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Abstract— The purpose of our research is to study the effects it is shown that a biped with large radius circular arc feet can
of circular arc feet on the biped walk with a geometric tracking  take easily a lot of steps. The prototype Emu (Fig.1 right)
control. The biped studied is planar and is composed of five ¢an e equipped with various arc feet with different radii ([7]

links and four actuators located at each hip and each knee - ) . ) .
thus the biped is underactuated in single gupport phase. A and [8]). In previous walking experiments the biped Emu is

geometric evolution of the biped configuration is controlled, €xcited by gravity or forced oscillation of the length of legs. If
instead of a temporal evolution. The input-output linearization the feet radius is 19 of leg length, the biped could only take
with a PD control law and a feed forward compensation is used few steps [7] excited by the effect of gravity because of the
for geometric tracking. The contrqller virtually constrains four sensitivity to disturbances produced by the cables, the guide
degrees of freedom (DoF) of the biped, and one DoF (the aIOSOIUteto avoid lateral motion and so on. The biped could not walk
orientation of the biped) remained. The temporal evolution of the o ) : S
remained system with impact events is analyzed using Poincar DY the forced oscillation. In the case of a radius which %97
map. The map is given by an analytic expression based on the of leg length, the biped Emu (Fig.1 right) can take easily few
andg_wé;fthmomeqtum ak]?outt th?hCOI:tEll)Qlt_tDQinti 'ghed e:ect of t::e dozen of steps [8] by the gravity and the leg oscillations. The
radii ircular ar n ility is studied. As a result, ‘e [imi

tﬁe scp))eeg gfcgoﬁvgr;eﬁieodecrzzs?es vyhen the radii increases, i tep number is I|m|t?d on!y by the space (.)f Qgr laboratory.
the radius is larger than the leg length the cyclic motion is not he effect of the radii of C'rcu_lar _feet was S'gmf'ca,m for our
more stable. Among the stable cyclic motion, choosing larger results, but the change of radius is also accompanied by other
radius broadens the basin of attraction. Our results agree with difference in physical parameters, thus a direct conclusion on
those obtained for passive dynamic walking on stability, even if the experimental study is not obvious and a more rigorous
the biped is controlled through the geometric tracking. study must be done. In fact, the same results are well known
in the field of passive dynamic walking as it is mentioned in
Section II.

Over the past several years a considerable amount of studieshe geometric tracking method that was used for the
have been proposed on biped walking. The choice of type wfideractuated biped Rabbit can be extended to the case of
feet such as a contact points, flat feet and circular arc fegideractuated biped with circular arc feet. If the biped has
is important, because walking stability is essentially affectate circular arc feet, the analytical stability study given in [4]
by the contact with the ground. Control methods of mamgan not be applied directly. The contact point between the
traditional humanoids with flat foot are based on zero momesuipporting foot and the ground moves forward during the step
point (ZMP) that remains inside the convex hull of the fodn this case. The same difficulty appears also in a flat feet
support using the ankle torque. There are lots of successfubdel. For this problem, Djoudi and Chevallereau [9] gave a
results, but the gaits seem not to be so natural. On the otketution to analyze the stability with a chosen evolution of the
hand, for a biped with point contact a geometric trackingMP.
method for biped walking using input-output linearization The purpose of the paper is to show the effects of the
(e.g. [1]-[4]) produces stable gait that seems quite natutatcular arc feet for an underactuated planar biped controlled
(the geometric tracking method was originally proposed kyy a geometric tracking method. The effect of the feet shape on
Kajita [5]). Grizzle et. al. [2] proposed the method for a threethe control properties is obviously depending on the walking
link model, only two outputs are controlled, the reference astrategies. Therefore it is significant to clarify the effect of the
expressed as a function of the biped state. Zero dynamics witkt shape on the geometric tracking even if it is well know
an impact event of the controlled system were analyzed bythe passive dynamic walking field.

Poincaé method. The effectiveness of geometric tracking hasA model of our biped is composed of five links. Prismatic
been verified on a platform called 'Rabbit’ [4] (Fig.1 left) withknee joints are employed to avoid the foot clearance problem
point feet. Westervelt et. al. [6] gave some additional results which occurs in association with large foot, not actuated ankle
show capability for robustness, changing average walking raged rotational knee joint. A geometric evolution of the biped
and rejecting a perturbation by ‘one-step transition contratonfiguration is controlled, instead of a temporal evolution.
and 'event-based control’. The input-output linearization with a PD control law and a
In the domain of passive dynamic walking mechanisms [11ifped forward compensation is used for geometric tracking.

I. INTRODUCTION



from heel to toe. However he pointed out the need of validation
for a more accurate model of the heel strike transition. Asano
and Luo [15] discussed similar effect between the circular arc
feet and the flat feet with actuated ankles.

