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Abstract The availability of data represented with multiple features coming
from heterogeneous domains is getting more and more common in real world
applications. Such data represent objects of a certain type, connected to other
types of data, the features, so that the overall data schema forms a star struc-
ture of inter-relationships. Co-clustering these data involves the specification
of many parameters, such as the number of clusters for the object dimension
and for all the features domains. In this paper we present a novel co-clustering
algorithm for heterogeneous star-structured data that is parameter-less. This
means that it does not require either the number of row clusters or the number
of column clusters for the given feature spaces. Our approach optimizes the
Goodman-Kruskal’s τ , a measure for cross-association in contingency tables
that evaluates the strength of the relationship between two categorical vari-
ables. We extend τ to evaluate co-clustering solutions and in particular we
apply it in a higher dimensional setting. We propose the algorithm CoStar

which optimizes τ by a local search approach. We assess the performance of
CoStar on publicly available datasets from the textual and image domains
using objective external criteria. The results show that our approach outper-
forms state-of-the-art methods for the co-clustering of heterogeneous data,
while it remains computationally efficient.
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1 Introduction

Clustering is by far one of the most popular techniques among researchers and
practitioners interested in the analysis of data from different sources. It is often
employed to obtain a first schematic view of what the data looks like, since it
does not require much background knowledge, usually incorporated into the
class labels, nor involves pre- or post-treatment of the data. Applications of
clustering techniques range over a wide variety of domains, from biology to
physics, from e-commerce to social network analysis. As such, there exists a
wide literature which investigates new algorithms, measures, and application
domains for data clustering.

Usually, data come in the form of a set of objects described by a set of
attributes that can be heterogeneous for type and underlying properties. For
instance, the most common ones are numeric, categorical, boolean, textual,
sequential, or networked. In the most classic settings, objects are represented
by features obtained by a unique source of information or view. For instance,
census data are produced by a national statistical institute, textual data are
extracted from a document repository, tagged items come from a social media
website, and so on.

However, in some cases, computing clusters over a single view is not suf-
ficient to capture all the intrinsic similarities or differences between objects.
Consider, for instance, an e-commerce website specialized in high-tech prod-
ucts, where each product is described by a general description, a technical
note, and reviews are posted by customers. It is quite common to look for
certain products and be unable to decide because of some incomplete tech-
nical details, uninformative descriptions or misleading reviews. The typical
customer behavior is then to merge all the different sources of information,
by considering them for what they are: technical notes give details on com-
ponents and features (usually taken from the producer’s website); general de-
scriptions provide synthetic views of the main characteristics and advantages
of the products; customers’ reviews possibly complete missing details and add
further useful information.

As another example consider a scientific digital library where each paper
is described by its textual content (e.g., title, abstract and/or keywords), by
the list of co-authors, and by a list of cited papers. If the goal is, for in-
stance, to find the scientific communities interested in the same research field,
one can try to apply a clustering algorithm over one of the feature spaces.
However, intersections between communities are very common: for instance,
people interested in knowledge discovery and data mining may work and pub-
lish together with people coming from the information retrieval community.
Abstracts or titles on their own are not sufficiently informative: they might
focus on the applicative aspects of the work, or be too generic or specific. Ci-
tations can be misleading as well: in some cases papers refer to other works
dealing with similar topics but in other fields of research; sometimes papers
are cited for another purpose than reporting closely related works. Therefore,
clustering papers using only one feature space could lead to imprecise results.
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Instead, taking into account all the feature space may help in identifying more
interesting and relevant clusters.

A straightforward solution consists in merging all the feature spaces into a
single one, and applying a clustering algorithm on the overall table. However
this solution would not always work as expected, and this for several reasons:
first the feature space may contain different types of attributes; second, even
though the attribute type is homogeneous, each feature may fit a specific
model, show properties or be affected by certain problems such as noise, which
might affect in a different form the other feature space. Third, the form of data
may vary significantly from one space to another: document-keyword data are
typically sparse, while categorical data are usually dense. Networked data,
such as social networks, contains highly dense portions of nodes, and sparse
ones. Fourth, even though the spaces do not fall into the above-mentioned
cases, their cardinality may vary drastically having the consequence that larger
feature spaces have more influence on the clustering process than smaller ones.

To cope with the limitation of traditional clustering algorithms on mul-
tiple views data, a new clustering formulation was introduced in 2004, the
so-called multi-view clustering approach [4]. Instead of considering a standard
clustering approach over each single-view, the authors proposed an algorithm
based on EM that clusters each view on the basis of the partitions of the other
views. A strongly related approach is the so-called star-structured high-order

heterogeneous co-clustering [13]. Though it has never been explicitly linked
to multi-view clustering, this family of algorithms addresses the same issues
of a co-clustering approach that simultaneously clusters objects and features
from the different spaces. Co-clustering methods have two main advantages:
they are more effective in dealing with the well-known problem of the curse
of dimensionality, and they provide an intensional description of the object
clusters by associating a cluster of features to each cluster of objects. When
applied on multi-view data, the several views, or feature spaces, as well as
the object set, are simultaneously partitioned. A common problem of existing
co-clustering approaches (as well as of other dimensionality reduction tech-
niques such as non-negative matrix factorization [21]), is that the number of
clusters/components is a parameter that has to be specified before the execu-
tion of the algorithm. Choosing a correct number of clusters is not easy, and
mistakes can have undesirable consequences. As mentioned in [19], incorrect
parameter settings may cause an algorithm to fail in finding the true patterns
and may lead the algorithm to report spurious patterns that do not really
exist. Existing multi-view co-clustering methods have as many parameters as
there are views in the data, plus one for the partition of objects.

In this paper we propose a new co-clustering formulation for high-order
star-structured data that automatically determines the number of clusters at
running time. This is obtained thanks to the employment of a multiobjective
local search approach over a set of Goodman-Kruskal’s τ objective functions,
that will be introduced in Section 3.1. The local search approach aims at
maximizing these functions, comparing two solutions on the basis of a Pareto-
dominance relation over the objective functions. Due to the fact that those
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functions have a defined upper limit that is independent of the numbers of
clusters, the τ functions can be used to compare co-clusterings of different
sizes. On the contrary, measures that are usually employed in co-clustering
approaches, like the loss of mutual information [11] or more generally the
Bregman divergence [2], are optimized for a specific partition, usually the dis-
crete one. Moreover, the stochastic local search algorithm we proposed enables
the adaptation of the number of clusters during the optimization process. Last
but not least, unlike most of the existing approaches, our algorithm is designed
to fit any number of views: when a single feature space is considered, the al-
gorithm is equivalent to the co-clustering approach presented in [30].

The remainder of this paper is organized as follows: Section 2 briefly ex-
plores the state of the art in star-structured co-clustering and multi-view clus-
tering. The theoretic fundamental details are presented in Section 3 while
the technical issues of our approach are provided in Section 4. In Section 5
we present the results of a comprehensive set of experiments on multi-view
high-dimensional text and image data, as well as a qualitative evaluation on
a specific result and a scalability analysis. Finally, Section 6 concludes.

2 Related Work

Co-clustering has been studied in many different application contexts includ-
ing text mining [11], gene expression analysis [8,27] and graph mining [5] where
these methods have yielded an impressive improvement in performance over
traditional clustering techniques. The methods differ primarily by the criterion
they optimize, such as minimum loss in mutual information [11], sum-squared
distance [8], minimum description length (MDL) [5], Bregman divergence [2]
and non-parametric association measures [29,17]. Among these approaches,
only those ones based on MDL and association measure are claimed to be
parameter-free [19]. However, methods based on MDL are strongly restricted
by the fact they can only handle binary matrices. Association measures, such as
Goodman and Kruskal τ , are internal measures of the quality of a co-clustering
based on statistical considerations. They have also another advantage: they can
deal with both binary and counting/frequency data [17,29]. From an algorith-
mic point of view, the co-clustering problem has been shown to be NP-hard [1]
when the number of row and column clusters are fixed. Therefore, proposed
methods so far are based on heuristic approaches.

Several clustering and co-clustering methods for heterogeneous star-struc-
tured data have been proposed recently. Long et al. [23] use spectral clustering
to iteratively embed each type of data objects into low dimensional spaces in
a way that takes advantage of the interactions among the different feature
spaces. A partitional clustering algorithm like k-means is then employed to
obtain the final clustering computed on the transformed spaces. In [24], a
parametric probabilistic approach to cluster relational data is proposed. A
Monte Carlo simulation method is used to learn the parameters and to assign
objects to clusters. The problem of clustering images described by segments
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and captions is considered in [3]. The proposed algorithm is based on Markov
random fields in which some of the nodes are random variables in the combi-
natorial problem.

The co-clustering problem on star-structured data was first considered in
[13] where Gao et al. propose to adapt the Information Theory co-clustering
approach [11] to star-structured data. It consists in optimizing a weighted
combination of mutual information evaluated over each feature space, where
weights are chosen based on the supposed reliability/relevance of their correla-
tion. Beyond the parameters inherited from the original algorithm, the weight
involved in the linear combination also has to be fixed by the end-user. Another
drawback of this approach is its complexity, that prevents its use on large-scale
datasets. Greco et al. [15] propose a similar approach based on the linear com-
bination of mutual information evaluated on each feature space, where the
parameter of the linear combination is automatically determined. Ramage et
al. [28], propose a generative clustering algorithm based on latent Dirichlet
allocation to cluster documents using two different sources of information:
document text and tags. Each source is modeled by a probability distribution
and a weight value is used to weigh one vector space with respect to the other.
During the learning step, the algorithm finds the distribution parameters, and
models documents, words and tags. In addition to the weight parameter, the
method has another drawback: it constrains the number of hidden topics in
text and tag sources to be the same, which is a strong assumption on data that
is not always true. Considering the multi-view clustering problem Cleuziou et
al. [9] propose to find a consensus between the clusters from different views.
Their approach merges information from each view by performing a fusion pro-
cess that identifies the agreement between the views and solves the conflicts.
To this purpose they formulate the problem using a fuzzy clustering approach
and extend fuzzy k-means algorithm by introducing a penalty term. This term
aims at reducing the disagreement between any pair of partitions coming from
the different views. This approach is sensitive to the parameter setting be-
cause, apart from the number of clusters, the algorithm requires two other
parameters that may influence the result. [6] can be considered as the first
attempt that performs multi-view co-clustering. The method is an extension
of the Non-Negative Matrix Factorization approach to deal with multi-view
data. It computes new word-document and document-category matrices by
incorporating user provided constraints through simultaneous distance metric
learning and modality selection. This method is shown to be effective, but
its formulation is not flexible. In fact, in order to use more than two feature
spaces, one needs to reformulate the whole process. Another problem of this
approach is that the number of clusters for each feature space is given as a
parameter. Furthermore, the number of parameters grows with the number of
feature spaces.
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3 Measuring the quality of a co-clustering on star-structured data

In this section, we introduce the association measure optimized within our
co-clustering approach. Originally designed for evaluating the dependence be-
tween two categorical variables, the Goodman and Kruskal τ measure can be
used to evaluate the quality of a single-view co-clustering. We generalize its
definition to a multi-view setting.

