped parameters. Let us assume that function
¢,(s) and the biped parameters are such @y # 0 for 0 < s < 1. If f(s) # 0intheintervald < s <1,

then f(s) < 0 or f(s) > 0 in this interval. The sign off(s) changes with the sense of the axisiIn

the following we assume that.(s) is such thatf(s) > 0. Some examples of functiofi(s) are given in
section VL. If f(s) # 0, we obtain from (32):

§=—— (33)

If vector-functiong,(s) is given, then the abscissg, of the mass centre is known as function of
parameters: z, = x,4(s). In this case, equation (10) can be rewritten as:

& = my(y(s) - ws,) (34)

Under a given joint path, model (33), (34) is equivalent to the dynamic model (7), (10). Thus, bott
equations (33), (34) define the admissible reference motion. Functighsand s(¢) can be calculated
from system (33), (34), when their initial values are known.

The system of second order (33), (34) is similar to the system describing the motion of usual physic
pendulum with one degree of freedom [14]. Thus it has an integral similar to the energy integral of th
pendulum motion:

o> — ®(s) = C = const (35)

where, .
@(s) = 2myg [ (w4(€) — s F(€)de (36)

kt+

Using equation (32), we can rewrite relation (35) in the form:
f2(s)5*(s) — ®(s) = C = const

or
F2(5)5%(s) = fA(KT)8 (k) = @(s) (37)

The functionsf(s) and ®(s) can be calculated wheg.(s) is known. These functions are periodic,
with period equal to 1. Thus the characteristics of the robot behaviour can be studied only for one ste
0<s<1.

For human gait, abscissg, of the mass centre increases during walking. In order to be close to the
human gait, we choose functigqn(s) such that abscissa, increases when parameteincreases front
to 1. The single support begins with, < zs, and finishes withr, > zg,. Figure 2 illustrates the action of
the gravity during the single support and the behaviour of the angular momentum according to equati
(34).

Functions®(s) are shown in figure 3 for some biped parameters [10] and some vector-fungtiens
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Moment

. . Moment

Direction of around'S due D1r§ct10n of around S due

ti to gravity motion .
motion - to gravity

—

CoM
S S
a) b)

Fig. 2. The effect of gravity for one step: a) the gravity slows down the motion, b) the gravity accelerates the motion.

« Function®(s) initially decreases (see equation (36)) strictly monotonically, starting from zero.
« The negative minimal value,,:

P, :gl<i7:<1 P(s) = D(sy) (38)

is reached at = s,, such thatr,(s,) = =g,
« After, z, > x5, and function®(s) increases strictly monotonically.

In fact, under the described above properties of functigfs), the shape of functio®(s) is always the
same as in figure 3.

O(s) Sg 18
0 T T
8] : :
QD I §' """"""" I
0 : :
Se : O(s)
Dm ---------- : Dm --------------- '
a) b)

Fig. 3. Two typical behaviours ob(s) for one step: in case a}(1) > 0, in case b)®(1) < 0.

At the end of the single support phase, the angular momentum is greater than at the beginning
®(1) > 0, and smaller if®(1) < 0 (see integral (35))

B. Minimal angular momentum to achieve a step

We have shown in previous section that at the beginning of the single support, the angular momentt
decreases due to the gravity effect. Now we will show that the initial angular momenttimor the
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initial velocity $(0), must be high enough to reach the configuration suchathat zs,. Whenz, > zg,,
the angular momentum increases due to gravity.

Using integral (35) and above mentioned properties of functity), it is easy to define the trajectories
of system (33), (34). These trajectories are drawrifer s < 1 in the phase plangs, o) in figure 4. The
arrows indicate the direction in which the point representing the motion moves as time increases.

T |
-

Yra

s e
e - —-—
=t ————F————

Fig. 4. The phase portrait of system (33), (34) in the plane)( corresponding to the functio®(s) given in figure 3a.

Equations (33), (34), and the phase portrait in figure 4 show that the behaviour of the biped with tf
given joint path is similar to the behaviour of an inverted pendulum. The phase portrait is symmetri
with respect to axiss. The points = s,,0 = 0 is a saddle point or col, it corresponds to an unstable
equilibrium of the biped. Two separatrices intersect at the saddle point. The ordinates of these separatri
areo = +/—®,, ats = 0. Each separatrix is close to a straight line because the graph of fudation
is close to a parabola. Phase portrait in figure 4 shows that:

o If 0(0) < /-, then the curver(s) defined by equation (35) crosses axis= 0 for s < s,,

after angular momentum becomes negative as velagithe parametes decreases and the biped
according to the given pat#) (s) falls backward.
. If 0(0) = v/—2,,, the motion converges asymptotically wher» oo to the unstable equilibrium:
5= 54,0 = 0.

