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Stable Bipedal Walking with Foot Rotation Through Direct
Regulation of the Zero Moment Point

C. ChevallereaMember,|IEEE, D. Djoudi, and J.W. Grizzlé-ellow,|IEEE,

Abstract—Consider a biped evolving in the sagittal plane. Obviously, the modification of the reference motion has an
The unexpected rotation of the supporting foot can be avoided important effect on the stability of the gait (in the sense of
by controlling the zero moment point or ZMP. The objective ha convergence toward a periodic motion) and its robustnes

of this study is to propose and analyze a control strategy for . . .
simultaneously regulating the position of the ZMP and the joints (in the sense of the reaction of the robot in the presence of

of the robot. If the tracking requirements were posed in the time Perturbations).
domain, the problem would be underactuated in the sense thatthe ~ The existence and stability of a periodic orbit depend on

number of input_s would be less than the num_ber of outputs. To much more than just the position of the ZMP: It is quite
get around this issue, the proposed controller is based on a path- possible to have gaits where the ZMP is within the convex

following control strategy previously developed for dealing with . .
the underactuation present in planar robots without actuated hull of the foot support region and where the robot remains

ankles. In particular, the control law is defined in such a way that Upright, but yet the gait is not periodic, or it is periodiajtb
only the kinematic evolution of the robot’s state is regulated, but is not asymptotically stable [7].

not its temporal evolution. The asymptotic temporal evolution of A stability analysis of a flat-footed walking gait for a five-

the robot is completely defined through a one degree of freedom link biped with an actuated ankle was carried out numesicall
subsystem of the closed-loop model. Since the ZMP is controlled, .

bipedal walking that includes a prescribed rotation of the foot in [12], [13], using the Poincar return map. The unilateral

about the toe can also be considered. Simple analytical conditions Constraints due to foot contact were carefully presented.
are deduced which guarantee the existence of a periodic motion Motivated by energy efficiency, a feedback controller was

and the convergence towards this motion. developed in [24] that allows a fully actuated bipedal robot
walking on a flat surface to realize a passive walking gait,
that is, a gait corresponding to walking down a slope without
actuation. Stability of the resulting walking motion hashe

The majority of robot control policies are built around they 51y established, though realistic constraintshenZMP
notion of controlling the Zero Moment Point (ZMP) [28],\;are not imposed.

[11], [17], [20], [18], [26]. The center of pressure or COP ¢ conrg| strategy is based on a path-following control

is a standard H.OIIOI”I in mechanics that was renamed the Zlgltl?ategy previously developed for dealing with the underac
by Vukobratovic and co-workers [31], [30]. As long as the aiion " present in planar robots without actuated anklds [4
ZMP remains inside the convex hull of the foot support regiors; 110], [33]. Our controller is related to the work in [7[6]

CoP = ZMP and the supporting foot does not rotate. Ininy 32, chap. 10], which extended the work of Westervelt
particular, most of the control strategies are decompasel o 4. [33] on underactuated bipedal walking to the case of

low-level controller and a high-level controller, wheretiow- fully actuated robot where the walking gait allowed foot

level controller ensures the tracking of the referenceondior . j:-+ion. In that work. the stance ankle torque was used to
each joint, and the high-level controller modifies the refee o4 |ate either the position of the stance ankle or the rhte o
motion in order to ensure that the ZMP_remams strictly W'th'convergence to a periodic walking gait. In the present study
the convex hull of the _fOOt support region. _the position of the ZMP will instead be prescribed, which

. In experimental SFUd'eS’ how to modﬁy the reference motiqg important for robustly avoiding unexpected rotationghef

is not always explained [11]. Kagami et al. [14] showed hog i the presence of perturbations or for taking into atto

to transform an incorrectly specified reference motion iato yasired rotation of the supporting foot toward the end of the

physically consistent motion that takes into account dyinam  gjngje support phase. This new approach has the advantage of
constraints, including the ZMP. Also, Sugihara and Nakamup, jjiging a link between the classical approach to the contro

[25] proposed a way to rejoin a physically consistent refeee ¢ q,y actuated bipeds based on the ZMP and the study of

when a robot's motion is perturbed off the nominal motion,,yeractuated bipedal robots (either passive bipeds atsob
Their method guarantees that the ZMP moves into the vicinifyiy, 4 point foot contact) based on Poineatability analysis.
of the reference in order to stabilize the whole body motiof} is shown that when the ZMP position is controlled, the
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of the ZMP will be satisfactory. The modification of the l | feet] femur | fibia | torso ]

¢ i ds to adiusting th \eraif length inm 0.26 04 0.4] 0625
reference motion corresponds to adjusting the accelerafio Thass kg T 35 68 17
the robot along a given pdthin the joint space. Assuming inertia in kg m2 | 0.012 | 0.048 | 0.069 | 1.869
a perfect robot model, and without external perturbations,

the closed-loop temporal evolution of the robot is comete TABLE |

defined and can be analyzed through the study of a one degree BIPED PARAMETERS FOR SIMULATION

of freedom subsystem. The Poingaeturn map can be used

to study the existence and stability of periodic motionsarmnd

the proposed control law. Analytical conditions are okgdin 1. THE BIPED MODEL
and subsequently illustrated through simulations. A. The biped

The modification of the reference motion can be related e biped under study walks in the sagittal plane identified
to the work presented in [25], since the ZMP evolution it a vertical z — z-plane. The robot is comprised of a
prescribed. However two main differences appear in our wollgrso and two identical legs, and each leg is composed of two
The modification of the joint motion to obtain the desired ZMiinks and a foot. The ankles, the knees and the hips are one-
evolution is provided by a temporal modification only, th#fo  gegree-of-freedom rotational frictionless joints. Thelkiray
path is preserved. Since our references for the joint and t@gt consists of single support phases where the stancésfoot
ZMP position are not functions of time, the control does n@fat on the ground separated by impacts, that is, instantaneo
attempt to re-synchronize its motion with time. double support phases where leg exchange takes place. The

Since the control method allows a desired evolution of tH€CtOr ¢ = [q1, 42,3, 44, g5, 46]" Of configuration variables
ZMP to be prescribed, a desired rotation of the supportir‘ﬁ?ee Figure 1) describes the shape and orientation of tfeel bip
foot about the toe during walking can be taken into accouttiring single support. The torques are grouped into a torque
During this sub-phase, the ZMP is placed at the forwaMector,I' = [['1, T, T, Ty, I'5, Tg)".
limit of the foot and the kinematic evolution of the internal
joints is prescribed, but the temporal (dynamic) evolutidn
the joints is determined by the controller to be compatible
with the model, which, in this case, is really underactuated
the technique of [5] is used to address the underactuation.
Conditions for the existence of a periodic motion and for the
stability of a periodic gait that includes a prescribed tiota
of the foot about the toe are also given.