3.1 Evaluating the quality of a co-clustering

Association measures are statistical measures that evaluate the strength of
the link between two or more categorical variables. Considering partitions of
a co-clustering as categorical variables, these measures have been shown to be
well adapted to determine co-clustering with high quality [29]. Goodman and
Kruskal τ measure [14] is one of them that estimates the association between
two categorical variables X and Y by the proportional reduction of the error
in predicting X knowing or not the variable Y :

τX|Y =
eX − E[eX|Y ]

eX

Let say that variable X has m categories X1, · · · , Xm with probabilities
p1, · · · , pm, variable Y has n categories Y1, · · · , Yn with probabilities q1, · · · , qn
and their joint probabilities are denoted rij , for i = 1 · · ·m and j = 1 · · ·n. The
error in predicting X can be evaluated by eX =

∑m

i=1 pi(1−pi) = 1−
∑m

i=1 p
2
i .

This is the probability that two independent observations from the marginal
distribution of X fall in different categories. The error is minimum (equals to
0) when every pi’s is 0 or 1. The error is maximum when pi = 1

m
for all i.

E[eX|Y ] is the expectation of the conditional error taken with respect to the
distribution of Y :

E[eX|Y ] =
n
∑

j

qj eX|Yj
=

n
∑

j

qj

m
∑

i

rij
qj

(1−
rij
qj

) = 1−
m
∑

i

n
∑

j

r2ij
qj

The Goodman-Kruskal’s τX|Y association measure is then equal to:

τX|Y =

∑

i

∑

j

r2ij
qj

−
∑

i p
2
i

1−
∑

i p
2
i

(1)

Similarly, the proportional reduction of the error in predicting Y while X
is known is given by:

τY |X =
eY − E[eY |X ]

eY
=

∑

i

∑

j

r2ij
pi

−
∑

j q
2
j

1−
∑

j q
2
j

(2)

Let’s now describe how this association measure can be employed to quan-
tify the goodness of a co-clustering. Let O be a set of objects and F a set of
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features. A dataset D associates with an object ou and a feature fv a value
duv that represents the frequency of feature v in the description of object
u (or it could also be a Boolean value that stands for presence/absence of
the feature). Figure 1(a) is an example of such a dataset. A co-clustering is
made of one partition of objects, CO1, · · · , COm, and one partition of fea-
tures, CF1, · · · , CFn. To evaluate the quality of the co-clustering, we compute
a contingency table that empirically estimates the joint probabilities of the
two partitions and the marginal probabilities of each partition. It associates
with each co-cluster (COi, CFj) the value tij that aggregates the frequency
values of features from cluster CFj on objects of COi:

tij =
∑

ou∈COi

∑

fv∈CFj

duv (3)

Figure 1(b) is an example of such a contingency table with 2 clusters of
objects and 2 clusters of features.

f1 f2 f3

o1 d11 d12 d13
o2 d21 d22 d23
o3 d31 d32 d33
o4 d41 d42 d43

(a)

CF1 CF2

CO1 t11 t12 TO1

CO2 t21 t22 TO2

TF1
TF2

T

(b)

Fig. 1 An example dataset (a) and the contingency table associated with a related co-
clustering (b).

In order to review the meaning of τ for the evaluation of a co-clustering
consider the table in Figure 1(b) whose cell at the intersection of the row COi

with the column CFj contains the frequency of objects in cluster COi having
the features in cluster CFj . TOi

is the total counting for cluster COi, TFj
is

the sum of counts for cluster CFj , and T is the global total, i.e., TOi
=
∑

j tij ,
TFj

=
∑

i tij and T =
∑

i

∑

j tij . Therefore, the probability that an object

ou is in cluster COi may be estimated by pi =
TOi

T
, the relative frequency

of the cluster. Similarly, the probability that a feature fv is in cluster CFj is

estimated by qj =
TFj

T
. Finally, the joint probability that an object ou and a

feature fv are in co-cluster (COi, CFj) is rij =
tij
T
. Such a statistical estimate

is represented by a two-dimensional contingency table or a two-way frequency
table. We denote by X the random variable associated with the partition
of objects, and by Y the random variable associated with the partition of
features. τX|Y is the proportional reduction in prediction error of partition
{CO1, · · · , COm} given partition {CF1, · · · , CFn}.

Example 1 Consider the dataset in Figure 2(a). It could represent one of the
possible views on a document collection: the view on the document terms or
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the view on the document tags that users adopted to annotate documents in a
social network. Suppose the view is on the terms contained in the documents:
each value in the matrix represents the number of occurrences of a specific
word (indicated by the matrix column) in a specific document (indicated by
the matrix row). We take into account two possible co-clusterings for this
dataset:

C1 = {{o1, o2, o3}, {o4, o5}}, {{f1, f2}, {f3, f4}}

and C2 = {{o1, o2}, {o3, o4, o5}}, {{f1, f2}, {f3, f4}}

Tables in Figure 2(b) and 2(c) represent the contingency tables for the first
and second co-clustering respectively. The Goodman-Kruskal τX|Y and τY |X

for the first co-clustering are:

τX|Y = τY |X = 0.5937

and for the second one are:

τX|Y = 0.2158 and τY |X = 0.3375

We can observe that the first co-clustering better associates clusters of ob-
jects with clusters of features than the second one. In the first co-clustering,
objects of CO1 have mostly features of cluster CF1, whereas objects of CO2

are characterized by features of CF2. In the second example, given an object
having high frequency values on features of CF1, it is difficult to predict if it
belongs to CO1 or CO2. The τ measure corroborates these facts and in fact it
has higher values for the first co-clustering.

f1 f2 f3 f4

o1 3 4 1 1
o2 5 3 0 2
o3 6 4 1 0
o4 0 1 7 7
o5 1 0 6 8

(a)

CF1 CF2

CO1 25 5 30
CO2 2 28 30

27 33 60

(b)

CF1 CF2

CO1 15 4 19
CO2 12 29 41

27 33 60

(c)

Fig. 2 An example dataset (a) and the contingency tables that correspond to C1 (b) and
C2 (c).

Analyzing the properties of τ , we can observe that it satisfies many desir-
able properties of a co-clustering measure. First, it is invariant by rows and
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columns permutation. Second, it takes values between [0, 1]: (1) τX|Y is 0 iff
knowledge of Y classification is of no help in predicting the X classification,
i.e. there is independence between the object and feature clusters; (2) τX|Y is 1
iff knowledge of an individual’s Y cluster completely specifies his X class, i.e.
each row of the contingency table contains at most one non zero cell. Third,
it has an operational meaning: given an object, it is the relative reduction in
the prediction error of the object’s cluster given the partition of features, in a
way that preserves the category distribution [14]. Finally, unlike many other
association measures such as χ2, τ has a defined upper limit that is indepen-
dent of the numbers of classes m and n. Therefore, τ can be used to compare
co-clusterings of different sizes.

3.2 The star schema

In the context of high-order star-structured co-clustering, the same set of ob-
jects is represented in different feature spaces. Such data represent objects of a
certain type, connected to other types of data, the features, so that the overall
data schema forms a star structure of inter-relationships. The co-clustering
task consists in clustering simultaneously the set of objects and the set of
values in the different feature spaces. In this way we obtain a partition of
the objects influenced by each of the feature spaces and at the same time a
partition of each feature space. Considering N feature spaces that have to be
clustered, in this paper we study a way to extend the τ measure to perform
co-clustering of the data when the number of the involved dimensions is high.

In Figure 3 we show an example of a star-structured data schema. The
set of objects is shown at the center of the star. For example it could be a
set of documents. The set of objects is then described with multiple views by
more features (Feature1, Feature2, Feature3). For instance, Feature1 could be
the set of the vocabulary words and the values d1ij represent the number of

occurrences of the word f1j in the document Oi; Feature2 could be the set of
tags adopted by the users of a social community in their annotations and the
values d2ij represent the number of users that used the tag f2j in the document
Oi; Feature3 could be the set of authors who cited documents in the given
set and the feature values represent the number of citations. For the complete
description of each object we have to make reference to the different feature
spaces. The values of each feature have their own distributions in the document
set and are described by the different contingency tables. At this point both
the document set and the feature spaces might be partitioned into co-clusters
where all the dimensions contribute to determine the partitions.

3.3 Evaluating the quality of a star-structured co-clustering

Evaluating the quality of the partition of objects, given the partitions of fea-
tures, is formalized as follows. The partition of objects is associated with the
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Objects

O1

O2

...

OM

        f11        f12       . . .        f1
n1

O1   d1
11      d1

12      . . .         . . . 

O2   d1
21

  .       .

  .       . 

  .       .

OM     d1
M1       . . .      . . .       d1

Mn1  

Feature 1

        f31        f32       . . .        f3
n3

O1   d3
11      d3

12       . . .       . . .

O2   d321

  .       .

  .       . 

  .       .

OM     d3
M1       . . .      . . .       d3

Mn3

Feature 3

        f21        f22       . . .        f2
n2

O1   d2
11     d2

12       . . .         . . .  

O2   d2
21

  .       .

  .       . 

  .       .