. If 0(0) > /—2,,, the step can be achieved because the angular momenand the velocitys are
positive during all the step < s < 1.

The results are summarized in the following theorem.

Theorem 1: The path ¢, (s) with £ < s < k + 1 can be achieved by the biped, if and only if o(k*) >

: =
V=, or $(kT) > R

C. Conditions of existence and uniqueness of cyclic motion

A cyclic admissible reference motion is defined by a cyclic evolution of angular momentam
equivalently of a cyclic velocitys denoted bys.. All the admissible reference motions are defined by
equations (35) or (37). Thus a cyclic admissible reference motion exists if and only if there exists a
initial angular momentunw (k™) such that:o(k + 1*) = o(k™), or in another words, if and only if
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there exists an initial velocity(k) denoted bys.(k), such thats increases when time increases and
s(k+1) = s(k) = $.(k) = 5.(0) (note thats(s) is a continuous function at¢ = k). Under these
conditions, the states of the biped are identical at the beginning of the /stapd £ + 1 (but the legs
swap their role).

Since the functiongf(s) and ®(s) are cyclic, writing equation (37) fog = £+ 1~ or for s = 1~
implies that the initial velocitys.(0) is such that:

F2(17)3:(0)* = f2(0%)3.(0)* = @(17) (39)
Analyzing equation (39), we conclude:
o If f(0F) = f(17) and®(17) = 0, then any initial values(k) > s, produces a cyclic reference
motion.
« If f(0T) = f(17) and®(17) # 0 or if values®(17) and f2(17) — f2(0") have different signs, then
equation (39) has no solution, and consequently there is no cyclic reference motion.
. Equation (39) has a unique solutiép(0):

: d(17)
5¢(0) =
0 \} P) - 7707)
if and only if values®(17) and f?(17) — f?(0") have the same sign.
According to Theorem 1, solution (40) is the initial velocity for the cyclic reference motion if and only
if $.(0) > Vf&)‘?ﬁ)ﬂ. Using equation (40), the following theorem can be formulated.
Theorem 2: A unique cyclic reference motion exists if and only if 2" + ey > 0. The initial
cyclic velocity for one step is defined by equation (40).

(40)

Remark: If f2(17)— f%(0") > 0, then the angular momentum decreases during the impact (the supportin
leg changes); in opposite case, it increasesb(If~) > 0 the angular momentum increases during the
single support phase; in opposite case, it decreases. A cycle is achieved only when an increase (decre
of the angular momentum at the impact instant is compensated by a decrease (increase) during the sil
support motion.

V. CONVERGENCETOWARDS THECYCLIC REFERENCEMOTION

In this section, a condition of convergence of the admissible reference motion to the cyclic motion |
obtained.

We assume that a unique cyclic reference motion exists and that the initial vetasitlfigh enough
to have a monotonic evolution of parameterThe relative difference between velocitys) and cyclic
velocity s.(s), which is referred to as "velocity difference”, is defined by:

_ 3(s) = 5e(s)
6(8) - 30(3) (41)
The biped motion converges towards the cyclic one if and only(#) converges towards.(s) or
equivalently ife(s) converges td) whens — oc.

A. Evolution of the ” velocity difference” e(s)
Under definition (41), the velocity(s) can be expressed using the cyclic velocity as:
5(s) = $.(s)(1 + e(s)) (42)

The cyclic motion is an admissible reference motion. Thus equation (37) can be written for the cycli
motion, in the following form g < s < k + 1):

F2(s)32(s) = f2(KT)3c(0)* = @(s) (43)
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Taking equation (42) into account in equation (37), and using equation (43), we have:
(f2(0%)3(0)% + @(5)) (1 + e(5))* = f2(07)3(0)*(1 + e(k))* = @(s)

Thene(s) can be expressed as functionegk) for £ < s < k + 1:

B 200502
e(s) = \j 1+e(k)(e(k) +2) 0502+ 30) 1 (44)
The functione(s) includes a square root and is defined only for:
V=0,
elk) > ——= — 45
W= 70920 )
This condition is equivalent to inequalit(k) > Vf&)‘?ﬁ; (see Theorem 1).

