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Abstract— The purpose of our research is to study the effects
of circular arc feet on the biped walk with a geometric tracking
control. The biped studied is planar and is composed of five
links and four actuators located at each hip and each knee
thus the biped is underactuated in single support phase. A
geometric evolution of the biped configuration is controlled,
instead of a temporal evolution. The input-output linearization
with a PD control law and a feed forward compensation is used
for geometric tracking. The controller virtually constrains four
degrees of freedom (DoF) of the biped, and one DoF (the absolute
orientation of the biped) remained. The temporal evolution of the
remained system with impact events is analyzed using Poincaré
map. The map is given by an analytic expression based on the
angular momentum about the contact point. The effect of the
radii of the circular arc feet on the stability is studied. As a result,
the speed of convergence decreases when the radii increases, if
the radius is larger than the leg length the cyclic motion is not
more stable. Among the stable cyclic motion, choosing larger
radius broadens the basin of attraction. Our results agree with
those obtained for passive dynamic walking on stability, even if
the biped is controlled through the geometric tracking.

I. I NTRODUCTION

Over the past several years a considerable amount of studies
have been proposed on biped walking. The choice of type of
feet such as a contact points, flat feet and circular arc feet
is important, because walking stability is essentially affected
by the contact with the ground. Control methods of many
traditional humanoids with flat foot are based on zero moment
point (ZMP) that remains inside the convex hull of the foot
support using the ankle torque. There are lots of successful
results, but the gaits seem not to be so natural. On the other
hand, for a biped with point contact a geometric tracking
method for biped walking using input-output linearization
(e.g. [1]–[4]) produces stable gait that seems quite natural
(the geometric tracking method was originally proposed by
Kajita [5]). Grizzle et. al. [2] proposed the method for a three-
link model, only two outputs are controlled, the reference are
expressed as a function of the biped state. Zero dynamics with
an impact event of the controlled system were analyzed by
Poincaŕe method. The effectiveness of geometric tracking has
been verified on a platform called ’Rabbit’ [4] (Fig.1 left) with
point feet. Westervelt et. al. [6] gave some additional results to
show capability for robustness, changing average walking rate,
and rejecting a perturbation by ’one-step transition control’
and ’event-based control’.

In the domain of passive dynamic walking mechanisms [11],

it is shown that a biped with large radius circular arc feet can
take easily a lot of steps. The prototype Emu (Fig.1 right)
can be equipped with various arc feet with different radii ([7]
and [8]). In previous walking experiments the biped Emu is
excited by gravity or forced oscillation of the length of legs. If
the feet radius is 10% of leg length, the biped could only take
few steps [7] excited by the effect of gravity because of the
sensitivity to disturbances produced by the cables, the guide
to avoid lateral motion and so on. The biped could not walk
by the forced oscillation. In the case of a radius which is 97%
of leg length, the biped Emu (Fig.1 right) can take easily few
dozen of steps [8] by the gravity and the leg oscillations. The
step number is limited only by the space of our laboratory.
The effect of the radii of circular feet was significant for our
results, but the change of radius is also accompanied by other
difference in physical parameters, thus a direct conclusion on
the experimental study is not obvious and a more rigorous
study must be done. In fact, the same results are well known
in the field of passive dynamic walking as it is mentioned in
Section II.

The geometric tracking method that was used for the
underactuated biped Rabbit can be extended to the case of
underactuated biped with circular arc feet. If the biped has
the circular arc feet, the analytical stability study given in [4]
can not be applied directly. The contact point between the
supporting foot and the ground moves forward during the step
in this case. The same difficulty appears also in a flat feet
model. For this problem, Djoudi and Chevallereau [9] gave a
solution to analyze the stability with a chosen evolution of the
ZMP.

The purpose of the paper is to show the effects of the
circular arc feet for an underactuated planar biped controlled
by a geometric tracking method. The effect of the feet shape on
the control properties is obviously depending on the walking
strategies. Therefore it is significant to clarify the effect of the
feet shape on the geometric tracking even if it is well know
in the passive dynamic walking field.

A model of our biped is composed of five links. Prismatic
knee joints are employed to avoid the foot clearance problem
which occurs in association with large foot, not actuated ankle
and rotational knee joint. A geometric evolution of the biped
configuration is controlled, instead of a temporal evolution.
The input-output linearization with a PD control law and a
feed forward compensation is used for geometric tracking.



Fig. 1. Biped bipeds, “Rabbit” (left) and “Emu” (right).

The temporal evolution is analyzed using Poincaré map. The
map is given by an analytic expression based on the angular
momentum about the mobile contact point. The effect of the
radius of the circular arc feet on stability and the basin of
attraction is revealed by analytic calculation. It is compared
to the effect of radius of the circular arc feet on passive
dynamic walking. Section II presents an overview of previous
studies on the circular arc feet. Section III gives the biped
model. It is composed of a dynamic model and the impact
model (instantaneous double support). Section IV presents
the control method. Section V gives the stability analysis.
Some simulation results are shown in Section VI and some
discussion on the effects of the feet radius is developed in
Section VI-E. Section VII concludes the paper.

II. PREVIOUS STUDIES ONBIPED WITH CIRCULAR ARC

FEET

A circular arc feet for the biped are often treated in the
field of passive dynamic walking [11]. It is well known that
a passive dynamic walking gives an extremely natural gait.
McGeer showed that an eigenvalue of the “speed mode” came
to unit when the radius of a circular arc foot approaches the
length of legs, and the eigenvalue becomes unit for synthetic
wheel which has the foot radius equals to the leg length.
The “speed mode” was related to dissipation of energy at the
impact.