OM     d2
M1       . . .      . . .       d2

Mn2  

Feature 2

Fig. 3 The data star-schema.

dependent variable X , and the N partitions of the feature spaces are consid-
ered as many independent variables Y = {Y 1, . . . , Y N}. Each variable Y k ∈ Y
has nk categories Y k

1 , · · · , Y k
nk

with probabilities qk1 , . . . , q
k
nk

and X has m cate-

gories X1, · · · , Xm. However, for each variable Y k, the m categories of X have
different probabilities pk1 , · · · , p

k
m, k = 1 · · ·N . The joint probabilities between

X and any Y k ∈ Y are denoted by rkij , for i = 1 · · ·m and j = 1 · · ·nk. The
error in predicting X is the sum of the errors over the independent variables
of Y: eX =

∑N
k=1

∑m
i=1 p

k
i (1 − pki ) = N −

∑N
k=1

∑m
i=1(p

k
i )

2. E[eX|Y ] is the
expectation of the conditional error taken with respect to the distributions of
all Y k ∈ Y:

E[eX|Y ] =
N
∑

k

nk
∑

j

qkj eX|Y k
j
=

N
∑

k

nk
∑

j

qkj

m
∑

i

rkij
qkj

(1−
rkij
qkj

) = N−
N
∑

k

m
∑

i

nk

∑

j

(rkij)
2

qkj

The generalized Goodman-Kruskal’s τX|Y association measure is then equal
to:

τX|Y =

∑

k

∑

i

∑

j

(rkij)
2

qkj
−
∑

k

∑

i(p
k
i )

2

N −
∑

k

∑

i(p
k
i )

2
(4)

If we consider Y k as a dependent variable, and X as an independent variable,
the corresponding τY k|X is computed as described in the previous section (see
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equation (2)), i.e.:

τY k|X =
eY k − E[eY k|X ]

eY k

=

∑

i

∑

j

(rkij)
2

pk
i

−
∑

j(q
k
j )

2

1−
∑

j(q
k
j )

2
(5)

We now describe how the generalized association measure can be employed
for computing the quality of a high-order star-structured co-clustering. Let
F = {F 1, . . . , FN} be a set of N feature spaces. A dataset can be viewed
under the different views given by the different feature spaces F k. Therefore,
the view Dk is associated with each feature space F k. We call star-structured
dataset, denoted D = {D1, . . . , DN}, the collection of matrices built over O
and F . The joint tables in Figure 4(b) are the contingency tables represent-
ing a co-clustering of the multi-space dataset of Figure 4(a). Symbol COi

represents i-th cluster on objects, while CF k
j represents j-th cluster on the k-

th feature space (e.g. (CO1 = {o1, o2, o5}, CO2 = {o3, o4}),
(

CF 1
1 = {f1

1 , f
1
2 },

CF 1
2 = {f1

3 , f
1
4 }
)

and
(

CF 2
1 = {f2

1}, CF 2
2 = {f2

2 , f
2
3 }
)

. The association of co-
cluster (COi, CF k

j ) is represented by the value tkij , at the intersection of the
i-th object cluster and the j-th cluster of the k-th feature space, and is equal
to:

tkij =
∑

ou∈COi

∑

fk
v ∈CFk

j

dkuv (6)

T k
Oi

is the total counting for cluster COi within the k-th feature space. TFk
j

is the total counting for the j-th cluster of the k-th feature space, and T k is
the global total for the k-th feature space, i.e., T k

Oi
=
∑

j t
k
ij , TFk

j
=
∑

i t
k
ij

and T k =
∑

i

∑

j t
k
ij . Therefore, given a feature space k, the probability that

an object ou is in cluster COi is pki =
Tk
Oi

Tk . Similarly, the probability that a

feature fk
v is in cluster CF k

j is qkj =
T
Fk
j

Tk . Finally, the joint probability that an

object ou and a feature fk
v are in co-cluster (COi, CF k

j ) is r
k
ij =

tkij
Tk .

Let X be the random variable associated with the partition on objects:
its values range over all the possible partitions of O. Let Y be the set of N
random variables Y k, k = 1 . . .N , associated with the feature partitions. Each
random variable Y k has values that range over all the possible partitions of
F k. Figure 4(b) shows that a possible value for X is the partition {CO1, CO2}
and the values of the variables Y 1 and Y 2 are respectively the partitions
{CF 1

1 , CF 1
2 } and {CF 2

1 , CF 2
2 }.

τX|Y is the proportional reduction in the prediction error of the object
partition when the values of the feature partitions are known. The best co-
clustering solution will be the one that reduces the most the prediction error of
the object partition when the object values on the feature partitions are known.
As we will see, also the opposite prediction problem will be considered in our
approach, by evaluation of τY|X : it considers the reduction in the prediction
error of the feature partitions when the object partition is known.
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Fig. 4 An example of a star-structured dataset (a) and the contingency table associated
with a related star-structured co-clustering (b).

Example 2 Example in Figure 4(a) has been instantiated in the dataset of
Figure 5(a): it could represent a collection of documents. Suppose the first
feature space is the space of the terms occurring in the documents, while the
second feature space is the space of the tags associated by the users of a social
network. Each counting in the first feature space (f1

1 · · · f1
4 ) represents, for

instance, the occurrences of a specific word in a specific document, while the
counting in the second feature space (f2

1 · · · f2
3 ) are the number of users who

associated a specific tag with a specific document. We take into account two
possible co-clusterings for this dataset:

C1 = {CO1 = {o1, o2, o3}, CO2 = {o4, o5}} ×

{{CF 1
1 = {f1

1 , f
1
2 }, CF 1

2 = {f1
3 , f

1
4}} ∪ {CF 2

1 = {f2
1 }, CF 2

2 = {f2
2 , f

2
3 }}}

C2 = {CO3 = {o1, o3, o5}, CO4 = {o2, o4}} ×

{{CF 1
3 = {f1

1 , f
1
3 }, CF 1

4 = {f1
2 , f

1
4}} ∪ {CF 2

1 = {f2
1 }, CF 2

2 = {f2
2 , f

2
3 }}}

Tables in Figure 5(b) and 5(c) represent the contingency tables for C1 and C2

respectively. For the first co-clustering, the Goodman-Kruskal τX|Y and τY k|X

measures are:

τX|Y = 0.6390, τY 1|X = 0.5937, τY 2|X = 0.6890

τ values have been computed respectively on the contingency tables:

{CO1, CO2} × {CF 1
1 , CF 1

2 , CF 2
1 , CF 2

2 }

{CF 1
1 , CF 1

2 } × {CO1, CO2}

{CF 2
1 , CF 2

2 } × {CO1, CO2}

For the second co-clustering, they are:

τX|Y = 0.0119, τY 1|X = 0.0234, τY 2|X = 0.0008

Since all the three τ values for the first co-clustering are greater than the
second ones, we can conclude that the first co-clustering better captures the
interactions between objects and features of each space.
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30 30 60 18 34 52

(c)

Fig. 5 An example dataset (a) and two contingency tables associated with the star-
structured co-clusterings C1 (b) and C2 (c).

4 A stochastic local search approach for high-order star-structured
co-clustering

We formulate our co-clustering approach for star-structured data as
a multi-objective combinatorial optimization problem [18] which aims
at optimizing N + 1 objective functions based on Goodman-Kruskal’s
τ measure. Given a star-structured dataset D over O and F , the goal
of the star-structured data co-clustering is to find a set of partitions
Y = {Y 1, . . . , Y k, . . . , Y N} over the feature set F = {F 1, . . . , F k, . . . , FN},
and a partition X of the object set O such that

max
Y∪X∈P

τ(Y ∪X) =
(

τY 1|X , . . . , τY k|X , . . . , τY N |X , τX|Y

)

(7)

where P is the discrete set of candidate partitions and τ is a function from
P to Z, where Z = [0, 1]N+1 is the set of vectors in the objective space,
i.e., zi = τY i|X (see equation (5)), ∀i = 1, . . . , N and zN+1 = τX|Y (see
equation (4)).

To compare different candidate partitions of P , one can either use a
scalarization function, that maps Z into R (such as the weighted sum), or
one can employ a dominance-based approach, that induces a partial order
over P . As for combinatorial problem there may exist many truly optimal
partitions that are not optimal for any weighted sum scalarization function
[22], we consider in the following a Pareto-dominance approach. The goal
is to identify optimal partitions Popt ⊂ P , where optimality consists in the
fact that no solution in P \Popt is superior to any solution of Popt on every
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objective function. This set of solutions is known as Pareto optimal set or
non-dominated set. These concepts are formally defined below.

Definition 1 (Pareto-dominance) An objective vector z ∈ Z is said to
dominate an objective vector z′ ∈ Z iff ∀i ∈ {1, . . . , N + 1}, zi ≥ z′i and
∃j ∈ {1, . . . , N + 1}, such that zj > z′j . This relation is denoted z ≻ z′

hereafter.

Definition 2 (Non-dominated objective vector and Pareto opti-
mal solution) An objective vector z ∈ Z is said to be non-dominated iff
there does not exist another objective vector z′ ∈ Z such that z′ ≻ z.

A solution p ∈ P is said to be Pareto optimal iff its mapping in the
objective space (τ(p)) results in a non-dominated vector.

Thus, the star-structured data co-clustering problem is to seek for a
Pareto optimal solution of equation (7). As this problem is more difficult
than the co-clustering problem with fixed numbers of object and feature
clusters, which is known to be NP-hard [1], we propose, in subsection 4.1,
a Stochastic Local Search algorithm CoStar to solve it. This algorithm
searches for a near optimal solution given a local knowledge provided by
the definition of a neighborhood [25]. We demonstrate, in subsection 4.2,
that CoStar outputs a Pareto local optimum solution of the problem. In
subsection 4.3, we propose a way to evaluate a neighbor solution incremen-
tally. Finally subsection 4.4 gives the overall complexity of CoStar and of
its competitors.

4.1 Multiple feature space co-clustering algorithm

We build our algorithm on the basis of τCoClust [30], whose goal is to find
a partition X of objects and a partition Y of features such that Goodman-
Kruskal’s τX|Y and τY |X are maximized. The algorithm locally optimizes
the two coefficients by updating step by step the partitions. The basic up-
dating procedure consists in running through the neighborhood of each
partition and choose the partition that increases the most the measures.
This neighborhood is made of partitions where a peculiar element is moved
from one cluster to another. Let us first consider the improvement of par-
tition X . After randomly picking up a cluster and randomly picking up
an object in that cluster, the procedure assigns this object to the cluster
(possibly an empty one) that mostly increases τX|Y . In a following phase, it
considers the improvement of the features partition Y : it randomly picks up
a feature from a randomly obtained cluster and assigns this feature to the
cluster that mostly increases τY |X . Starting from the discrete partitions, the
algorithm alternatively updates the partitions X and Y until a convergence
criterion is satisfied. Unlike other co-clustering approaches, that require the
number of co-clusters as parameter, τCoClust is able to automatically de-
termine the most appropriate numbers of clusters for X and Y . This is due
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to two characteristics: (1) the τ coefficient has a defined upper limit that is
independent of the numbers of clusters (while other measures, such as the
loss in mutual information [11] have not) and thus enables comparison of
co-clusterings of different sizes, and (2) the updating procedure can create
or delete clusters at any time during the iterative process.

Let us now present algorithm CoStar as an extension of τCoClust
algorithm to multi-view co-clustering. CoStar is shown in Algorithm 1.
It takes in input the dataset D and alternatively optimizes the partition
of the objects, working on the random variable X , and each partition over
each feature set F k, working on the random variables Y k, until a number
of iterations Niter is reached.