The evolution of the velocity differencgs) for one step can be directly deduced from the evolution of
®(s). For the evolution ofb(s) given in figure 3, the velocity difference evolutions are shown in figure
5.

e(s
())\ e(s) | :
0.4 :
1
|
|
04 :
|
0.3 i
!
0.3 |
i
02f-----=========bemm - L ,:, ________________
|
1
02f--------------——-- Tommooooooooooooo :
o1 i 1S
. 0 Se 1 -

b)

Fig. 5. Two typical evolutiong(s) for one step: in case &)(1) < e(0), in case bl (1) > (0).

o Fork <s<k+s,, |e(s)| increases becausk(s) decreases (see equation (44)).

« Fors=1Fk+ s, |e(s)| has a maximum,

« Fork+s,<s<k+1, |e(s)| decreases becaudgs) increases.

From the beginning of the step to its end, the error increases or decreases depending on the sigr
d(1).

Function®(s) is cyclic but not continuous at = k, thus formula (44) is convenient only for one step
k < s < k+ 1. Velocity differencee(s) (see (41)) is a continuous function at= k becauses(s) and
$.(s) are continuous functions at= k. Using equation (39), we obtain the iterative formula from one
step to the following one:

e(k+1) = J1 4 e(k)(e(k) +2) (;83) 1 (46)
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B. Condition of convergence

The following theorem can be proved.
Theorem 3. The admissible reference motion converges towards the cyclic admissible reference motion

if and only if $(0) > ¥=2= and f(0%) < f(17) (or equivalently ®(1~) > 0).

Proof: With £ < s < k+ 1, if k& — oo then errore(s) — 0 uniformly for any s, if and only if
e(k) — 0 whenk — oo becausee(s) is defined by equation (44) and the functlg;‘(of)s 23)(?; = is
cyclic and bounded. Thus, to prove that the biped motion converges to the cyclic admissible referen
motion, it is necessary and sufficient to prove the convergenegkoftowards0 whenk — oc.

If f(0") < f(17), then using equation (46) and inequaljtys) > 0, we can deduce that:
e+ 1)] < 28 i) (@1)

f(17)
And we can conclude thatk) — 0 whenk — cc.
It follows from equation (46) that iff (0) = f(17), thene(k + 1) = e(k).

If f(0F) > f(17), then|e(k +1)| > ;E?fg|e(k)| and there is no convergence.

The conditions(0) > Vf(‘o‘i’)" ensures that(¢) is an increasing function during the first step fl0") <

f(17), the conditions(k) > f&)‘ﬁ’; will be satisfied for allk, and the functiors(¢) increases for all steps.
[ |
Remark 1. The convergence of the admissible reference motion can also be shown using a section
the Poincag'map as in [1] or [2]. Equation (46) allows to draw easily + 1) as a function ok (k). The
linearization of equation (46) around poiatt) = 0 defines the convergence ratio from one step to the

2
next one around the cyclic motion. After linearization, we ha@:+ 1) = (;E?f;) e(k). This equation

describes a geometrical progression with rz{tféﬁif which is less than the ratio in equation (47). The

lower the ratio f(l ) the faster the convergence.

Remark 2: Theorem 3 concerns in facrbital stability of the admissible reference cyclic motion,
because in this theorem, we consider parametes independent variable but we do not consider time

Combining theorems 1, 2 and 3, the following corollary can be deduced.

Corollary: The admissible reference cyclic motion is orbitally asymptotically stable if and only if the
reference joint path is such that: f(0%) < f(17) and®(17) f2(0") + ®,,(f2(17) — f2(0™)) > 0.

These conditions may be not satisfied for some reference joint paths. Figure 6 presents the differ
occurring cases.

O(FO Y Ouf(1)-F(07)

No cyclic motion Stable cyclic motion

£(1)-(0")

Unstable cyclic motion Many cyclic motions

No cyclic motion

Fig. 6. Existence and stability of cyclic motion in different cases.
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. In figure 6, the first quadrant corresponds to the cases satisfying the condition of the corollary.

. In the second and fourth quadran/;;;(fﬁ;%(oﬂ + 7 < 0, the condition of theorem 2 is not
satisfied, thus there is no cyclic motion.

. In the third quadran§2(1?)(i;%(0+> + 7z > 0, the condition of theorem 2 is satisfied, hif(1~) —
f2(0%) <0, so the condition of theorem 3 is not satisfied, thus there is an unstable cyclic motion.