The approach developed in [7], [6] and [32, Chap. 10]
considers also a walking gait with foot rotation. The work
in [3] further elaborates on the Poinéastability analysis of
walking gaits that include foot-rotation; in particulangtissue
of the state dimension varying from one phase to another
is emphasized. For walking gaits that include foot rotation
variousad hoc control solutions have been proposed in the
literature [15], [16], [22], [27], [34], but none of them can
guarantee stability in the presence of the underactuakian t
occurs during toe roll.

The first part of the paper considers only flat-footed walkin% . _ _ ,
Section Il presents the dynamic model of the biped. A plank: 1+ The studied biped and a choice of generalized coatetin

biped is considered. Section Il is devoted to the formalatf

the cont_rol _strategy. In Section I_V, acpmplete analytitatly able 1. The dimensions of the feet atg — 0.08m, 1, —

of stability is proposed. Some simulation results are priesk

in Section V; a response to a perturbation with a known moaoe'Pﬁm andlg = 0.2m.

of the robot is considered as well as a response with an

uncertain model of the biped. Section VI proposes an exgensiB- Dynamic model

of the control law considering a gait that includes a présati  The walking gait is composed of successive phases of single

rotation of the supporting foot; a simulation illustratédse t support and instantaneous double support. A passive impact

theoretical results. Section VIl concludes the paper. exists at the end of the single support phase. The legs swap
their roles from one step to the next, and thus, because the
robot is symmetric, the study of a single step is sufficient to
deduce the complete behavior of the robot over a sequence of

1The time evolution along the path is not specified a priori. Fdated steps On_ altemat'ng Iegs. Only the dynamlc model for suppor
work in nonlinear control, see [1] and references therein. on leg- is presented here.

In the simulation, we use the biped parameters given in T



1) The single support phase modélhe dynamic model C. The impact model

can be written as follows: When the swing leg (i.e., leg) touches the ground with
M(q)i+ h(q,§) =T, (1) @ flat foot at the end (_)f the single support phgse, an impact
takes place. The velocity of fo@-becomes zero just after the
whereM (g) is a(6 x 6) matrix and the vectoh(q, ¢) contains jmpact. We study a gait with instantaneous double support so
the centrifugal, Coriolis and gravity forces. that, just after the impact, the former stance lelifts off the
2) Global equilibrium in translation: The reaction forceground. The robot’s configurationis assumed to be constant
during the single support phaseDuring single support, the during the instant of double support, while there are junmps i
position of the center of mass of the biped can be expressedis velocities. The velocity vectors just before and juseraf
a function of the angular coordinates and is denoted ), impact, are denoted— and ", respectively, wheré means

z4(g). When legi is on the ground, a ground reaction forcegter the impact and before the impact. The impact model
R, exists. The global equilibrium in translation of the robogan be written as [5]

makes it possible to calculate this force. Thus we have _ _
¢ =E(L@)d), )

Zg 0]
m { Zg } +mg [ 1 ] = R 2) whereA(q) is a6 x 6 matrix, andFE is the permutation matrix
describing leg exchange. For the ensuing single suppogspha

Equation (2) can also be written as . i L T
d ) the joints are relabelled in order to limit the analysis tirgke

mawgiéq)(-j I qu%q - R, - dynamic model for single support.
b5} . .7 8%z, .
m%% Wi+ mi" S5 +mg = R,

Ill. THE CONTROL STRATEGY

2 2
where §g2@ and 2 aZZz(q) are § x 6) matrices. The desired walking gait is assumed to be composed only
3) Global equilibrium in rotation: the ZMP positionThe  of single support phases where the stance foot is flat on the
robot is submitted to the reaction force exerted by the gdouground and stationary (i.e., it neither rotates nor slipghile
at the ZMP, and the force of gravity. Since the stance arkle, fiat-footed gait is not a necessary condition for walking as
is stationary during the single support phase, the eqitifior \ye Wil see in Section VI, we focus our attention in this part
of the foot around the axis of the ankle can be written (S fully actuated phases. Direct control of the positionhaf t
Figure 1): ZMP will prevent unwanted foot rotation, and thus a desired
oA =mgry —IR.1 — hyRan, 4 zmp position,i¢, is prescribed [9]. As shown in the previous
section, the position of the ZMP is directly connected to the
tcceleration of the robot’s motion. It is therefore impb&sio
prescribe independently a desired evolution of the joift),
and the position of the ZMP?(¢). With respect to such a task,
oa = N(q)q- (5) the biped can be seen as an underactuated system. Thus, as in

The location of the ZMP is then defined directly by thés]' the objective of the control law presented in this satti

robot dynamics through the previous equation. Indeed,gusiﬁnTOttrt]Z t;ascszggge'?tﬁei? 'r()(aiﬁrzn;i:c,’bilorg?(gggcl:’ebrl:wtotion
3), (4) and (5), we have y P J pace.

differs from a path by the fact that a motion is a temporal
(No(q) +IN;(9))G + ho(g, ¢) + lhi(q,¢) =0, (6) evolution along a path. A joint path is the projection of anjoi
motion in the joint space. The difference between a motion

whereo 4 is the angular momentum of the biped abeutBy
definition, the angular momentum is linear with respect ®
joint velocities and can be written

where and a path is illustrated in Figure 2 for a two-link robot.
No = N(q)+mhy2%s@ Only tracking of the desired path is sought and a time-
N o= m%d scaling control law as in [8] is used. Reference paths for the
ho = TN G mgay(q) + mhyd” 62552(q>q joints and ZMP,g%(s) gndld(s), respectively, are assumed to
= i P be known as a function of a scglar pqth parame_tewhmh_
: T "oz 1T plays the role of a normalized virtual time. A desired gait of