Algorithm 1 CoStar(D,Niter)

1: Initialize Y 1, · · · , Y N , X with discrete partitions
2: i← 0
3: T ← ∅
4: for k = 1 to N do

5: T k ← ContingencyTable(X,Y k,Dk)
6: T ← T

⋃
T k

7: end for

8: while (i ≤ Niter) do

9: [X,T ]← OptimizeMultiObjectCluster(X, Y , T )
10: for k = 1 to N do

11: [Y k, T k]← OptimizeFeatureCluster(X, Y k, T k)
12: end for

13: i← i+ 1
14: end while

15: return Y 1, · · · , Y N ,X

CoStar first initializes the partitions Y 1, · · · , Y N and X with discrete
partitions (that is, partitions with a single element per cluster) and then
computes the contingency tables T k between the partition X and alter-
natively each partition Y k over the feature set F k. The function Con-

tingencyTable computes equation (6) (initialization step at lines 4-7).
Then, from line 8 to 14, it performs a stochastic local search method by al-
ternatively optimizing partition X (line 9) and each partition Y k (line 11).
The candidate partitions considered by the local search algorithm belong
to the neighborhood of Y ∪ X as defined in equation (8) page 19. Func-
tion OptimizeMultiObjectCluster substitutes the object partition X
for the partition in the neighborhood of X that mostly increases τX|Y (see

Algorithm 2). This measure takes into account all the partitions Y k ∈ Y
and their associated contingency tables T =

⋃

k T
k. Function Optimize-

FeatureCluster substitutes the feature partition Y k for the partition
in the neighborhood of Y k that mostly increases τY k|X (see Algorithm 4).
These operations are alternated and repeated until a stopping condition is
satisfied. This condition can be based on a convergence criterion of τ , but,
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for simplicity, we bound the number of iterations by Niter in the current
version of the algorithm.

Algorithm 2 OptimizeMultiObjectCluster(X,Y, T )
1: Randomly choose a cluster xb ∈ X

2: Randomly choose an object o ∈ xb

3: ND ← {xb}
4: maxτX|Y

← τX|Y (T )

5: for all xe ∈ {X ∪ ∅} s.t. xb 6= xe do

6: [X′, T ′]← Update(X, T, o, xb, xe)
7: if (τX′|Y(T ′) > maxτX|Y

) then

8: maxτX|Y
← τX′|Y(T ′)

9: ND ← {xe}
10: else

11: if (τX′|Y (T ′) = maxτX|Y
) then

12: ND ← ND ∪ {xe}
13: end if

14: end if

15: end for

16: maxX ,maxT ← FindParetoLocalOptimumObject(ND,X, T, xb, o)
17: return maxX ,maxT

Algorithm 3 FindParetoLocalOptimumObject(ND, X, T, xb, o)

1: while Card(ND) > 1 do

2: Take xi, xj ∈ ND s.t. xi 6= xj

3: nb+xi
← 0

4: nb+xj
← 0

5: [Xi, Ti]← Update(X, T, o, xb, xi)
6: [Xj , Tj ]← Update(X, T, o, xb, xj)
7: for k = 1 to N do

8: if (τY k|Xi
(Ti) > τY k|Xj

(Tj)) then

9: nb+xi
← nb+xi

+ 1
10: else

11: if (τY k|Xi
(Ti) < τY k|Xj

(Tj)) then

12: nb+xj
← nb+xj

+ 1
13: end if

14: end if

15: end for

16: if nb+xi
≥ nb+xj

then

17: ND ← ND \ {xj}
18: else

19: ND ← ND \ {xi}
20: end if

21: end while

22: return [Xi, Ti]← Update(X,T, o, xb, xi), with xi ∈ ND
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The stochastic local optimization of the partition X works as follows
(see Algorithm 2). The algorithm starts by randomly picking up a cluster
xb of X and an element o of xb (lines 1 and 2). Then, all the partitions of
the neighborhood of X , constituted by the partitions where o is moved to
another cluster of X (possibly the empty one), are considered. To retrieve
the partition maxX that increases at most τX|Y among the partitions in
the neighborhood of X and that is not dominated by any partition of this
neighborhood, the algorithm uses a queue, ND, that gathers the possi-
bly non-dominated partitions of this neighborhood. Each partition of the
neighborhood of X is identified by the cluster to which o belongs. Thus,
the queue ND is initialized with xb that represents the partition X (line
3). maxτX|Y

is initialized with the current τX|Y value. The loop from line
5 to 15 considers all the neighboring partitions of X (xe being the cluster
where o is moved to, xe ∈ X ∪∅). The function Update (line 6) is called to
modify the contingency tables T =

⋃

k T
k and the partition X with respect

to the new cluster of o. To perform this step, it first moves the element
o from the cluster xb to cluster xe and then performs one or more of the
following three actions:

1. if cluster xb is empty after removing o, it deletes cluster xb and updates
the contingency tables T ′ consequently;

2. if cluster xe is the empty cluster, it adds a new cluster to the partition
and updates the contingency tables T ′ consequently;

3. if the two above mentioned cases do not apply, it simply updates the
content of T ′ by modifying xb and xe rows.

Each modification of T ′ consists actually in modifying the N contingency
tables T k, k = 1, . . . , N .

From line 7 to 14, potentially non-dominated partitions of the neigh-
borhood of X are stored in ND. τX′|Y is evaluated using the contingency
tables T ′. If it is strictly greater than maxτX|Y

then, given a partition of
ND, either X ′ dominates it or neither of the partitions dominates the other
(see proof of theorem 1 page 19). Therefore, ND and maxτX|Y

are reinitial-
ized respectively with X ′ and τX′|Y . If τX′|Y is equal to maxτX|Y

then xe

is added to the queue ND. Considering X ′ and any partition X of ND, all
the Pareto dominance relation may exist between these two partitions: X ′

may dominate X , X ′ may be dominated by X or neither may dominate the
other. Therefore, a partition that is not dominated by any partition of ND
will be identified by the function FindParetoLocalOptimumObject.

When all the neighborhood has been explored, the function FindPare-

toLocalOptimumObject (see Algorithm 3) is called. It processes the
queue ND in order to retrieve a partition non dominated by any other par-
tition of ND. To that end, the function compares two partitions Xi and Xj

of ND by counting in nb+xi
the number of times τY k|Xi

is strictly greater
than τY k|Xj

, and in nb+xj
the number of times τY k|Xj

is strictly greater than

τY k|Xi
, for k = 1, . . . , N . If nb+xi

≥ nb+xj
then Xj is either dominated by Xi

or neither Xi nor Xj dominate the other (see proof of theorem 1). Thus,
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the function removes Xj from ND and continues until there is only one
partition in ND.

Algorithm 4 OptimizeFeatureCluster(X,Y k, T k)

1: Randomly choose a cluster yb ∈ Y k

2: Randomly choose a feature f ∈ yb
3: ND ← {yb}
4: maxτ

Y k|X
← τY k|X(T k)

5: for all ye ∈ {Y k ∪ ∅} s.t. yb 6= ye do

6: [Y k′, T k′]← Update(Y k, T k, f, yb, ye)
7: if (τY k′|X(T k′) > maxτ

Y k|X
) then

8: maxτ
Y k|X

← τY k′|X(T k′)

9: ND ← {ye}
10: else

11: if (τY k′|X(T k′) = maxτ
Y k|X

) then

12: ND ← ND ∪ {ye}
13: end if

14: end if

15: end for

16: maxY k ,maxTk ← FindParetoLocalOptimumFeature(ND, Y k, T k, yb, f)
17: return maxY k ,maxTk

Algorithms 4 and 5 optimize partition Y k and work in a similar way than
Algorithms 2 and 3. However, it is simpler because (1) modifying partition
Y k only impacts the contingency table T k′, and (2), in Algorithm 5, the
comparison of two partitions of the queue ND is only done on the basis of
τX|Y value, the others measures (τY k|X , k = 1, . . .N) being equal.

4.2 Local convergence of CoStar

Considering iterated local search algorithms for multi-objective optimiza-
tion requires to extend the usual definitions of local optimum to that con-
text [26]. Let N : P → 2P be a neighborhood structure that associates to
every solution p ∈ P a set of neighboring solutions N (p) ⊆ P . We define a
Pareto local optimum with respect to N as follows.

Definition 3 (Pareto local optimum) A solution p ∈ P is a Pareto
local optimum with respect to the set of solutions N (p) that constitutes the
neighborhood of p, if and only if there is no r ∈ N (p) such that τ(r) ≻ τ(p)
(see equation (7)).

In algorithm CoStar, the neighborhood function is defined as follows.
Let p = Y ∪X be an element of P . W i denotes either the partition Y i, if
i ∈ {1, . . . , N}, or the partition X , if i = N + 1. Let wb be a cluster of W i

and let u be an element of wb. The neighborhood N of p is determined by
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Algorithm 5 FindParetoLocalOptimumFeature(ND, Y k, T k, yb, f)

1: while Card(ND) > 1 do

2: Take yi, yj ∈ ND s.t. yi 6= yj

3: nb+yi ← 0

4: nb+yj ← 0

5: [Y k
i , T k

i ]← Update(Y k, T k, f, yb, yi)

6: [Xk
j , T

k
j ]← Update(Y k, T k, f, yb, yj)

7: Yi ← Y \ Y k ∪ Y k
i

8: Yj ← Y \ Y k ∪ Y k
j

9: if (τX|Yi
(T k

i ) > τX|Yj
(T k

j )) then

10: nb+yi ← nb+yi + 1
11: else

12: if (τX|Yi
(T k

i ) < τX|Yj
(T k

j )) then

13: nb+yj ← nb+yj + 1
14: end if

15: end if

16: if nb+yi ≥ nb+yj then

17: ND ← ND \ {yj}
18: else

19: ND ← ND \ {yi}
20: end if

21: end while

22: return [Y k
i , T k

i ]← Update(Y k, T k, f, yb, yi), with yi ∈ ND

the movement of the element u from the cluster wb to the cluster we in W i.
It is given by the substitution in p of W i by W i′:

N(i,wb,u)(Y ∪X) = {Y ∪X \W i ∪W i′} (8)

with W i′ = W i \ wb \ we ∪ {wb \ {u}} ∪ {we ∪ {u}} and we ∈ {W i ∪ ∅}.

Theorem 1 The iterated local search algorithm CoStar terminates in a

finite number of steps and outputs a Pareto local optimum with respect to

N(i,wb,u).

Proof We consider a partition W i ∈ {Y ∪X}. Algorithm CoStar (in func-
tions OptimizeMultiObjectCluster and OptimizeFeatureClus-

ter) randomly picks-up a cluster wb from partition W i and an element u ∈
wb. Then, it systematically explores the neighborhood N(i,wb,u)(Y∪X) and
retrieves the set of the corresponding neighboring solutions (co-clustering)
ND defined by:

ND = {s ∈ N(i,wb,u)(Y ∪X) | ∀t ∈ N(i,wb,u)(Y ∪X), zi(s) ≥ zi(t)}

Considering a solution s ∈ ND and a solution r ∈ N(i,wb,u)(Y ∪X), we
have zi(s) ≥ zi(r) and the following situations can occur:

1. If zi(s) > zi(r) and ∀k ∈ {1, . . . , N + 1}, k 6= i, zk(s) ≥ zk(r), then s
dominates r: s ≻ r.
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2. If zi(s) > zi(r) and ∃k ∈ {1, · · · , N +1}, k 6= i, such that zk(s) < zk(r),
then, from Definition 1, s 6≻ r and r 6≻ s.

