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ABSTRACT 35 

The molecular structure and stability of species formed by silver in aqueous saline solutions typical 36 

of hydrothermal settings were quantified using in situ X-ray absorption spectroscopy (XAS) 37 

measurements, quantum-chemical modeling of near-edge absorption spectra (XANES) and extended fine 38 

structure spectra (EXAFS), and first-principles molecular dynamics (FPMD). Results show that in nitrate-39 

bearing acidic solutions to at least 200°C, silver speciation is dominated by the hydrated Ag+ cation 40 

surrounded by 4 to 6 water molecules in its nearest coordination shell with mean Ag-O distances of 41 

~2.32±0.02 Å. In NaCl-bearing acidic aqueous solutions of total Cl concentration from 0.7 to 5.9 mol/kg 42 

H2O (m) at temperatures from 200 to 450°C and pressures to 750 bar, the dominant species are the di-43 

chloride complex AgCl2
- with Ag-Cl distances of 2.40±0.02 Å and Cl-Ag-Cl angle of 160±10°, and the 44 

tri-chloride complex AgCl3
2- of a triangular structure and mean Ag-Cl distances of 2.55±0.05 Å. With 45 

increasing temperature, the contribution of the tri-chloride species decreases from ~50% of total dissolved 46 

Ag in the most concentrated solution (5.9m Cl) at 200°C to less than 10-20% at supercritical temperatures 47 

for all investigated solutions, so that AgCl2
- becomes by far the dominant Ag-bearing species at 48 

conditions typical of hydrothermal-magmatic fluids. Both di- and tri-chloride species exhibit outer-sphere 49 

interactions with the solvent as shown by the detection, using FPMD modeling, of H2O, Cl-, and Na+ at 50 

distances of 3 to 4 Å from the silver atom. The species fractions derived from XAS and FPMD analyses, 51 

and total AgCl(s) solubilities, measured in situ in this work from the absorption edge height of XAS 52 

spectra, are in accord with thermodynamic predictions using the stability constants of AgCl2
- and AgCl3

2- 53 

from Akinfiev and Zotov (2001) and Zotov et al. (1995), respectively, which are based on extensive 54 

previous AgCl(s) solubility measurements. These data are thus recommended for chemical equilibrium 55 

calculations in mineral-fluid systems above 200°C. In contrast, our data disagree with SUPCRT-based 56 

datasets for Ag-Cl species, which predict large fractions of high-order chloride species, AgCl3
2- and 57 

AgCl4
3- in high-temperature saline fluids. Comparisons of the structural and stability data of Ag-Cl 58 

species derived in this study with those of their Au and Cu analogs suggest that molecular-level 59 

differences amongst the chloride complexes such as geometry, dipole moment, distances, and resulting 60 

outer-sphere interactions with the solvent may account, at least partly, for the observed partitioning of Au, 61 

Ag and Cu in vapor-brine and fluid-melt systems. In hydrothermal environments dominated by fluid-rock 62 

interactions, the contrasting affinity of these metals for sulfur ligands and the differences both in 63 

chemistry and stability of their main solid phases (Ag sulfides, Cu-Fe sulfides, and native Au) largely 64 

control the concentration and distribution of these metals in their economic deposits. 65 

66 



Silver in hydrothermal fluids 

 3 

1. INTRODUCTION 67 

 68 

There is a growing need for better understanding the silver behavior in hydrothermal systems 69 

hosting a major part of Ag resources on Earth. Despite the low abundance of silver in the continental crust 70 

(~50 ppb, Rudnick and Gao, 2003), this trace element is enriched in hydrothermal fluids, with 71 

concentrations up to ~100 ppm in brines as show fluid-inclusion analyses (e.g., Heinrich et al., 1999; 72 

Ulrich et al., 1999; Audétat et al., 2000; Borisova et al., 2012). Although silver usually follows its 73 

geochemical analogs, copper and gold, Ag/Cu and Ag/Au ratios in magmatic-hydrothermal deposits vary 74 

over 3-4 orders of magnitude. For example, typical Ag/Au mass ratios in porphyry deposits and 75 

epithermal adularia-quartz and alunite-quartz deposits, ~1÷1000, are significantly higher than those of 76 

Carlin-type, skarn, and orogenic gold deposits, ~0.001÷1 (e.g., Sillitoe and Hedenquist, 2003; Pal‟yanova, 77 

2008). Silver also fractionates from gold and copper in vapor-brine systems of magmatic-hydrothermal 78 

settings, where Ag partitions preferentially into the saline solution, whereas Au and Cu often enrich the 79 

aqueous low-density vapor, as inferred from natural fluid inclusion data and laboratory experiments 80 

(Pokrovski et al., 2005a, 2008a; Kouzmanov and Pokrovski, 2012; references therein). Knowledge of the 81 

chemical speciation of silver in geological fluids over the range of magmatic-hydrothermal conditions is 82 

the primary requisite for modeling Ag transfers in natural vapor-fluid-melt systems, identifying favorable 83 

conditions of Ag-bearing minerals formation, and interpreting Ag tenors in different types of deposits. 84 

The present contribution is aimed to provide new data on the stoichiometry and structure of aqueous 85 

complexes that carry silver in hydrothermal fluids. 86 

Among the three major natural ligands, hydroxide, sulfide, and chloride that transport base and 87 

precious metals in saline liquids and vapors, the Cl- ion is believed to be the principal carrier of Ag, 88 

similarly to other base metals (Fe, Zn, Pb), as demonstrated by numerous experimental studies of Ag-89 

bearing mineral solubilities and vapor-liquid and fluid-melt partitioning (e.g., Wood et al., 1987; Zotov et 90 

al., 1995; Wood and Samson, 1998; Pokrovski et al., 2005a, 2008a,b; Simon et al., 2008; references 91 

therein). The other two ligands, H2S/HS- and H2O/OH-, may contribute to Ag solubility only in fluids 92 
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characterized by low temperatures and salinities, alkaline pH and/or elevated sulfide contents (e.g., 93 

Webster, 1986; Stefánsson and Seward, 2003; references therein). The effect of less common ligands such 94 

as ammonia (e.g., Wood and Samson, 1998), selenide (Akinfiev et al., 2008), bromide and iodide 95 

(Gammons and Yu, 1997), which may form strong chemical bonds with the Ag+ ion, is expected to be 96 

weak in typical hydrothermal fluids with low concentrations of these components compared to the far 97 

more abundant chloride.  98 

There is thus little doubt that chloride complexes play the major role in the hydrothermal and 99 

magmatic transport of Ag; however, they have been a subject of rather limited experimental work 100 

concerning the exact stoichiometry and thermodynamic stability of these important species. Two major 101 

sources of data on Ag-Cl aqueous species are those of Seward (1976) and Zotov et al. (1995, references 102 

therein) who carried out systematic measurements of native silver (Ag) and chlorargirite (AgCl) solubility 103 

over wide temperature (T), pressure (P) (to 450°C and 1.5 kbar) and Cl concentration (to 7 m NaCl and/or 104 

KCl) ranges. Their data indicate that the dichloride AgCl2
- is likely to be the dominant species to at least 105 

2m Cl; the mono-chloride complex AgCl0 is significant only in dilute solutions (< 0.01m Cl); higher-order 106 

chloride complexes (AgCl3
2-) form only in concentrated Cl brines at moderate temperatures. The large 107 

stability of AgCl2
- was confirmed by subsequent solubility work conducted in narrower T-P-composition 108 

windows (e.g., Gammons and Williams-Jones, 1995; Akinfiev and Zotov, 1999). Because the 109 

thermodynamic properties of the crystalline silver chloride, AgCl(s), and aqueous AgCl2
- were believed to 110 

be well constrained at T < 300°C from those works, they were used indirectly to derive the formation 111 

constants of aqueous HCl0 and chloride complexes of a number of metals like Zn, Ca, Mn, Pt, Pd, Nd by 112 

measuring changes in AgCl(s) solubility in the presence of the metal cation in moderately-saline solutions 113 

(Ruaya and Seward, 1986, 1987; Williams-Jones and Seward, 1989; Gammons, 1995; Gammons and 114 

Seward, 1996; Gammons et al., 1996; Tagirov et al., 1997).  115 

However, large discrepancies exist on both stability and stoichiometry of Ag-Cl complexes at 116 

elevated salt concentrations (> 2m) typical of natural magmatic-hydrothermal fluids. In particular, tri- and 117 
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tetra-chloride complexes, which are known for silver at ambient temperatures (Martell et al., 2004,) and 118 

for many other metals (Fe, Pb, Zn, Cd) both at ambient and hydrothermal conditions (e.g., Wood and 119 

Samson, 1998; Martell et al., 2004; Testemale et al., 2009; Bazarkina et al., 2010; references therein), 120 

were insufficiently explored for Ag above 100-200°C. Based on the available solubility studies cited 121 

above and ambient-temperature data on [AgCl1-4] complexes from abundant chemical literature (Martell 122 

et al., 2004, NIST Critical database 8.0; refs therein), Sverjensky et al. (1997) and Akinfiev and Zotov 123 

(2001) have generated two independent datasets of thermodynamic properties of Ag-Cl complexes using 124 

the revised Helgeson-Kirkham-Flowers (HKF) model (Tanger and Helgeson, 1988). These datasets are 125 

now integrated in computer codes and largely used by geochemists; however, they appear surprisingly 126 

inconsistent as shown in Fig. 1. Calculations using these two datasets reveal large differences at T > 127 

300°C and mCl > 1.5m in the Ag chloride species distribution dominated either by AgCl2
- (Akinfiev and 128 

Zotov, 2001) or AgCl4
3- (Sverjensky et al., 1997). This leads to large discrepancies when predicting Ag-129 

bearing minerals solubility in saline fluids at elevated T, attaining a factor of 10 to 100 in dissolved Ag 130 

concentration above 400°C over the acidity and sulfur fugacity ranges typical of natural fluids (Fig. 2). 131 

These discrepancies may also affect the thermodynamic data for other metal chloride complexes derived 132 

from solubility measurements of AgCl(s) (see above). In addition to the chloride number (also commonly 133 

referred to as ligation number), knowledge of species geometry and hydration structure (i.e., presence of 134 

water molecules in the Ag coordination shell) is also required to interpret Ag partitioning in brine-vapor 135 

systems (Pokrovski et al., 2005a, 2008a). Molecular structures of Ag species are necessary to make sound 136 

physical-chemical comparisons with its analogues, Au and Cu, which also form chloride complexes in 137 

hydrothermal fluids. 138 

In situ X-ray absorption spectroscopy (XAS) provides a direct way to resolve the discrepancies of 139 

the Ag-Cl species stoichiometry and to access their structures and hydration numbers. In contrast to its 140 

analogs Au and Cu whose major chloride and sulfide complexes in high T-P  aqueous solution have 141 

recently been investigated using XAS (Fulton et al., 2000; Brugger et al., 2007, Berry et al., 2009; 142 
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Pokrovski et al., 2009a,b; Etschmann et al., 2010), the only data available for Ag at T above ambient is a 143 

XAS study of Ag+ hydration to 300°C and saturated vapor pressure (Psat) are those of Seward et al. 144 

(1996). This cation is however unlikely to play a major role in typical chloride-bearing fluids (see above). 145 

Recent improvements in the design of high T-P optical cells for synchrotron (e.g., Testemale et al., 2005) 146 

allow now in situ XAS measurements on dissolved metals to supercritical conditions, avoiding the 147 

difficulties of classical hydrothermal-reactor techniques related to bulk solubility determination (e.g., 148 

artifacts related to sampling or quenching, Pokrovski et al., 2008b) and its interpretation in terms of 149 

dissolved species (e.g., choice of speciation models based on bulk solubility, Pokrovski et al., 2006). In 150 

addition, a far more rigorous analysis of XAS data is now possible owing to the progress in quantum-151 

chemistry and molecular dynamics modeling allowing robust constraints on electronic structures, species 152 

geometries, hydration shells, and solute-solvent interactions (e.g., Ferlat et al., 2002; Dang et al., 2006; 153 

D‟Angelo et al., 2008; Sherman, 2010).  154 

In this work, we performed in situ XAS measurements (including near-edge structure spectra or 155 

XANES, and extended fine structure or EXAFS spectra) on silver chloride aqueous solutions in a wide 156 

salinity range (0.7-5.9m Cl) at 200-450°C and 600-800 bar. The data were processed using classical 157 

EXAFS analyses, quantum-chemical simulations of XANES, and first-principles molecular dynamics 158 

modeling of Ag-Cl-H2O interactions in aqueous solution. Results provide new speciation and structural 159 

data on Ag chloride complexes responsible for the transport of this metal by geological fluids, and allow a 160 

better interpretation of the behavior of Ag and associated metals (Au and Cu) in hydrothermal settings. 161 