Adamczy, Collins and Kuo [16] studied the centre of mass
(CoM) mechanical work per step with respect to foot radius for
various simple models of biped powered by an instantaneous
push-off impulse under the stance foot just before contralateral
heel strike [18]. They also showed relationships between foot
radius and metabolic costs from measured via respiratory gas
exchange. The data are collected through human walking with
feet attached to rigid arc, and they conclude that the most
effective walking is obtained when the foot radius equals to
30% of leg length. Geometrically speaking, feet length should
be at least twice of the product of the coxa angle between two
legs and the radius of feet [11]. Therefore one might choose the

The temporal evolution is analyzed using Poirgcarap. The radius asl /3 of a leg length with an angle 0.3 rad between two
map is given by an analytic expression based on the angug@s. in order to make an anthropomorphic biped, as McGeer
momentum about the mobile contact point. The effect of tH#ote.
radius of the circular arc feet on stability and the basin of Thus for anthropomorphic models, 1/3 of leg length seems
attraction is revealed by analytic calculation. It is compard@ Pe desirable in the sense of geometry between step length
to the effect of radius of the circular arc feet on passi@d feet lengths [11], “foot clearance problem” [12] and
dynamic walking. Section I presents an overview of previol1ergy costs [16].
studies on the circular arc feet. Section Ill gives the biped
model. It is composed of a dynamic model and the impact
model (instantaneous double support). Section IV presentd® biped presented in Fig.2 is composed of a torso and
the control method. Section V gives the stability analysiévo symmetric legs which consist of the prismatic friction-
Some simulation results are shown in Section VI and sorfss knees and the circular arc feet. The hips are rotational
discussion on the effects of the feet radius is developed fiiftionless joints. We assume that the contact point does not
Section VI-E. Section VII concludes the paper. slip and the biped walks in a vertical sagittal plane. The vector
0 = [l1,12,61,02,05) (* ' " means transpose) of configuration
variables (see Fig. 2) describes the shape of the biped during
single support]; is the length of leg, 6,,7 = 1, 2 is the angle
A circular arc feet for the biped are often treated in thibetween the torso and the légés is the absolute angle of
field of passive dynamic walking [11]. It is well known thatthe supporting leg. The contact point between the biped and
a passive dynamic walking gives an extremely natural gajhe ground isN;. The lowest point of the swing leg tip is
McGeer showed that an eigenvalue of the “speed mode” cangted N,. The actuator torques and forces are expressed by
to unit when the radius of a circular arc foot approaches thevectorl’ = [I'1, '3, I's, I'4]’. The absolute orientation of the
length of legs, and the eigenvalue becomes unit for synthebiped ¢; is not directly actuated. Thus, in a single support
wheel which has the foot radius equals to the leg lengt{gS), the biped is an under-actuated system. The walking gait
The “speed mode” was related to dissipation of energy at tbensists of single support phases separated by impacts, which
impact. are instantaneous double supports where a leg exchange takes
Wisse et. al. [12] showed that the larger feet radius, tigace.
larger amount of disturbances is accepted in experiments. The
robustness against disturbances is connected to the size % 2ynamic Model for Single Support Phase
basin of attraction for walking. Wisse explained in [13] that The dynamic model can be written as follows:
“The walker will fall backward if it has not enough velocity to . .
overcome the vertical position. Circular feet smoothen the hip D(0)0 + H(0,0) = BT, 1)
trajectory and t'hus relax the injtial velocity"requirement. As_tr_\ﬁlhereD € R5%5 is the inertia matrix, the vectoH € R°
result, the basin of attr_actlon is enlarged. Howe_ver a deCIS_%gmains Coriolis, centrifugal and gravity termB. € R°**
study on the effect of circular arc feet on the basin of attractiqLfines how the inputE enter the model. Due to the choice

has yet to be performed. Recently, Wisse et. al. [14] presen@qoim coordinates, the matri® is written as:
a stability analysis of passive dynamic walking with flat feet

and passive ankles. The effect of the flat feet was analogous
to the effect of the circular arc feet for many properties in the B= [ 14 ]
sense that ZMP smoothly and monotonically moves forward O1xa

Fig. 1. Biped bipeds, “Rabbit” (left) and “Emu” (right).

Ill. THE BIPED MODELING

Il. PREVIOUS STUDIES ONBIPED WITH CIRCULAR ARC
FEET



Equation (4) is differentiated twice with respect to time, to
obtain a constraint on the joint acceleration:

D;%iée + CR7 (ee; ée)ée = 0 (5)

where D, = 0¥, /00, and Cr, comes from the derivation.

We assume that the impact is inelastic and instantaneous
without sliding. Letd; and+ be the angular velocities just
before and just after the impact, respectively. gt =
Uma:» Imy,)’s for ¢ = 1,2 be the vector of magnitudes of
the impulsive reaction at the contact point of the stance and
the swing leg. During the impact, the previous supporting leg
can stay on the ground or take-off. If the leg takes-off, the
Torso velocity of N; after the impact is positive. The impulsive
ground reaction associated to a leg that stays on the ground
must be positive and be in the friction cone. If the supporting
leg takes off, the associated impulsive ground reaction is zero.
The impact occurs when the leg tip of the swing leg contacts to
the ground. To take into account the two cases, the following