In both cases 1 and 2, r does not belong to ND since zi(s) >
zi(r) (see functions OptimizeMultiObjectCluster or Optimize-

FeatureCluster from lines 7 to 9) and s is a Pareto local optimum
with respect to r.

3. If zi(s) = zi(r) and ∀k ∈ {1, · · · , N + 1}, k 6= i, zk(s) ≥ zk(r), then,
either s is equivalent to r (z(s) = z(r)) or s dominates r: s � r.

Therefore, s is a Pareto local optimum with respect to r. From Algo-
rithms OptimizeMultiObjectCluster or OptimizeFeatureClus-

ter, both r and s belong to ND. When partitions r and s are com-
pared in Algorithms FindParetoLocalOptimumObject or Find-

ParetoLocalOptimumFeature, nb+s ≥ nb+r and the algorithms
delete r from ND.

4. If zi(s) = zi(r) and ∃k ∈ {1, · · · , N + 1}, k 6= i, such that zk(s) < zk(r)
and ∃ℓ ∈ {1, · · · , N + 1}, ℓ 6= i 6= k, such that zℓ(s) > zℓ(r), then s 6≻ r
and r 6≻ s.

Both partitions r and s are non-dominated from each other and
are Pareto local optima. They both belong to ND, and Algorithms
FindParetoLocalOptimumObject or FindParetoLocalOpti-

mumFeature will remove the partition that is strictly greater than
the other on the smallest number of objective functions zk.

5. If zi(s) = zi(r) and ∀k ∈ {1, · · · , N + 1}, zk(s) ≤ zk(r), and ∃ℓ ∈
{1, · · · , N + 1}, ℓ 6= i, such that zℓ(s) < zℓ(r), then r ≻ s.

Therefore, r is a Pareto local optimum with respect to s. Both s and r
belong to ND and Algorithms FindParetoLocalOptimumObject

or FindParetoLocalOptimumFeature will identify that s is domi-
nated by r and will remove s from ND:
(a) If i = N + 1, the set ND is processed by the function FindPare-

toLocalOptimumObject, and s is removed from ND since

N
∑

k=1

δzk(r)>zk(s) >

N
∑

k=1

δzk(s)>zk(r) with δC =

{

1 if C = True
0 otherwise

(b) If i 6= N + 1, the set ND is processed by the function FindPare-

toLocalOptimumFeature, and s is removed from ND since

zN+1(r) > zN+1(s)

Indeed, in that case, zk(r) = zk(s), ∀k = 1, · · · , N , since the modi-
fication of Y i does not change τY k|X , ∀k 6= i.
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We can conclude that at the end of each call of OptimizeMultiObject-

Cluster and OptimizeFeatureCluster, the output co-clustering is a
Pareto local optimum with respect to the considered neighborhood. Finally,
all the iterations are bounded and thus CoStar terminates in a finite num-
ber of steps.

4.3 Optimized computation of τY k|X and τX|Y

Algorithms 2 and 4 modify, at each iteration, partitions X and Y k, by
evaluating functions τX|Y and τY k|X respectively. Algorithms 3 and 5 find

a non-dominated partition X and Y k, among a set of candidates, based
on the computation of τY k|X and τX|Y respectively. The computational
complexity of these functions is in O(m · N ) and O(m · nk) where N =
∑

k nk, |Y k| = nk and |X | = m. In the worst case, these complexities are
in O(|O| ·

∑

k |F
k|) and O(|O| · |F k|) where |O| represents the cardinality

of the objects dimension. Moreover, during each iteration of algorithms 2
and 4, these operations are performed for each cluster (including the empty
cluster). Thus the overall complexities are in O(m ·m ·N ) and O(m ·nk ·nk).

When moving a single element from a cluster to another, a large part of
the computation of these functions can be saved, since a large part in the τ
formula remains the same. To take advantage of this point, we only compute
the variations of τY k|X and τX|Y from one step to another as explained in
the following sections 4.3.1 and 4.3.2. We evaluate the variation of each
measure when the partitionX is modified as well as it is Y k that is changed.

4.3.1 Computing the variation of τY k|X

When partition Y k is modified: Let’s first consider the variation of τY k|X

when one element f is moved from cluster yb to cluster ye of Y k. This
variation is the result of some changes on the co-occurrence table T k. Mov-
ing f induces, for each cluster of objects xi, the transfer of a quantity
λi from tkib to tkie of T k. The overall vector of transferred quantities is
called λ = [λ1, . . . , λm]. In the following, we call tkij the elements of the

co-occurrence table T k before the update operation, and skij the same ele-

ments after the operation. We call T k and Sk the two co-occurrence tables,
and τY k|X(T k), τY k|X(Sk) the values of τY k|X computed over T k and Sk.

The following equations hold for tkij and skij :

skij = tkij , if j 6= b, j 6= e

skib = tkib − λi

skie = tkie + λi
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Therefore, the variation of τY k|X is:

∆τ
Y k|X

(T k, f, yb, ye) = τY k|X(T k)− τY k|X(Sk)

=

∑

i

∑

j

(tkij)
2

tki.t
k
..

−
∑

j

(tk.j)
2

(tk..)
2

1−
∑

j

(tk.j)
2

(tk..)
2

−

∑

i

∑

j

(skij)
2

ski.s
k
..

−
∑

j

(sk.j)
2

(sk..)
2

1−
∑

j

(sk.j)
2

(sk..)
2

where tki. =
∑

j t
k
ij , t

k
.j =

∑

i t
k
ij and tk.. =

∑

i

∑

j t
k
ij . Setting λ =

∑

i λi,

Ω = 1 −
∑

j

(tk.j)
2

(tk..)
2 and Γ = 1 −

∑

i

∑

j

(tkij)
2

tki.t
k
..

, we obtain the following

updating formula:

∆τ
Y k|X

(T k, f, yb, ye) =
Ω
(

∑

i
2λi

tki.t
k
..

[tkib − tkie − λi]
)

+ Γ
(

2λ
(tk..)

2 [t
k
.e − tk.b + λ]

)

Ω2 − 2
(tk..)

2λΩ(tk.e − tk.b + λ)

Thanks to this approach, instead of computing τY k|X at lines 7
and 11 of Algorithm 4 with a complexity in O(m · nk), we compute
∆τ

Y k|X
(T k, f, yb, ye) once at line 7 with a complexity in O(m) (that is

in O(|O|) in the worst case with the discrete partition X) and test if it is
strictly positive in the first if condition or null in the second one. Comput-
ing Γ is in O(m ·nk) and Ω in O(m) and is done only once at the beginning
of Algorithm 4.

When partition X is modified: Let’s now consider the variation of τY k|X

when one element o is moved from cluster xb to cluster xe of partition
X . This operation induces, for each cluster of features ykj , the transfer of a

quantity µk
j from tkbj to t

k
ej of T

k. The overall vector of transferred quantities

is called µk = [µk
1 , . . . , µ

k
nk
]. We call tkij the elements of the kth contingency

table T k before the update operation, and skij the same elements after the

operation. τY k|X(T k) and τY k|X(Sk) are the values of τY k|X computed over

T k and Sk. The following equations hold for tkij and skij :

skij = tkij , if i 6= b, i 6= e
skbj = tkbj − µk

j

skej = tkej + µk
j

Therefore, the variation of τY k|X is equal to:

∆τ
Y k|X

(T k, o, xb, xe) = τY k|X(T k)− τY k|X(Sk)

=

∑

i

∑

j

(tkij)
2

tki.t
k
..

−
∑

j

(tk.j)
2

(tk..)
2

1−
∑

j

(tk.j)
2

(tk..)
2

−

∑

i

∑

j

(skij)
2

ski.s
k
..

−
∑

j

(sk.j)
2

(sk..)
2

1−
∑

j

(sk.j)
2

(sk..)
2
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where tki. =
∑

j t
k
ij , t

k
.j =

∑

i t
k
ij and tk.. =

∑

i

∑

j t
k
ij . Setting µk

. =
∑

j µ
k
j ,

Ω = 1−
∑

j

(tk.j)
2

(tk..)
2 , we obtain the following updating formula:

∆τ
Y k|X

(T k, o, xb, xe) =
1

Ω

∑

j

(

(tkej)
2

tke.t
k
..

−
(tkej + µk

j )
2

(tke. + µk
. )t

k
..

+
(tkbj)

2

tkb.t
k
..

−
(tkbj − µk

j )
2

(tkb. − µk
. )t

k
..

)

Thanks to this approach, instead of computing τY k|X at lines 8
and 11 of Algorithm 3 with a complexity in O(m · nk), we compute
∆τ

Y k|X
(T k, o, xb, xe) once at line 8 with a complexity in O(nk) (that is

in O(|F k|) in the worst case with the discrete partition F k) and test if it is
strictly positive in the first if condition or strictly negative in the second
one. Computing Ω is in O(nk) and is done only once at the beginning of
Algorithm 3.

4.3.2 Computing the variation of τX|Y

When partition X is modified: Let’s now consider the variation of τX|Y

when one object o is moved from the cluster xb to the cluster xe of partition
X . This operation induces, for each cluster of features ykj , the transfer of a

quantity µk
j from tkbj to t

k
ej of T

k. The overall vector of transferred quantities

is called µ = [µ1
1, . . . , µ

1
n1
, . . . , µN

1 , . . . , µN
nN

].
We call tkij the elements of the kth contingency table T k before the

update operation, and skij the same elements after the operation. We call

T = {T 1, . . . , TN} and S = {S1, . . . , SN} the two sets of contingency
tables, and τX|Y(T ) and τX|Y(S) the values of τX|Y computed over T and

S. The following equations hold for tkij and skij :

skij = tkij , if i 6= b, i 6= e
skbj = tkbj − µk

j

skej = tkej + µk
j

Therefore, the variation of τX|Y is:

∆τX|Y
(T , o, xb, xe) = τX|Y(T )− τX|Y(S) =

∑

k

∑

i

∑

j

(tkij)
2

tk..×tk.j
−
∑

k

∑

i

(tki.)
2

(tk..)
2

N −
∑

k

∑

i

(tki.)
2

(tk..)
2

−

∑

k

∑

i

∑

j

(skij)
2

sk..×sk.j
−
∑

k

∑

i

(ski.)
2

(sk..)
2

N −
∑

k

∑

i

(ski.)
2

(sk..)
2

Setting µk
. =

∑

j µ
k
j , Ω = N−

∑

k

∑

i

(tki.)
2

(tk..)
2 , and Γ = N−

∑

k

∑

i

∑

j

(tkij)
2

tk..×tk.j
,

we obtain the following updating formula:

∆τX|Y
(T , o, xb, xe) =

=
Ω

(

∑

k

∑

j

2µk
j

tk..×tk
.j

[tkbj−tkej−µk
j ]

)

+Γ

(

∑

k

2µk
.