 162 

2. MATERIALS AND METHODS 163 

 164 

2.1. Experimental design and X-ray absorption spectra acquisition 165 

XAS measurements were performed on one nitrate AgNO3-HNO3 and three chloride AgCl-NaCl-HCl 166 

aqueous solutions, prepared from analytical grade reagents and deionized water. Solution compositions are reported 167 

in Table 1 in molality units (m = number of moles of each solute per kg of water). Hydrogen peroxide (0.05-0.10 m 168 
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H2O2) was also added in each solution to prevent precipitation of native silver that may happen at elevated 169 

temperature (e.g., Seward, 1973). A weighed amount of silver chloride, which is weakly soluble at ambient 170 

temperature (< 0.001m), was pressed in pellets and loaded in the experimental cell. Total dissolved silver 171 

concentration in solution was measured from the absorption edge height in transmission mode (Pokrovski et al., 172 

2005b, 2009a; Table 1). The solubility of AgCl(s) increases with temperature (e.g., Seward, 1976), and the 173 

acquisition was started > 200°C when dissolved Ag concentrations are high enough (> 0.01 m) to allow low-noise 174 

EXAFS spectra to be obtained in transmission mode (see below). At moderate T (200-300°C), dissolved Ag 175 

concentrations attain a steady state value within 10 min. after the temperature reach and remain stable for at least 176 

several hours, indicating that equilibrium with AgCl(s) is likely to be reached. The rapid equilibrium reach is in 177 

agreement with previous batch-reactor solubility studies (Seward, 1976; Zotov et al., 1995). However, at T > 300°C 178 

and high salinities with large excess of solid phase, Ag dissolved concentrations decreased systematically and 179 

AgCl(s) precipitation occurred on the colder optical windows of the cell at the X-ray beam passage. This was 180 

manifested by noisy spectra clearly showing the contribution of the solid whose spectrum is very different from 181 

those of solutions. In the experiments reported in this study, this was carefully avoided by using smaller amounts of 182 

AgCl(s), corresponding to under-saturated solutions at T > 300°C. In this case, spectra from solutions show no 183 

detectable contribution of AgCl(s). Thus, AgCl(s) solubility could only be accurately measured at 200°C for all Cl 184 

concentrations and at 300°C for the lowest mCl concentration (0.7m, Table 1). Although minor losses of Ag from 185 

solution owing to AgCl(s) precipitation in the colder zones of the cell, close to the pistons which are out of the 186 

sample space probed by X-rays, were still observed for some experiments above 300°C (Table 1), it did not affect 187 

the XAS spectra from solution, demonstrating that no precipitation of AgCl(s) occurs at the beam passage.  188 

XAS spectra from Ag aqueous solutions were collected at the Ag K-edge (~25.5 keV) over the energy 189 

range 25.2-26.7 keV on BM29 bending-magnet beamline (Filipponi et al., 2000) at the European Synchrotron 190 

Radiation Facility (ESRF, Grenoble, France). The storage ring was operated at 6 GeV with a ~200 mA current. The 191 

beam energy was selected using a Si (311) double-crystal monochromator detuned by 30% to eliminate higher-192 

order harmonics. Energy was calibrated using a silver metal foil and setting the maximum of its main-edge 193 

spectrum derivative at 25.514 keV. Spectra were recorded in transmission mode using ion chambers filled with Ar 194 

gas. Multiple XAS scans were performed on each T-P-composition point, with an acquisition time of ~40 min/scan. 195 

Experiments were conducted using a high T-P cell developed at the Institute Néel (Grenoble) and recently 196 
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described in detail elsewhere (Pokrovski et al., 2005b, 2006, 2009a; Testemale et al., 2005). Both solution and solid 197 

were placed in the internal cell that consists of a vertical 1-mm thick glassy-carbon tube and two coaxial sapphire 198 

pistons, which delimit the sample space and move in the tube in response to T-P changes. The cell is heated by 199 

electrical resistances and placed in a stainless-steel vessel pressurized with helium gas and equipped with beryllium 200 

windows for X-ray passage. Temperature in the sample space was controlled within ±5°C by thermocouples 201 

attached to the glassy-carbon tube. Pressure was monitored by manometers at the cell exit and the end of pressure 202 

line; pressure differences between them do not exceed a few bars.  203 

 204 

2.2. X-ray absorption spectra analysis 205 

EXAFS data analysis was performed with the HORAE and IFEFFIT programs (Ravel and Newville, 2005) 206 

and following the recommendations of the International XAFS Society (Sayers, 2000). Details about the reduction 207 

procedure can be found elsewhere for similar metals (Pokrovski et al., 2006, 2009a,b). Briefly, energies were 208 

recalculated into k-space (Å-1) with E0
 (i.e., the energy at which k is zero) chosen as the maximum of the first 209 

derivative of the main-edge spectrum. Spectra were normalized to the absorption edge height, background removed, 210 

weighted by kn, where n = 1, 2 and 3, and Fourier transformed (FT) over the k range 3.0-11.6 Å-1 for chloride and 211 

3.0-10.0 Å-1 for nitrate aqueous samples. The shorter k-range for nitrate solutions is dictated by i) the low amplitude 212 

of the Ag-O EXAFS signal at high k-values comparable to the spectral noise, and ii) the presence of multielectron 213 

excitations KM4,5 and KM2,3 that appear in the chi(k) data at 10.3 and 12.7 Å-1 (Fulton et al., 2009). In contrast, the 214 

EXAFS spectrum of the Ag-Cl contribution dominant in Cl-bearing solutions has a higher signal-to-noise ratio 215 

above 10 Å-1 and thus is much less affected by the multielectron transitions. This was checked by EXAFS fits of 216 

larger k-ranges (up to 13.5 Å-1) for some low-noise spectra; they yielded no changes within errors in the derived 217 

structural parameters. Fits were performed in R-space on both real and imaginary parts of the FT contributions to 218 

obtain the identity of neighbor atoms, Ag-neighbor distance (R), coordination number (N), and Debye-Waller factor 219 

(σ2) for each scattering path (Table 1). A single nonstructural parameter Δe was varied to account for the difference 220 

between the experimental absorption-edge energy and its estimate made by FEFF. To diminish correlations 221 

between N and σ2, and better account for light (O) versus heavy (Cl) neighbors and multiple scattering paths, fits 222 

were performed simultaneously with k-weighting of 1, 2 and 3. The fitted values of structural parameters were 223 

identical within errors, with comparable fit qualities at each k-weighting. This is an additional demonstration of 224 
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both the validity of the chosen structural models and the accuracy of the EXAFS background removal procedure 225 

(Ravel and Newville, 2005; Kelly et al., 2008). Theoretical backscattering amplitude and phase-shift functions for 226 

Ag-O and Ag-Cl single and multiple scattering paths were computed by the FEFF6 ab-initio code (Zabinsky et al., 227 

1995) using AgNO3 and AgCl crystal structures (Gibbons and Trotter, 1971; Hull and Keen, 1999). The amplitude 228 

reduction factor (S0
2) was set at 0.75±0.05 as found by fitting the spectra of crystalline Ag2O, AgNO3, AgCl, and 229 

Ag2S solids. The effect of inharmonic disorder was accounted using the cumulant expansion method with third- and 230 

fourth-order cumulants (c3 and c4). Multiple scattering (MS) events within the Ag first coordination shell were 231 

tested using the FEFF code, assuming tetrahedral, trigonal pyramidal, and linear geometries around Ag as found in 232 

the model compounds.  233 

In addition to classical EXAFS analyses, XANES spectra of different Ag-Cl-H2O molecular clusters were 234 

modeled ab-initio based on the experimental EXAFS-derived Ag-Cl and Ag-O distances and geometries found 235 

from molecular dynamics (see below) using the FDMNES computer code (Joly, 2001). Details about this approach 236 

for aqueous species can be found elsewhere (e.g., Testemale et al., 2004; Pokrovski et al., 2009a, Bazarkina et al., 237 

2010). Very briefly, calculations of theoretical XANES spectra of different cluster‟s symmetry and geometry were 238 

performed using the Finite Difference Method (FDM) with an energy resolution of < 0.1 eV (note that in case of 239 

low symmetry, the muffin-tin approximation is not sufficient in the near-edge energy range; Joly, 2001). The 240 

obtained spectra, which display almost all possible electronic transitions, are further convoluted with a Lorentzian 241 

function with a full width of 6.75 eV (Gamma_hole key in the FDMNES input file) to account for the core-hole 242 

lifetime at the Ag K-edge, and a Gaussian function to account for the experimental resolution assumed to be equal 243 

to the intrinsic resolution of the (311) monochromator (1.1 eV). The value of energy of the Fermi level (Efermi) was 244 

fixed to -3.0 eV based on the examination of the density of states (DOS) of the different electronic levels. Changing 245 

the values of Efermi from -6 to 0 eV produces only minor effects on the calculated XANES spectra.  246 

 247 

2.3. First-principles molecular dynamics simulations 248 

Three different compositions in the model Ag-NaCl-H2O system were simulated, each consisting of 128 249 

water molecules, 1 Ag+, 1 Na+, and 2, 3 or 4 Cl- ions. These numbers of Cl- ions correspond to apparent Cl 250 

molalities (mCl) of 0.9, 1.3, and 1.7, respectively, but because of the low Cl/Ag ratios in our systems (from 2 to 4), 251 

the concentration of free Cl- not complexed with Ag is much smaller. This should be kept in mind when comparing 252 



Silver in hydrothermal fluids 

 10 

the FPMD results with XAS data from experimental Ag-Na-Cl solutions, where total Cl/Ag ratios are much higher 253 

(from 20 to 100, Table 1). The model with 4 Cl- ions was examined at near-ambient (50°C, 1 bar) and supercritical 254 

(380°C, 600 bar) conditions. The models with 2 and 3 Cl- ions were simulated at supercritical conditions only.  255 

The stability of Cl--bearing complexes was simulated by inserting pre-formed AgCln
(n-1)- clusters with n = 2 256 

to 4. For n = 4, the initial geometric configuration is a tethahedral complex with Ag-Cl bonds of 2.35 Å and Cl-Ag-257 

Cl angles of 109.5°. For n = 3 and n = 2, the initial configurations were derived from the latter one by removing 258 

chlorine atoms. To accelerate the equilibration of the surrounding water molecules, classical molecular dynamics 259 

simulations using empirical force-fields were ran for typically 1 ns while keeping fixed the geometry of the AgCln
(n-260 

1)- complexes. Cubic periodic boundary conditions were employed. The box sizes were adjusted to reach a pressure 261 

value close to the target pressures in the empirical force-field simulations (1 bar at 50°C and 600 bar at 380°C), 262 

while being guided by the equation of state of the NaCl-H2O system (Anderko and Pitzer, 1993; Bakker, 2003). The 263 

resulting cubic box sizes are 15.7 Å and 17.8 Å for the system with 4 Cl- at near-ambient and supercritical 264 

conditions, respectively, and 18.0 Å and 17.7 Å for the systems with 2 and 3 Cl-, respectively. The final 265 

configurations obtained at the end of the classical runs were then used as starting configurations for FPMD 266 

simulations. 267 

 The FPMD simulations were carried out within the Density Functional Theory (DFT) framework and 268 

the Born-Oppenheimer method using the freely available program package QUICKSTEP/CP2K (VandeVondele et 269 

al., 2005a). QUICKSTEP uses a hybrid Gaussian plane-wave (GPW) method (Lippert et al. 1997). A triple-zeta 270 

valence doubly polarized (TZV2P) basis set was chosen for oxygen, hydrogen, and chlorine (VandeVondele et al. 271 

2005b), whereas the double-zeta valence plus polarization (DZVP) basis set optimized for molecules 272 

(VandeVondele et al., 2007) was employed for silver. Core electrons were replaced by the Goedecker-Teter-Hutter 273 

(GTH) norm-conserving pseudo-potentials (Goedecker et al., 1996; Hartwigsen et al., 1998; Krack, 2005). A 274 

neutralizing background charge was implicitly added for all charged systems. The cutoff for the electronic density 275 

was set to a high converged value, 600 Ry, with smoothing for the exchange-correlation contribution 276 

(VandeVondele et al., 2005a). The gradient-corrected exchange-correlation functional BLYP (Becke, 1998; Lee et 277 

al., 1998) was used in the DFT calculations. This functional is known to provide accurate structural results, e.g. 278 

inter-atomic distances are over-estimated by only 1-2% (Sprik et al., 1996). Van der Waals interactions were taken 279 

into account using the scheme of Grimme (2006). Constant temperature conditions were imposed by a Nosé-280 
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Hoover thermostat chain (Nosé 1984a,b). The time step for the MD simulations was 0.5 fs. The simulations were 281 

run for 100 ps at 50°C and for 50 ps at 380°C.  282 

MD-EXAFS spectra were calculated from the FPMD trajectories using the FEFF code (Zabinsky et al., 283 

1995) and the methodology detailed in Ferlat et al. (2005). Spherical clusters of a radius of 8 Å centered at the 284 

silver atom were extracted every 5 fs, providing a total of 20,000 clusters at 50°C and 10,000 clusters at 380°C. An 285 

individual EXAFS signal for each cluster was generated including all the contributions from multiple-scattering 286 

paths up to 6 legs. In these calculations, the amplitude reduction factor (S0
2) was set to 0.75 as obtained 287 

experimentally, leaving a single parameter Δe to match the experimental and calculated energy mesh. The 288 

scattering potentials were calculated in the muffun-tin approximation, and it has been checked that use of the ab-289 

initio self-consistent field scheme led to almost identical results.  290 

 291 

3. RESULTS 292 

3.1. Analysis of EXAFS spectra  293 

3.1.1. Nitrate solutions 294 

 EXAFS spectra of a Cl-free silver nitrate solution (exp #1, 0.21m AgNO3-0.10m HNO3-0.10m 295 