Equation (4) can also be rewritten, using (2), in the form the robot corresponds to specification ©fas an increasing

(o4 + 1(mzy) + hy(mi,)) function of time, s(t).
dt

By definition, the termy 4 + 1(m,) + hy,(mi,) is the angular A. Requirements for a Feasible Reference Path

momentum about the ZMP witlx-coordinate!, which is  The reference path?(s),1%(s) is designed in order to be
denoted here by p. This equation, corresponding to angulacompatible with a periodic solution of the biped model. The
momentum balance, can be also writteA as legs swap their roles from one step to the next, so the referen
path can be defined for one step only. For the first step, the
scalar path parameterincreases strictly monotonically with

2The equilibrium in rotation of the robot gives directly tréguation, the respect to _t|me fron to 1 aljld impact takes place at= 1.
term miz, comes from the fact that the ZMP is not stationary. The evolution ofs for stepk is denotedsy,(¢).

— miz'g —mg(zg—1) =0. (7)

op = miéQ +mg(zg —1). (8)



The functions(t) needs to be a strictly increasing function
of ¢, but because the control objective is only to track a

1 reference path, the evolution &ft¢) is otherwise free and
val T the second derivativé can be treated as a “supplementary
o6 control input”. This allows the control law to be designed
- for a system with equal number of inputs and outputs: The
control inputs are the six torquéy,j = 1,...,6, pluss, and

the chosen outputs are the six componentg(of — ¢¢(s(t))
andi(t) — 14(s(t)).

The control law is based on computed torque, which is
guite commonly used in robotics, with a small modification
to ensure finite-time convergence to the desired paths. The
Fig. 2. The dotted lines are two motiorig: (£),qa(t)) corresponding finite-time feedback function proposed in [2], [10] is used.

to the same path represented by the solid line. A path is a finehe 1NE joint tracking errors are defined with respect to trajees
joint space, this line can be parametrized as a function ofva variable satisfying (12)
denoteds, and then can be expressed @y (s), g2(s)). This functions is

defined such that the initial configuration corresponds te 0 and the final eq(t) = qd( (t) — Q(t) 13
configuration corresponds to= 1. Any monotonic functions(t) defines a ¢ (t) _ dq? ( (t))s . (t) (13)
motion corresponding to the padlis). For examples = ¢/T defines a motion q q

of duration". If the desired path is such that for example is monotonic,  The desired behavior of the configuration variables in aose
the path can also be written as(q1 ), and the control law proposed here caqoop is
be computed in this context [32, Chap. 11].

G=q"+v(a,d:5,5), (14)

, where ¢(q, ¢, s, $) from [2], [10] is the term that imposes
The single support phase correspondg)te s < 1.dDue (g(t) — ¢%(s(t))) — 0 in finite time; in fact, the settling time
to the leg exchange at impact, the vectof§0) and ¢’(1), ¢an’pe chosen'to be less than the time duration of a step.

describing respectively the initial and final desired poBE g 5 vector of five components;., k = 1,...,5 with
of the biped, must be such thet(1) = E(¢¢(0)). T
The initial and final velocity of the biped are connected by Y = —Slgﬂ(ﬁeql)|€€qz| — sign(¢n)|¢ul”, (15)
the impact model and leg exchange (9). The reference pattwisere ¢, = eq + 5sign(eéy,)|eé,, |27, and the parameters
designed so that if the reference path is exactly trackeoréefy « , <« 1 and 6 > 0 are used to adjust the settling time
the impact (but the robot state is not necessarily on thegieri of the controller. Taking into account the expression fa th
motion), then the reference path will be exactly trackeeraftreference motion, (14) can be rewritten as
the impact. Just before thle+ 1-st impact, on the reference do
.. i e q(1) B q%(s)
path, the vector of joint velocities i < 5k(1). The = Tds
reference path is designed such that, afterdthe impact, the Pai(s) 2
reference path is also perfectly trackgtl = %5, . (). With v(s,$,q,¢) = =575 +4. For the position of the

ds
Since the impact model (9) connects the velocities befoce aMP: the desired closed- Ioop behavior is

after impact, we must have I(t) = 1%(s(t)).
dq®(0) . B d dg (1) Combining expression (16) with the dynamic model (1) of
ds Sk41(0) = BA(¢"(1) ds sk(1) (10) the robot and the relation (6) for the ZMP determines the
Wheng(1) and dq (1) are known, there are an infinite numbefeedback controlle; Thus, the control law must be such that
of possible ch0|ces fond— The set of solutions can be M(g) (05 +0) + h(g.q) = T
arametrized by a scalar as 8) . 17
P ) ) (No(g) + 1%(s) Ni(g)) (2525 1 v) )
44°O0) _ paggran®e®,, (11) +ho(q, ) +1(s)hu(a,4) = 0.
ds. ds It follows that, in order to obtain the desired closed-loop
yielding $541(0) = Sk(il). behavior, it is necessary and sufficient to choose
i — —Wol@+¥(s)Ny(9)v—ho(g.4)~1*(s)hi (4.0)
B. Definition of the control law (No(a)+1(s) Ny (q)) 249G as)
The control law is selected to ensure that the joint co- r - M(q)(dqzé(.S)g_;'_v)_’_h(q’q').

ordinates follow the joint reference pathd(s), and that 4

the position of the ZMP ig?(s). The torque acts on the As long as(No(q) + 1%(s)Ni(q)) 2L = 0, the control

second derivative of and directly oni. It follows from the law (18) is well defined, and, by (14), ensures thaft)

definition of the joint reference path that the desired vigjoc converges ta;(s(¢)) in finite time, and that(t) = 14(s(t)).

and acceleration of the joint variables are Without initial errors, a perfect tracking @f'(s(¢)) andi?(s)
g dq (5(15)) is obtained. . _ .
() = 5= ) (12) At this point, the behavior of(t) is unknown. Properties
git) = dq” ( (t))s + 4 ( s(t) g2, of its temporal evolution are developed next.