(tk..)
2 [tke.−tkb.+µk

. ]

)

Ω2−Ω
∑

k

2µk
.

(tk..)
2 (tke.−tk

b.
+µk

. )
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Thanks to this approach, instead of computing τX|Y at lines 7 and 11 of
Algorithm 2 with a complexity in O(m ·N ), we compute ∆τX|Y

(T , o, xb, xe)

once at line 7 with a complexity in O(N ) (that is in O(
∑

k |F
k|) in the worst

case with the discrete partitions Y k) and test if it is strictly positive in the
first if condition or null in the second one. Computing Γ is in O(m · N )
and Ω in O(m ·N) and is done only once at the beginning of Algorithm 2.

When partition Y k is modified: Let’s now consider the variation of τX|Y

when one feature f is moved from the cluster yb to the cluster ye of partition
Y k. This variation is the result of some changes on the co-occurrence table
T k. Moving f induces, for each cluster of objects xi, the transfer of a quan-
tity λi from tkib to tkie of T k, the other contingency tables been unchanged.
The overall vector of transferred quantities is called λ = [λ1, . . . , λm]. In
the following, we call tkij the elements of the co-occurrence table T k before

the update operation, and skij the same elements after the operation. We

call T = {T 1, . . . , TN} and S = {S1, . . . , SN} the two sets of contingency
tables, and τX|Y(T ) and τX|Y(S) the values of τX|Y computed over T and
S.

The following equations hold for tkij and skij :

sℓij = tℓij , if ℓ 6= k or ℓ = k, j 6= b, j 6= e
skib = tkib − λi

skie = tkie + λi

Therefore, the variation of τX|Y is:

∆τX|Y
(T , f, yb, ye) = τX|Y(T )− τX|Y(S) =

∑

k

∑

i

∑

j

(tkij)
2

tk..×tk.j
−
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k

∑

i

(tki.)
2

(tk..)
2

N −
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k

∑

i
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2

(tk..)
2

−

∑

k

∑

i

∑

j

(skij)
2

sk..×sk.j
−
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k

∑

i

(ski.)
2

(sk..)
2

N −
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k

∑

i

(ski.)
2

(sk..)
2

Setting Ω = N −
∑

k

∑

i

(tki.)
2

(tk..)
2 and λ =

∑

i λi, we obtain the following

updating formula:

∆τX|Y
(T , f, yb, ye) =

1

Ω

∑

i

(

(tkie)
2

tk.et
k
..

−
(tkie + λi)

2

(tk.e + λ)tk..
+

(tkib)
2

tk.bt
k
..

−
(tkib − λi)

2

(tk.b − λ)tk..

)

Thanks to this approach, instead of computing τX|Y at lines 9 and 12 of
Algorithm 5 with a complexity in O(m ·N ), we compute ∆τX|Y

(T , f, yb, ye)
once at line 9 with a complexity in O(m) (that is in O(|O|) in the worst
case with the discrete partitions X) and test if it is strictly positive in the
first if condition or strictly negative in the second one. Computing Ω is in
O(m ·N) and is done only once at the beginning of Algorithm 5.
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4.4 Overall complexity

In this subsection, we evaluate the overall complexity of CoStar and
compare it to the complexity of competitors used in Section 5 (SRC [23],
NMF [6] and ComRaf [3]).

CoStar starts by computing N contingency tables T k. This operation
takes O(m · nk) time for each feature space F k, k = 1 · · ·N . Using the
notation introduced beforehand, computing all the contingency tables takes
O(m·N ). The core of the algorithm is the iterative procedure which updates
the object partition and the N feature partitions.

Algorithm 2 has a complexity in O(m·N ) for computing Γ and O(m·N)
for computing Ω; the loop takes time O(m · N ) and Algorithm 3 takes
O(m · nk) in the worst case (|ND| = m). Therefore the whole complexity
of the function is in O(m · N ).

Concerning Algorithm 4, computing Γ and Ω takes time O(m ·nk) and
O(m) respectively; the loop takes O(m · nk) and Algorithm 5 takes time
O(m · nk) in the worst case (|ND| = nk). The overall complexity of the
function is in O(m · nk).

Let I denote the total number of iterations. The overall time complexity
of CoStar is O(I · m · N ), i.e., it is linear in the number of objects and
features.

We now consider the theoretical complexity of the competitors, as re-
ported by the study [7]. We use again I as the number of iterations, N as
the number of feature spaces, andm as the number of objects, while n is the
maximum feature dimension for all feature spaces and k is the maximum
between the number of object clusters and the number of feature clusters.
Hence, SRC has a complexity in O(I ·N ·(max(m,n)3+kmn)) and ComRaf

has a complexity in O(I ·N ·max(m3, n3)). Notice that the complexity of
these two algorithms is cubic in the biggest of the dimensions of objects
and all the feature spaces. Complexity of NMF, instead, is similar to our
method’s: this approach takes time O(I ·N ·k ·m ·n). However, this method
requires to define the number of clusters as a parameter.

5 Experiments

In this section, we empirically show the effectiveness of our algorithm CoStar

in comparison with three state-of-the-art algorithms that deal with star-struc-
tured data. All of them are non deterministic, have been presented in recent
years and have been summarized in Section 2. The first competitor is Comraf

and it is presented in [3]. The second competitor is SRC and is described in
[23]. The third one is NMF and is introduced in [6]. In particular, for obtaining
all the experiment results of the competitors, we took care to use the same
pre- and post-processing methods that have been adopted and described in
the original papers. For instance, since the second approach uses the k-means

algorithm as a post-processing method, we did the same.
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All these methods require as input, at least, the number of row clusters. For
any given dataset, we set this parameter equal to the number of preexisting
classes. To validate our proposal, we use three different groups of datasets
(details are given further in the text):

1. a publicly available synthetic dataset (BBC and BBCSport) for standard
analysis,

2. three document-word-category datasets as illustrative cases of imbalanced
problems,

3. an image-word-blob dataset (COREL Benchmark) as illustrative cases of
a balanced problem.

As any of these methods (the three competitors and CoStar) is non determin-
istic, for any given dataset, we run each algorithm 100 times and compute the
average and standard deviation of the evaluation measures used (presented be-
low). Since CoStar does not require to specify the number of clusters, we also
study the distribution of the number of row clusters over the 100 trials for this
algorithm. The number of iterations for CoStar was set to 10×max(m,N )
(m and N being the number of objects and features respectively). As further
information, CoStar is written in C++, Comraf in C, SRC in R, and NMF

in MATLAB. Finally, all the experiments have been performed on a 2.6GHz
Opteron processor PC, with 4GB RAM, running Linux.

5.1 External evaluation measures

We evaluate the performance of CoStar and the competitors using two ex-
ternal validation indices. We denote by C = {C1 . . . CJ} the partition built
by the clustering algorithm on objects, and by P = {P1 . . . PI} the partition
inferred by the original classification. J and I are respectively the number of
clusters |C| and the number of classes |P|. We denote by n the total number
of objects.

The first index is the Normalized Mutual Information (NMI). NMI provides
an information that is impartial with respect to the number of clusters [32].
It measures how clustering results share the information with the true class
assignment. NMI is computed as the average mutual information between
every pair of clusters and classes:

NMI =

∑I
i=1

∑J
j=1 xij log

nxij

xixj
√

∑I

i=1 xi log
xi

n

∑J

j=1 xj log
xj

n

where xij is the cardinality of the set of objects that belong to cluster Cj and
class Pi; xj is the number of objects in cluster Cj ; xi is the number of objects
in class Pi. Its values range between 0 and 1.

The second measure is the Adjusted Rand index [16]. Let a be the number
of object pairs belonging to the same cluster in C and to the same class in P.
This metric captures the deviation of a from its expected value corresponding
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to the hypothetical value of a obtained when C and P are two random inde-
pendent partitions. The expected value of a denoted by E[a] is computed as
follows:

E[a] =
π(C) · π(P )

n(n− 1)/2

where π(C) and π(P ) denote respectively the number of object pairs that
belong to the same cluster in C and to the same class in P. The maximum
value for a is defined as:

max(a) =
1

2
(π(C) + π(P ))

The agreement between C and P can be estimated by the adjusted rand index
as follows:

ARI(C,P) =
a− E[a]

max(a)− E[a]

Notice that this index can take negative values, and when ARI(C,P) = 1, we
have identical partitions.

5.2 Datasets

Here, we describe in detail the datasets we employed for our experimental
analysis. The first two datasets are multi-view text data from news corpora,
downloaded from http://mlg.ucd.ie/datasets/segment.html: BBC and
BBCSport. The multiple views were created by splitting the text corpora into
related segments. Each segment is constituted by consecutive textual para-
graphs as described in the cited website. Furthermore, as explained by the
web site, the standard textual pre-processing steps have been performed on
the texts: stemming, stop-words removal and removal of words occurring very
few times (lower than 3 times). The BBCSport dataset consists in 2 views
(bbcsport2), while the BBC dataset is available both with 2 and 4 views (bbc2
and bbc4). For each collection we selected only the documents that contain
at least one segment for each view. The characteristics of the datasets are
reported in Table 6. Object classes are provided with the datasets and consist
in annotated topic labels provided for the news articles (with values such as
business, entertainment, politics, sport and tech).

Also the second group of datasets comes from a textual domain and is
described in [12]. In particular, in our experiments we consider combinations
of the following datasets:

– oh15 : is a sample from OHSUMED dataset. OHSUMED is a clinically-
oriented MEDLINE subset of abstracts or titles from 270 medical journals
over a five-year period (1987-1991).

– re0 : is a sample from Reuters-21578 dataset. This dataset is widely used
as test collection for text categorization research.

– wap: is a sample from the WebACE Project, consisting on web pages listed
in the subject hierarchy of Yahoo!.
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Name # obj. # obj. classes View # features

bbc2 2012 5
1st view 6838
2nd view 6790

bbcsport2 544 5
1st view 3183
2st view 3203

bbc4 685 5

1st view 4659
2nd view 4633
3rd view 4665
4th view 4684

Fig. 6 Synthetic dataset characteristics.