H2O2), in which the hydrated Ag+ cation is dominant, could only be acquired to 200°C, because of the 296 

rapid loss of dissolved Ag from solution above that temperature due to the precipitation of native silver, 297 

likely caused by the reducing environment of the glassy-carbon cell and/or beam-induced effects common 298 

for redox-sensitive metals (e.g., Pokrovski et al., 2009a). The spectra collected at 30, 100, and 200°C (Fig. 299 

3), display a single contribution from the first-shell oxygen neighbors without any clearly detectable 300 

outer-shell signal or multiple scattering paths. The spectra show both reduction in chi(k) and FT 301 

magnitudes and shift to shorter Ag-O distances with increasing temperature (Fig. 3). This is confirmed by 302 

quantitative EXAFS modeling yielding Ag-O average distances from 2.34 to 2.30 Å and number of 303 

oxygen neighbors from ~6 to ~4.5 when T increases from 30 to 200°C, whereas DW factors of the Ag-O 304 

shell remain constant within errors (Table 1). Neither significant anharmonic effects as approximated by 305 
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the third- and fourth-order cumulants (c3 < 3×10-4, c4 < 5×10-5), nor presence of two different Ag-O 306 

distances were detected within the spectral resolution.  307 

The absolute values of R and DW parameters derived in this study are identical within errors to 308 

those reported by Seward et al. (1996) using EXAFS spectroscopy for similar nitrate solutions from 20 to 309 

300°C at saturated vapor pressure (Psat). Our Ag-O distances at near-ambient temperature, RO=2.34±0.02 310 

Å, compare favorably with previous ambient-temperature studies of the aqua Ag+ ion by EXAFS 311 

(Yamaguchi et al., 1984a), X-ray and neutron diffraction (Yamagushi et al., 1984b; Sandstrom et al., 312 

1985; Skipper and Neilson, 1989), and large angle X-ray scattering (LAXS, Persson and Nilsson, 2006). 313 

Most of these studies report Ag-O coordination numbers around four at ambient conditions, which is 314 

consistent with the tetrahedral Ag(H2O)4
+ cation, also suggested from UV spectroscopy (Texter et al., 315 

1983) and theoretical DFT quantum chemistry and molecular dynamics (MD) simulations (e.g., Martinez 316 

et al., 1997; Feller et al., 1999; Bernasconi et al., 2004). However, other MD simulations (e.g., Armunanto 317 

et al., 2003; Fulton et al., 2009) and recent analyses of Ag L- and K-edge EXAFS spectra of silver 318 

perchlorate and nitrate solutions (Fulton et al., 2009) are less categorical about the tetrahedral Ag+ 319 

geometry, rather suggesting a five- or six-coordinated Ag+ in aqueous solution. Although our EXAFS-320 

derived coordination numbers are closer to these values (~5-6 O atoms, Table 1), they exhibit significant 321 

errors (±1.5 atoms at least). We believe that the issue of the Ag+-H2O coordination cannot be resolved on 322 

the solely base of EXAFS data, but it will require independent information from XANES spectra, which 323 

are more sensitive to the cluster geometry and symmetry, as will be shown in section 3.2. Molecular 324 

dynamics simulations of Ag+ in Cl-free aqueous solution will be presented in a subsequent paper. 325 

 326 

3.1.2. Chloride solutions 327 

 EXAFS spectra and their Fourier transform magnitudes of the three studied Ag chloride solutions of 328 

0.7, 2.6 and 5.9m total Cl are plotted in Fig. 3a,b. They are different both in phase and amplitude from 329 

those of the Ag-O environment in nitrate solution, suggesting the predominance of heavier 330 
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backscatterrers, presumably Cl. Qualitative continuous Cauchy wavelet transforms analyses (CCWT, 331 

Munoz et al., 2003) demonstrate that the EXAFS is dominated by the Ag nearest shell composed of Cl 332 

atoms without any detectable presence of other types of atoms like O (electronic annex EA-1). No outer-333 

shell neighbors or multiple scattering signals are detectable within the spectral resolution (Fig. 3b, EA1-334 

1). In particular, all analyzed spectra show no detectable contribution from AgCl(s) that might precipitate 335 

at the beam passage (see section 2.1). The spectra from solution are devoid of all features typical of the 336 

AgCl solid (strong Ag-Ag contributions in EXAFS, particular shape and magnitude of XANES, and large 337 

N and R values, see below). The EXAFS spectra of chloride solutions reveal weak but clearly identifiable 338 

variations in both phase and amplitude for the same Cl concentration with T change, and amongst 339 

different Cl solutions at a given T, suggesting that the Ag-Cl atomic environment depends on both T and 340 

mCl.  341 

This is confirmed by quantitative EXAFS fits (Table 1, electronic annex EA-2), which show that 342 

average Ag-Cl distances for concentrated chloride solutions systematically decrease over a range of 343 

~0.05-0.07 Å with increasing T (e.g., from 2.49 Å at 200°C to 2.42 Å at 450°C for the 5.9m Cl solution; 344 

Fig. 4A). At the same T, the Ag-Cl distance increases slightly with increasing Cl concentration (e.g., from 345 

2.38 to 2.44 Å at 400°C/600 bar, when mCl increases from 0.7 to 5.9m; Fig. 4A). The trend in average 346 

number of Cl atoms around Ag (NCl) is less clear, showing values of 2.0±0.2 atoms at T > 300°C in the 347 

whole mCl range (Fig. 4B). At lower T, NCl values are somewhat higher, attaining ~2.5 for the most 348 

concentrated solution (5.9m Cl at 200°C). Note however, that the precise evolution of NCl with T and 349 

salinity may be hidden inside the high intrinsic uncertainties associated with this EXAFS parameter. The 350 

DW factors of the Ag-Cl shell (2) do not show significant T trends for any investigated solution, but are 351 

systematically higher on average at higher mCl (e.g., differences attain a factor of 2 between the most 352 

dilute and most concentrated solution, despite similar NCl, see Table 1). In addition to the three major 353 

structural parameters above, significant anharmonic disorder in Ag-Cl distances was detected as 354 

expressed by the c3 cumulant (Table 1). Despite large intrinsic uncertainties associated with this 355 
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parameter (±50% of the value itself), its inclusion in the model, particularly for the most concentrated 356 

solution, yielded a 2- to 3-fold improvement in fit quality as compared with cumulant-free fits. A rough 357 

tendency for the c3 parameter is a slight decrease with increasing T and decreasing mCl (with the exception 358 

of the 5.9m Cl sample at 200°C, Table 1). The derived EXAFS parameters are distinct from those of the 359 

AgCl solid (RCl ~2.8 Å, NCl = 6; Hull and Keen, 1999) implying a different Ag coordination environment 360 

in aqueous chloride solutions. 361 

To the best of our knowledge, this study is the first measurement of the molecular structure of 362 

aqueous silver chloride complexes. Our derived Ag-Cl coordination numbers (NCl = 1.8÷2.5) and inter-363 

atomic distances (RCl = 2.37÷2.49 Å) are significantly smaller than those in crystalline (NCl = 6, RCl ~ 2.8 364 

Å at 25°C) and molten (NCl = 3÷4, RCl ~ 2.6 Å at 500÷800°C) silver chloride (e.g., Inui et al., 1991; 365 

Kawakita et al., 2007). In most inorganic and organic compounds with O/N/Cl/P/S ligands, Ag(I) exhibits 366 

a distorted tetrahedral coordination with Ag-Cl distances of 2.5÷2.7 Å (ICSD database, 2010), which are 367 

at least 0.1-0.2 Å longer than those of this study. The shorter distances found in solution are in agreement 368 

with lower Ag coordination numbers and the absence of first-shell water molecules in aqueous Ag 369 

chloride complexes compared to most Ag-bearing solids. Our Ag-Cl distances are in agreement with 370 

those predicted by DFT modeling of di- and tri-coordinated Ag-Cl-H2O clusters (Godinho et al., 2005). 371 

The structural parameters derived in our study imply the likely predominance of di-chloride complexes in 372 

aqueous solution with some fraction, at low T, of complexes having higher Cl numbers. It is, however, 373 

important to note that despite the close Cl coordination numbers found for all solutions at > 300°C, Ag-Cl 374 

distances and DW factors increase systematically with increasing Cl content. This may suggest the 375 

simultaneous presence of different [AgCl2] geometries and/or the presence, in concentrated saline 376 

solutions, of outer Cl- and Na+ ions that affect first-shell distances and disorder but are beyond direct 377 

detection by EXAFS. Principal component analyses (PCA, Malinowski, 1991); Rossberg et al., 2003) of 378 

the investigated EXAFS spectra of Cl solutions indicate two factors necessary to describe the 379 

experimental dataset. Although this might further support the presence of two kinds of species in the 380 
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experimental solutions, PCA on T- and mCl-series of EXAFS spectra for aqueous complexes may be 381 

biased by i) the smoothness of changes in metal-ligand distance and ligation number with Cl content, 382 

which leads to the lack of contrast and consequent underestimation of the number of species (e.g., 383 

Bazarkina et al., 2010), and ii) changes in metal-ligand distance and disorder with T for the same species, 384 

which may overestimate the number of species. Following these limitations of EXAFS and PCA, 385 

independent approaches are necessary to better constrain the species stoichiometry and geometry, as 386 

shown in the next sections by analyses of XANES spectra and molecular dynamics modeling. 387 

 388 

3.2. Quantum-chemical modeling of XANES spectra  389 

 Normalized XANES spectra of selected nitrate and chloride solutions are plotted in Fig. 5a. The 390 

nitrate samples are characterized by slightly higher absorption edge energies (by ~1 eV, defined as the 391 

maximum of 1st derivative of the spectrum) and more pronounced white-line amplitudes (feature A in Fig. 392 

5a) at ~25,525 eV (~1.1×absorption step) than the chloride samples (~0.9×absorption jump). Temperature 393 

changes in the nitrate spectra are manifested by a slight decrease of the white-line amplitude, likely 394 

reflecting the decrease in the Ag-O coordination number as found from the EXAFS analyses above, and 395 

also confirmed by XANES modeling below. XANES spectra of chloride solutions have weakly 396 

pronounced white-line amplitudes typical for di-coordinated Cu(I) and Au(I) chloride and sulfide 397 

complexes (e.g., Brugger et al., 2007; Pokrovski et al., 2009a,b; Etschmann et al., 2010). The second 398 

after-edge resonance at ~25,545±3 eV of chloride spectra (feature B in Fig. 5a) is in opposite phase with 399 

that of nitrate spectra, in agreement with the change of Ag-O to Ag-Cl environment in saline solutions. 400 

Spectra of chloride solutions exhibit small but systematic shifts of the white line low-energy side by 1-2 401 

eV towards higher energy with increasing T and decreasing mCl, which results in narrowing of the white-402 

line width, as exemplified by spectra of 0.7m Cl at 450°C and 5.9m Cl at 200°C in Fig. 5a. All other 403 

spectra at intermediate mCl and T fit in between these two „end members‟. Neither the spectra of nitrate 404 

nor chloride samples resemble those of AgNO3(s) and AgCl(s) reference compounds having, respectively, a 405 
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distorted AgO7 (Gibbons and Trotter, 1971) and a regular octahedral AgCl6 (Hull and Keen, 1999) 406 

geometry. This suggests a different coordination environment of Ag in aqueous solution. 407 

 In the absence of adequate references for aqueous samples, the interpretation of their XANES 408 

spectra is greatly helped by quantum-chemical modeling. Theoretical XANES spectra of [AgOmCln] 409 

clusters of different geometry (from linear to octahedral, with variable degree of distortion) and 410 

stoichiometry (0 < (m, n) < 6) were calculated using the FDMNES program (Joly, 2001) and the 411 

experimental Ag-O and Ag-Cl distances from EXAFS and/or FPMD calculations (section 3.3). Variations 412 

in these distances within 0.1 Å as found by EXAFS (section 3.1, Fig. 4) yield only minor changes in the 413 

width and amplitude of calculated XANES features, without altering significantly the shapes and energy 414 

positions of the main resonances. The effect of H atoms (as water molecules or free protons) and outer-415 

sphere Na/Cl atoms (with Ag-Na and Ag-Cl distances > 3 Å) on the calculated spectra was found to be 416 

too weak to affect their major features and was thus neglected. Note that the low sensitivity of calculated 417 

XANES spectra to all these parameters is due to the poor intrinsic resolution imposed by the large core-418 

hole life time of the electron at Ag K-edge (~7 eV), so that only major changes of geometry and ligand 419 

identity in the Ag nearest shell could be unambiguously identified.  420 

 Calculated XANES spectra of representative types of Ag-O-Cl clusters are shown in Fig. 5b. Three 421 

main features are apparent in this figure. a) The white line (feature A) around 25,525 eV is higher in 422 

energy (by 1-2 eV) and amplitude (10-30%) for Ag-O clusters compared with Ag-Cl clusters of same 423 

stoichiometries. Its amplitude generally grows from linear or angular AgCl2 and AgO2 to tetrahedral-like 424 