y— ol X % Reaction force vector

Fig. 2. The biped model

G: biped CoM

;uegplomngmg gﬁémg,eg impact equation can be written:
De(0)(0F — 67) = Dr(0)Im ©)
DR(G)G =0 ’
ImpulsiveforceI f N1 NZKI ) Impulsive force where,
bycollison '™ ™ py collision
Dr(0) = Dg,(0), 4%, >0
Fig. 3. The biped model at the impact R Dgr,,(0), ILny, >0, Ly, >0’
Im = { i %l 0 1, 0
) m ) m > ) m > ’
B. Impact model 2 v v2
. . . . DR1 (0) 0 Iml
To derive an impact model, an general dynamic model i&r,, (0) = Dn (8) | I,y = I ‘
; . 0 RZ( ) ma
written:
= : From equation (6), we obtain:
De(0)d. + H,(6,0) = B.T + Dy, (6)R.. @) q ©)
whered, = [0/, 25, yn], andzy andyy are the Cartesian 0o = (Irxt — D7 ' Dr(DpD; ' Dr) ™' Dj) - 07 . )

coordinates of the hip positioH,, shown in Fig.2,D, € R7*7 _ o :
is the inertia matrix, the vectoH, € %7 contains Coriolis, Before and after the impact, the biped is in contact with the

centrifugal and gravity termsR; = [R,,, R,,]’ is a ground ground on at least one leg, thug;, yg can be calculated as
reaction force vector applied at the contact poii.c R7** function of§, andi, y5 can be calculated as function 6éf
and Dp, € R7%2 defines how the input§ and R; enter the Equation (7) can be transformed into an equatloﬂ,oﬁ only.
model,i is the number of the leg in contact with the ground,
i=1,1=2,0rt=1,2.

When the leg: roIIs on the ground, the contact with theWhereA
ground occurs inV;. If leg i tewel the ground and since, we
assume that no sliding occurs, the position\fis ON; =
[—R03,0]’, whereO is defined such that for the current ste
the point contact is i) when 63 is zero. This position can
also be calculated by ON; = OH, + H,C; + C;N;. Thus,
we have :

[m] ] iR T

0t = A(6)0, (8)

6) € R5*5 is the impact matrix. This matrix depends
on the foot radiusRk. In the gait studied, the legs swap
their roles from one step to the next, thus since the biped is
pSymmetnc the dynamic model is derived only for the support
on leg 1. And the leg exchange is taken into account just after
the impact. The state of the biped to begin the next step is :

0 YH — (ll — R) COS 93 — R 91' = TLsef, (91 = TL59+, (9)
Therefore, the following constraint equation is obtained:

U, xg + ROs + (I; — R)sinfs _0
| yg— R—(l; — R)cosbs -

where Ty g € R5*5 is the permutation matrix describing the
leg exchange, the indexgs ; denoted the initial and final
states of the biped for one step.

(4)
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IV. CONTROL LAW

Since the studied biped is underactuated, and since some 06 dh? ol o0
good results have been obtained for the control of underac- )((%%( 3) + 205 oo )03 + = 55 (0 9))
tuated biped with point contact [4] and [6], our strategy for LH(O §) = (20)
walking is to control four variables, such that they track the ’ s
reference defined with respect to the monotonic varighle  Since the biped is underactuated, all the motion are not
The four variables that are controlled are grouped in vectpossible and based on the expression of maRixthe ad-
h = [h1, ha, hs, hy] = [02 — 61,05 — 01 +7,11,15]’, composed missible acceleratioi; can be deduced. The dynamic model
of the angle between two legs, the absolute angle of the tors,decomposed into two sub-models. The first sub-model is
and the leg lengths, (shown in Fig.2). This vectorplusf; composed of the first four lines and allows to calculate the
defines the configuration of the biped. The relation with vecttorque. The second sub-model is composed of the fifth line
0 is the following: and allows to calculaté;. This sub-system gives:

hs 0 0 10 0 —D5(0)20v(0,6) — Hs(0,6)
h 0 0 0 1 0 3 = ; (21)
: D5(0)( 5295 (63) + £)
0= —ho + 03 = 0 -1 0 O h+ 1 03 Oh dbs; 963
h1 —ha + 03 1 =100 1 where the index refers to thes'” line of matrix D and vector
05 0 0 00 1 H.
(10) Finally, the control law is obtained:
o- 2542 (11)
on" " 0bs " 96 dh? a0 0
s _ o I'= D1,4(9)((%ﬁ(9 3) + 87)93 +an v(0,0))
where 4% and 2% are the constant matrices given in (10). 3 3 .
Thus we have also: +H1,4(0,0), (22)
G — @h + 9 . i (12) where the indexes, 4 refer to the first four lines of matrix0
Oh 003 and vectorH.

The control law is based on a computed torque control law

and is such that the behavior of the controlled variables are: V. STABILITY ANALYSIS

With the control, the output vectoh converges to the

h= ' = Kp(h = h) = Ka(h = h%). (13)  reference patth?(6s), and if the reference function is such
But the reference to follow is a function of the variaile that the impact condition is satisfied, the output is zero step
thus the reference is: after step for convenient choice of the control gaifkis, K4
17].
i = hi(0;) (14) ]
) dhd A. Reference path
= —(6s)0s (15) : - : , . .
dos Since the initial and final configurations for a single support
iy dh? d2hd are double support configurations, whif is given, f; can
O dbs o (0203 + a0z (05)65, (16) pe deduced from geometrical relations. Thus the initial and

final values off; on one step are known and denotgég
and 6s;. Since the condition of the impact is a geometrical
condition, if the control law has converged anddif has a