. In the origin f2(17) — f?(0") = 0 and ®(1~) = 0, thus any initial velocitys(k) provides a cyclic
motion.

Only stable cyclic motions are interesting for the biped control design. These motions will be illustrate:

in section VI devoted to the simulation.

C. Unilateral contact

For an admissible reference motion to be followed, it must be such that the reaction force satisfi
inequality (14). For example if the initial velocity is too large, the centrifugal forces are higher than the
gravitational forces and a take-off of the biped occurs.

For an admissible reference motion the constraint (14) becomes:

ds § ds? ds
Using equations (10) and (32), the acceleratioran be calculated by:

o 1 df(5)$2 myg . §)) — 1
s = f(S) ds + f(S)( g(qr( )) Si)

Thus, the constraint can be written:

(_U( r)d%" 1 df(s)

dg, .. d*q . dgy . .
U@Wq *ﬁﬁwawiW+W>o

q %f(s) s V(Qr%) + U(Qr)ii’") % 4+ U(Qr)%%(wg(qr(s)) —zg,)+W >0 (48)

But the evolution ofs is defined by the initial velocity for the step by equation (37):
2(s) = 1005 (0) + ()
f2(s)
Thus, combining equations (48) and (49), the conditions sfqik) to satisfy the constraint on the
reaction forces, have the form:

(49)

J(s)§*(k) + L(s) >0 (50)

We recall that/(s) andL(s) are2x 1 vector-functionsiJ(s) = [J;(s)], L(s) = [L;(s)]. Vectorial inequality
(50) is equivalent to the following two scalar inequalities:

J](S)SQ(I{?) + L]'(S) >0, j=1,2 (51)

Different cases exist depending on the signs of the functig(s, L;(s). Let us introduce the following

three sets:
Uj:{SE [0,1] ZJj(S) <0 and Lj(S) SO}
Vi={se€l0,1]: J;(s) <0 and L;(s) >0}

W; ={se€[0,1]: J;(s) >0 and L;(s) <0}
« If there exists at least one indgxsuch thatU; # O, then inequality (51) for this index, and

consequently inequality (50), cannot be satisfied for any valée.
. Ifforall j, U; =@ andW; = O, and if there exists at least one indgxsuch thatV; # ), then the

reaction forces satisfy the constraints if and only(if) < \/minjL2 mingey; (*JL_J('S)).
J
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o Ifforall j, U; = 0 andV; = O, and if there exists at least one indgsuch thati’; # ©, then the
reaction forces satisfy the constraints if and only(i) > |/max;_; » max,cmw, (%)
. If for all j, U; = O and if there exists at least one indg»such thatV; # @ and one indexX such

that W, = O, then the reaction forces satisfy the constraints if and only if

ani}; s () <400 < Jm i (7))

o Ifforall j,U; =0, W; =@ andV; = O, then the reaction forces satisfy the constraints for any
positive s(k).
The size of the attraction domain is important for practical applications. The larger this domain, th
more robust the control law. This domain is also interesting to study possible changes of the velocity f
the robot walking. The constraint on the torque limits can be taken into account in a similar way.

D. Control law

We have defined the conditions such that a joint path corresponds to a stable admissible cyclic motic
The attraction region of this cyclic motion has been found, this region is based on the value of the angul
momentum. The constraints on the reaction force (no take-off, no sliding) give also some limits on th
initial velocity (or angular momentum).

Control law (30) ensures that the motion of the biped converges in a finite time towards a referen
path. Thus, the robot follows an admissible reference motion. And the following assertion is correct:

The control law (30) ensures an orbitally asymptotically stable motion of the robot if and only if the
reference joint path is such that: f(0) < f(17) and®(17) f2(0%) + ®,,,(f?(17) — f2(0T)) > 0, and the
angular momentum at the beginning of the walking is within some limits.

Remark: If the control law converges to the reference path during the first step, the limits on the velocit
§ (and consequently on the angular momentum) at the beginning of the second stép)are ¥
plus the limits defined in the previous subsection V-C.

VI. SIMULATION RESULTS

The proposed control law has been tested on the reference path presented under the stick-diagram f
in figure 7. The joint patly, (s) is defined by a polynomial evolutiopwith respect tos. We use a fourth
order polynomial for each component of vector

The corresponding periodic functiorf$s) and ®(s) are plotted in figure 8.