AgO4 and AgCl4 clusters. Octahedral-like AgO6 and AgCl6 clusters have spectral shapes different from 425 

their tetrahedral counterparts, with white lines of narrower width and smaller amplitude. b) The second 426 

resonance (feature B) at ~25540 eV in [AgCl2-4] clusters is in opposite phase with that of their [AgO2-4] 427 

analogs. Features A and B are very similar to those observed in the experimental spectra of nitrate and 428 

chloride solutions (Fig. 5a). c) A shoulder (feature C) appears at ~25533 eV for mixed AgO/Cl clusters, 429 

reflecting the presence of both types of atoms around Ag. This feature is not observed in our experimental 430 
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Cl solutions; this corroborates the absence of O atoms in the first coordination shell of Ag as deduced 431 

from EXAFS analyses (section 3.1) and wavelet transforms (EA-1). The similarity of experimental 432 

spectra of Cl solutions with those calculated for low Cl number clusters (Fig. 5a, b) suggests that Ag 433 

speciation in our saline solutions is likely to be dominated by di- and tri-chloride species, which is also in 434 

line with the EXAFS-derived average Cl numbers (Table 1). 435 

 Experimental spectra of silver nitrate and chloride solids and silver nitrate solution are compared 436 

with FDMNES calculated spectra for selected clusters of different geometries in Fig. EA3. Note a 437 

similarity between measured and calculated XANES for AgCl(s) and AgNO3(s) compounds (Fig. EA3-1); 438 

this further supports the validity of the modeling. Experimental XANES spectra of Ag nitrate solutions 439 

are closest to those predicted for tetrahedral-like AgO4 clusters (Fig. EA3-1), in good agreement with 440 

most available literature data (see section 3.1) and our molecular dynamics modeling (which will be 441 

reported in a future contribution), suggesting the tetrahedral-like hydrated Ag(H2O)4
+. Moderate 442 

distortions in Ag-O distances (~0.1 Å) and symmetry of Ag(H2O)4
+ from a regular tetrahedron as 443 

identified by this and some previous studies could not however be confirmed unambiguously by XANES 444 

modeling owing to the insufficient spectral resolution at the Ag K-edge.  445 

Experimental spectra of the two most contrasting chloride solutions (0.7m Cl at 450°C and 5.9m Cl 446 

at 200°C) are compared with those of representative Ag-Cl clusters in Fig. 6. XANES spectra from the 447 

low-concentrated chloride solution (0.7m Cl) at 400 and 450°C resemble most closely those of the 448 

[AgCl2] cluster with ClAgCl angles around 150-160° (Fig. 6a). A linear AgCl2 geometry (ClAgCl = 449 

180°) yields white-line shapes somewhat steeper and sharper than the experimental spectrum. 450 

Furthermore, a linear geometry of the Cl-Ag-Cl bonds would produce significant multiple scattering (MS) 451 

contributions in EXAFS spectra, as indicated by FEFF calculations of this study and observed for the 452 

quasi-linear di-chloride complexes Cu(I)Cl2
- (ClCuCl > 160°C, Brugger et al., 2007) and linear 453 

Au(I)Cl2
- (Pokrovski et al., 2009b). Our EXAFS spectra do not show such MS features (Fig. 3b), 454 

implying a bend geometry, in better agreement with the XANES results. Angles ClAgCl < 120° of the 455 
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[AgCl2] cluster yield too flat white-line resonances to be compatible with experimental spectra (Fig. 6a). 456 

The experimental spectrum of the most concentrated Cl solution at the lowest T (5.9m Cl, 200°C) has a 457 

shape between those predicted for a [AgCl2] cluster with a ClAgCl angle of 150° and a trigonal pyramidal 458 

or plane [AgCl3] cluster with ClAgCl between 120 and 100° (Fig. 6b). A better geometry resolution 459 

within a given Ag:Cl stoichiometry is not achievable from our XANES spectra at the Ag K-edge. In 460 

contrast, tetra-coordinated [AgCl4] clusters yield spectra with narrower and more intense white lines, 461 

yielding less satisfactory match of the experimental spectra.  462 

This analysis indicates that moderately concentrated solutions are likely to be dominated by the di-463 

chloride complex, AgCl2
-, in agreement with the EXAFS-derived Cl numbers of 2, whereas the most 464 

concentrated solutions at low-T contain a mixture of di and tri-coordinated Ag-Cl complexes, which is 465 

also consistent with the EXAFS-derived Cl numbers of ~2.5 for experiment #5 of 5.9m Cl at 200°C 466 

(Table 1). All other solutions at intermediate T and/or mCl fall in between these XANES shapes. A deeper 467 

insight into the species geometry and solvation environment is provided by molecular dynamics as 468 

discussed below.  469 

 470 

3.3. First-principles molecular dynamics simulations 471 

The FPMD simulations starting from initial cluster geometries (see section 2.3) were ran for times 472 

long enough to visualize the cluster reorganization, i.e. exchange of H2O molecules and Cl atoms in the 473 

nearest Ag environment. Analyses of MD trajectories (e.g., Fig. EA4-1) allow different silver-chlorine 474 

complexes to be identified, depending on T and mCl. The stable complexes found are shown in Fig. 7. 475 

Radial and angular distribution functions for these complexes were extracted from subsets of the FPMD 476 

trajectories (e.g., Fig. 8 for AgCl2
-).  477 

At the near-ambient temperature (50°C), several different species persist along our 100 ps 478 

trajectory: AgCl4
3-, AgCl3(H2O)2-, AgCl3

2-, and AgCl2
- (see Fig. EA4-3). In all these complexes, the 479 

chlorine atoms form a well-defined first coordination shell around Ag, well separated from the subsequent 480 
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water hydration shells (e.g., Fig. 8a). The closest shell of water molecules is found at ~3.5 Å from the 481 

silver atom at all temperatures; more distant hydration shells cannot be clearly distinguished (Fig. 8a), 482 

reflecting the looseness of such long Ag-H2O bonds and dynamic nature of solute-solvent interactions. 483 

Outer shell water molecules at distances above 3 Å from the metal atom were also reported using MD 484 

simulations for Cu di-chloride (Sherman, 2007) and Au hydrogensulfide (Liu et al., 2011) complexes. All 485 

along the simulation, the Na+ ion is found far away, i.e. at least 6 Å, from the silver atom (Fig. EA4-3). 486 

The AgCl4
3- complex is a highly distorted tetrahedron with two Cl atoms at an average Ag-Cl distance of 487 

2.44 Å, and the two other Cl atoms being at a much larger distance from Ag (3.48 Å). The species 488 

AgCl3(H2O)2- (resembling AgCl4
3- in which one of the remote Cl is replaced by a water molecule) appears 489 

to be an intermediate complex between the “anhydrous” AgCl4
3- and AgCl2. Anhydrous AgCl3

2- is a 490 

trigonal planar complex with a Ag-Cl average distance of 2.60 Å and Cl-Ag-Cl angles of 118°. Finally, 491 

AgCl2
- is a slightly bend complex with an average RAg-Cl of 2.43 Å and a Cl-Ag-Cl angle of 168°. Note, 492 

however, the significant scatter in the Cl-Ag-Cl angular distribution, attaining ±10° at 1 confidence level 493 

(Fig. 8b). The slightly different from linear Cl-Ag-Cl angles in the di-chloride complex revealed by MD 494 

are in better agreement with the EXAFS and XANES modeling above. Similar angles (~160°) were found 495 

for AgCl2
- by Liu et al. (2012) in their MD study. Deviations by 10-20° from a linear geometry were 496 

detected by XANES spectra modeling of the Cu(I)Cl2
- species in saline solutions similar to those of the 497 

study (Brugger et al., 2007).  498 

Note that our optimizations of the AgCl2
- cluster in vacuum (i.e., without water molecules) revealed 499 

a linear Cl-Ag-Cl angle (179±1°) both at 0 and 300 K. This finding is also in line with static DFT 500 

quantum-chemistry calculations both in vacuum or using polarized continuum models for AuCl2
- 501 

(Pokrovski et al., 2009b) and CuCl2
- (Zajacz et al., 2011) that predict linear geometries (180±2°) for these 502 

species. However, optimizations of the full system (AgCl2
- with water molecules) systematically show a 503 

non-linear (168°) geometry of AgCl2
-, even at 0 K, clearly demonstrating that this is a result of 504 

interactions of the AgCl2
- cluster with surrounding water molecules.  505 
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The angular structure of AgCl2
- revealed by MD simulations yields a non-zero dipole moment 506 

(~1.87 debye) for this species, as calculated from maximally localized Wannier orbitals (Marzari et al., 507 

2012) for 30 snapshots extracted from the trajectory. This dipole value, comparable to that of an isolated 508 

water molecule (Silvestrelli and Parrinello, 1999) may be responsible for the stronger interactions of 509 

AgCl2
- than its Cu and Au analogs with surrounding water molecules. However, quantitative assessment 510 

of the strength of solute-water interactions for Cu, Ag, and Au would require more systematic 511 

comparative studies of these metals using similar modeling approaches. 512 

As the temperature increases from 50 to 380°C, the average RAg-Cl in AgCl2
- increases from 2.43 to 513 

2.45 Å, while the Cl-Ag-Cl average angle decreases from 168 to 159°. For all the trajectories obtained at 514 

380°C, AgCl2
- is found to be the most stable species. Simulations using either AgCl3

2- or AgCl4
3- as 515 

starting clusters showed their rapid (in less than 1 ps) dissociation to AgCl2
- plus one or two hydrated 516 

chlorine atoms. For the least concentrated Cl solution, the neutral AgCl(H2O) complex was also found as 517 

an intermediate species with a typical life-time of 15 ps for a total simulation time of 50 ps (Fig. EA4-2). 518 

In contrast with the absence of Na+ ions at distances shorter than 6 Å at 50°C (see above), Na+ was 519 

detected in the vicinity of AgCl(H2O)0, at distances between 3 and 4 Å from Ag (Fig. EA4-3). 520 

In summary, the AgCl2
- complex is found at all conditions explored here, confirming the large 521 

stability of this species. This conclusion is in agreement with the recent theoretical MD study of Liu et al. 522 

(2012). However, in contrast to their study, we found persistence of the AgCl3
2- or AgCl4

3- complexes at 523 

moderate chlorine concentrations and low temperatures, in agreement with the present experimental XAS 524 

results. The stability of the AgCl4
3- complex is likely to have been overlooked by Liu et al. (2012) 525 

probably because of the smaller system size (48 water molecules) used in their study. It should be kept in 526 

mind that because of the finite duration of any FPMD simulation, an exhaustive determination of all 527 

possible species cannot be guaranteed. Quantifying the relative fractions of each species directly from the 528 

trajectories is beyond the reach of modern ab-initio MD simulations. Nonetheless, our simulations help to 529 
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test independently the stability of some selected species and to calculate their MD-EXAFS spectra, which 530 

may directly be compared with experimental data. 531 

Typical MD-EXAFS spectra were generated for the complexes identified above using their 532 

corresponding subsets of trajectories. Fig. 9 compares the calculated MD-EXAFS spectrum of AgCl2
- at 533 

380°C with the experimental spectrum at close conditions (exp#6, 400°C/750 bar, mCl
- = 0.70). The slight 534 

frequency shift between the two spectra visible in this figure is due to the known overestimation of the 535 

Ag-Cl nearest distances by typically 0.03 Å by FPMD calculations using the BLYP functional, as 536 

mentioned above (section 2.3). Except for this small difference, the very good agreement in shape, phase, 537 

and amplitude of the EXAFS signals between theory and experiment is both a robust validation of the 538 

numerical FPMD model and a confirmation of the predominance of AgCl2
- at these temperature and 539 

chlorine concentration. 540 

The MD-EXAFS spectra shown in Fig. 10a illustrate the effect of temperature for AgCl2
-. It can be 541 

seen that changes in the signal frequency between 50 and 380°C are very small, implying a weak effect of 542 

temperature on EXAFS spectra, which is mainly a result of slight variations in the Ag-Cl coordination 543 

shell (Fig. 8a). By contrast, more marked phase shifts are visible at a given temperature between the 544 

spectra of AgCl2
- and AgCl4

3- on one hand, and AgCl3
2- on the other (Fig. 10b). The phase shift of the 545 

AgCl3
2- spectrum to lower frequencies is due to longer Ag-Cl average distances in this complex (2.60 Å) 546 

compared to those in AgCl2
- (2.43 Å) and the two shortest distances in AgCl4

3- (2.47 Å). Note that the two 547 

longest Ag-Cl distances in the latter species (3.48 Å) have negligible contribution to EXAFS. The MD 548 

calculated phase shifts are in excellent agreement with experimental EXAFS spectra (Fig. 3) suggesting a 549 

growing contribution of AgCl3
2- with decreasing T and increasing mCl. In addition, the MD calculated Ag-550 