Thus the desired behavior in closed loop is given by:

. dh? d?h? 9 d monotonic evolution, the configuration at the impact is the
ho= dfs ;00 + oz (85)05 — Fp(h = 17(65)) desired one. The reference function is designed such that the
. dhd impact condition is satisfied. According to equations (8), (9),
—Kq(h — 793(93)‘93)- (17)  and (11), the reference path must be such that:
This expression is denoted: 90 Oh? 90
(Gn 5 %30) + 90 o8, =
jp— 4 (63)05 + (6, 0) (18) 3 80 Oh? 00
h=— 3)Us3 viv, .
db
3 TLSA(93f)(ah 90, (057) + 90, ——)bs7. (23)

The dynamic model (1) can be expressed as functioh of

and s using (12) Equallty (23) is composed of five scalar equatlons thus

937
ae * (65;) and G can be calculated as function é& (Osf).

a0.. 90 .
D(O) (b + ——f5) + H(0,6) = BT, (19) The ration of vélocities is denotef) :
oh 003
The torques will be calculated in order to have in closed 84, = Os: (24)

loop the behavior given in (18), thus the torques must satisfy: 93f



B. Principle of the stability analysis Equation (25) can be developed using the expression of

With the control law, the output vectdr converges to the N1G, Vg, Vi, as:
reference pathh?(63). In the following section we assume that dyc(63) -
h = h(63), that is, the system tracks the reference path. The oy, = —Mg(xg(63) + Rf3) + MR 7
five degrees of freedom (DoF) of the biped can be reduced to 3
one DoF of a virtual equivalent pendulum under the condition, Equation (30) is combined to equation (31) to express the
and we will hence analyze stability of the pendulum instedtgrivative ofoy, with respect tds, under the assumption that

62. (31)

of the original biped. 03 is monotonic:
This condition does not mean that the biped motion is cyclic g I dyc on
with respect to time since the temporal evolutiondgfis the dTgl = —Mg(zc + RO3) 1\: + MR—— a0 1, - (32)
3

result of integration of equation (21), and thus depends on . o .
the reference patih?(ds). For a SS phasé; must evolve A new variablel = o3, /2is introduced, to transform equation
monotonically from#és; to 3;. The temporal evolution of (32) into an equation that can be integrated analytically:

the biped during a SS phase is completely defined by the d¢

velocity #5 for one particular valués. The stability analysis e K1(03) + 2K2(63)€, (33)
is based on the Poindarreturn map, and this return map k1(03) = —Mg(ze + R8I,

will be built just before the impact, when the biped is in f 3;

the conf|gurat|onhd(93f) 0s5. The variable that is effective Ko (03) R (8yG(6)) ﬂ

to study the convergence to a cyclic motion 6|§f Since Ty, o0 dbs

the angular momentum is proportional tgy, the angular Equation (33) is a first order ordinary differential equation
momentum (or its square value) can also be used in thear in¢. Therefore, a general solution for the initial value

stability analysis f5; can be obtained:
C. SS phase £(05) = 0635(03)E(03:) + V(0s), (34)
According the Newton-Euler second law, the equilibrium of Os
the biped in rotation around the mobile contact pdihtgives: ss(f3) = exp /9 ra(T2)dm (35)
. AT - 03 03
TN, + MVNl X VG _NlG XMg’ (25) V(93) = / exXp (/ 2%2(7’2>d7’2> Iil(Tl)dTl(36)
where Vy, and Vi are the velocities at the pointy; = Oai m

[—R63,0]" and the center of mas§; = [z¢,yc]’, M is the ¢ andV are a pseudo-kinetic and a pseudo-potential energies
total mass of the biped, the gravity vectoris= [0, —g]’, and of the virtual equivalent pendulum, respectively.

oy, is the angular momentum abodf; because the gravity As a consequence 6k; is knownés can be deduced for the

is the only external force that produces a torque arodd current step as a function 8f and dgg without integration

By-defining oy, is: of (25). To be able to deduce from this equation the evolution
. of £ (and in consequence ofy, andés) step after step, the
on, = mi NG xVai + Y Liw; (26)  evolution of ¢ at the impact must be taken into account. In

the following section, the indek will be added to denote the
whereG; is the center of mass for the link m,; and I; are number of the current step
the mass and the inertia of link w; is the angular velocity
of link 4, and V; is the linear velocity ofG:;. This quantity
is linear with respect to the joint velocity component and can Let us consider the impact between sté@mdk+ 1. Using

D. Impact phase

be written: (30), ¢ at the end of steg is:
_ ) 1 .
ON, = S(e)e (27) f (egf) = 5([9” (93f)93f k)Q (37)

We assume that the biped follows reference path thus ‘é{ﬁdg at the beginning of the stelp-+ 1 is:
have:

_ 1 ) 2
0 = gzhd(eg) 509 05. (28) Ei+1(03i) = 5 oy, (03:)03i.0+1) (38)
3 . -
. 90 O 0 . Using (24), and defining; by,
0 = ——(03)05 + ——0s. (29)
Oh 003 90 61 = Lo, (03:)/Io; (05¢), (39)
Thus the angular momentuey, (27) is rewritten: we obtain:
06 Oh? 00
on = SO)(5, 57 (03) + 55005 = T0a(0)0. (30) Eh1(034) = 0705, & (a)- (40)
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TABLE |