IV. STABILITY STUDY where

Since the control law is designed to converge before the s(s) = exp <f K(T)dT)
end of the first step, after that, perfect tracking is obtaine 0

and therefore B(s) = *mgofsexp (an(n)dﬁ) I(7)(2g(g% (7)) = 14(7))dr.
t d(s(t
28 B (iqg(S()izt) B. Minimal angular momentum to achieve a step
o 2 (19) - .
i) = dqd(gs)é(t) 4 d g(ifs)s'(t)Q The functionsd(s) and ®(s) are calculated directly from

) = (st q%(s) andl%(s). A complete step can be accomplished only
’ if $ is always positive. When the robot follows the reference

These equations define the zero dynamics manifold cortesjectory (19), the control law (18) does not cross a siaigtyl

sponding to the proposed control law. On the zero dynamias long as

manifold, the evolution of during one step can be determined dq(s)

by integration of the dynamic equation corresponding to the (No(g%(s)) + 1%(s)Ni(g%(s))) =1(s) #0. (26)

glopal equilibrium in rotation (8)'. nder this assumption, the conditiagn# 0 is equivalent to
Since the occurrence of an impact depends only on the

ap # 0 or ¢ #0.

configuration of the robot and not its velocity, and due to the”
characteristics of the joint reference path (Section jJ-#ach Theorem 1 Assuming (26), a step can be achieved if, and

step begins. yvith; = 0 and finishes V\{ith9 =_1. _ only if, the initial value of¢ for this step is such that
The stability of the control law is defined in the sense

of the convergence towards a periodic motion. A periodic ¢(0) > Z,, = max (Q;(S)), (27)
motion of the biped corresponds to a periodic evolution of 0<s<1\ 6%(s)

the angular momentum. Thus we study the evolution of the £,y tion of angular momentum during the impact phase
angular momentum from one step to the next one and deduce

a condition allowing the existence of an attractive pedodi \t the impact, due to (11), the evolution éfis such that
solution. 5t=2__ Therefore,

of =d10p, (28)

A. Evolution of the angular momentum for one step with 07 = Il((l(;)a wherel! is given in (22).
On the zero dynamics, (8) becomes

_ , d4(s) 929(q%(s)) da’(s)

D. Conditions for existence and uniqueness of a periodic
3 + mg(ag(q’(s) —1%(s)) (20) Solution

ds 9 ds The combination of (25) and (28) defines the evolutior of
and (or, equivalentlyg p) from one step to the next. The evolution
op(s,s) =1(s)s, (21)  of the robot during one step is completely defined by the value

of ¢ for a single value ofk. Thus, we study the evolution of
o ) , , ¢ just before the impaaf~ = (1) from one step to the next,
I(s) = (N(qd(S)) +mid(s) 22 @) L OTe(a (5>>) 43°(s)  vyia the Poinca map

with

0q 9q ds
. . ea p(C7) = (016(1))* ¢~ = @(1), (29)
Equations (20,21) can be combined to express the derivative o o i )
of the angular momentum with respect4o A periodic admissible reference motion is defined by a peri-

Just as in [33, Prop. 1], it can be shown that uniquenessQﬂ“C gvolution of the angL.JIar, momentum, which is equivalent
solutions of (20,21) implies that if the robot completesepst 10 & fixed point of the Poincarmapp, namely,* = p(¢*).
that is, if there exists a solution beginning wigfo) = 0,  From (29), taking into account thats) > 0, it follows that
5(0) > 0 and ending withs(t;) = 1, §(t;) > 0, then for o if (076(1))% = 1_an.d ®(1) =0, then_ any initial value;
t € [0,t],$(t) > 0. Using this fact, (20,21) can be combined produc_es a periodic refere_nce motion; moreover,
to obtain « the Poinca® map has a unique fixed point

dop  _ ) 025(a"()) da’(s) o " = ety (30)

ds ds dq ds I(s) (23)
+mg(ag(g(s) — 19(s)) L2

Applying the change of variabl€,(s) = %a?,, this equation

if, and only if, ®(1) and 1 — (6;6(1))? have opposite
signs.
Applying Theorem 1 and using (293, in (30) defines a

becomes periodic reference motion if, and only if, the periodiQC alagu
== 26(s)C +mgl(s)(zq(q*(s) — 19(s)), (24) gomentum is sufficient to produce the step, thatds)” ¢* >
. _m dl%(s) 9z4(q%(s)) dq?(s) :
with r(s) = 715z T3~ =5, ‘%~ The above equation rhagrem 2 Assuming(26), a unique periodic reference mo-

is a linear s-varying ODE and has the explicit solution

tion exists if, and only iflf&‘f’égf))Q > (52}")5' The periodic
C(s) = 6%(5)¢(0) — B(s), (25) motion is defined by equation (30).



E. Convergence Towards the Periodic Reference Motion Laf
Equation (29) is equivalent to
p(¢7) = ¢ = (0r0(1))*(¢™ = ¢F). (31)

Consequently, solutions of equations (20) and (21) comverg
to the periodic motion if, and only if(§;6(1))? < 1.

1 s FFFEEL,
0.8

A ki T LA

0.6

Theorem 3 Assuming(26), solutions of the zero dynamics N\
given by equationg20) and (21) converge to the periodic oal : = Ay
reference motion if, and only ifs;5(1))% < 1.

Combining Theorems 1, 2 and 3, the following corollary is R i
deduced. R Yy R— Y

Corollary: Assuming(26), the reference periodic motion A d - | ; . :
i i i i i Fig. 3. The stick diagram of the nominal periodic trajectdrlge configura-
's orbitally exponentially stable if, and only if, the regece tion of the robot is drawn fos = 0,0.1,0.2...,0.9,1. Thus a sequence of

2
joint path is such that-®(1) > max(%Zm, 0) and snapshots of the robot is given. The desired motions of thetrate such that
(5 5(1))2 <1 g the configuration of the robot coincides at some instant t& saapshot, but
I : it is not imposed that these instants are equally distributighin the period
of one step.