Name Datasets # terms # cat. # obj. # classes Classes

T1
oh15

3987 2 833 5
{Aden-Diph, Cell-Mov, Aluminium}

re0 {cpi, money }

T2
oh15

3197 2 461 5
{Blood-Coag, Enzyme-Act, Staph-Inf}

re0 {jobs, reserves}

T3
wap

8282 3 2129 9
{ Film, Television, Health}

oh15 {Aden-Diph, Cell-Mov, Enzyme-Act}
re0 { interest, trade, money}

Fig. 7 Text dataset characteristics.

The first view consists in sets of terms contained in the documents, also avail-
able on the Weka Website1. Also for this data, we performed the same standard
pre-processing used for the news corpora: stemming, stop-words removal and
removal of words occurring less than 3 times. As a consequence of the pre-
processing, we obtained a document-word matrix.

For the second view, we consider some categorization of the documents. To
this purpose, we used the semi-supervised technique presented in [6]. Each fea-
ture category of this view corresponds to a category provided by the document-
set and depends on the dataset the document belongs to. Then, the value of
each feature for each document is compiled as the probability that the doc-
ument belongs to the related category: it is computed as the portion of the
whole vocabulary associated to a specific category which is also present in a
specific document. Each element of the document-category matrix has values
in the range [0, 1]. The details of these datasets are reported in Figure 7 and
in Figure 8. In particular, we generated three new datasets of increasing diffi-
culty (named T1, T2 and T3) in which we created the concept of super-class
by injecting an increased separation only between some of the classes. The
aim is to see if the co-clustering is able to recognize the concept of super-class.
We did the following: we took the object classes from the three datasets (
OHSUMED, re0 and wap) and mixed them as the information in Figure 7
suggests. For instance, for the generation of dataset T1 we placed the first
three classes of objects indicated in the last column of Figure 7 (Aden-Diph,

Cell-Mov, Aluminium) from the original dataset OHSUMED (indicated in Fig-
ure 7 by symbol oh15) while the remaining 2 classes (cpi, money) have been
taken from Reuters-21578 (indicated in Figure by re0). Analogously for the
remaining datasets T2 and T3. Figure 8 reports instead the number of objects
for each document class.

1 http://www.cs.waikato.ac.nz/ml/weka/
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Class Name # obj. Class Name # obj.

Aden-Diph 56 Cpi 60
Cell-Mov 106 Money 608
Aluminium 53 Interest 219
Blood-Coag 69 Trade 319
Enzyme-Act 154 Film 196
Staph-Inf 157 Television 130

Jobs 39 Health 341
Reserves 42

Fig. 8 Classes distributions for text datasets.

Name # words # obj. # classes Classes

I1 114 630 7
sunsets, tigers, train,

swimmers, formula One car,
skyscrapers, war airplanes

I2 116 541 6
bears, deers, horses,
cliffs, birds, bridges

I3 170 1171 13
sunsets, tigers, train, swimmers,

formula One car, skyscrapers, war airplanes, bridges,
bears, deers, horses, cliffs, birds,

Fig. 9 Image dataset characteristics.

The last group of datasets are extracted from the Corel Benchmark2. This
benchmark has already been used in [3], and we use a similar pre-processing.
It consists of 5000 images from 50 Corel Stock Photo CDs. Each CD contains
100 images on the same topic. The original dataset has 4500 training images
and 500 test images. Here, we consider only the 4500 training images for our
experiments. Every image has a caption and an annotation. The caption is a
brief description of the scene and the annotation is a list of objects (entities, or
segments) that appear in the image. On overall, 371 words and 42379 entities
are used to describe the collection. We built two different views: the first view
is based on the caption words, the second view is based on blobs. A blob is a
portion of the image in which a user has recognized a particular entity. It is
similar to a concept. In order to obtain blobs, we clustered (with a k-means

algorithm) all the entities into 3000 groups (blobs). Each image is mapped
onto the set of blobs or entities represented in the image itself. This model
leads to a representation analogous to the bag-of-words model (BOW) often
used in text processing. For our experiments, we built three different datasets
(details are reported in Figure 9). Each of the generated dataset has balanced
classes represented by an average of 90 objects.

5.3 Results and discussion

We now analyze in detail the different aspects of our experimental evaluation.
First, we compare the behavior of our algorithm to the three competitors. Sec-
ond, we assess the significance of the results statistically. Third, we study the
variability of the number of detected clusters. Then, we perform an in-depth
qualitative analysis of the specific results. Finally, we provide a scalability
study.

2 http://kobus.ca/research/data/eccv_2002

Author-produced version of the article published in Data Mining and Knowledge Discovery, 2013, 26(2), 217-254. 
The original publication is available at http://www.springer.com 
DOI :  10.1007/s10618-012-0248-z

http://kobus.ca/research/data/eccv_2002


30

CoStar Comraf SRC NMF

bbc2 0.68 ± 0.02 0.58 ± 0.04 0.31 ± 0.11 0.5 ± 0.04
bbcsport2 0.69 ± 0.06 0.09 ± 0.05 0.24 ± 0 0.57 ± 0.01
bbc4 0.68 ± 0.03 0.41 ± 0.03 0.33 ± 0.04 0.45 ± 0.0

I1 0.88 ± 0.04 0.85 ± 0.05 0.80 ± 0.11 0.86 ± 0.06
I2 0.75 ± 0.04 0.66 ± 0.05 0.61 ± 0.09 0.74 ± 0.04
I3 0.76 ± 0.03 0.75 ± 0.04 0.61 ± 0.11 0.73 ± 0.06

T1 0.72 ± 0 0.50 ± 0.03 0.23 ± 0.05 0.49 ± 0.01
T2 0.73 ± 0.1 0.35 ± 0.03 0.33 ± 0.08 0.58 ± 0.02
T3 0.71 ± 0.02 0.66 ± 0 0.55 ± 0.06 0.63 ± 0.02

Fig. 10 Normalized Mutual Information results.

CoStar Comraf SRC NMF

bbc2 0.67 ± 0.03 0.42 ± 0.05 0.18 ± 0.08 0.48 ± 0.06
bbcsport2 0.58 ± 0.14 0.23 ± 0.04 0.14 ± 0.09 0.56 ± 0.02
bbc4 0.56 ± 0.2 0.34 ± 0.05 0.16 ± 0.06 0.41 ± 0.0

I1 0.83 ± 0.09 0.80 ± 0.08 0.69 ± 0.11 0.79 ± 0.1
I2 0.72 ± 0.07 0.55 ± 0.06 0.51 ± 0.09 0.67 ± 0.07
I3 0.50 ± 0.11 0.62 ± 0.06 0.43 ± 0.13 0.61 ± 0.09

T1 0.73 ± 0 0.23 ± 0.05 0.09 ± 0.09 0.23 ± 0.02
T2 0.68 ± 0 0.19 ± 0.04 0.18± 0.09 0.48 ± 0.01
T3 0.44 ± 0.02 0.42 ± 0.03 0.36 ± 0.08 0.44 ± 0.04

Fig. 11 Adjusted Rand Index results.

5.3.1 CoStar against competitors

In Figure 10 and 11, we report the average and standard deviation of the
performance indexes for each dataset and each clustering approach. We can
observe that CoStar outperforms all other approaches on NMI index and
achieves the best results on all the datasets except I3 when considering the
ARI index. We recall that CoStar does not require any parameter. Despite
this, it finds always high-quality partitions, while the other approaches do not
take advantage of the additional information of the correct number of clusters.

Notice that CoStar always outperforms SRC. On the other hand, Comraf

achieves comparable results over the Images datasets. This is not surprising,
since Comraf is suited for this specific application domain. But, when apply-
ing Comraf on the text datasets, it returns very poor results regarding both
measures. NMF performs better than Comraf on text data, and has similar
results on Corel Benchmarks.

5.3.2 Statistical significance of the results

To assess the statistical quality of our approach we use the Friedman statistic
and the Nemenyi test [10]. These techniques are usually employed to evaluate
the statistical relevance of results of different classifiers over multiple datasets.
We briefly summarize the Friedman test:
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1. the performance of each method (in terms of a given evaluation measure
such as ARI or NMI) is determined on each dataset;

2. the methods are ranked for each dataset according to these results, the
best performing algorithm getting the rank of 1, the second best rank 2,
and so on ;

3. for each method, its average rank Rj w.r.t. the datasets is computed;
4. finally, the Friedman statistic is computed thanks to the following formula:

Q =
12N

k(k + 1)





k
∑

j=1

R2
j −

k(k + 1)2

4





where N is the number of datasets and k is the number of methods that
are compared.

On the null hypothesis, where is no difference among the k sets of measures,

the average rank should approximate (k+1)
2 . When N and k are large (i.e.

N > 15 and k > 4), the probability distribution of Q can be approximated by
that of a chi-square distribution with k − 1 degrees of freedom. In this case
the p-value is given by P (χ2

k−1 ≥ Q). If N or k is small, the approximation to
chi-square becomes poor and the p-value should be obtained from tables of Q
specially prepared for the Friedman test.

We compare ARI and NMI results of CoStar and its competitors (SRC,
ComRaf and NMF) on the 9 datasets and compute the associated Q values:
we obtain 21.63 and 22.73 for ARI and NMI respectively. As the critical value
at significance level α = 0.01 is equal to 10.73 (see [33,31]) and is smaller than
the Q values, we decide to reject the null hypothesis for both measures.

We can now proceed with the post-hoc Nemenyi test. According to this test,
the performance of two algorithms is significantly different if the corresponding
average ranks differ by at least the critical difference:

CD = qα

√

k(k + 1)

6N

where α is the significance level (α = 0.10 in our case) and qα is the critical
value for the two tailed Nemenyi test [10]. We compare the 4 methods at the
critical value q0.10 = 2.291. The ranking table is shown in Figure 12 (top). The
critical difference between average ranks is CD = 1.394 (for ARI and NMI).
Figure 12 (bottom) shows the difference between average ranks for both ARI
and NMI. In the first case, CoStar is significantly different from ComRaf

and SRC. In the second case, it performs significantly better than all other
competitors.

5.3.3 Number of detected clusters

Since CoStar may find different numbers of clusters at each execution, we ran
the algorithm 100 times and evaluate the variability of this result. In Figure 13,
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Average ranking

Methods ARI NMI

CoStar 1.2 1
NMF 2.2 2.4
ComRaf 2.6 2.7
SRC 4 3.9

ARI NMF ComRaf SRC

CoStar 1 1.4 2.8

NMF - 0.4 1.8

ComRaf - - 1.4

SRC - - 0

NMI NMF ComRaf SRC

CoStar 1.4 1.7 2.9

NMF - 0.3 1.5

ComRaf - - 1.2
SRC - - 0

Fig. 12 Average Ranking results for the Nemenyi Test (top); Difference between average
ranks for ARI and NMI evaluation measures (bottom).
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Fig. 13 Distribution of CoStar number of clusters on (a) bbc2 (b) bbcsport2 (c) bbc4.