Cl distances for the dichloride AgCl2
- (2.38 Å, when corrected to the typical shift of 2% of the R value, 551 

see section 2.3) are identical to those derived from EXAFS fits of the 0.7m Cl solution, confirming again 552 

the predominance of this species at elevated temperatures and moderate salt contents. 553 

 554 
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4. DISCUSSION 555 

 556 

4.1. Structure and stability of Ag-Cl complexes in saline solutions 557 

 The complementary EXAFS, XANES, and FPMD analyses reported in this study put new 558 

important constraints on the stoichiometry and stability of silver chloride complexes at elevated 559 

temperatures. The number of Cl atoms derived from EXAFS, the shape of XANES spectra, and molecular 560 

dynamics simulations, all converge to the predominance of dichloride complexes with minor 561 

contributions of tri-chloride and/or tetra-chloride, at least between 300 and 450°C and chloride 562 

concentrations below 3m. The fractions of these higher-order chloride species in the total dissolved 563 

amount of Ag for each T-P-mCl point of our study may be independently estimated either from the 564 

experimental mean Ag-Cl coordination numbers or from Ag-Cl distances derived from EXAFS fits and 565 

coupled with the data on each individual species coordination number and distance from FPMD modeling 566 

(Table 2). In these calculations, we adopted Ag-Cl distances of 2.38±0.01 and 2.60±0.05 Å for AgCl2
- and 567 

AgCl3
2-, respectively. Note that the percentage of the AgCl4

3- species cannot be evaluated using this 568 

approach because only the two nearest Cl atoms at ~2.4 Å in this species are unambiguously detected by 569 

EXAFS, whereas the two other Cl atoms at longer distances (~3.4 Å, Fig. 7) give negligible EXAFS 570 

signal. Consequently, the tetra-chloride species is almost identical in its EXAFS pattern to the di-chloride 571 

complex (e.g., Fig. 10). It can be seen in Table 2 that the fractions of AgCl3
2- in the total dissolved Ag 572 

derived from the N and R values are in agreement with one another within errors and do not exceed 20-573 

30% in all experiments at T > 300°C. At 200 and 300°C, these fractions are somewhat higher for most 574 

concentrated salt solutions, up to ~50%, but the associated uncertainties do not allow more precise 575 

estimations. 576 

 These EXAFS-derived fractions of AgCl3
2- may also be compared with those calculated using 577 

thermodynamic properties of silver cation and its four chloride complexes reported in the literature. Note 578 

that according to all data sources, Ag+, AgCl0, and AgOH0 fractions are less than 0.1% under our 579 
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experimental conditions, and thus dissolved silver is shared between AgCl2
- and AgCl3

2- ± AgCl4
3- (e.g., 580 

Fig. 1). Our tri-chloride species fractions are in marked disagreement with the speciation scheme of 581 

Sverjensky et al. (1997) that yields too large percentages of higher-order chloride species, AgCl3
2- and 582 

AgCl4
3-, which are inconsistent with the EXAFS and FPMD results (Table 2). Similarly, the fractions of 583 

AgCl3
2- derived from the EXAFS parameters are systematically smaller at 200°C and 300°C in 2.6 and 584 

5.9m Cl than those calculated using Seward‟s (1976) stability constants (40-70% AgCl3
2-, Table 2). In 585 

contrast, the EXAFS-derived fractions are similar within errors in the whole temperature range to those 586 

calculated using the data for AgCl2
- from Akinfiev and Zotov (2001) and for AgCl3

- from Zotov et al. 587 

(1995). The above comparison thus suggests that AgCl2
- is likely to be the dominant species in the 588 

investigated T and mCl range, together with some contribution of AgCl3
2- whose fraction diminishes 589 

rapidly with increasing temperature and decreasing salinity. 590 

Solubilities of AgCl(s) measured in situ from the absorption edge height of spectra at 200 and 300°C 591 

in this study (Table 1) provide an independent confirmation of these conclusions. It can be seen in Fig. 11 592 

that the XAS-measured solubilities (Table 1) at 0.7 and 2.6m Cl are close to those predicted using the 593 

thermodynamic properties of AgCl2
- from Akinfiev and Zotov (2001) or Zotov et al. (1995) and assuming 594 

that it is the major species formed. Other data for AgCl2
- (not shown, Seward et al., 1976; Sverjensky et 595 

al., 1997) yield comparable (within errors) solubility values at such low-to-moderate Cl concentrations. 596 

At higher Cl (5.9m), the XAS solubilities are 2-3 times higher than those predictions, implying a 597 

contribution from higher-order Cl species. However, inclusion of AgCl3
2- from Seward (1976) or AgCl3

2- 598 

plus AgCl4
3- from Sverjensky et al. (1997) yields AgCl(s) solubilities at least 2 times higher than the XAS-599 

measured values in the whole mCl range (Fig. 11). Thus, the stability of tri- and tetra-chloride complexes 600 

is likely to be overestimated at T < 300°C in those studies. At T > 300°C, the large stability of AgCl3
2- and 601 

AgCl4
3- predicted using Sverjensky et al.‟s (1997) data is also incompatible with i) the EXAFS-derived Cl 602 

numbers of ~2.0±0.2 (Table 1), ii) the instability of [AgCl3] and [AgCl4] clusters revealed by molecular 603 

dynamics at 380°C (section 3.3), and iii) AgCl(s) solubility measured in situ in the 0.7m Cl solution at 604 
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300°C (0.049m , Table 1, versus 0.11-0.15m according to Sverjensky‟s or Seward‟s data). In contrast, our 605 

solubilities in the whole range of mCl at 200°C (Fig. 7) and in 0.7m Cl solutions at 300°C (Table 1) are in 606 

agreement, within better than 30% of the value, with thermodynamic predictions using AgCl2
- and 607 

AgCl3
2- properties from Akinfiev and Zotov (2001) and Zotov et al. (1995), respectively.  608 

The fraction of the tetra-chloride species, detected by FPMD simulations at 50°C and 1.7m Cl, can 609 

be estimated neither from XAS data because of its spectral pattern very similar to that of AgCl2
- (see 610 

above), nor from published AgCl(s) solubility measurements because of the absence of reported stability 611 

constants for AgCl4
3- above 100°C in solutions of < 3m Cl (e.g., Seward et al., 1973). Nonetheless, two 612 

general criteria may be used to reject AgCl4
3- from the Ag speciation scheme at elevated temperatures and 613 

concentrated Cl solutions: a) the long Ag-Cl distances, 3.5 Å, for two of the four Cl atoms as found by 614 

FPMD at 50°C, are unlikely to persist at higher temperatures even in highly concentrated salt solutions 615 

because of the growing thermal disorder; b) the large negative charge of -3 of this complex will not be 616 

favored by the decreasing dielectric constant of the solution when T rises. Thus, AgCl4
3- is not stable and 617 

structurally defined enough to be considered as an individual silver complex at temperatures above 50-618 

100°C. It may rather be regarded as AgCl2
- exhibiting outer-sphere interactions with free Cl- and/or Na+ 619 

ions in saline solutions. Note that the presence of Na+ in the outer coordination sphere of Ag (RAg-Na > ~3 620 

Å) is unlikely to be seen by XAS because of high thermal/structural disorder and loose Ag-Na bonds in 621 

such outer-sphere complexes, but it is detected by the MD-XAS calculations  at mCl < 2m (see above). 622 

Thus, despite their relatively simple nearest-shell stoichiometry and geometry, the major silver 623 

complexes, AgCl2
- and AgCl3

2-, are expected to exhibit significant interactions with the solvent and 624 

electrolyte in aqueous solution. This may account, at least partly, for the differences in the behavior of 625 

silver versus accompanying metals in hydrothermal fluids (section 4.3). 626 

The discussion above allows for the following conclusions: 1) The majority of thermodynamic 627 

datasets for the dichloride species, AgCl2
- (Seward, 1973; Zotov et al., 1995; Sverjensky et al., 1997; 628 

Tagirov et al., 1997; Akinfiev and Zotov, 2001) are in fair agreement with one another as well as with the 629 
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dominant stoichiometry [Ag:Cl2] inferred in this study at elevated T and low-to-moderate Cl contents. 2) 630 

The fraction of the tri-chloride species is likely to decrease fast with increasing T and decreasing salinity, 631 

in agreement with previous solubility data (Seward, 1976; Zotov et al., 1995). 3) The stability constants of 632 

AgCl3
2- and AgCl4

3- reported in the SUPCRT (Sverjensky et al., 1997) and other related databases (e.g., 633 

LLNL, Parkhurst and Appelo, 1999), which are all based on extrapolations from limited low-T data, are 634 

likely to be overestimated and should not be used above 100-200°C. 4) Based on the results of our study, 635 

we recommend the use of the stability constants of AgCl3
- from Zotov et al. (1995), to at least 300°C, and 636 

AgCl2
- from Akinfiev and Zotov (2001), at least in the T range 200-450°C. This dataset shows the best 637 

agreement with the XANES and EXAFS spectra and FPMD simulations of this work and AgCl(s) 638 

solubility of this and previous studies. 639 

 640 

4.2. Comparison with other metals 641 

 The first experimental data for silver chloride complexes at hydrothermal conditions obtained in this 642 

study allow comparisons with Ag analogs, Cu and Au, and other metals common in geological fluids. The 643 

three metals, Cu, Ag, and Au, are monovalent in hydrothermal fluids and form predominantly single-644 

charged di-chloride complexes at T above 250-300°C (e.g., Akinfiev and Zotov, 2001; Brugger et al., 645 

2007; Pokrovski et al., 2008a, 2009b; this study). The formation of higher-order chloride species for CuI 646 

and AgI, AgCl3
2- (this study) and CuCl3

2- (Brugger et al., 2007), is limited to low and moderate 647 

temperatures (< 200-250°C) and high salt contents, and no tri- or tetra-chloride species have so far been 648 

reported for monovalent AuI (Pokrovski et al., 2009b). SUPCRT-derived databases (e.g., Sverjensky et 649 

al., 1997; Parkhurst and Appelo, 1999) that use extrapolations from low-T data are likely to overestimate 650 

the amount of higher-order Cl complexes both for Cu (Brugger et al., 2007) and Ag (this study). The 651 

stability constants of the corresponding mono-, di- and tri-chloride complexes of Cu and Ag reported in 652 

recent studies (Akinfiev and Zotov, 2001; Brugger et al., 2007; as well as Sverjensky et al., 1997 for 653 
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mono- and di-chloride species) are similar within the data scatter, implying a similar affinity of both 654 

metals for the chloride ligand in aqueous solution over a wide T-range.  655 

However, despite the large similarities in stoichiometry (amongst Cu, Ag, Au) and stability 656 

(between Cu and Ag) of chloride complexes, this study revealed some differences in the molecular 657 

structure of AgCl2
- compared to CuCl2

- and AuCl2
-. The angular shape (Cl-Ag-Cl ~160°) and large Ag-658 

Cl distances (RAgCl ~2.38 Å) of the Ag complex contrast with the quasi-linear geometry and much shorter 659 

metal-Cl distances in its Au and Cu analogs, (Cl-Cu-Cl ~170-180°, RCuCl ~2.12-2.15 Å, Fulton et al., 660 

2000; Brugger et al., 2007; Cl-Au-Cl ~180°, RAuCl ~2.27 Å, Pokrovski et al., 2009b). The shortening of 661 

metal-chloride distances from Ag to Au may be partly explained by relativistic contraction of the Au+ 662 

radius (Pyykkö, 1988). We are not aware of the existence of solid compounds in which Ag is two-663 

coordinate by chlorides in a linear geometry; the available data show that Ag-Cl coordination geometries 664 

range from 3 to 6-coordinate. More generally, in contrast with Cu and Au, Ag rarely form two-665 

coordinated complexes with other ligands in solids, preferring distorted penta-, tetra- or tri-coordinated 666 

geometries (ICSD, 2010). This tendency is also seen in aqueous solution, with the tetra-coordinated 667 

Ag(H2O)4
+ (this study) compared with the linear Cu(H2O)2

+ (Fulton et al., 2000). The higher Ag 668 

coordination than that of Cu and Au results in a pronounced maximum for the metal-oxygen distances in 669 

the row of the hydrated cations Cu+-Ag+-Au+ (RCu-H2O ~1.9 Å, Fulton et al., 2000; RAg-H2O ~2.3 Å, Seward 670 

et al., 1996, this study; RAu-H2O ~2.0 Å, Feller et al., 1999). The tendency of Ag to form higher 671 

coordinated and less compact complexes than Cu and Au is also expressed in the angular shape and large 672 

Ag-Cl distances in AgCl2
- offering a less screened environment for Ag+ and favoring outer-sphere 673 

interactions with ions and solvent molecules in the fluid, compared to the more compact linear CuCl2
- and 674 

AuCl2
-. These structural differences may partly be responsible for the fractionation of Ag vs Cu and Au in 675 

brine-vapor-melt systems (section 5.1 below). 676 

 The molecular environment of metals such as Zn, Cd, Co, and Fe in saline hydrothermal solutions 677 

appears to be different. Although all these divalent metals are also transported as chloride complexes in 678 
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the great majority of crustal fluids (Wood and Samson, 1998; Yardley, 2005; Pokrovski et al., 2008a; 679 