V. SIMULATION RESULTS

A. Response to a perturbation with a perfect model j:: 11022
The control law is evaluated here for the periodic path = | o
depicted in the stick diagram of Figure 3. The joint patiis) . o
is defined with a degree four polynomial in The evolution . -
of the ZMP position is chosen to be a linear functiorsoThe 300 .
reference pattr'(s), ¢*(s) can be the result of an optimization S Mt oo gt e

process since the periodic motion, if it exists, can be ekpli P lution o during the singl ¢ bhase is characterized

. : N [ A e evolution of, during the single support phase is characterize
_deduced via (30). A methodology allowing to do this is give the functionsd(s) andé2(s). The position of the ZMP is being controlled
in [32]. to increase linearly, from back to front. Because the vart@omponent of

In the simulation presented here, the desired evolution fibe velocity of the center of mass is directed upward at thénbegg of the
step and then downward(s) increases at the beginning of the step and then

lq and Qd<s> are . decreases. Because the center of mass is behind the ZMP agimaibg of
d 9 3 4 the step and then in front of the ZM®,(s) increases at the beginning of the
q“(s) = ap + a15 + azs® + azs’® + ays (32) step and then decreases.
19(s) = —0.02 4+ 0.1s

The vectorsa; are determined so as to join an initial

. Cy ) . ' .
co?flg:Jratlofr_]q (O?’ ag mterme_d!a_\t? C"I“f'gurj‘}'(f)’? (Oj)’ pis (6(1)67)% = 0.6393, and because it is less than the
? ina co.n '99{3“0”‘1 (1.)’ an |n.|t|a v.e ocity 73~ and a corresponding periodic walking motion is exponentiallgtde.
final velocity ;. The final configuration for the stegf(1)  The stability arises from the effect of the impact becai(d¢?

corresponds to the initial ong!(0) with an exchange of the js close to 1.
leg. These key values which are used to describe the referenc

occurs at¢* = 569. The slope of the Poincarreturn map

path are given in Table II. T
& 02 Effect of the perturbation
|
0 [ 28 T [ ) [ 20 s o
0.0360 | 0.9570 | 0.2014 | 0.4057 | 0.6309 o
0.5432 | 0.2160 | 0.2239 | 0.1000 | 0.2928
2.3705 | 0.6371 | 2.8350 | 3.1855 | 0.4259 04l — . — 2
3.1855| 0.3981 | 2.7072 | 2.3705| 0.0063 Ok
0.1000 | 0.5476 | 0.6938 | 0.5452 | -1.1129 £
2.7359 | -1.0496 | 2.5981 | 3.1056 | 1.1944 =,
E 0.15 = N
TABLE || g s
THE REFERENCE FOR THE JOINT ARE BASED ON THESE KEY VECTORS o ‘; 3
% 0.05 25
N o 2
-0.05 15
The evolution of§(s) and®(s) are given in Figure 4. Their o . '

time (s)° time (s)°

final values,®(1) = —205, and §(1)? = 0.9954 are useful
for constructing the Poincarmap. The behavior of during Fig. 5. The convergence towards a periodic motion is obséirveiinulation

the impact is defined by?, which is equal t00.6422. The with the proposed control law.

minimal value of¢ for which a step can be achieved%gr' =

232. The periodic motion is given by (30). The fixed point A simulation was done for ten steps, assuming no modeling



error. The state of the robot was initialized on the periaaint

and horizontal force (350 N) was applied fos < ¢ < 0.24s

at the center of mass; see Figure 5. Convergence toward a
periodic motion was obtained for each of the five joints of
the robot. As an illustration, the evolution of the angle of

G —q2—q3

the torso is depicted in Figure 5-a. The same convergence is
also evident in the evolution of the position of the ZMP with

L
03

L
0.31

0.32

respect to time in Figure 5-b; for each step, its evolution is
linear from —0.02m to 0.08m except when the perturbation
exists. Figure 5-c presents the evolutionsofvith respect to
time; it clearly converges toward a periodic motion.

ZMP position | (m)

o

B. Response to a perturbation with imprecise model data

Fig. 6. The convergence toward a periodic motion is obsemeginiulation

.10 15
time (s)

20

.10 15
time (s)

In practice, the robot's parameters are not perfectly knowwith the proposed control law, with modeling error. a) Thestoevolution

We assume that we have some errors on the masses andp §fpwn in its pr_\ase plane_ (the absolute torso _velocity w-iﬂ;pect_ to the
solute torso orientation); it tends toward a limit cycle) The horizontal

the inertias of the links. We simulate the fOIIOW'ng cases (iﬁsition of the ZMP with respect te, I(s), tends toward a periodic evolution
error: different from Figure 5(b): the ZMP excursion is smaller titae expected

one. (c)s(s) tends toward a periodic evolution different from Figure)5¢he
« The mass errors are10% for the feet,+30% for the (©:(s) P gure)st

i new cycle is faster than the nominal one.
thighs, +30% for the shanks and-40% for the torso.
The error on the inertia of the torso-is30%. This choice

of errors is arbitrary. We have chosen that the real robgt Effect of the ZMP evolution

is heavier than the model used in the control law; this

point is commented upon in the sequel.