Wisse et. al. [12] showed that the larger feet radius, the
larger amount of disturbances is accepted in experiments. The
robustness against disturbances is connected to the size of a
basin of attraction for walking. Wisse explained in [13] that
“The walker will fall backward if it has not enough velocity to
overcome the vertical position. Circular feet smoothen the hip
trajectory and thus relax the initial velocity requirement. As the
result, the basin of attraction is enlarged.” However a decisive
study on the effect of circular arc feet on the basin of attraction
has yet to be performed. Recently, Wisse et. al. [14] presented
a stability analysis of passive dynamic walking with flat feet
and passive ankles. The effect of the flat feet was analogous
to the effect of the circular arc feet for many properties in the
sense that ZMP smoothly and monotonically moves forward

from heel to toe. However he pointed out the need of validation
for a more accurate model of the heel strike transition. Asano
and Luo [15] discussed similar effect between the circular arc
feet and the flat feet with actuated ankles.

Adamczy, Collins and Kuo [16] studied the centre of mass
(CoM) mechanical work per step with respect to foot radius for
various simple models of biped powered by an instantaneous
push-off impulse under the stance foot just before contralateral
heel strike [18]. They also showed relationships between foot
radius and metabolic costs from measured via respiratory gas
exchange. The data are collected through human walking with
feet attached to rigid arc, and they conclude that the most
effective walking is obtained when the foot radius equals to
30% of leg length. Geometrically speaking, feet length should
be at least twice of the product of the coxa angle between two
legs and the radius of feet [11].Therefore one might choose the
radius as1/3 of a leg length with an angle 0.3 rad between two
legs, in order to make an anthropomorphic biped, as McGeer
wrote.

Thus for anthropomorphic models, 1/3 of leg length seems
to be desirable in the sense of geometry between step length
and feet lengths [11], “foot clearance problem” [12] and
energy costs [16].

III. T HE BIPED MODELING

A biped presented in Fig.2 is composed of a torso and
two symmetric legs which consist of the prismatic friction-
less knees and the circular arc feet. The hips are rotational
frictionless joints. We assume that the contact point does not
slip and the biped walks in a vertical sagittal plane. The vector
θ = [l1, l2, θ1, θ2, θ3]′ (“ ′ ” means transpose) of configuration
variables (see Fig. 2) describes the shape of the biped during
single support,li is the length of legi, θi, i = 1, 2 is the angle
between the torso and the legi, θ3 is the absolute angle of
the supporting leg. The contact point between the biped and
the ground isN1. The lowest point of the swing leg tip is
notedN2. The actuator torques and forces are expressed by
a vectorΓ = [Γ1, Γ2,Γ3, Γ4]′. The absolute orientation of the
biped θ3 is not directly actuated. Thus, in a single support
(SS), the biped is an under-actuated system. The walking gait
consists of single support phases separated by impacts, which
are instantaneous double supports where a leg exchange takes
place.

A. Dynamic Model for Single Support Phase

The dynamic model can be written as follows:

D(θ)θ̈ + H(θ, θ̇) = BΓ, (1)

where D ∈ <5×5 is the inertia matrix, the vectorH ∈ <5

contains Coriolis, centrifugal and gravity terms.B ∈ <5×4

defines how the inputsΓ enter the model. Due to the choice
of joint coordinates, the matrixB is written as:

B =
[

I4

O1×4

]
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B. Impact model

To derive an impact model, an general dynamic model is
written:

De(θ)θ̈e + He(θe, θ̇) = BeΓ + DRi(θ)Ri. (2)

whereθe = [θ′, xH , yH ]′, and xH and yH are the Cartesian
coordinates of the hip positionHp shown in Fig.2,De ∈ <7×7

is the inertia matrix, the vectorHe ∈ <7 contains Coriolis,
centrifugal and gravity terms.Ri = [Rxi , Ryi ]

′ is a ground
reaction force vector applied at the contact point.Be ∈ <7×4

and DRi ∈ <7×2 defines how the inputsΓ and Ri enter the
model,i is the number of the leg in contact with the ground,
i = 1, i = 2, or i = 1, 2.

When the legi rolls on the ground, the contact with the
ground occurs inNi. If leg i touch the ground and since, we
assume that no sliding occurs, the position ofNi is ONi =
[−Rθ3, 0]′, whereO is defined such that for the current step,
the point contact is in0 when θ3 is zero. This position can
also be calculated by :ONi = OHp + HpCi + CiNi. Thus,
we have :[

−Rθ3

0

]
=

[
xH + (li − R) sin θ3

yH − (li − R) cos θ3 − R

]
. (3)

Therefore, the following constraint equation is obtained:

Ψi :=
[

xH + Rθ3 + (li − R) sin θ3

yH − R − (li − R) cos θ3

]
= 0. (4)

Equation (4) is differentiated twice with respect to time, to
obtain a constraint on the joint acceleration:

D′
Ri

θ̈e + CRi(θe, θ̇e)θ̇e = 0. (5)

whereD′
Ri

= ∂Ψi/∂θe andCRi comes from the derivation.
We assume that the impact is inelastic and instantaneous

without sliding. Letθ̇−e and θ̇+
e be the angular velocities just

before and just after the impact, respectively. LetImi =
[Imxi , Imyi ]

′, for i = 1, 2 be the vector of magnitudes of
the impulsive reaction at the contact point of the stance and
the swing leg. During the impact, the previous supporting leg
can stay on the ground or take-off. If the leg takes-off, the
velocity of N1 after the impact is positive. The impulsive
ground reaction associated to a leg that stays on the ground
must be positive and be in the friction cone. If the supporting
leg takes off, the associated impulsive ground reaction is zero.
The impact occurs when the leg tip of the swing leg contacts to
the ground. To take into account the two cases, the following
impact equation can be written:{

De(θ)(θ̇+
e − θ̇−e ) = DR(θ)Im

D′
R(θ)θ̇+

e = 0
, (6)

where,

DR(θ) =
{

DR2(θ), ẏ+
N1

> 0
DR12(θ), Imy1 > 0, Imy2 > 0

,

Im =
{

Im2 , ẏ+
N1

> 0
Im12 , Imy1 > 0, Imy2 > 0

,

DR12(θ) =
[

DR1(θ) 0
0 DR2(θ)

]
, Im12 =

[
Im1

Im2

]
.