E. Poincaé ma
p PHYSICAL PARAMETERS FOR THE DYNAMIC MODEL

Combining (34) and (40), the final value gffrom the kth
step to thek + 1th step is as follows:

0 = %0 O3¢) + V(03¢), 41 s L1[ka] | I, 0.0 | s, OA[m] | {1 0.80.85 [m]
Ek+1(0s1) B (037)&x(03y) (O37) (41) zf i | 1 oroa] Jf:n 02 m Ry i
6(0sr) = 0ss(035)dr0,, (42) o, 150kg | Iy Bk | s, OL[m] | R 0~1.0[m]

where 35 is the value off; just before the impact. This
equation describes the Poineanap that we choose.

If a cyclic motion exists, therfy.1(f37) corresponds to At the impact, considering the vertical componépy,, of the
&x(0s7). Thus, a fixed point.(fs5) is given using (41) as impulsive ground reactiofy,,, in the pointNy, the equilibrium
follows: in rotation aroundV, gives:

V(o + 50 4.
JCHE 1_((5279)3”@) “3) N, = On, = - Ty (47)
_ . N Considering the vertical components,,, and I,,,, of the
Since&.(sy) is positive,V (s5) and1 — 6%(0s5) must have impulsive ground reactions,,, and I,,, respectively in the

the same sign. The following cases can occur: points N; and N,, the vertical equilibrium of the biped at the
Case 1: From (41), the fixed point is stables#f(6s;) < 1. impactis :
Therefore, if52(637) < 1 and V(63¢) > 0, then an Lngy + Iy, = M98 — 95)s (48)
asymptotically stable cyclic motion exists. .
Case 2: If 0%(s;) = 1 and V(ds;) = 0, from (41) The impact are such that the two legs stay on the ground, thus
_ ! . I, >0andIl,,,, >0 andwe have:
Ert1(035) = Ek(B35), namely, all motions are cyclic. “™¥: Y2
Case 3: From (41), th2e fixed point is unstabley4ffs ;) > 1. 0 < Inyy < M55 — 9)- (49)
Therefore, if6(fs7) > 1 andV(fs5) < 0, then an
unstable cyclic motion exists. As a consequence, combining (46), (47), and (49), we have:

Since by definition¢ > 0, from equation (41) for the

o —M-d -yt <ot <oy —M-d-yz, if d>0, (50
complete step¢,. must satisfy the following inequality: N Yo N> N Yo (50)

07\}2 =0n,> if d=0, (51)
6ullsy) = mix 52(;9?3) @4) on, —M-d-jg <oh <oy —M-d-jS, if d<0.(52)

3 .
. Sincely, > 0 (see Fig.8) and); < 0 (see Fig.5)o, < 0.
to have a monotonic evolution @f. 8 . N .
Since a product of the two variables; (- ;) is the ratio Considering (24), (30) and (39), the rafigd;, is bounded:

of momentumoy, at the contact pointV, before and after Un e
the impact, the speed of convergence is mainly associated witi~ M - d - 07 <010y, <l—M-d-—=, (d>0), (53)
this ratio (we will see in the following sections), and connected N N1

to the distance between the contact points and velocity of the 0105, =1, (d=0), (54)
mass center before the impact [19]. G
- M - 1-M-
The contact point before the impact, at the end of the d: aNl o 0%, < d: UN1  (@<0) (55)

single support phase, is denot@d, the contact point after
the impact, at the beginning of the next single support phase,
is denotedN,. Therefore there is a change of contact point VI. SIMULATION

between the two single support phases, where the angulam simulations, the physical parameters of the biped shown

momentum is calculated. At the impact, both legs stay on tiigFig.2 are used (see Table I). The gains of the control law

ground with the contact point¥; andN,. Then is it possible are chosen so that tracking errors can be smaller titari

to compute equilibrium relation of the biped at the impact tgyr all walking gaits (shown in Eq.(56)).

study the cyclic behavior in function of the value of radii. Let _

us detail this question. { K, = diag([10°, 10247 10°, 5 x 10;]) , (56)
The distancel between theV; and IV, is (see Fig.3) Kq = diag([5 x 10%,5 x 10%,10°%,5 x 107])

Fig.4 shows examples of stick diagrams of walking for one
step with the foot radik =0 [m], 0.2 [m], 0.5 [m] and 0.7 [m]

The angular momentum before the impact denatgd is and the step angle =0.24 [rad]. A cyclic motion Br= 0.5
calculated aroundv; and can also be calculated aroung, [M] is given in Fig.5. CoM positions with respect 8 are

it is then denotedry, , the angular momentum transfer glvesShOWn in Fig.6. Tangent vectors of right ends of lines are
expressing a post-impact velocity of CoM. The variation of

on, =0n, —M-d-yg. (46) CoM velocities at the impact are presented in Fig.7.

N1N2 =d= 2(l — R) sm(h1/2) (45)
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Fig. 4. The stick diagrams of walking. The foot radti = 0 [m], 0.2 [m],

0.5 [m] and 0.7 [m].
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TABLE I
TORSO ANGLES THE ANGLES ARE CHOSEN SUCH THAT CYCLIC MOTIONS
HAVE THE SAME VALUE £c(f37) = £(—0.12) = 16.27.