: : : , . bmin | lmaz | ¢* | (6(W)r)? | se(1) | Ts]
Since the reference path is designed with an incorrect LFi

* del. the veloci ff he i 9 q 4 005 [ 005 794302]7149.69 0613 3.86 | 0.401

moael, the ve 0C|ty after the |mpaCt 0es not correspon -0.04 0.06 823.92 | 175.44 0.621 3.62 0.437

to the expected value. -0.03 | 0.07 | 699.48 | 202.78 | 0.630 3.36 | 0.488

« Because the positiohof the ZMP is calculated via the | -0-02 | 0.08 | 569.18 | 231.61| 0639 | 3.04 | 0.569

: . d -0.01 | 0.09 | 432.40 | 261.85| 0.648 2.66 | 0.733
dynamic model/(s) will not be exactly equal td“(s). 0 | 010 | 28845 | 293.42 No periodic motion
Initializing the state of the robot on the theoretical pdito 001 | 011 | 136,53 326.23 No periodic motion

motion, the behavior obtained for a large number of steps is TABLE III

presented in Figure 6. Some tracking errors exist, pagityul THE EFFECT OF THEZMP EVOLUTION

at the beginning of each step, due to the effect of the

impact, thus the path followed is not exactly the expected

one (but the tracking errors are periodic). The convergencelhe evolution of the ZMP throughout the step affects the
toward a periodic motion is shown for the torso evolutiofXistence and stability of the periodic motion obtainedhwit
via its phase plane in Figure 6-a. This convergence is alt® proposed control law. To illustrate this point, we cdesi
illustrated via the evolution of with respect to s in Figure 6-c, various linear evolutions of the position of the ZMP with
which clearly converges toward a stable periodic motiore Thilifferent average vaIuesW), while holding constant
periodic motion is close to the expected one but not exactlye net change in the position of the ZMP(1) — 4(0) = 10

the same, because it is the result of the motion of the ZMfn. Table Ill presents the main properties of the periodic
and of the real dynamic model. Since the real robot is heavi®otion and of the control law with respect to the variation
than the employed model of the robot, we have greater grouvoidthe average value of the ZMP position during one step.
reaction forces; consequently the real evolutiasf the ZMP Placing the average position of the ZMP closer to the toe
in Figure 6-b varies between extreme values that are smalleteads to larger values df(1)5;)? and smaller values of*
absolute value than the desired values. The differencedaetwand average walking speed. When the center of mass is in
I(s) and I%(s) is higher for larger values of. In the case front of the ZMP, the moment arm due to gravity speeds up
examined here, there is no problem because constrainteonttie motion. When the center of mass is behind the ZMP, the
equilibrium of the supporting foot are always satisfied. @@ t moment arm due to gravity slows down the motion. When the
other hand, if the real robot were lighter than the modeleyerage position of the ZMP is moved forward, the portion of
one, the ZMP could be at one of the extreme ends of tliee step where gravity speeds up the motion decreases, and
foot, thereby violating the constraints of equilibrium dfet thus the average walking speed decreases.

supporting foot. Hence, a safety margin is necessary wheen th In the last two rows of Table Ill, the value d@f* is less
minimum and the maximum values for the ZMP evolution arthan the minimum value necessary to complete a step (i.e.,
defined. The best way is to defiig;, andl,,,, with some it does not satisfy (27)), and consequently a walking motion
margins with respect to the actual size of the foot (see Eigurannot be produced. If the control law is used for this case,
1). the behavior shown in Figure 7 is obtained. Perfect tracking
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T
initial state

final state

G — G2 — g

. . . . . .
0.26 0.265 0.27 0.275 0.28 0.285
G = —q

ZMP position | (m)
sp
- S

. N

4 . 6 8 10 0 2 4 . 6 8
time (s) time (s)

Fig. 9. Generalized coordinates for the foot rotation shhge. The rotation

Fig. 7. The motion of the robot is not stable as it does not ca@/é¢o
9 about the toe is described by varialgle

a periodic motion, but the position of the ZMP remains strigtlighin the
convex hull of the stance foot.

s=0s=srs=1 The Foot Rotation Indicator (FRI) [19] differs from the ZMP
by the fact that it can quantify the rotation of the foot. Henc

it could be attractive to control the FRI instead of the ZMP,
and to prescribe the foot rotation via the FRI. However, it
is difficult to connect the kinematic evolution of the foot to
the FRI, which is the reason that we consider the two phases
separately.

A. Control during the rotation sub-phase

From the control point of view, the main difference is that
during the flat-foot sub-phase, the evolution of the ZMP can
be chosen, whereas during the foot rotation sub-phase, the
Fig. 8. A walking cycle that includes foot rotation. The dmgupport phase position of the ZMI_D Is at the, contact point between the,toe and
can be decomposed into a flat foot sub-phase and a foot rosuiophase. the ground. The difference is therefore essentially a niogel
The cycle is completed by an impact phase. issue because a supplementary variable, denoted hejg as
must be added to describe the configuration of the robot

. ) N during the rotation sub-phase; see Figure 9. The augmented
of the joint path is observed and the position of thd/ P configuration vector is denoteg = [go, ¢7]7.

satisfies at each time instance the condition of non-ratatio pyring the foot rotation sub-phase, the dynamic model
of the feet (see Figure 7 lower left part), though the motiogecomes
of the robot is unstable; the robot does not fall down, but it .. . 0
’ ' M, =
comes to a stop. r(@r)dr + he (g dr) [ r ] ) (33)

where M,.(¢,-) is a (7 x 7) matrix and the vectoh,.(¢., ¢,)
VI. WALKING WITH FOOT ROTATION contains the centrifugal, Coriolis and gravity forces. Tinst
The objective in this section is to study how the proposg@w of (33) corresponds to the passive rotation about the toe
control law and the associated stability conditions can Weéhich can also be expressed as
extended to thg case of a ga}it that includes a foot rotatibn su op = mg(zy — la), (34)
phase [21]. This sub-phase is a hormal part of human walking,
but humanoid robots generally do not include this sub-phagk by (6) with I = I; (see Figure 1). The first row of the
because it renders the control problem more difficult. TH&namic model (33) also yields the required accelerafion
considered gait is described in Figure 8. The double supp8f thatg, satisfies the dynamic model. To have the desired
phase is reduced to an impact phase. This choice has beged-loop behavior for the joints,must be such that

made since with our model based on rigid bodies, we cannot dgl(s) . .
obtain a non-instantaneous double support phase after the My (gr)( ds §4 ) + hya(gr, 4r) =0, (35)
impact if the velocity of the swing leg at impact is nonzero.ynhere the index denotes the first row. Thus

The initiation of rotation about the toe is decided by a i M1 (ge)or + et (g, Gr)
control action. The reference paths for the joint variables §=- dai(s) : (36)
are expressed as functions ofis before. A complete single My (qr) =55

support phase is achieved fer= 0 to s = 1. The transition The last6 rows of the dynamic model yield the torques
from the flat-foot sub-phase to the foot-rotation sub-phasequired to track a desired path, as in the second equation
occurs for a given value of denoteds,., such that) < s,. < 1. of (18).