From equation (6), we obtain:

θ̇+
e = (I7×7 − D−1

e DR(D′
RD−1

e DR)−1D′
R) · θ̇−e . (7)

Before and after the impact, the biped is in contact with the
ground on at least one leg, thusxH , yH can be calculated as
function of θ, andẋH , ẏH can be calculated as function ofθ̇.
Equation (7) can be transformed into an equation ofθ, θ̇ only.

θ̇+ = ∆(θ)θ̇−, (8)

where∆(θ) ∈ <5×5 is the impact matrix. This matrix depends
on the foot radiusR. In the gait studied, the legs swap
their roles from one step to the next, thus since the biped is
symmetric, the dynamic model is derived only for the support
on leg 1. And the leg exchange is taken into account just after
the impact. The state of the biped to begin the next step is :

θi = TLSθf , θ̇i = TLS θ̇+, (9)

whereTLS ∈ <5×5 is the permutation matrix describing the
leg exchange, the indexesi, f denoted the initial and final
states of the biped for one step.
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IV. CONTROL LAW

Since the studied biped is underactuated, and since some
good results have been obtained for the control of underac-
tuated biped with point contact [4] and [6], our strategy for
walking is to control four variables, such that they track the
reference defined with respect to the monotonic variableθ3.
The four variables that are controlled are grouped in vector
h = [h1, h2, h3, h4]′ = [θ2−θ1, θ3−θ1 +π, l1, l2]′, composed
of the angle between two legs, the absolute angle of the torso,
and the leg lengths, (shown in Fig.2). This vectorh, plus θ3

defines the configuration of the biped. The relation with vector
θ is the following:

θ =


h3

h4

−h2 + θ3

h1 − h2 + θ3

θ3

 =


0 0 1 0
0 0 0 1
0 −1 0 0
1 −1 0 0
0 0 0 0

h +


0
0
1
1
1

 θ3

(10)

θ =
∂θ

∂h
h +

∂θ

∂θ3
θ3. (11)

where ∂θ
∂h and ∂θ

∂θ3
are the constant matrices given in (10).

Thus we have also:

θ̈ =
∂θ

∂h
ḧ +

∂θ

∂θ3
θ̈3. (12)

The control law is based on a computed torque control law
and is such that the behavior of the controlled variables are:

ḧ = ḧd − Kp(h − hd) − Kd(ḣ − ḣd). (13)

But the reference to follow is a function of the variableθ3

thus the reference is:

hd = hd(θ3) (14)

ḣd =
dhd

dθ3
(θ3)θ̇3 (15)

ḧd =
dhd

dθ3
(θ3)θ̈3 +

d2hd

dθ2
3

(θ3)θ̇2
3, (16)

Thus the desired behavior in closed loop is given by:

ḧ =
dhd

dθ3
(θ3)θ̈3 +

d2hd

dθ2
3

(θ3)θ̇2
3 − Kp(h − hd(θ3))

−Kd(ḣ − dhd

dθ3
(θ3)θ̇3). (17)

This expression is denoted:

ḧ =
dhd

dθ3
(θ3)θ̈3 + v(θ, θ̇). (18)

The dynamic model (1) can be expressed as function ofḧ
and θ̈3 using (12)

D(θ)(
∂θ

∂h
ḧ +

∂θ

∂θ3
θ̈3) + H(θ, θ̇) = BΓ, (19)

The torques will be calculated in order to have in closed
loop the behavior given in (18), thus the torques must satisfy:

D(θ)((
∂θ

∂h

dhd

dθ3
(θ3) +

∂θ

∂θ3
)θ̈3 +

∂θ

∂h
v(θ, θ̇))

+H(θ, θ̇) = BΓ, (20)

Since the biped is underactuated, all the motion are not
possible and based on the expression of matrixB, the ad-
missible acceleration̈θ3 can be deduced. The dynamic model
is decomposed into two sub-models. The first sub-model is
composed of the first four lines and allows to calculate the
torque. The second sub-model is composed of the fifth line
and allows to calculatëθ3. This sub-system gives:

θ̈3 =
−D5(θ) ∂θ

∂hv(θ, θ̇) − H5(θ, θ̇)

D5(θ)( ∂θ
∂h

dhd

dθ3
(θ3) + ∂θ

∂θ3
)

, (21)

where the index5 refers to the5th line of matrixD and vector
H.

Finally, the control law is obtained:

Γ = D1,4(θ)((
∂θ

∂h

dhd

dθ3
(θ3) +

∂θ

∂θ3
)θ̈3 +

∂θ

∂h
v(θ, θ̇))

+H1,4(θ, θ̇), (22)

where the indexes1, 4 refer to the first four lines of matrixD
and vectorH.

V. STABILITY ANALYSIS

With the control, the output vectorh converges to the
reference pathhd(θ3), and if the reference function is such
that the impact condition is satisfied, the output is zero step
after step for convenient choice of the control gainsKp,Kd

[17].

A. Reference path

Since the initial and final configurations for a single support
are double support configurations, whenhd is given, θ3 can
be deduced from geometrical relations. Thus the initial and
final values ofθ3 on one step are known and denotedθ3i

and θ3f . Since the condition of the impact is a geometrical
condition, if the control law has converged and ifθ3 has a
monotonic evolution, the configuration at the impact is the
desired one. The reference function is designed such that the
impact condition is satisfied. According to equations (8), (9),
and (11), the reference path must be such that:

(
∂θ

∂h

∂hd

∂θ3
(θ3i) +

∂θ

∂θ3
)θ̇3i =

TLS∆(θ3f )(
∂θ

∂h

∂hd

∂θ3
(θ3f ) +

∂θ

∂θ3
)θ̇3f . (23)

Equality (23) is composed of five scalar equations, thus
∂hd

∂θ3
(θ3i) and θ̇3i

θ̇3f
can be calculated as function of∂hd

∂θ3
(θ3f ).