For the chosen reference pafti0™) = 18.30, f(17) = 24.76 and ®(17)f*(0T) + ®,,(f*(17) —
f2(0%)) = 94172, thus f(07) < f(17) and ®(17) f2(0") + @,,(f*(17) — f%(0")) > 0. In consequence,
the biped motion converges to a cyclic motion. The minimal value to achieve a complete step is (see
Theorem 1)s,, = 1.17. The constraints on the reaction force induce only a higher limit on the velocity
$(k): this velocity must be less thah55 in order to avoid the sliding/{= 0.66) of the supporting leg.

For an initial velocity of the robot such thatl7 < $(0) < 2.55, the motion of the biped converges to
the cyclic motion defined by.(0) = 1.54 (see equation (40)).

A. Perfect Modelling

Figure 9a shows the behaviour obtained in simulation with control law (30) for a "large” initial velocity,
$(0) = 2.5. The initial state of the biped belongs to the set of reference motions. Thus, the robot follow
the parameterized reference path without tracking error and converges towards the cyclic motion. In figt
9a, the velocitys(s) is shown. The functior.(s) corresponding to the cyclic motion is also presented
in order to point out the convergence of the robot motion to the cyclic one. But our control ensures on
orbital stability, thus the velocity(¢) does not converge té.(¢) as shown in figure 9b. In figure 10, the
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trunk orientation is drawn in its phase plane. This phase portrait allows us to illustrate the convergen
to the cyclic motion and the effect of the impact with the ground (there is a jump in the velocity in the

phase portrait).

B. Presence of modelling error

To illustrate some robustness property of the proposed approach, the following case is simulated:
« The mass errors are10% for the thighs,+30% for the shins and+-50% for the trunk. The error on
the inertia moments are40% for the thighs,4+10% for the shins and+30% for the trunk.
« The control law used is a classical computed torque control, thus the desired closed loop behavic

IS

instead of equation (26).

q§=Ga+ Kyéq+ Kpey

(52)

. Since the reference path is designed with a false model of the robot, the velocity after the impact

not the expected one.

The behaviour obtained in simulation is presented in figure 11. In this figure, velggjtis shown. The
function s.(s) corresponding to the cyclic motion of the modelled robot is also presented. The velocity
does not converge to the "expected” motion because this motion is not compatible with the real dynami
of the biped, but a cyclic stable motion is obtained.
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The simulation results show that the leg tip does not touch the ground during the single support (befa
s = 1.006), the ground reaction is directed upwards and is inside the friction cone. Some tracking erro
exist particularly at the beginning of each step due to the effect of impact, thus the path followed is nt
exactly the expected one but the tracking errors in angular variables are cyclic and smaller than 0.0
rad.

VIlI. CONCLUSION

For a planar biped under-actuated during the single support phases, the proposed control strategy con
in the tracking a reference path instead of a reference motion. The robot adapts its temporal evoluti
according to the effect of gravity. In this context a complete study has been presented. Some analyti
conditions that can be easily tested have been proposed: conditions of existence and uniqueness
cyclic motion, condition of convergence towards this cyclic motion. These conditions are defined on th
reference path.

The conditions of a cyclic motion existence and convergence to it are inequalities. Thus some robustne
is naturally contains in the proposed control strategy. In spite of tracking errors and/or modelling erro
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Fig. 11. Evolution of velocitys(s) (solid line), and of cyclic velocitys.(s) (dotted line) for 15 steps in presence of modelling error.

the behaviour of the robot converges to a cyclic motion, for a convenient reference path (i.e. satisfyir
the inequality with some margins). In presence of modelling errors, the obtained cycle is slightly modifie
with respect to the predicted cycle, but a stable walking is obtained as it has been observed in simulati

Since a reference path must satisfy some conditions (inequalities) in order to produce a stable cyc
walking, there exist some reference paths that can not be used with the proposed strategy. But we wan
point out that most of the tested paths are convenient with our control strategy. To correspond to a sta
motion, the path must satisfy the two following conditions. The angular momentum must decrease duri
the impact phase (the contact point changes). During the single support phase, the sub-phase where
gravity speeds up the motion, must have a higher contribution to the change of the angular momentt
than the sub-phase where the gravity slows down the motion (see figure 2).

All the cyclic optimal reference trajectories defined in [15] for this biped produce a path that corresponc
to a stable motion with the proposed control strategy.
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