B. Stability study This expression can be combined with (42), yielding

~ The evolution of the angular momentum during one step G(s) = 08,0%(s,)C(0) — 8% B(s,) — Pe(s).  (47)
is studied in order to determine the stability of the gait. _ _ . o .

As mentioned in Section IV, during the flat-foot sub-phasé&inally, since the expressions forare similar during the flat-
the angular momentum evolution is described by (20) and tfot and foot-rotation sub-phases, they can be represdyted
variable((s) evolves as in (25). At the transition between tha single expression, fdr < s <1, namely
f!at-foot sub-phase and foot-rotation sub-phase, the ZMi® po C(s) = 62(s)C(0) — B, (s), (48)
tion changes, and thus the angular momentum about the ZMP
changes. We denote lay»(s;), the angular momentum at thewith

end of the flat-foot sub-phase, and by(s;"), the angular 5(s) for 0<s<so
momentum at the beginning of the foot-rotation sub-phase. % (s) = { ds.0(s,) for st <s< il
The configuration and velocity of the robot are continuous at ’ T (49)
this transition. ®,(s) = { ®(s) for 0ssss
At the end of the flat foot sub-phase, we have 05, ®(s;) + @i(s) for s <s <1
C(57) = 62(s,)C(0) — B(s,). 37) Remark on Stability Analysis: Because the behavior @f

along a single support phase has been expressed in exactly
Using the transfer of angular momentum equation, the charitje¢ same form as in the first study concerning fully actuated

in momentum can be written as walking, and because the impact equations are similar due
N B ) J to the previous supporting leg leaving the ground, Theorems
ap(s;) = op(s, ) +miy(s)(la = 1%(sr))- (38) 1, 2 and 3 and the Corollary can also be restated for this
On the zero dynamics (19), the velocity can be expressed mor(_e.complex ga}it, and analogpus conditions for existende a
as a function obrp(s;") using (21) stability are obtained by replacinis) and®(s) by ¢,.(s) and

®,.(s), respectively.
924 (¢ (sr)) dg”(sr)

. _ dq ds -
Zg(sr) = I(s) op(s;). (39) C. Simulation results

Therefore, The control law is evaluated here for the periodic path
(40) depicted in the stick diagram of Figure 10. The joint path
q%(s) is defined with a degree four polynomial infor the

op(s)) =0ds.0p(s;),

with flat-foot sub-phase, and a degree three polynomia ifior
dz4(q%(sr)) dg®(sr) d the foot-rotation sub-phase. These joint references haea b
Pralgpee ) Q8 (1g = 1(s,)) . ; .
s =1+m - . (41) adjusted by hand, starting from the references presented in
I(sr) Figure 3. Some optimal motions that include the foot-rotati
For the variable, at the beginning of the foot-rotation sub-Sub-phase can also be defined using the methodology given
phase we have in [29] but this work is not within the scope of the present
o ) paper. In [29], it is also shown that from the energy efficienc
C(sF) = 65,0°(5,)¢(0) — 65 D(s). (42) point of view, the introduction of a foot-rotation sub-phas

During the foot-rotation sub-phase, the ZMP positionjs efficient f‘?r fast.walkmg. .

which has been selected to be constant. Consequently, on thlé] the simulation presented here, the fransition between th
zero dynamics, the angular momentum evolves according o_sudb-phzlzlste_zs V}/aésd SGIEthd to OC_CUB& sr = 0.7, the
(34). Using the same principle as in Section IV, if there exis2€S!"e¢ evolution for™andq (s) are :

a solution beginning withs = s,., $(s,.) > 0 and ending with

d(s) = ap + a1s + azs% + azs® + ays*

s(ty) =1, $(ty) > 0, we have q
) 1) 1(s) = —0.03 + 0.1 0<ss<07
dop _ de) _ 10018 4(s) = bo + bis + bas® + bys®
= mg(ag(a(s) —ta(s) T @a) [ a(5) = b+ bus+ bas® + by
ds g - e i o 0.7<s<1
(50)

Applying the change of variable,(s) = %al%, this equation

becomes " The vectorsa; are determined so as to join an initial

configurationg®(0), an intermediate configuratiayf(0.35), a
9 = gl (3) g (g"() ~ lu(s). (aa) conigurationd (0). ediate configuratir (0.29),
ds final configurationg®(0.7), an initial velocity direction=_=
and hence, fog, < s <1, and a final velocity directiorf% for the first sub-phase.
The vectorsh; are calculated to join an initial configuration
C(s) = Cs7) = @ils), “s) ] | catoa’ed 1o Joi & e o)
q7-(0.7), a final configurationy;: (1), an initial velocity ===
c s
where and a final velocity ) for the first sub-phase. In the
o first sub-phase, no reference is defined for the jgintthus
D, (s) = —mg/I(T)(xg(qd(T)) —lq(7))dr.  (46) the notationq and ¢, are used to define the configuration
coordinates. To have continuity in the reference in pasitio

S
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and velocity directiong?(0.7), % and ¢%(0.7), % 0.6440. The minimum value of¢ for which a step can be
describe the same state of the robot. The final configuratianhieved is% = 198. The periodic motion is given by (30).
of the step,g?(1), corresponds to the initial ong’(0) with The fixed point is(* = 324. The slope of the Poincameturn
an exchange of the legs. These key values to describe thapp is (6(1)d;)? = 0.6161, and because it is less thanthe
reference trajectory are given in the Table IV. corresponding periodic walking motion is exponentiallgtdeé.

The stability arises from the effect of the impact because

gh0) | 4@ | 4d0.35) | q2(0.7) w () % 5.(1)? is close to 1.