The ration of velocities is denotedδθ̇3
:

δθ̇3
=

θ̇3i

θ̇3f

. (24)



B. Principle of the stability analysis

With the control law, the output vectorh converges to the
reference pathhd(θ3). In the following section we assume that
h = hd(θ3), that is, the system tracks the reference path. The
five degrees of freedom (DoF) of the biped can be reduced to
one DoF of a virtual equivalent pendulum under the condition,
and we will hence analyze stability of the pendulum instead
of the original biped.

This condition does not mean that the biped motion is cyclic
with respect to time since the temporal evolution ofθ3 is the
result of integration of equation (21), and thus depends on
the reference pathhd(θ3). For a SS phaseθ3 must evolve
monotonically fromθ3i to θ3f . The temporal evolution of
the biped during a SS phase is completely defined by the
velocity θ̇3 for one particular valueθ3. The stability analysis
is based on the Poincaré return map, and this return map
will be built just before the impact, when the biped is in
the configurationhd(θ3f ), θ3f . The variable that is effective
to study the convergence to a cyclic motion isθ̇3f . Since
the angular momentum is proportional tȯθ3f , the angular
momentum (or its square value) can also be used in the
stability analysis

C. SS phase

According the Newton-Euler second law, the equilibrium of
the biped in rotation around the mobile contact pointN1 gives:

σ̇N1 + MVN1 × VG =
→

N1G ×M~g, (25)

where VN1 and VG are the velocities at the pointsN1 =
[−Rθ3, 0]′ and the center of mass,G = [xG, yG]′, M is the
total mass of the biped, the gravity vector is~g = [0,−g]′, and
σN1 is the angular momentum aboutN1 because the gravity
is the only external force that produces a torque aroundN1.
By definingσN1 is:

σN1 =
∑

i

mi

→
N1Gi ×VGi +

∑
i

Iiwi (26)

whereGi is the center of mass for the linki, mi and Ii are
the mass and the inertia of linki, wi is the angular velocity
of link i, andVGi is the linear velocity ofGi. This quantity
is linear with respect to the joint velocity component and can
be written:

σN1 = S(θ)θ̇ (27)

We assume that the biped follows reference path thus we
have:

θ =
∂θ

∂h
hd(θ3) +

∂θ

∂θ3
θ3. (28)

θ̇ =
∂θ

∂h

∂hd

∂θ3
(θ3)θ̇3 +

∂θ

∂θ3
θ̇3. (29)

Thus the angular momentumσN1 (27) is rewritten:

σN1 = S(θ)(
∂θ

∂h

∂hd

∂θ3
(θ3) +

∂θ

∂θ3
)θ̇3 = Iθ3(θ3)θ̇3. (30)

Equation (25) can be developed using the expression of
→

N1G, VG, VN1 as:

σ̇N1 = −Mg(xG(θ3) + Rθ3) + MR
dyG(θ3)

dθ3
θ̇2
3. (31)

Equation (30) is combined to equation (31) to express the
derivative ofσN1 with respect toθ3, under the assumption that
θ3 is monotonic:

dσN1

dθ3
= −Mg(xG + Rθ3)

Iθ3

σN1

+ MR
dyG

dθ3

σN1

Iθ3

. (32)

A new variableξ = σ2
N1

/2 is introduced, to transform equation
(32) into an equation that can be integrated analytically:

dξ

dθ3
= κ1(θ3) + 2κ2(θ3)ξ, (33)

κ1(θ3) = −Mg(xG + Rθ3)Iθ3 ,

κ2(θ3) =
MR

Iθ3

(
∂yG(θ)

∂θ

)′
dθd

dθ3
.

Equation (33) is a first order ordinary differential equation
linear in ξ. Therefore, a general solution for the initial value
θ3i can be obtained:

ξ(θ3) = δ2
SS(θ3)ξ(θ3i) + V (θ3), (34)

δSS(θ3) = exp

(∫ θ3

θ3i

κ2(τ2)dτ2

)
, (35)

V (θ3) =
∫ θ3

θ3i

exp

(∫ θ3

τ1

2κ2(τ2)dτ2

)
κ1(τ1)dτ1.(36)

ξ andV are a pseudo-kinetic and a pseudo-potential energies
of the virtual equivalent pendulum, respectively.

As a consequence iḟθ3i is knownθ̇3 can be deduced for the
current step as a function ofV and δSS without integration
of (25). To be able to deduce from this equation the evolution
of ξ (and in consequence ofσN1 and θ̇3) step after step, the
evolution of ξ at the impact must be taken into account. In
the following section, the indexk will be added to denote the
number of the current step

D. Impact phase

Let us consider the impact between stepsk andk+1. Using
(30), ξ at the end of stepk is:

ξk(θ3f ) =
1
2
(Iθ3f

(θ3f )θ̇3f,k)2 (37)

andξ at the beginning of the stepk + 1 is:

ξk+1(θ3i) =
1
2
(Iθ3i(θ3i)θ̇3i,k+1)2 (38)

Using (24), and definingδI by,

δI = Iθ3(θ3i)/Iθ3(θ3f ), (39)

we obtain:

ξk+1(θ3i) = δ2
Iδ2

θ̇3
ξk(θ3f ). (40)
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E. Poincaŕe map

Combining (34) and (40), the final value ofξ from thekth
step to thek + 1th step is as follows:

ξk+1(θ3f ) = δ2(θ3f )ξk(θ3f ) + V (θ3f ), (41)

δ(θ3f ) = δSS(θ3f )δIδθ̇3
, (42)

where θ3f is the value ofθ3 just before the impact. This
equation describes the Poincaré map that we choose.