Foot radius [m] 0 0.1 0.2 0.3
Angle of torso [rad] | -0.060 -0.051 -0.043 -0.034

Foot radius [m] 0.4 0.5 0.6 0.7 0.8
Angle of torso [rad] | -0.026 -0.018 -0.011 -0.004 0.002

A. Design of Reference Path

The reference path? is defined by a fourth order polyno-
mial function such that:

hd 63 :alv 917 02a 935 94 l7 (57)
3 3 3 3

wherea € R**5 is a coefficient matrix for the referende;.

An intermediate position of SS phase, positions and velocities
just before and after the impact are given in order to calculate
the coefficients of the reference paths (see Fig.4).

Walking is depending on not only the radii of feet but
also of the reference path of the length of the legs. The foot
radius reduces the velocity of the CoM before the impact. The
reference paths of the legs are chosen to smoothen the vertical
variation of the CoM. However the references of the legs are
affected by the impact, and the choice of the reference paths is
limited accordingly. The radius mainly smoothens the vertical
CoM motion.

The initial and the final length for the legs are chosen as the
same value. The final velocity for the biped are arbitrary fixed.
The intermediate configuration for the legs is chosen such that
the swing leg length decreases 0.02 m and the stance leg length
increases 0.01 m during the step to avoid that the swing leg tip
touches the ground and the length of the leg is 0.8 [m] at the
impact. Therefore the top position of the CoM is almost same
for each foot radius as shown in Fig.6. For one vaRiewe
choose the angle of the torso at the impact arbitrary. The angle
of the torso at the intermediate configuration is equalit@
of the value of the torso angle at the impact. The states of the
biped to begin the steg),, ‘g—gz, andd,, are deduced using
the impact equation (8) and the corresponding vaWésy)
is deduced.

Then from this reference motion we deduced the reference
motion for the other value of the radiuB. For example,
the coefficient matrix in Eq.(57) foR = 0.5 is obtained as
follows:

a|R:0,5 = (58)
0 —-3.02 —0.158 70.8 10.9
—0.0201  0.0002 0.255 —0.0106 —8.89
0.810 —-0.122  —1.58 8.50 61.2
0.780  —0.0037 191 0.254  —36.5

The angle of the torso at the impakt(6ss) is adjusted

Fig. 5. Time responses at the cyclic motion wih= 0.5 [m] of the angle Such that the cyclic motions for all foot radik have the
of the both IegS, the torso, the Iength of Iegs and the Ieg tlp The referergame Valu%((ag’f) as Shown |n Table 1. Energy EXCItatIOH

paths are almost identical to the time responses.

for continuous walking with smaller feet radius is mainly done
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ool [ COMSlocated athip =0 ) large variation.
01 0 0.1 This first study concerns reference path with an interlink

x axis of CoM position [m] angle at the impact equals 24 [rad]. For this value, the
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Fig. 6. CoM positions with respect to R. Upper: the case of our biped shoﬁ_\lt)ll_’ltlorl of 5SS(93f)'_51' 503 and 5(93f) a}re glv_en _'n solid
in Fig.2. Tangent vectors of right ends of lines are expressing a post-impH&e in Fig.9, as function of thé. The cyclic motion is stable
velocity of CoM. Lower: the case of a simple model with rigid legs andor R < (.8.

Velosiies ar6 upward It gves a contfadicion at the mpact or there would N OFG€r to_ determine if the radiug = 0.8 is a limit
be a flight phase. of stability only for one specific reference path or if this
limit is more physical, different kinds of reference motion are
considered in the following. Only the interlink anglg (65 )
by the asymmetric mass distribution due to the torso forwaed the impact is changed. For different valueshgfand radii
inclination. Leg swing also provides a way of putting energyz, the coefficient involves in the convergence condition are
For small feet radii, the energy for walking is produced bgrawn in Fig.9.
the weight of the torso that is inclined forward. For larger feet dg, in upper right part of the figure ani} in lower left part
radii, the energy for walking is produced by the motion of thef the figure increase wheR increases and, (A5 5) decreases.
swing leg. 82 also increases at the same time (lower right in Fig.9). The
Since the impact equation changes, the initial configuratieerm 62 comes to unit wherR = 0.8 [m] which means that
and velocity are changed accordingly. During the impact, fgt has the same values as the length of legs at the impact.
the chosen reference path, the two legs stay on the groun®Remark: We confirmed in another simulations that variations
N ) of the torso angle had small influencesgnandd;, although
B. Stability Analysis it essentially affectst. The variablesV, dss, Iy, and ¢ in
The variables in the analytic solution (34) are shown ithe analytic solution for SS phase change for the torso angle.
Fig.8 with respect to the monotonic varial#le for variation However the variation ofss is smaller than the variations of
of the foot radiusR. It should be noted that the monotonici; andd,  with respect to the foot radii. A
variable is evolving from a positive value to a negative value, Fig.10 presents the stability property with respect to the foot
63 : 0.12 [rad] — —0.12 [rad]. In the lower right part of Fig.8, radii. Two black rigid lines show” andé? — 1. V anddé? — 1
£.(0) is given for all the cyclic motions. It can be observed thdtave opposite sign thus a cyclic motion may exist such that
&c(055) = £(—0.12) = 16.27. The upper left part of the figure (44) is satisfied for any value of radik. For R < 0.8 [m],
presentsiZ¢(6s) is given by equation (35). The convergencéhe motion is stable. FaR > 0.8 [m], the motion is unstable.
of Poincaé map, as shown in equation (42), is function ofor R = 0.8 [m], the motion is neutral, in this case any value
6%4(035) = 6%24(—0.12). However the values of24(—0.12) &, produces cyclic motions.
are very close to unit thus the convergence of Poimcaap is  Case corresponding to a radius superior to the length of each
essentially defined by the impact map(f3¢) ~ 6;6,,. The leg, (R > 0.8 [m]) can be studied if we consider the motions
upper right part of Fig.8 represents the evolutiori/otlefined of feet are not in the same sagittal plane to avoid collisions. In
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Fig. 8. Analytic solutions for SS phase. The figures &g by Eq.35,V by  petween two legs at the impact varies from 0.04 [rad] to 0.40 [rad]. The
Eq.36, the function/y, by Eq.30 andS by Eq.34.0; evolves from positive figures shows? ¢ (upper left), 67 (upper right),67, ~ (lower left) ands*