Bazarkina et al., 2010), they form octahedral or tetrahedral entities containing both chloride and water in 680 

the first coordination sphere of the metal cation, as shown by UV-visible and XAS measurements (Susak 681 

and Crerar, 1985; Bazarkina et al., 2010; references therein). The octahedral-to-tetrahedral transition in 682 

the metal coordination takes place with increasing both the temperature and the number of Cl ligands in 683 

the dominant complex, so that low-order chloride species are octahedral (e.g., Zn(H2O)5Cl+, Fe(H2O)5Cl+, 684 

Cd(H2O)5Cl+) and high-order tetrahedral (e.g., ZnCl4
2-, FeCl4

2-, CdCl3H2O
-). This may be explained 685 

qualitatively by partial charge constraints on the Cl and H2O ligands when increasing the number of Cl 686 

atoms in the complex (Jolivet et al., 1994), and by the growth of thermal disorder with T favoring more 687 

compact (and thus less coordinate) species of lower entropy (Brimhall and Crerar, 1987). However, the 688 

major discrepancies in this picture concern the di-chloride complexes of these metals, in particular Zn and 689 

Fe, which were believed to be dominant in high T geological fluids of low dielectric constant that favors 690 

the stability of uncharged and weakly charged species (e.g., Brimhall and Crerar, 1987). First, it remains 691 

unclear whether such di-chloride complexes are tetrahedral or octahedral (i.e., the only difference is by 692 

two water molecules in the first shell of the metal) and whether they may exist in both coordinations. 693 

Second, there exist large discrepancies between mineral solubility data, which systematically indicate the 694 

dominant formation of di-chloride complexes in moderate-to-high saline fluids (mCl > 0.1m) at T > 250-695 

300°C for both zinc and iron(II) (Ruaya and Seward, 1986; Bourcier and Barnes, 1987; Cygan et al., 696 

1994; Fein et al., 1992; Ohmoto et al., 1994; Yardley, 2005), and recent XAS measurements in Fe and Zn 697 

chloride solutions, which report the predominance of double-charged tetra-chloride complexes, FeCl4
2- 698 

and ZnCl4
2-, at similar conditions (e.g., Mayanovic et al., 1999; Testemale et al., 2009). Resolving these 699 

discrepancies requires combined studies using new molecular modeling approaches (e.g., MD and 700 

XANES modeling) and in situ spectroscopy, potentiometry, and solubility techniques. The impact of 701 

these discrepancies on the interpretation of metal transport and deposition by geological fluids remains to 702 

be understood. 703 
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 704 

5. IMPLICATIONS FOR Cu-Ag-Au FRACTIONATION IN HYDROTHERMAL PROCESSES 705 

 706 

5.1. Structural control: vapor-brine and fluid-melt partitioning 707 

 The results of this study, together with the recent published work on Au and Cu aqueous speciation 708 

and solubility, help to appreciate the impact of structural differences among dissolved metal species on 709 

the behavior of Ag, Cu, and Au in natural hydrothermal-magmatic systems. These differences primarily 710 

affect the partitioning of the metals between brine, melt, and vapor phases. The angular structure of the 711 

Ag di-chloride complex, yielding a non-zero dipole moment likely favoring stronger interactions with 712 

outer sphere Na, Cl, and H2O as compared to its Cu and Au analogs, may account for the elevated affinity 713 

of Ag for the hydrothermal brine phase. It explains the stronger partitioning of Ag than Cu or Au in favor 714 

of the brine in vapor-brine and melt-brine systems as observed in natural fluid inclusions from 715 

hydrothermal-magmatic deposits and laboratory experiments. For example vapor/brine and melt/brine 716 

partition coefficients  of Ag (K = Cvapor/Cbrine, or Cmelt/Cbrine, where C is Ag concentration in the 717 

corresponding phase) in water-salt sulfur-free laboratory systems at hydrothermal-magmatic conditions 718 

are up a factor of 10 lower than those of Cu (Pokrovski et al., 2005a; Simon et al., 2006, 2008). Natural 719 

data from coexisting low-to-moderate salinity fluid (< 1-3 mCl) and silicate melt inclusions from granitic 720 

systems display similar differences (Kfluid/melt ~1-10 and ~10-1,000 for Ag and Cu, respectively, Zajacz et 721 

al., 2008), which confirms the weaker Ag versus Cu affinity for the low saline fluid phase. By contrast, 722 

Ag and Cu partitioning is similar between highly saline fluid and silicate melt inferred from the same type 723 

of inclusions (Kfluid/melt ~10-50 for both Ag and Cu). In addition, Kfluid/melt values of Ag systematically 724 

increase in favor of the fluid with increasing chloride content, whereas those of Cu show no clear 725 

correlation with mCl (Zajacz et al., 2008). Similar elevated Ag partition coefficients between 30 wt% salt 726 

brine and silicate melt (Kfluid/melt ~ 50), comparable to those for Zn and Pb, were recently reported in 727 

granitic pegmatites (Borisova et al., 2012). 728 
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 729 

5.2. Chemical speciation control: chloride versus sulfide 730 

The differences in metal partitioning are further accentuated by the presence of reduced sulfur that 731 

further increases Cu (and Au) volatility compared with Ag. For example, vapor/brine partitioning 732 

coefficients (Kvapor/brine) of metals in S-rich (up to 1-2 wt% H2S+SO2 in the vapor phase) porphyry systems 733 

(e.g., Seo et al., 2009; Kouzmanov and Pokrovski, 2013; references therein) and laboratory experiments 734 

(Pokrovski et al., 2008a) increase in the order Fe ≈ Zn < Ag < Cu < Au, attaining values of ~50 in favor 735 

of the vapor phase for Au due to the formation of volatile complexes with sulfur (H2S and/or SO2). The 736 

lowest volatility of base metals (typical Kvapor/brine for Fe and Zn ~ 0.001-0.1, Kouzmanov and Pokrovski, 737 

2012) is a direct consequence of i) their weak affinity for reduced sulfur ligands (Wood and Samson, 738 

1998) and ii) the large stability of their hydrated chloride complexes in the high-salinity aqueous solution 739 

(section 4.2). Both elevated absolute copper concentrations in some natural vapor-like inclusions from 740 

porphyry deposits (~1000 ppm) and the corresponding Kvapor/brine values above 1 should now be regarded 741 

as post-entrapment modifications due to preferential diffusion of Cu from the external fluid into the S-rich 742 

inclusion as suggested by recent experiments (Lerchbaumer and Audetat, 2012), whereas Au and Ag are 743 

unlikely to be affected by this phenomenon. Thus, the majority of experimental studies show Cu vapor-744 

brine partition coefficients to be between those of Ag and Au (see Kouzmanov and Pokrovski, 2013 for a 745 

recent review). The highest volatility of Au in the order above is consistent with the far larger stability of 746 

its known sulfide complexes compared to other metals and, in particular, the formation of neutral and 747 

weakly polar species with hydrogen sulfide (e.g., Au(H2S)HS0, Pokrovski et al., 2009a), which are 748 

expected to be stable in the vapor phase of low density and dielectric constant. In contrast, the higher 749 

volatility of Cu than Ag in such S-rich systems is not consistent with the very similar stabilities and 750 

stoichiometries of their chloride and sulfide complexes in dense aqueous solution (see section 4.2). It may 751 

thus be hypothesized that structural differences exist between Ag and Cu species in both the low-density 752 

H2S-rich vapor and saline liquid phase, which are fundamentally related to the tendency of Ag to form 753 
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larger and higher-coordinated complexes than Cu. Thus, the contrasting affinity for chloride versus 754 

sulfide ligands of Ag, Au, and base metals, together with structural differences amongst complexes of the 755 

same ligand type, account for the volatility trends. These trends may explain the enrichment by Au and 756 

partly Cu, compared to Ag and base metals, of certain types of epithermal ore deposits regarded as being 757 

formed by ascending magmatic vapor (e.g., high sulfidation Cu-Au, Heinrich et al., 1999; Carlin-type Au 758 

deposits, Muntean et al., 2011; refs therein). 759 

 760 

5.3. Solid-phase control: mineral solubility 761 

 If the structure and stability of dissolved metal complexes are the primary factors controlling the 762 

metal fractionation in fluid/melt and vapor/brine systems, in the presence of solid phases, another 763 

fundamental factor affecting the metal behavior during the formation of hydrothermal deposits is the 764 

identity and stability of the major metal-bearing minerals themselves. They are, respectively, chalcopyrite 765 

(CuFeS2), argentite/acanthite (Ag2S), and native gold (Au) for Cu, Ag, and Au in the great majority of 766 

deposits. Although Ag also forms complex sulfosalts with As, Sb and Cu, their solubility trends can be 767 

reasonably approximated by the Ag2S component. In low-temperature deposits, silver and gold may also 768 

form alloys with Au contents as low as 40%, but this has a minor affect on Au solubility trends by 769 

lowering Au activity in the solid and solution by only a factor of 2 to 3, which is insignificant compared 770 

to the variations of several orders of magnitude in Au concentrations in natural hydrothermal fluids 771 

(Kouzmanov and Pokrovski, 2012). Thus CuFeS2, Ag2S, and Au may be used as model compounds for 772 

identifying the major trends in the behavior of these metals during fluid-rock interactions. Below we 773 

briefly summarize the main differences in the solubility patterns of these metals in hydrothermal systems. 774 

 The solubility controlling reactions for these metals in the majority of hydrothermal contexts are the 775 

following: 776 

AgCl2
- + 0.5 H2S = 0.5 Ag2S(s) + H+ + 2Cl-          (1) 777 

Au(HS)2
- + 0.5H2 + H+ = Au(s) + H2S, in near-neutral and alkaline fluids    (2a) 778 

AuHS0 + 0.5H2 = Au(s) + H2S, in acidic fluids         (2b) 779 
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Au(HS)H2S
0 + 0.5H2 = Au(s) + 2H2S, in acidic S-rich fluids and possibly vapors   (2c) 780 

AuCl2
- + 0.5H2 = Au(s) + H+ + 2Cl-, above 500°C in acidic saline fluids    (2d) 781 

CuCl2
- + FeCl2

0 + 2H2S = CuFeS2(s) + 3H+ + 0.5 H2 + 4 Cl-       (3a) 782 

CuCl2
- + FeS2(s) + 0.5H2 = CuFeS2(s) + H+ + 2Cl-         (3b) 783 

The differences in the major aqueous species and solid phases among these metals yield fundamentally 784 

different solubility trends versus pH, H2S and salinity for Ag and Cu on one side and Au on the other. Fig. 785 

12 shows the solubility of all three minerals as a function of pH, H2S and Cl in a typical hydrothermal 786 

fluid at 400°C and 0.5 kbar (i.e., conditions in the middle of the T-P range of their deposits formation), 787 

and as a function of temperature at 0.3-1.0 kbar, calculated using the stability constants available for these 788 

reactions from sources indicated in the figure caption. It can be seen that at a given T-P, the factors 789 

leading to the deposition of Au vs Ag and Cu are opposite. Gold precipitation requires: a) removing 790 

reduced sulfur from the fluid (e.g., via reaction with Fe-rich rocks, fluid boiling); b) acidifying the near-791 

neutral fluid (e.g., SO2 disproportionation into sulfuric acid and H2S, common in porphyry systems); c) 792 

reducing the fluid (e.g., reaction with organic-rich sediments). In contrast, both Ag and Cu precipitation 793 

requires: a) removing chloride (e.g., dilution with meteoric waters), b) neutralizing the fluid (e.g., reaction 794 

with carbonate rocks, which is typical of skarns), c) oxidizing the fluid (e.g., mixing with meteoric waters, 795 

reaction with ferric-iron sediments). Note that addition of reduced sulfur into the system (e.g., via 796 

disproportionation of SO2 into sulfide and sulfate in a cooling magmatic fluid or reaction with S-rich 797 

sedimentary rocks) decreases the solubility of silver in contrast to Au (Fig. 12d), but has no effect on the 798 

solubility of the CuFeS2-FeS2 assemblage (H2S is not involved in reaction 3b). In addition, some of the 799 

factors listed above may operate in an opposite way (e.g., dilution with meteoric oxidizing waters will 800 

lower both Cl and H2S concentrations, which have an opposite effect on the solubility of Ag and Cu-801 

bearing sulfides, see reactions 1 and 3a,b), so that the final result on the mineral solubility will be an 802 

interplay between all these factors in a given natural case. The only common effect on all three elements 803 

is temperature whose decrease leads to a drop in solubility but of different amplitude depending of the 804 

metal (Fig. 12a). 805 
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The major differences in Au vs Ag solubility apparent in Fig. 12 account, at least partly, for the 806 

Au/Ag ratios found in different types of deposits. For example, elevated Au/Ag ratios (typically 1-100) 807 

and high Au fineness (i.e., Au fraction in Ag-Ag alloys) generally occur in Au-Te, Cu-Au epithermal, 808 

skarn and gold orogenic deposits characterized by neutral-to-alkaline low-to-moderately saline fluids 809 

(e.g., Morrison et al., 1991; Pal‟yanova, 2008) having a high capacity to concentrate and transport gold 810 