If a cyclic motion exists, thenξk+1(θ3f ) corresponds to
ξk(θ3f ). Thus, a fixed pointξc(θ3f ) is given using (41) as
follows:

ξc(θ3f ) =
V (θ3f )

1 − δ2(θ3f )
. (43)

Sinceξc(θ3f ) is positive,V (θ3f ) and1 − δ2(θ3f ) must have
the same sign. The following cases can occur:

Case 1: From (41), the fixed point is stable, ifδ2(θ3f ) < 1.
Therefore, ifδ2(θ3f ) < 1 and V (θ3f ) > 0, then an
asymptotically stable cyclic motion exists.

Case 2: If δ2(θ3f ) = 1 and V (θ3f ) = 0, from (41),
ξk+1(θ3f ) = ξk(θ3f ), namely, all motions are cyclic.

Case 3: From (41), the fixed point is unstable, ifδ2(θ3f ) > 1.
Therefore, ifδ2(θ3f ) > 1 and V (θ3f ) < 0, then an
unstable cyclic motion exists.

Since by definitionξ ≥ 0, from equation (41) for the
complete step,ξc must satisfy the following inequality:

ξc(θ3f ) ≥ max
θ3

−V (θ3)
δ2(θ3)

. (44)

to have a monotonic evolution ofθ3.
Since a product of the two variables (δI · δθ̇3

) is the ratio
of momentumσN1 at the contact pointN1 before and after
the impact, the speed of convergence is mainly associated with
this ratio (we will see in the following sections), and connected
to the distance between the contact points and velocity of the
mass center before the impact [19].

The contact point before the impact, at the end of the
single support phase, is denotedN1, the contact point after
the impact, at the beginning of the next single support phase,
is denotedN2. Therefore there is a change of contact point
between the two single support phases, where the angular
momentum is calculated. At the impact, both legs stay on the
ground with the contact pointsN1 andN2. Then is it possible
to compute equilibrium relation of the biped at the impact to
study the cyclic behavior in function of the value of radii. Let
us detail this question.

The distanced between theN1 andN2 is (see Fig.3)

N1N2 = d = 2(l − R) sin(h1/2). (45)

The angular momentum before the impact denotedσ−
N1

is
calculated aroundN1 and can also be calculated aroundN2,
it is then denotedσ−

N2
, the angular momentum transfer gives:

σ−
N2

= σ−
N1

− M · d · ẏ−
G . (46)

TABLE I

PHYSICAL PARAMETERS FOR THE DYNAMIC MODEL

ms 1 [kg] Is 0.05[kgm2 ] sh 0.4 [m] l1 0.8∼0.85 [m]
mf 1 [kg] If 0.05[kgm2 ] fm 0.2 [m] l2 0.75∼0.8 [m]
mb 15 [kg] Ib 3[kgm2 ] sb 0.1 [m] R 0∼1.0 [m]

At the impact, considering the vertical componentImy1 of the
impulsive ground reactionIm1 in the pointN1, the equilibrium
in rotation aroundN2 gives:

σ+
N2

= σ−
N2

− d · Imy1 . (47)

Considering the vertical componentsImy1 and Imy2 of the
impulsive ground reactionsIm1 and Im2 respectively in the
pointsN1 andN2, the vertical equilibrium of the biped at the
impact is :

Imy1 + Imy2 = M(ẏ+
G − ẏ−

G), (48)

The impact are such that the two legs stay on the ground, thus
Imy1 > 0 andImy2 > 0 and we have:

0 < Imy1 < M(ẏ+
G − ẏ−

G). (49)

As a consequence, combining (46), (47), and (49), we have:

σ−
N1

− M · d · ẏ+
G < σ+

N2
< σ−

N1
− M · d · ẏ−

G , if d > 0, (50)

σ+
N2

= σ−
N1

, if d = 0, (51)

σ−
N1

− M · d · ẏ−
G < σ+

N2
< σ−

N1
− M · d · ẏ+

G, if d < 0. (52)

SinceIθ3 > 0 (see Fig.8) anḋθ3 < 0 (see Fig.5),σ−
N1

< 0.
Considering (24), (30) and (39), the ratioδIδθ̇3

is bounded:

1 − M · d ·
ẏ−

G

σ−
N1

< δIδθ̇3
< 1 − M · d ·

ẏ+
G

σ−
N1

, (d > 0), (53)

δIδθ̇3
= 1, (d = 0), (54)

1 − M · d ·
ẏ+

G

σ−
N1

< δIδθ̇3
< 1 − M · d ·

ẏ−
G

σ−
N1

, (d < 0) (55)

VI. SIMULATION

In simulations, the physical parameters of the biped shown
in Fig.2 are used (see Table I). The gains of the control law
are chosen so that tracking errors can be smaller than10−4

for all walking gaits (shown in Eq.(56)).{
Kp = diag([105, 104, 105, 5 × 104])
Kd = diag([5 × 102, 5 × 102, 103, 5 × 102]) (56)

Fig.4 shows examples of stick diagrams of walking for one
step with the foot radiiR =0 [m], 0.2 [m], 0.5 [m] and 0.7 [m]
and the step angle =0.24 [rad]. A cyclic motion forR = 0.5
[m] is given in Fig.5. CoM positions with respect toR are
shown in Fig.6. Tangent vectors of right ends of lines are
expressing a post-impact velocity of CoM. The variation of
CoM velocities at the impact are presented in Fig.7.
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Fig. 4. The stick diagrams of walking. The foot radiiR = 0 [m], 0.2 [m],
0.5 [m] and 0.7 [m].