(0.12) to negative £0.12). (lower right) with respect to thé foot radik = 0 ~ 1.0 [m]. R = 0.8
[m] means that the radius is the same as the leg length at the impact for the
analytic solution. FotR = 0.8 [m], the cyclic motion is not stable.

the leg exchange, at the impact, the contact point moves back
but the contact point has a large forward progression during

—

the single support phase, the biped goes forward. Rf0'8 [m]

The gradient? (Eq. 42) of Poinca map (Eq. 41) depends & ;/2__01;0
on the SS phasés) and the impact phasé(-d;, ). dss was ERD Neutral
close to unit at the impact. Singg, < gy < 0 (see Fig.7), ;:5
we obtain that the foot radiuB and the sign of! defined the 5 R>0.8
position of the ratiod;d, with respect tol from Eq.(53) to :_1' V<0, 1
Eq.( 55). N 0<=R<0.8 3*-1>0,

o V>0, 5-1<0, Stable

Unstable

o if R<I,d>0,anddrdy, <1
o if R=1,d=0,andd;é;, =1
e if R>1,d<0, and5169-3>1

The property of the gradier® agrees with “speed mode” 0
of passive dynamic walking obtained by McGeer [11]. Wisse
[14] finds results that are different from our results. For passi¥gy. 10. The property of stability with respect to the foot raflii Two black
walking he finds that for stability point of view the bestigid lines showl” andé® —1. v and§® —1 have opposite sign thus a cyclic
radius is 14; of leg length, this value corresponds to a cadiger 12 e4st such et (4) i satsfed. Rer” 0+ [1) the moton '
where two monotonic lines of eigenvalues are crossing. TReneutral, that is all ok, are cyclic motions.
increasing one is represented 'Speed mode’, and the decreasing
one is 'Totter mode’. However the crossing point changes with
respect to slope angle and physical parameters of bipeds. Bpeed of convergence is. If the foot radius is the same as the
14% of leg length is not the best radius, generally speaking. leg length, the motion is neutral, that is, all motions are cyclic.
our controlled system, it is predictable that the "Totter mode’ In Fig.11, the area between the lineQf,, and¢,,,. is the
is close to zero or much smaller than the 'Speed mode’, singasin of attraction. The variabigust before the impact is used
the 'Speed mode’ is expressed by the zero dynamics of e expressing the basin of attraction. The lifierepresents
controlled system and the 'Totter mode’ is depending on thige cyclic motions. Fig.12 presents time evolutionsdgf é3
controller gains. Terna* has the same property of the 'Speedor 100 steps. For top to bottom, the following foot radii are
mode’, and thus is increasing with respectRo considered? = 0 [m], 0.5 [m], 0.8 [m] and 1.3 [m] from the
top figure. The first two cases are clearly stable, the third one
is neutral, and the last one is unstable. Simulations confirm

Basins of attraction determined by numerical computatiotise existence of the neutral condition.
are shown in Fig.11. The larger the foot radii are in the stableThe property of the basin of attraction with respect to the
domain, the wider the basin of attraction is but the slower thiadius is also analogous to the results of passive dynamic

o
T

1 1 1 !

05
Foot radius R [m]

C. Basin of Attraction



walking by Wisse [12]. As depicted in Fig.11, the bottom line

shows the theoretic line of a miniméalcorresponding to the 100} j

numerical one. The theoretic results comes from Eq.(44). It

means a required minimal angular momentum to overcome

a gap from a minimum of a vertical position of CoM to a

maximum. If the momentum is smaller than the minimum,

the complete step is not achieved, the step begins and then

the robot goes backward to return to its initial configuration £ @)

for the step. After that, the robot stops, but it does not fall c

down contrarily to a passive dynamic walker [13] that falls M

or min\¥3

down backward. L
From Fig.6, the smaller the radius is, the larger the gaps 0 02 06 08

of the vertical positions of CoM and the minimg] . are.