 0

 20

 40

 60

 80

 100

 1  1.5  2  2.5  3

nu
m

be
r 

of
 tr

ia
ls

number of clusters

(a)

 0

 20

 40

 60

 80

 100

 2  2.5  3  3.5  4  4.5  5

nu
m

be
r 

of
 tr

ia
ls

number of clusters

(b)

 0

 20

 40

 60

 80

 100

 2  2.5  3  3.5  4  4.5  5

nu
m

be
r 

of
 tr

ia
ls

number of clusters

(c)

Fig. 14 Distribution of the number of clusters of CoStar on (a) T1 (b) T2 (c) T3.

14 and 15, we report the distributions of the number of row clusters for the
three groups of datasets.

On bbc2 and bbcsport2, CoStar produces most of the times partitions
with the correct number of clusters (see Figure 13). However, the resulting
partitions on bbc4 contain 5 or 6 clusters to the same extent.

Now consider the three textual datasets (see Figure 14). By analyzing the
results, we found that CoStar recognizes the “super-classes” corresponding
to the originating dataset to which the document belongs to. For instance,
for T1 there are two super-classes: one from oh15 and one from re0. This is
reasonable because they represent two types of dictionary: a biology-centered
one and a news-centered one. The same phenomenon happens for the other
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Fig. 15 Distribution of the number of clusters of CoStar on (a) I1 (b) I2 (c) I3.

two textual datasets. Furthermore, the found number of clusters remains quite
stable, in particular for T1 and T2.

Figure 15 shows the distribution of the number of row clusters for the
Corel benchmark. First, CoStar detects most of the time the correct number
of clusters (7) when applied to I1. When processing I2, the algorithm finds
three different values of cluster numbers for the row partition: 5, 6 and 7.
Notice that in this case, the correct number is 6, which is very close to the
average of the detected number of clusters. For I3, which is a hard context
for a clustering algorithm, the distribution of the number of detected clusters
may be approximated with a normal distribution with a mean of 9, while the
number of built-in classes is 13.

5.3.4 A qualitative evaluation

We now show an example to provide some insights about the kind of results
our algorithm is able to provide. To this purpose, we choose a specific result
of the I2 image dataset. In particular, among the 100 runs of CoStar, we
choose the one providing the result with the highest value on the objective
function computed over the row space (τX|Y).

To provide a readable description of each cluster, we perform a similar
process to the one used in CoStar when optimizing the objective functions.
The goal is to select a subset of elements within each cluster that represents
and summarizes the content of the whole cluster. For any given cluster, we
try to remove each of its elements and compute the ∆τ (see Section 4) that
corresponds to this removal. In this case we use δτ as an evaluation function
of the single cluster elements. We assign to each object the ∆τ (maximum
in absolute value) that as a consequence of the movement causes the highest
reduction of the objective function value. Finally, we rank all the elements by
the obtained values of ∆τ , and select the top k objects as representatives. No-
tice that we use ∆τX|Y

to rank images, and ∆τ
Y k|X

to rank words (see Section

4). We report the cluster descriptions for the textual view of I2 in Figure 16.
The reader can observe that the algorithm returns five well-separated clusters
of words. The first cluster gathers words around polar animals; the second one
is about bridges, coasts and waterways; the topic of the third one is around
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animal with horns, the fourth one talks of horses and the last one is about
birds and places where they live.

bear, polar, black, snow, antlers, grizzly, elk,
ice, tundra, grass
bridge, water, coast, arch, hills, sky, waves,
beach, boats, steel
deer, white-tailed, mule, horns, slope, fawn
horses, foals, mare, field, fence, bush
birds, nest, branch, fly, tree, leaf, wood, wings,
stick, baby

Fig. 16 Word clusters for image dataset 2.

Figure 17 resumes the descriptions of the clusters obtained over the images.
Using the top 5 ranked images, we distinguish five clusters: Clusters1 is about
animals (reindeer and bears) that live in tundra or polar climate regions;
Clusters2 contains pictures of birds; Cluster3 is about horses; Cluster4 is
about coasts and bridges; finally, Cluster5 contains pictures of deer. Notice
also that in this particular case it is possible to map each cluster of images
onto a cluster of words and vice versa.

CLUSTER 1

CLUSTER 3

CLUSTER 2

CLUSTER 4

CLUSTER 5

Fig. 17 I2 dataset with 5 representative images for each cluster.

5.3.5 Scalability evaluation

We now analyze the time performances of CoStar. We did not perform com-
parisons with the competitors since all algorithms are written in different pro-
gramming languages, but the reader may refer to Section 4.4 for a theoretical
complexity comparison. Here, we focus our analysis on how the number of fea-
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ture spaces and the number of objects influence the computational time (see
Figure 18).

For the first experiment, we generate several synthetic boolean datasets
varying the number of feature spaces. Each feature space contains 1000 fea-
tures. We let the number of feature spaces vary from 2 to 10. The number
of row objects varies from 500 to 2 000. Data are generated by considering a
uniform distribution and an average matrix density of 5%. The related time
curves are depicted in Figure 18(a). We observe that CoStar has reasonable
time performances on high-order and high dimensional data. As expected, the
behavior is linear w.r.t. the number of feature spaces.

The last experiment allows us to study the scalability of our algorithms
when applied to large datasets. In this case, the number of spaces is fixed (2),
while we let the number of objects vary from 1 000 to 10 000. Furthermore, we
repeated this experiment varying the number of features per space from 500
to 2 500. As shown in Figure 18(b), even though the complexity of CoStar

is quadratic in the number of objects/features, in practice, the computational
time increases linearly with the number of objects.

5.4 Empirical Convergence over Synthetic Data

In this subsection we empirically evaluate the convergence of our method over
a synthetic dataset where we know in advance the inner structure. In particular
we consider a Boolean dataset D over O (1 000 objects) and F = {F 1, F 2}
(1000 features for each views). The synthetic dataset has a perfect block nested
structure with perfect partitions CO1 × CF 1 and CO2 × CF 2 . We have built
CO1 ×CF 1 to have two blocks structure (two perfect clusters over the objects
and two perfect clusters over the features). In the same way CO2 × CF 2 has
a four blocks structure (four perfect clusters over the objects and four perfect
clusters over the features).

Let us consider a parameter p that is the probability to flip a Boolean
value uniformly at random in D and denote by Dp the resulting dataset. In
our experiment we vary p over 5%, 10%, 15% and 20%.

In order to evaluate the quality of the non-dominated solutions, we fol-
low the protocol proposed in [20] and [22]. Given a dataset Dp we perform
30 runs. Then we define Zall as the union of the obtained solutions. Note
that Zall could contain both dominated and non-dominated vectors, since a
solution may dominate another. For this reason we define Z⋆ as the set of
non-dominated vectors of Zall. Second, we define zmin = (zmin

1 , . . . , zmin
N+1)

and zmax = (zmax
1 , . . . , zmax

N+1), where zmin
k (resp. zmax

k ) denotes the lower

(resp. upper) bound of the kth objective for all the points contained in Zall.
In order to give a roughly equal range to the objective functions, the values

are normalized with respect to zmin and zmax (value−zmin

zmax−zmin ). Note that after

the normalization step zmin is equal to 0N+1 and zmax is equal to 1N+1.
Given a solution S, in order to measure the quality of S in comparison

to Z⋆, we compute the difference between these two sets by using the unary
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Fig. 18 Running time of CoStar varying the number of feature spaces and objects

hypervolume metric [20], where the vector zmin = 0N+1 is the reference point,
as it corresponds to the lower bound of the N + 1 normalized objective func-
tions. The hypervolume difference indicator (IH) computes the portion of the
objective space that is weakly-dominated by Z⋆ and not by S. The closer this
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measure to 0, the better the approximation S. Figure 19 illustrates this mea-
sure. The light gray area corresponds to the hypervolume difference indicator.

Reference point

Dominated subspace by Z*

Fig. 19 Illustration of the hypervolume difference indicator.

At each iteration we compute the average of hypervolume difference indi-
cator IH of the objective functions vectors S of the 30 runs. The maximum
number of iterations is set to 10000 using the general rules employed in the
experiments (10×max(m,N ) where m and N are the number of objects and
features respectively). Using this measure, we evaluate the volume of the domi-
nated portion of the objective space and the convergence to a stable solution of
CoStar. This process is repeated for each value of p. The results are reported
in Figure 20.

In Figure 20, we observe that CoStar converges always to very similar
solutions in all the runs with different values of p. As we state in Section
4.2, we can notice that at each iteration CoStar converges to a Pareto local
optimum with respect the neighborhood. It is interesting to notice that, in
this case, the algorithm converges to a stable solution very early w.r.t. the
maximum number of iterations Niter foreseen in CoStar. We empirically
observe the same phenomenon on the real datasets, too. In particular we have
observed that the maximum number of iterations is always an upper bound of
the real number of steps needed by CoStar to obtain the final stable solution.

6 Conclusion

Heterogeneous star-structured data are very common in real world applica-
tions. In this paper we presented CoStar, a novel algorithm that deals with
this kind of data. Unlike previous approaches, CoStar is totally parameter-
less: this means that it does not require either the number of object clusters
or the number of feature clusters for each of the feature spaces. Our approach
employs a Pareto-dominance approach to optimize a set of measures for cross-
association in contingency tables which we extended to a high-dimensional
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Fig. 20 The average Hypervolume Difference Indicator at each iteration at different values
of p. (a) p=5%, (b) p=10%, (c) p=15% and (d) p=20%

setting. We assessed the performance of CoStar using objective evaluation
measures on publicly available datasets over both the textual and image do-
mains. We compared CoStar with three competitors, evaluate the statistical
significance of the obtained results, studied the variability of the number of
detected clusters and performed an in-depth qualitative analysis on an image
dataset. Finally we provided a scalability study. The results show that our
approach outperforms state-of-the-art methods for heterogeneous data (co-
)clustering.
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23. Long, B., Zhang, Z.M., Wú, X., Yu, P.S.: Spectral clustering for multi-type relational
data. In: ICML ’06: Proceedings of the 23rd international conference on Machine learn-
ing, pp. 585–592 (2006)

24. Long, B., Zhang, Z.M., Yu, P.S.: A probabilistic framework for relational clustering. In:
KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 470–479 (2007)

25. Paquete, L.: Stochastic Local Search Algorithms for Multiobjective Combinatorial Op-
timization: Methods and Analysis, vol. 295. AKA Verlag/ IOS Press (2006)
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