48.5 49 49.5 50

−0.1

−0.05

0

0.05

0.1

Time [s]

A
ng

le
 [r

ad
]

Absolute angle of the both legs

48.5 49 49.5 50

−0.4

−0.2

0

0.2

0.4

0.6

Time [s]

A
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
]

Angular velocity of the both legs

48.5 49 49.5 50

−0.02

−0.0195

−0.019

−0.0185

Time [s]

A
ng

le
 [r

ad
]

Absolute angle of the torso

48.5 49 49.5 50
−0.01

−0.005

0

0.005

0.01

Time [s]

A
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
]

Angular velocity of the torso

48.5 49 49.5 50

0.78

0.785

0.79

0.795

0.8

0.805

0.81

Time [s]

Le
ng

th
 [m

]

Length of Legs

48.5 49 49.5 50

−0.1

−0.05

0

0.05

0.1

Time [s]

V
el

oc
ity

 [m
/s

]

Velocity of Legs

48.5 49 49.5 50
0

0.005

0.01

0.015

0.02

0.025

0.03

Leg tip height

Time [s]

Le
ng

th
 [m

]

48.5 49 49.5 50

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Leg tip height velocity

Time [s]

V
el

oc
ity

 [m
/s

]

Fig. 5. Time responses at the cyclic motion withR = 0.5 [m] of the angle
of the both legs, the torso, the length of legs and the leg tip. The reference
paths are almost identical to the time responses.

TABLE II

TORSO ANGLES. THE ANGLES ARE CHOSEN SUCH THAT CYCLIC MOTIONS

HAVE THE SAME VALUE ξc(θ3f ) = ξ(−0.12) = 16.27.

Foot radius [m] 0 0.1 0.2 0.3
Angle of torso [rad] -0.060 -0.051 -0.043 -0.034

Foot radius [m] 0.4 0.5 0.6 0.7 0.8
Angle of torso [rad] -0.026 -0.018 -0.011 -0.004 0.002

A. Design of Reference Path

The reference pathhd is defined by a fourth order polyno-
mial function such that:

hd(θ3) = a[1, θ1
3, θ2

3, θ3
3, θ4

3]
′, (57)

wherea ∈ <4×5 is a coefficient matrix for the referencehd.
An intermediate position of SS phase, positions and velocities
just before and after the impact are given in order to calculate
the coefficients of the reference paths (see Fig.4).

Walking is depending on not only the radii of feet but
also of the reference path of the length of the legs. The foot
radius reduces the velocity of the CoM before the impact. The
reference paths of the legs are chosen to smoothen the vertical
variation of the CoM. However the references of the legs are
affected by the impact, and the choice of the reference paths is
limited accordingly. The radius mainly smoothens the vertical
CoM motion.

The initial and the final length for the legs are chosen as the
same value. The final velocity for the biped are arbitrary fixed.
The intermediate configuration for the legs is chosen such that
the swing leg length decreases 0.02 m and the stance leg length
increases 0.01 m during the step to avoid that the swing leg tip
touches the ground and the length of the leg is 0.8 [m] at the
impact. Therefore the top position of the CoM is almost same
for each foot radius as shown in Fig.6. For one valueR, we
choose the angle of the torso at the impact arbitrary. The angle
of the torso at the intermediate configuration is equal to110%
of the value of the torso angle at the impact. The states of the
biped to begin the step,θi, ∂hd

∂θ3
, and δθ̇3

are deduced using
the impact equation (8) and the corresponding valueξc(θ3f )
is deduced.

Then from this reference motion we deduced the reference
motion for the other value of the radiusR. For example,
the coefficient matrix in Eq.(57) forR = 0.5 is obtained as
follows:

a|R=0.5 = (58)
0 −3.02 −0.158 70.8 10.9

−0.0201 0.0002 0.255 −0.0106 −8.89
0.810 −0.122 −1.58 8.50 61.2
0.780 −0.0037 1.91 0.254 −36.5


The angle of the torso at the impacth2(θ3f ) is adjusted

such that the cyclic motions for all foot radiiR have the
same valueξc(θ3f ) as shown in Table II. Energy excitation
for continuous walking with smaller feet radius is mainly done
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Fig. 6. CoM positions with respect to R. Upper: the case of our biped shown
in Fig.2. Tangent vectors of right ends of lines are expressing a post-impact
velocity of CoM. Lower: the case of a simple model with rigid legs and
circular arc feet. CoM is located at hip position. When R> 0.8 [m], CoM
velocities are upward. It gives a contradiction at the impact or there would
be a flight phase.

by the asymmetric mass distribution due to the torso forward
inclination. Leg swing also provides a way of putting energy.
For small feet radii, the energy for walking is produced by
the weight of the torso that is inclined forward. For larger feet
radii, the energy for walking is produced by the motion of the
swing leg.

Since the impact equation changes, the initial configuration
and velocity are changed accordingly. During the impact, for
the chosen reference path, the two legs stay on the ground.

B. Stability Analysis

The variables in the analytic solution (34) are shown in
Fig.8 with respect to the monotonic variableθ3 for variation
of the foot radiusR. It should be noted that the monotonic
variable is evolving from a positive value to a negative value,
θ3 : 0.12 [rad] → −0.12 [rad]. In the lower right part of Fig.8,
ξc(θ) is given for all the cyclic motions. It can be observed that
ξc(θ3f ) = ξ(−0.12) = 16.27. The upper left part of the figure
presentsδ2

SS(θ3) is given by equation (35). The convergence
of Poincaŕe map, as shown in equation (42), is function of
δ2
SS(θ3f ) = δ2

SS(−0.12). However the values ofδ2
SS(−0.12)

are very close to unit thus the convergence of Poincaré map is
essentially defined by the impact map :δ(θ3f ) ≈ δIδθ̇3

. The
upper right part of Fig.8 represents the evolution ofV defined
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Fig. 7. CoM velocities at the impact with respect toR. The point corresponds
to different value ofR from 0 to 1, the abscissa of the point gives the
horizontal velocityẋG respectively before and after the impact, the ordinates
gives the vertical velocitẏyG respectively before and after the impact. The
vertical velocities before the impact are always directed downward.

by equation (36). These functions are essentially affected by
the evolutionξ. The lower left part of Fig.8 shows the term
Iθ3 given by equation (30),Iθ3 is always positive and has not
large variation.