(Fig. 12b). Carlin-type Au and some Cu-Au high-sulfidation deposits are also characterized by elevated 811 

Au/Ag ratios consistent with their likely formation by S-rich magmatic vapor phases carrying 812 

preferentially Au as sulfide complexes (Pokrovski et al., 2008a; Muntean et al., 2011; references therein). 813 

Lower Au/Ag ratios (~0.001-10) are typical for epithermal alunite and adularia Au-Ag deposits (Sillitoe 814 

and Hedenquist, 2003; Pal‟yanova, 2008; references therein) formed by acidic fluids of elevated salinity 815 

(10-20 wt% NaCl) favorable for Ag solubility (see Fig. 12b,c).  816 

Although it is more difficult to place Cu in this picture of solubility control because of its much 817 

greater abundance than Ag and Au in most types of fluids, some qualitative trends in Cu vs Ag and Au 818 

fractionation may still be identified in certain types of ore deposits. For example, despite large variations 819 

of Cu/Au ratios in porphyry-style Cu-Au-Mo deposits (from 103 to 106), they roughly increase with depth 820 

(Murakami et al., 2010). This was qualitatively interpreted by the more efficient precipitation of 821 

chalcopyrite than gold from an ascending cooling magmatic fluid carrying Cu in the form of chloride 822 

complexes, whereas Au remained in the fluid as soluble sulfide species (Murakami et al., 2010). Fig. 12a 823 

shows CuFeS2, Ag2S and Au solubility in a 10wt% salt fluid as a function of temperature at pressure 824 

progressively decreasing from 1000 bar at 550°C to 300 bar below 300°C under redox and acidity 825 

conditions buffered by silicate and Fe sulfide and oxide mineral assemblages typical of porphyry-style 826 

deposits (e.g., Sillitoe, 2010; references therein). It can be seen that the slope of the CuFeS2 solubility 827 

curve is indeed significantly steeper than that of Au in the T range 300-500°C, in which major ore 828 

deposition occurs in porphyry deposits. This temperature dependence of solubility, coupled with the 1,000 829 

times higher amount of Cu compared to that of Au in the fluid, leads to massive Cu precipitation with 830 
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temperature drop. The solubility of Ag2S at such conditions is comparable with that of CuFeS2, with 831 

concentrations of 100‟s ppm Ag (Fig. 12). This is, however, typically 10 to 50 times higher than typical 832 

abundances of Ag in natural moderate-salinity fluids and melts as inferred from inclusions (Kouzmanov 833 

and Pokrovski, 2012; references therein). Most of saline high-T fluids are thus under-saturated with 834 

respect of Ag-bearing solid phases. This explains the rarity of hydrothermal silver minerals at T > 300-835 

350°C, and the fact that most silver resources are found in low-temperature epithermal deposits formed 836 

below 300°C. This distinguishes Ag from Au and Cu that form hydrothermal deposits in a wide T range 837 

from ~600 down to 150°C, and is thus a direct consequence of the solubility of their major minerals.  838 

As a conclusion, the structure and stoichiometry of chloride complexes of Ag and accompanying 839 

metals should be taken into account when interpreting metal fractionations in fluid-vapor and fluid-melt 840 

systems. It seems to exert a lesser effect, however, on the metal behavior in mineral-fluid systems where 841 

differences in the nature of the ligand in the dominant dissolved complexes (chloride for Ag, chloride and 842 

possibly sulfide for Cu, and sulfide for Au), coupled with differences in the chemistry and solubility of 843 

their principal minerals (sulfides for Cu and Ag, native metal for Au), largely control the metal transport 844 

by crustal fluids and vapors and their precipitation as hydrothermal ores. 845 

 846 

6. CONCLUDING REMARKS 847 

This report is the first measurement, to the best of our knowledge, that uses in situ X-ray 848 

absorption spectroscopy to determine the stability and structure of Ag(I) chloride-bearing complexes 849 

in aqueous fluids pertinent to hydrothermal-magmatic systems. The combination of XANES and 850 

EXAFS spectra analyses, molecular dynamics modeling of structures of Ag-Cl aqueous complexes, 851 

and in situ solubility measurements of our study with thermodynamic analysis of published datasets 852 

provide new constraints on the identity, structure, and stability of major Ag-Cl species operating in 853 

natural hydrothermal fluids. The following major conclusions have been reached. 854 
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1) The silver di- and tri-chloride complexes, AgCl2
- and AgCl3

2-, are the major species forming in 855 

moderate-temperature (200-300°C) aqueous solutions in a wide range of salinity (to at least 6m Cl, 856 

corresponding to ~26 wt% NaCl equivalent). These species have an angular and triangular geometry, 857 

respectively, with mean Ag-Cl distances of ~2.40 (AgCl2
-) and 2.55 Å (AgCl3

2-). The non-linear geometry 858 

of AgCl2
- revealed by MD and XANES modeling (angle Cl-Ag-Cl ~ 160°) is due to interactions with 859 

surrounding water molecules and increasing dynamic disorder with temperature in aqueous solution. The 860 

fraction of the tri-chloride species decreases with increasing temperature and decreasing chloride 861 

concentration, so that AgCl2
- becomes by far the major Ag-transporting complex at elevated temperatures 862 

(> 350°C) in typical magmatic-hydrothermal fluids. Both species exhibit long-range interactions with the 863 

surrounding water molecules and salt ions as revealed by MD simulations. The tetra-chloride complex, 864 

AgCl4
3-, suggested in previous work at low-temperatures (< 150°C), may be regarded as AgCl2

- exhibiting 865 

outer-sphere electrostatic interactions with two from four Cl- ligands at distances > 3 Å. The coordination 866 

environment of Ag in its dominant species in solution appears to be different from that of most Ag-867 

bearing solids, in which Ag has distorted coordination geometries with 3 to 6 Cl/O atoms, and from Cl-868 

free acidic solutions, in which the Ag+ cation forms a distorted hydration sphere with 4 to 6 H2O 869 

molecules. 870 

2) The species fractions derived from XAS and MD analyses, together with XAS-measured AgCl(s) 871 

solubility, are in excellent agreement with thermodynamic predictions using the stability constants of 872 

AgCl2
- and AgCl3

2- from Akinfiev and Zotov (2001) and Zotov et al. (1995), respectively, that are based 873 

on extensive AgCl(s) solubility experiments. Our data also qualitatively agree with the pioneering 874 

AgCl(s) solubility measurements of Seward (1976). In contrast, our results disagree with SUPCRT-based 875 

datasets for Ag-Cl species (e.g., Sverjensky et al., 1997; Parkhurst and Angelo, 1999) derived by 876 

extrapolation from low-temperature data, which predict large fractions of the high-order chloride species, 877 

AgCl3
2- and AgCl4

3-, in high-temperature fluids. Thus, we recommend the thermodynamic set of Zotov‟s 878 
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group for chemical equilibrium calculations in Ag-bearing mineral-fluid systems above 200°C. A full set 879 

of revised HKF parameters for silver chloride complexes will be presented in a future contribution. 880 

3) Silver chloride complexes found in this work have longer Ag-Cl distances and stronger outer-881 

sphere interactions with the solvent and electrolytes than their Au and Cu counterparts. This may explain 882 

the preferential partitioning of Ag into brine in brine-vapor and brine-melt magmatic-hydrothermal 883 

systems compared with Cu and Au, as observed in natural melt and fluid inclusions and laboratory 884 

experiments.  885 

4) However, details of molecular structure of Ag, Cu, and Au complexes (geometry, inter-atomic 886 

distances and solute-solvent interactions) matter much less in sulfur-rich hydrothermal environments and 887 

most fluid-mineral systems where the contrasting affinity of these metals for sulfur ligands (with Au 888 

forming far more stable complexes than Ag and Cu with reduced sulfur), coupled with the different 889 

stability of their main solid phases (Ag sulfides, Cu-Fe sulfides, and native Au), largely controls the 890 

transport and distribution of these metals by geological fluids and Ag/Au/Cu ratios in economic deposits.  891 
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Table 1. Silver dissolved concentrations derived from the absorption edge step (a), and Ag(I) local 1155 
structure derived from EXAFS spectra at Ag K-edge (b) of nitrate and chloride aqueous solutions 1156 
investigated in this study.  1157 
 1158 
T, °C P, bar mAg, 

mol/kg H2O 
atom N, 

atoms 
R, Å 2, Å2 c3, Å3 -

factor 
 
# 1: 0m total Cl, 0.21m AgNO3-0.10m HNO3-0.10m H2O2 

30 600 0.21±0.01 O 6.0 2.34 0.020 < 0.0003 0.003 
100 600 0.21±0.02 O 5.5 2.32 0.020 < 0.0003 0.006 
200 630 0.21±0.02 O 4.8 2.30 0.020 < 0.0003 0.010 

 error ±1.5 ±0.02 ±0.005 ±0.0003  
 
# 6: 0.70m total Cl, 0.17m AgCl-0.42m NaCl-0.11m HCl-0.06m H2O2 

200 600 0.0074±0.0005 Cl nd nd nd nd nd 
300 600 0.049±0.003 Cl 1.8 2.38 0.005 0.0007 0.011 
400 750 0.14÷0.12 Cl 1.9 2.38 0.007 0.0005 0.010 
450 750 0.11÷0.08 Cl 1.9 2.37 0.007 0.0005 0.008 

 
# 2-4: 2.6m total Cl, 0.18m AgCl-2.34m NaCl-0.12m HCl-0.06m H2O2 

200 600 0.047±0.003 Cl 2.1 2.47 0.009 0.0012 0.008 
300 630 0.20÷0.15 Cl 1.9 2.43 0.009 0.0009 0.009 
400 600 0.15÷0.13 Cl 1.9 2.40 0.008 0.0005 0.007 

 
# 5: 5.9m total Cl, 0.30m AgCl-5.51m NaCl-0.14m HCl-0.07m H2O2 

200 600 0.16±0.02 Cl 2.5 2.49 0.012 0.0008 0.015 
300 620 0.33±0.03 Cl 2.1 2.47 0.011 0.0012 0.009 
400 630 0.29±0.03 Cl 1.9 2.44 0.010 0.0010 0.009 
450 640 0.28±0.03 Cl 1.8 2.42 0.010 0.0007 0.010 

 error ±0.2 ±0.01 ±0.003 ±0.0004  
 1159 
(a) Dissolved Ag concentrations were determined from the amplitude of the absorption edge height of transmission spectra 1160 
() based on the classical X-ray absorption relation (see for details Pokrovski et al., 2005a, 2006, 2009a,b; Testemale et al., 1161 
2005): / ( )Ag Ag Ag fluidC M l d       , where CAg is Ag aqueous concentration (mol kg-1 of fluid), Ag is the 1162 
change of the total absorption cross-section of Ag over its K-edge (45.865 cm2 g-1), l is the optical path length inside the cell 1163 
(0.40 cm) which remains constant through the experiment, MAg is Ag atomic weight (0.1079 kg mol-1), and dfluid is the 1164 
density of the aqueous solution (g cm-3) at given T and P , estimated using the densities of NaCl-H2O fluids (Bakker, 2003), 1165 
and assuming that AgCl/HCl/H2O2 solutes in water yield the same contribution to the fluid density as the equivalent weight 1166 
concentration of NaCl. Uncertainties on Ag concentration stem from those of the determination of , l and dfluid (see 1167 
Pokrovski et al., 2005a, 2009a for details), and minor losses from solution due to AgCl(s) precipitation. Values of mAg in italic 1168 
show significant change with time owing to precipitation of AgCl in the cell colder zones; they were not considered in the 1169 
solubility analyses. 1170 

(b) R = Ag-O/Cl mean distance, N = Ag coordination number, 2 = squared Debye-Waller factor (relative to 2 = 0 1171 
adopted in the calculation of reference amplitude and phase functions by FEFF); c3 = third-order cumulant accounting for 1172 
weak anharmonicity in the distance distribution; -factor defines goodness of the total fit in R-space, which is a fractional 1173 
misfit between the data and model: =(data-model)2/data2. For all samples the fitted R-ranges are 1.1-2.8 Å (not 1174 
corrected for phase shift), and k-ranges are 2.5-10.0 Å-1 and 3.0-11.8 Å-1 for nitrate and chloride solutions, respectively 1175 
(except exp #6 at 300°C, which was recorded to 8 Å-1). The value of e, which is a non-structural parameter accounting for 1176 
phase shift between experimental spectrum and FEFF calculation, is 3.5±0.5 eV for all spectra. The number of variables in 1177 
the fit (Nvar = 4 to 5) was always lower than the number of independent points (Nind ~8) as defined in IFEFFIT (Newville, 1178 
2001). nd = not determined because of too weak EXAFS signal. 1179 
 1180 

1181 
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Table 2. Fraction of high-order silver chloride complexes (AgCl3
2- ± AgCl4

3-) in the total 1182 
dissolved silver in the investigated aqueous solutions as inferred from the number of Cl 1183 
neighbors and Ag-Cl interatomic distances (Table 1), and its comparison with 1184 
thermodynamic predictions using available stability constants for Ag chloride species.  1185 
 1186 
mCl 
mol/kg 
H2O 