3.1416 0 2.9671 0 The forward walking speed of the robot will be slower when

-0.0438 | 2.3798 | 0.1815 | 0.2509 | 0.3562 | 0.5014 | 1.1565 P ; :
03707 | 21208 | 03546 | 01039 | -03722 | 01957 | 06523 |the gait includes rotation about the toe than when this sub-

2.4653 | 0.0955 | 2.6858 | 3.0086 | 0.7642 | 3.1855| 0.4003 |phase does not exist. During the rotation sub-phase, the ZMP
3.1855 | 0.3248 | 2.9151 | 2.4862 | -0.8358 | 2.4653| 0.3981 |js at the forward edge of the foot, the decreasebpfis less
0.1957 1 0.2862 | 0.5306 | 0.7626 | -0.1376 | 0.37071 0.3084 |0 if the ZMP was inside the sole of the feet (see Figure

2.8148 | -1.7654 | 2.5548 | 2.7543 | 1.0093 | 3.1854 | -1.2468 ; : oY
11), and the resulting value gf corresponding to the periodic

TABLE IV motion decreases.
THE REFERENCES FOR THE JOINTS ARE BASED ON THESE KEY VECTORS

& 02 T
| Effect of the perturbation
. . . & o1
The rotation occurs due to a control action corresponding !
. A s o
to a discontinuity on the torque. The torques are such that an
acceleration ofy, appears and that the ZMP is at the contact o
point between the toe and the ground. “ass 02
E
14F
— o2
5 ~
12 % 0.15 =
8 01 él,S
Al % 005 - .
N 0
o8k -0.05 05

? time (9) ? time (§)

Fig. 12. The convergence towards a periodic motion is obgarvsimulation
04r 1 with the proposed control law.

A simulation was done for ten steps, assuming no modeling
e e ez 5 oz os error and initializing the state of the robot on the periaatigit.

i o ) ) ] ) A horizontal force of 100 N is applied at the center of mass
T ot el e ot e, desed tagcony THEIomelon o for 0.25 < ¢ < 0.24s; See Figure 12. Convergence toward
supporting foot is flat on the ground. For7+ < s < 1, the supporting foot & periodic motion was obtained for each of the six joints of
rotates. the robot. As an illustration, the evolution of the angle loé t
torso is depicted in Figure 12-a. The same convergence is

also evident in the evolution of the position of the ZMP with

100 101 respect to time in Figure 12-b; for each step, its evolut®n i
= W = linear from —0.03m to 0.04m during the flat-foot sub-phase
= = oo and then there is a discontinuity to achigfe= 0.2m. Figure

= ' 097 12-c presents the evolution éfwith respect to time; it clearly

- o converges toward a periodic motion.

0 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 08 1
S S

Fig. 11. The evolution of during the single support phase is characterjzeg)' Interesting next steps

bly the fur;]ctlor}slf_r(S) a:_d5?k()«9)- DU&IHX thhe flat-foot sug-mse, ag e\aolutlon The simulation results have shown the effectiveness of the

close to that o lgure 4 IS observed. t the transition be € sub-phases, . H

a jump occurs due to the terdir; however, for this iIIustrationcS?r is close control law. The ev_aluatlon of .thIS approach on a prototype

to 1 and thus this jump is difficult to see fgr.(s). Since at the transition the Would be of great interest. This has not yet been attempted

position of the ZMP changes frof.07m to 0.2m, the center of mass that pecause a planar biped with feet is not available for such

was in front of the ZMP becomes behind the ZMP, and thusincreases ; ;

slightly just after the transitiond, (s) is constant during the foot rotation experiments. The proposed C_0|_1trol IaW_ reqUIred a CompUted

sub-phase. torque control that may be difficult to implement on a real

robot. A PD controller can be derived from this control

The evolution ofé,.(s) and ®..(s) are depicted in Figure approach instead of the computed torque control. The most

11. Their final values®,.(1) = —124 and§,(1)? = 0.9585, important point is to define the reference motion not as a

are useful for constructing the Poinéamap. The behavior predefined function of time, but as a function of desired kine

of ¢ during the impact is defined b§?, which is equal to matic evolution of the position of the ZMP. If the integratio



of the variables, needed to define the reference path, ig6]
difficult in practice, a physical monotonic variable basedlwe 7
measurable state of the robot, for example the angle of aaVirt
stance leg, can be used insteadsofAdditional information
about these practical implementation issues are are given [l
[32].

The extension to a 3D biped would also be interesting. Tw¢g]
directions could be chosen to do this extension.

Suppose the robot is fully actuated. The main interest of the
proposed strategy is to show that a temporal modification [ab]
the joint reference motion allows us to correct the positbn
the ZMP. In the case of a 3D motion, the position of the ZMR
has to be controlled in two directions (frontal and sagitthd
the temporal modification gives only one degree of freedom.
is not possible with this degree of freedom to track a prescri
motion of the ZMP in these two directions, but it could be
possible to maintain the ZMP inside a prescribed sub-serfdé3!
of the complete sole. In the case of planar motion, how to
keep the ZMP in a prescribed area is described in [9]. Tl
introduction of rotation phase about the toe for 3D motion is
similar to the 2D case because only one free degree of rotatio
appears. [15]

The control strategy of this paper has been built upon a
control approach developed for point-contact planar Fgjt
A control strategy for a point-contact 3D robot is now und€fé]
development [23].

[12]

[17]
VIl. CONCLUSION

For a planar biped, a control strategy was proposed bas$&l
on tracking a reference path in the joint space instead [@g]
a reference function of time. This allows the simultaneous
control of the path positions of the joints and the ZMP. Th
biped adapts its time evolution according to the effect
gravity. A stability study of the robot’'s time evolution has
been given for a fully actuated gait and a gait that includé&!l
a foot rotation sub-phase (i.e., an underactuated subephas
Walking with more human-like characteristics can be hashdl¢22]
by our control law. Easily testable analytical conditiores/é

. . . [23]
been presented for the existence and uniqueness of a pnerlé)dqi
motion and for the orbital exponential stability of a pei®d
motion. Since the stability conditions are based on inatjes)|
a natural robustness with respect to modeling errors aﬁé]
external perturbation exists. [25]

0]
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