This first study concerns reference path with an interlink
angle at the impact equals to0.24 [rad]. For this value, the
evolution of δ2

SS(θ3f ),δI , δθ̇3
and δ(θ3f ) are given in solid

line in Fig.9, as function of theR. The cyclic motion is stable
for R < 0.8.

In order to determine if the radiusR = 0.8 is a limit
of stability only for one specific reference path or if this
limit is more physical, different kinds of reference motion are
considered in the following. Only the interlink angleh1(θ3f )
at the impact is changed. For different values ofh1 and radii
R, the coefficient involves in the convergence condition are
drawn in Fig.9.

δθ̇3
in upper right part of the figure andδI in lower left part

of the figure increase whenR increases andh1(θ3f ) decreases.
δ2 also increases at the same time (lower right in Fig.9). The
term δ2 comes to unit whenR = 0.8 [m] which means that
R has the same values as the length of legs at the impact.
Remark: We confirmed in another simulations that variations
of the torso angle had small influences onδI andδθ̇3

although
it essentially affectsξ. The variablesV , δSS , Iθ3 and ξ in
the analytic solution for SS phase change for the torso angle.
However the variation ofδSS is smaller than the variations of
δI andδθ̇3

with respect to the foot radii. 4
Fig.10 presents the stability property with respect to the foot

radii. Two black rigid lines showV andδ2 − 1. V andδ2 − 1
have opposite sign thus a cyclic motion may exist such that
(44) is satisfied for any value of radiiR. For R < 0.8 [m],
the motion is stable. ForR > 0.8 [m], the motion is unstable.
For R = 0.8 [m], the motion is neutral, in this case any value
ξc produces cyclic motions.

Case corresponding to a radius superior to the length of each
leg, (R > 0.8 [m]) can be studied if we consider the motions
of feet are not in the same sagittal plane to avoid collisions. In



−0.1 0 0.1

1

1.01

1.02

1.03
δ2 SS

θ3

R=0[m]

0.1

0.2

0.3

0.4
0.5

0.6
0.7
0.8
0.9
1.0

−0.1 0 0.1

−10

0

V

θ3

R=0[m]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−0.1 0 0.1

12

13

I

θ3

R=0[m]

1.0

θ 3

−0.1 0 0.1
0

10

20

ξ

θ3

R=0[m]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 8. Analytic solutions for SS phase. The figures areδ2
SS by Eq.35,V by

Eq.36, the functionIθ3 by Eq.30 andξ by Eq.34.θ3 evolves from positive
(0.12) to negative (−0.12).

the leg exchange, at the impact, the contact point moves back
but the contact point has a large forward progression during
the single support phase, the biped goes forward.

The gradientδ2 (Eq. 42) of Poincaŕe map (Eq. 41) depends
on the SS phase (δSS) and the impact phase (δI ·δθ̇3

). δSS was
close to unit at the impact. Sincėy−

G < ẏ+
G < 0 (see Fig.7),

we obtain that the foot radiusR and the sign ofd defined the
position of the ratioδIδθ̇3

with respect to1 from Eq.(53) to
Eq.( 55).

• if R < l, d > 0, andδIδθ̇3
< 1

• if R = l, d = 0, andδIδθ̇3
= 1

• if R > l, d < 0, andδIδθ̇3
> 1

The property of the gradientδ2 agrees with “speed mode”
of passive dynamic walking obtained by McGeer [11]. Wisse
[14] finds results that are different from our results. For passive
walking he finds that for stability point of view the best
radius is 14% of leg length, this value corresponds to a case
where two monotonic lines of eigenvalues are crossing. The
increasing one is represented ’Speed mode’, and the decreasing
one is ’Totter mode’. However the crossing point changes with
respect to slope angle and physical parameters of bipeds. The
14% of leg length is not the best radius, generally speaking. In
our controlled system, it is predictable that the ’Totter mode’
is close to zero or much smaller than the ’Speed mode’, since
the ’Speed mode’ is expressed by the zero dynamics of the
controlled system and the ’Totter mode’ is depending on the
controller gains. Termδ2 has the same property of the ’Speed
mode’, and thus is increasing with respect toR.

C. Basin of Attraction

Basins of attraction determined by numerical computations
are shown in Fig.11. The larger the foot radii are in the stable
domain, the wider the basin of attraction is but the slower the
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speed of convergence is. If the foot radius is the same as the
leg length, the motion is neutral, that is, all motions are cyclic.

In Fig.11, the area between the line ofξ−min andξ−max is the
basin of attraction. The variableξ just before the impact is used
for expressing the basin of attraction. The lineξc represents
the cyclic motions. Fig.12 presents time evolutions ofθ3, θ̇3

for 100 steps. For top to bottom, the following foot radii are
consideredR = 0 [m], 0.5 [m] , 0.8 [m] and 1.3 [m] from the
top figure. The first two cases are clearly stable, the third one
is neutral, and the last one is unstable. Simulations confirm
the existence of the neutral condition.

The property of the basin of attraction with respect to the
radius is also analogous to the results of passive dynamic



walking by Wisse [12]. As depicted in Fig.11, the bottom line
shows the theoretic line of a minimalξ corresponding to the
numerical one. The theoretic results comes from Eq.(44). It
means a required minimal angular momentum to overcome
a gap from a minimum of a vertical position of CoM to a
maximum. If the momentum is smaller than the minimum,
the complete step is not achieved, the step begins and then
the robot goes backward to return to its initial configuration
for the step. After that, the robot stops, but it does not fall
down contrarily to a passive dynamic walker [13] that falls
down backward.