Thus the circular arc feet broaden the minimal bounds. TRa@. 11. Basin of attraction of w.r.t. the foot radiiR. The area between the

variation of the maximal bounds is caused by properties B O &min(6]) and&max(61) is the basin of attraction by the numerical

; ; : method. The lin€. means the cyclic motions. In the upper areairggx(ag),
vertical reaction forces. The reaction force vector at the vertical reaction forces are negative. There would be a flight phase. In the

0.4
Foot radius R [m]

point Ny is given by the following equation: lower area of,in (6] ), the velocity of the monotonic variable after the impact
R Mi is not large enough to produce a stgg,in(eg) is given by (44). After the
R = [ Z1 ] — { G ] . (59) beginning of the step, the biped goes backward or stands still eventually.
Ry1 M(yG + g)

The vertical acceleratiofic is decided by the the centrifugal
force caused by the angular velocity of the stancedle@nd nearer the radius is to the leg length, the slower the speed
an acceleration of the leg variatiéit). The radius smoothensof convergence is and the larger the basin is. 'Foot clearance
the variation of CoM, and consequently the centrifugal forgsroblem’ does not appear because of the variable length
is reduced. We observe that the acceleration of the legidgs in our case. In the cases of 'Anthropomorphic Model’
smaller when the radii increase. Thus, the maxigjgl,. is and 'Simplest Model’ of Adamczyk’s result [16], the CoM
extended when the radius increases. Our controller ensufgschanical work property with respect to feet radii is similar
stability from the minimal boundary line to the maximum fotto our result of consumed energy. However, in their cases of
all radii. Namely, the basin of attraction is broaden by physicatorward-foot Model’ and 'Kneed Model’, the work had a
properties such as the feet radii. Globally, our controlled syginimum.
tem has similar properties for stability and basin of attraction e suggestion of McGeer’s to choose a foot radius of 1/3
to the passive dynamic walking. o of leg lengths can also be considered in our discussion. It
A large foot radius can reduce the variation of the Colhight be better to choose a larger radius (e.g. between a half

during steps. We can summarize that the basin of attractionyigy three quarters) to have a large basin of attraction even if
broadened by a reduction of the CoM variation for the largghe speed of convergence is worth.

radius. The difference might be vanished by the leg length

variation. To satisfy the velocity jump condition through the

impact, some amounts of a CoM variation are needed for the Unstable Walking with radii greater than the leg length

reference path. In the simulation, the variation shown in Fig.6

gave one of the smallest CoM variation. Kuo’s analysis [18] of the CoM velocity contradicts our

study because he considers a simple model with rigid legs and

D. Consumed Energy circular arc feet and the CoM is located at hip position, and
Consumed energies for one cyclic step with respect to the consider prismatic knees. The lower part of Fig.6 presents

foot radii R is described in Fig.13. The following formula isthe evolution of the CoM relative to the simple model of [18].

used for computing the consumed energy: Tangent vectors of right ends of lines are expressing the pre-
T impact velocity of CoM, and tangent vectors of left ends of
E, = / \9" - B -T|dt. (60) lines are expressing the post-impact velocity of CoM. When

0 R > 0.8 [m], the change of CoM velocities are upward, which
The larger the foot radius is, the smaller the consumemieans the impulsive force at the impact is negative. It actually
energy is for the cyclic motion, even if the motion becomesould be a flight phase. Upper part of Fig.6 gives the CoM
unstable. Thus, the circular arc feet are effective in reduciegolution in the case of our biped shown in Fig.2. Since all of

the consumed energy. the ranges of velocities of CoM at the impact are downward, it
. ] never fails to flight phase for any radius. In fact, our biped has
E. Optimal Radius prismatic knees and CoM is mainly distributed on the torso

There is a trade-off property between the convergence spegtch is swinging a little. A lot of paths can be chosen for
and the basin of attraction. What we can say is that tliee CoM position differently from the simple model.
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Fig. 13. Consumed energy for one cyclic step w.r.t. the foot radii R by the
numerical simulation. The torso angle is chosen so that 16.27 by the
analytic solution for all R. ForR = 0.9 [m] and 1.0 [m], that is, unstable
motions, the energy is computed for the cyclic motion.

VIl. CONCLUSION

In the paper, some effects of circular arc feet for a planar
biped via a geometric tracking were taken into account. An
analytic solution of Poincé&map was given for the controlled
system. Stability of walking was analyzed by the Poikaaiap
and the following results are obtained:

o Radii of the circular arc feet affect the stability of
walking, and the speed of convergence decreases when
the radii approaches to a leg length.

« A basin of attraction is broadened by choosing larger radii
and the controller can stabilize the biped walking in the
largest basin of attraction for the radii less than the leg
length.

The leg length and the radius smoothen the variation and
reduce the impact velocity. For the same condition of the
reference paths, the radius is significant for the stability and
the basin of attraction. The results are analogous to those
[11] [12] and the prospect [13] on passive dynamic walking.
The geometric tracking method does not change the general
effect of the circular arc feet. A reduction of the vertical
CoM variation by the foot radius is functional not only for
the geometric tracking method but for general biped walking.
However the motion of CoM and the consumed energy are
different from some very simple models because our model
has variable length of legs and a torso.
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