T°C % [AgCl3] 
from NCl 

(a) 
% [AgCl3] 
from RCl 

(b) 
% AgCl3

2- 
Zot95 (c) 

% AgCl3
2- 

+ AgCl4
3- 

Sve97 (d) 

% AgCl3
2- 

Sew76 (e) 

0.7 300 < 20 < 10 12 13 7 
0.7 400 < 20 < 10 < 5 16 na 
0.7 450 < 20 < 10 < 1 48 na 
2.6 200 < 30 41 44 55 56 
2.6 300 < 20 23 15 62 38 
2.6 400 < 20 9 6 94 na 
5.9 200 50 50 65 80 73 
5.9 300 < 20 41 29 86 60 
5.9 400 < 20 27 16 99 na 
5.9 450 < 20 18 < 10 > 99 na 
error  ±20 ±15 ±10 ±7 ±5 
 1187 
(a) From average NCl value ±0.2 Cl atoms (experimental EXAFS, this study, Table 1) 1188 
(b) From average RCl value ±0.01 Å (Table 1) and adopting Ag-Cl distances of 2.38±0.01 Å (experimental EXAFS, this 1189 
study) and 2.60±0.05 Å (FPMD calculations, this study) for AgCl2

- and AgCl3
2-, respectively. 1190 

(c) Using the HKF parameters of Ag+, AgCl0 and AgCl2
- from Akinfiev and Zotov (2001), which yield identical stability 1191 

constants for these species as older works of the same group (Zotov et al., 1995; Tagirov et al., 1997), and using the 1192 
stability constants of AgCl3

2- reported in Zotov et al. (1995) to 350°C at Psat. Because AgCl solubility data (Zotov et al., 1193 
1995; Tagirov et al, 1997) indicate a negligible effect of pressure on the solubility at T to at least 350°C and P  to 500-1194 
1000 bar, the AgCl3

2- stability constants at Psat were assumed to be the same at our experimental pressure of ~600 bar. 1195 
See Pokrovski et al. (2009a) for details on thermodynamic data for other fluid constituents and activity coefficient 1196 
models. 1197 
(d) Sverjensky et al. (1997) using the HKF parameters for [AgCl1-4] complexes. 1198 
(e) Seward (1976) reported stability constants of AgCl3

2- to 200°C at Psat. We extrapolated according to his data the 1199 
equilibrium constant of the pseudo-isocoulombic reaction AgCl2

- + Cl- = AgCl3
2- versus 1/T(K) to 300°C and assumed 1200 

that this constant is independent of pressure to at least 600 bars. 1201 
na = not applicable because requires too far extrapolations on temperature. 1202 
 1203 

1204 
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Table 3. Thermodynamic properties of silver chloride complexes from the literature, 1205 
recommended on the basis of XAS analyses, FPMD simulations, and in-situ XAS measured 1206 
AgCl(s) solubility of this study.  1207 
 1208 
 1209 
Species Thermodynamic data References 
Ag+ (d) G (a) = 18427 cal/mol, S(b) = 17.54 cal/(mol K), HKF model 

coefficients: a1×10 = 1.7285 cal/(mol bar), a2×10-2 = -3.5608 
cal/mol, a3 = 7.1496 cal K/(mol bar), a4×10-4 = -2.6318 cal K/mol, 
c1 = 18.8783 cal/(mol K), c2×10-4 = -4.4327 cal K/mol, ×10-5 = 
0.2160 cal/mol 

Akinfiev and Zotov, 2001 

AgCl0(aq) (d) G = -17399 cal/mol, S = 32.067 cal/(mol K), HKF model 
coefficients: a1×10 = 4.2750 cal/(mol bar), a2×10-2 = 3.7555 cal/mol, 
a3 = 4.2739 cal K/(mol bar), a4×10-4 = -2.9343 cal K/mol, c1 = 
3.0441 cal/(mol K), c2×10-4 = -4.1199 cal K/mol, ×10-5 = 0.00 
cal/mol 

Akinfiev and Zotov, 2001 

AgCl2
- G = -51350 cal/mol, S = 49.78 cal/(mol K), HKF model 

coefficients: a1×10 = 7.1327 cal/(mol bar), a2×10-2 = 9.8065 cal/mol, 
a3 = 1.8947 cal K/(mol bar), a4×10-4 = -3.1844 cal K/mol, c1 = 
4.8953 cal/(mol K), c2×10-4 = -6.7789 cal K/mol, ×10-5 = 0.6667 
cal/mol 

Akinfiev and Zotov, 2001 

AgCl3
2- Reaction AgCl(s) + 2Cl- = AgCl3

2- 
log10K = -2230.4/T(K) + 4.391 – 0.00528 T(K) (Psat, 293-648 K) (c) 

Zotov et al., 1995 

Chlorargirite, 
AgCl(s) 

G = -26247 cal/mol, S = 22.99 cal/(mol K), V = 25.727 cm3/mol, 
Heat capacity coefficients (cal units): 14.331 + 1.821×10-3 T(K) – 
2.431×105/T(K)2 (298-728 K) 

Robie and Hemingway, 
1995 

 1210 
(a) G = standard molal Gibbs free energy of formation from the elements at 25°C, 1 bar 1211 
(b) S = standard molal entropy at 25°C, 1 bar 1212 
(c) Assumed to be valid to 1000 bar (see footnote of Table 2)  1213 
(d) These species are included for consistency, but are minor in saline fluids compared to the di- and tri-chloride. 1214 
 1215 

 1216 

 1217 
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Figure captions 1219 

Fig. 1. Distribution of Ag-chloride species in an acidic aqueous solution as a function of NaCl concentration at 1220 

400°C and 800 bar, calculated using the thermodynamic properties of silver chloride complexes reported by (a) 1221 

Sverjensky et al. (1997; SUPCRT 2007, http://geopig.asu.edu/index.html#) and (b) Akinfiev and Zotov (2001), 1222 

both based on regressions of available experimental data within the framework of the revised HKF model. 1223 

Thermodynamic data for other fluid constituents and activity coefficient models are detailed in Pokrovski et al. 1224 

(2009a). Note significant differences in the Ag species distribution at NaCl concentration above 0.5m according 1225 

to these two main databases largely used by geochemists. 1226 

Fig. 2. Solubility of argentite (Ag2S, cubic) in a model aqueous fluid of 1.5m NaCl + 0.5m KCl (~25 wt% NaCl 1227 

equivalent) as a function of temperature at 1000 bar in equilibrium with the Pyrite-Pyrrhotite-Magnetite sulfur 1228 

fugacity buffer and Muscovite(±Andalusite)-Kfeldspar-Quartz acidity buffer, according to the two major 1229 

thermodynamic datasets for Ag chloride complexes, Sverjensky et al. (1997; SUPCRT 1230 

http://geopig.asu.edu/index.html#) and Akinfiev and Zotov (2001). Thermodynamic data for other fluid 1231 

constituents and activity coefficient models are detailed in Pokrovski et al. (2009a). Differences in Ag2S solubility 1232 

attain a factor of 10 to 50 between 400 and 600°C. The inflexion of both solubility curves above 500°C is due to 1233 

the muscovite breakdown to andalusite, which leads to pH increase in the fluid at these conditions. 1234 

Fig. 3. (a) Normalized k2-weighted EXAFS spectra of studied Ag nitrate and chloride solutions at 600-750 bars 1235 

and indicated temperatures (in °C), and (b) their corresponding Fourier Transform (FT) magnitudes (not corrected 1236 

for phase shift). Vertical dashed line in (a) is drawn to indicate the phase shift between O and Cl backscattering 1237 

atoms in nitrate and chloride solutions and temperature changes in Ag-Cl distances in chloride solutions. Vertical 1238 

dashed lines in (b) indicate approximate positions of O and Cl atoms in the first coordination shell of Ag (see 1239 

Table 1 for phase-corrected distances). 1240 

Fig. 4. Average Ag-Cl distances (a) and number of Cl atoms (b) in the first silver coordination shell derived from 1241 

EXAFS analyses of chloride aqueous solutions as a function of temperature. 1242 

Fig. 5. (a) Normalized XANES spectra at Ag K-edge of selected nitrate and chloride aqueous solutions and solid 1243 

reference compounds. (b) XANES spectra of representative AgO/Cl clusters of different stoichiometry and 1244 

geometry, calculated using the FDMNES code (Joly, 2001). Vertical lines on both panels indicate the major 1245 

spectral features discussed in section 3.2. 1246 

Fig. 6. Comparison of calculated XANES spectra for the representative Ag-Cl clusters of different geometry and 1247 

degree of distortion with key experimental spectra: (a) AgCl2 clusters (RAg-Cl= 2.35 Å) with different Cl-Ag-Cl 1248 

angles (in degrees in the figure legend) versus the experimental spectrum of the most dilute Cl solution at 450°C 1249 

(exp6_0.70m Cl); (b) AgCl3 (RAg-Cl = 2.55 Å) and AgCl4 clusters (RAgCl mean ~ 2.50 Å,R in the figure legend 1250 

indicates the difference between two pairs of Ag-Cl distances in the distorted tetrahedral-like cluster). 1251 

http://geopig.asu.edu/index.html
http://geopig.asu.edu/index.html
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Fig.7. Structures of stable Ag-Cl-O species identified by FPMD simulations with Ag-Cl interatomic distances (in 1252 

Å) and Cl-Ag-Cl angles (in degrees): (a) AgCl(H2O), (b) AgCl2
-, (c) AgCl3

2-, d) AgCl3(H2O)2-, and e) AgCl4
3-. 1253 

Fig. 8. Local environment of the AgCl2
- species derived from FPMD simulations at 50°C, 1 bar and 380°C, 600 1254 

bar (with Cl:Ag ratio = 2 in the system). (a) Ag-Cl and Ag-O radial distribution functions, and (b) Cl-Ag-Cl 1255 

angular distributions. The amplitude of the Ag-Cl radial distribution functions in (a) is divided by 60 to allow 1256 

comparison with that of Ag-O. 1257 

Fig. 9. Comparison of the MD-EXAFS spectrum of the AgCl2
- species at 380°C, 600 bar with the experimental 1258 

spectrum obtained from 0.7m Cl solution at 400°C, 750 bar (exp#6). The MD calculated spectrum was scaled by 1259 

0.75 in amplitude (experimental amplitude reduction factor) and shifted along the k axis (non-structural e value 1260 

in EXAFS, see text) for better comparison. 1261 

Fig. 10. MD-EXAFS spectra of (a) AgCl2
- at 50°C/1 bar and 380°C/600 bar, and (b) AgCl2

-, AgCl3
2-, and AgCl4

3- 1262 

at 50°C/1 bar. The AgCl3(H2O)2- spectrum (not shown) is close to that of AgCl4
3-. Note the strong similarity of the 1263 

spectra of AgCl2
- and AgCl4

3- (see text). 1264 

Fig. 11. Solubility of AgCl(s) at 200°C and 600 bars measured in situ from the absorption edge height of 1265 

transmission spectra in this study (symbols) and its comparison with values calculated using available 1266 

thermodynamic data for Ag chloride complexes. The uncertainties of XAS measurements are comparable with the 1267 

symbol size. Aki01 – Akinfiev and Zotov (2001) for AgCl0 and AgCl2
-; Zot95 – Zotov et al. (1995) for AgCl3

2-; 1268 

Sew76 – Seward (1976) for [AgCl1-3] complexes; Sve97 – Sverjensky et al. (1997) for [AgCl1-4] complexes.  1269 

Fig. 12. Solubility of argentite, native gold, and chalcopyrite (a) as a function of temperature in a model aqueous 1270 

solution of 10 wt% NaCl equivalent at pH 5 in equilibrium with the pyrite-magnetite-hematite oxygen and sulfur 1271 

fugacity buffer at pressures progressively decreasing from 1500 bar at 450-550°C to 200 bar below 250°C; b) as a 1272 

function of pH at 400°C, 500 bar, 10 wt% NaCl, in equilibrium with pyrite-magnetite-hematite; c) as a function of 1273 

salinity at 400°C, 500 bar, pH 5, in equilibrium with pyrite-magnetite-hematite; d) as a function of H2S 1274 

concentration at 400°C, 500 bar, 10 wt% NaCl, pH 5, and oxygen fugacity of the magnetite-hematite buffer. 1275 

Calculations were performed using the HCh computer code (Shvarov, 2008). Thermodynamic properties of the 1276 

minerals are taken from SUPCRT (Johnson et al., 1992), those of major fluid constituents and activity coefficient 1277 

models are detailed in Pokrovski et al. (2009a,b). Stability constants of Ag, Cu, and Au aqueous chloride and 1278 

sulfide complexes are from Zotov et al. (1995) for AgCl3
2-, Akinfiev and Zotov (2001) for AgCl2

- and CuCl2
-, 1279 

Akinfiev et al. (2008) for AgHS, Ag(HS)2
-, CuHS, Cu(HS)2

-, AuHS, and Au(HS)2
-, and Pokrovski et al. (2009a) 1280 

for AuHS(H2S). These thermodynamic datasets are in good agreement with the major experimental data sources. 1281 

The dominant aqueous species for each metal are indicated. 1282 
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