From Fig.6, the smaller the radius is, the larger the gaps
of the vertical positions of CoM and the minimalξ−min are.
Thus the circular arc feet broaden the minimal bounds. The
variation of the maximal bounds is caused by properties of
vertical reaction forces. The reaction force vectorR1 at the
point N1 is given by the following equation:

R1 =
[

Rx1

Ry1

]
=

[
MẍG

M(ÿG + g)

]
. (59)

The vertical acceleration̈yG is decided by the the centrifugal
force caused by the angular velocity of the stance legθ̇3 and
an acceleration of the leg variationl̈i(t). The radius smoothens
the variation of CoM, and consequently the centrifugal force
is reduced. We observe that the acceleration of the leg is
smaller when the radii increase. Thus, the maximalξ−max is
extended when the radius increases. Our controller ensures
stability from the minimal boundary line to the maximum for
all radii. Namely, the basin of attraction is broaden by physical
properties such as the feet radii. Globally, our controlled sys-
tem has similar properties for stability and basin of attraction
to the passive dynamic walking.

A large foot radius can reduce the variation of the CoM
during steps. We can summarize that the basin of attraction is
broadened by a reduction of the CoM variation for the larger
radius. The difference might be vanished by the leg length
variation. To satisfy the velocity jump condition through the
impact, some amounts of a CoM variation are needed for the
reference path. In the simulation, the variation shown in Fig.6
gave one of the smallest CoM variation.

D. Consumed Energy

Consumed energies for one cyclic step with respect to the
foot radii R is described in Fig.13. The following formula is
used for computing the consumed energy:

Ec =
∫ T

0

|θ̇′ · B · Γ|dt. (60)

The larger the foot radius is, the smaller the consumed
energy is for the cyclic motion, even if the motion becomes
unstable. Thus, the circular arc feet are effective in reducing
the consumed energy.

E. Optimal Radius

There is a trade-off property between the convergence speed
and the basin of attraction. What we can say is that the
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Fig. 11. Basin of attraction ofξ w.r.t. the foot radiiR. The area between the
line of ξmin(θf

3 ) and ξmax(θf
3 ) is the basin of attraction by the numerical

method. The lineξc means the cyclic motions. In the upper area ofξmax(θf
3 ),

vertical reaction forces are negative. There would be a flight phase. In the
lower area ofξmin(θf

3 ), the velocity of the monotonic variable after the impact
is not large enough to produce a step,ξmin(θf

3 ) is given by (44). After the
beginning of the step, the biped goes backward or stands still eventually.

nearer the radius is to the leg length, the slower the speed
of convergence is and the larger the basin is. ’Foot clearance
problem’ does not appear because of the variable length
legs in our case. In the cases of ’Anthropomorphic Model’
and ’Simplest Model’ of Adamczyk’s result [16], the CoM
mechanical work property with respect to feet radii is similar
to our result of consumed energy. However, in their cases of
’Forward-foot Model’ and ’Kneed Model’, the work had a
minimum.

The suggestion of McGeer’s to choose a foot radius of 1/3
of leg lengths can also be considered in our discussion. It
might be better to choose a larger radius (e.g. between a half
and three quarters) to have a large basin of attraction even if
the speed of convergence is worth.

F. Unstable Walking with radii greater than the leg length

Kuo’s analysis [18] of the CoM velocity contradicts our
study because he considers a simple model with rigid legs and
circular arc feet and the CoM is located at hip position, and
we consider prismatic knees. The lower part of Fig.6 presents
the evolution of the CoM relative to the simple model of [18].
Tangent vectors of right ends of lines are expressing the pre-
impact velocity of CoM, and tangent vectors of left ends of
lines are expressing the post-impact velocity of CoM. When
R > 0.8 [m], the change of CoM velocities are upward, which
means the impulsive force at the impact is negative. It actually
would be a flight phase. Upper part of Fig.6 gives the CoM
evolution in the case of our biped shown in Fig.2. Since all of
the ranges of velocities of CoM at the impact are downward, it
never fails to flight phase for any radius. In fact, our biped has
prismatic knees and CoM is mainly distributed on the torso
which is swinging a little. A lot of paths can be chosen for
the CoM position differently from the simple model.
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Fig. 12. Time evolutions of phases for the first leg at the foot radiiR = 0
[m] (stable), 0.5 [m] (stable), 0.8 [m] (neutral) and 1.3 [m] (unstable) from
the top.
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Fig. 13. Consumed energy for one cyclic step w.r.t. the foot radii R by the
numerical simulation. The torso angle is chosen so thatξ = 16.27 by the
analytic solution for all R. ForR = 0.9 [m] and 1.0 [m], that is, unstable
motions, the energy is computed for the cyclic motion.

VII. C ONCLUSION

In the paper, some effects of circular arc feet for a planar
biped via a geometric tracking were taken into account. An
analytic solution of Poincaré map was given for the controlled
system. Stability of walking was analyzed by the Poincaré map
and the following results are obtained:

• Radii of the circular arc feet affect the stability of
walking, and the speed of convergence decreases when
the radii approaches to a leg length.

• A basin of attraction is broadened by choosing larger radii
and the controller can stabilize the biped walking in the
largest basin of attraction for the radii less than the leg
length.

The leg length and the radius smoothen the variation and
reduce the impact velocity. For the same condition of the
reference paths, the radius is significant for the stability and
the basin of attraction. The results are analogous to those
[11] [12] and the prospect [13] on passive dynamic walking.
The geometric tracking method does not change the general
effect of the circular arc feet. A reduction of the vertical
CoM variation by the foot radius is functional not only for
the geometric tracking method but for general biped walking.
However the motion of CoM and the consumed energy are
different from some very simple models because our model
has variable length of legs and a torso.
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