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Abstract. We consider a nonparametric regression estimator of conditional tails introduced by

Goegebeur, Y., Guillou, A., Schorgen, G. (2012). Nonparametric regression estimation of conditional

tails - the random covariate case. It is shown that this estimator is uniformly strongly consistent on

compact sets and its rate of convergence is given.
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1 Introduction

Extreme value analysis has attracted considerable attention in many �elds of application, such as hy-

drology, biology and �nance, for instance. The main result of extreme value theory asserts that the

asymptotic distribution of the � properly rescaled � maximum of a sequence (Y1, . . . , Yn) of indepen-

dent copies of a random variable Y with distribution function F is a distribution having the form

Gγ(x) = exp(−(1 + γx)
−1/γ
+ ) where y+ = max(0, y)

for some γ ∈ R, with G0(x) = exp(−e−x). The distribution function F is then said to belong to the

maximum domain of attraction of Gγ and the parameter γ is called the extreme value index. Most

applications of extreme value theory stem from the case γ > 0, where F is a heavy-tailed distribution

i.e. the associated survival function F := 1 − F satis�es F (x) = x−1/γL(x), where γ shall now be

referred to as the tail-index and L is a slowly varying function at in�nity: namely, L satis�es, for all
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λ > 0, L(λx)/L(x) → 1 as x goes to in�nity. In this case, the parameter γ clearly drives the tail

behavior of F ; its estimation is in general a �rst step of extreme value analysis. For instance, if the

idea is to estimate extreme quantiles � namely, quantiles with order αn > 1 − 1/n, where n is the

sample size � then one has to extrapolate beyond the available data using an extreme value model which

depends on the tail-index. For this reason, the problem of estimating γ has been extensively studied in

the literature. Recent overviews on univariate tail-index estimation can be found in the monographs of

Beirlant et al. [2] and de Haan and Ferreira [17].

In practice, it is often useful to link the variable of interest Y to a covariate X. In this situation, the

tail-index depends on the observed value x of the covariate X and shall be referred to, in the following,

as the conditional tail-index. Its estimation has been addressed in the recent extreme value literature,

albeit mostly when the covariates are nonrandom. Smith [31] and Davison and Smith [10] considered

a parametric regression model while Hall and Tajvidi [19] used a semi-parametric approach to estimate

the conditional tail-index. Fully nonparametric methods have been considered using splines (see Chavez-

Demoulin and Davison [4]), local polynomials (see Davison and Ramesh [9]), a moving window approach

(see Gardes and Girard [12]), or a nearest neighbor approach (see Gardes and Girard [13]), among others.

Less attention though has been paid to the random covariate case, despite its practical interest. One

can recall the works of Wang and Tsai [33], based on a maximum likelihood approach in the Hall class

of distribution functions (see Hall [18]), Daouia et al. [7] who use a �xed number of nonparametric con-

ditional quantile estimators to estimate the conditional tail-index, later generalized in Daouia et al. [6]

to a regression context with response distributions belonging to the general max-domain of attraction,

and Goegebeur et al. [16] and Gardes and Stup�er [14] who both provide adaptations of Hill's estima-

tor (Hill [22]), the latter also studying an average of Hill-type statistics to improve the �nite sample

performance of the method.

In this paper, we focus on a nonparametric regression estimator of conditional tails introduced by

Goegebeur et al. [16]. The particular structure of this estimator makes it possible to study its uniform

properties. Note that uniform properties of estimators of the conditional tail-index are seldom considered

in the literature. One can think of the work of Gardes and Stup�er [14], who study the uniform weak

consistency of their estimator. Outside the �eld of conditional tail-index estimation, uniform convergence

of the Parzen-Rosenblatt density estimator (Parzen [28] and Rosenblatt [29]) was �rst considered by

Nadaraya [27]. His results were then improved by Silverman [30] and Stute [32], the latter proving a

law of the iterated logarithm in this context. Analogous results on kernel regression estimators were

obtained by, among others, Mack and Silverman [26], Härdle et al. [20] and Einmahl and Mason [11].

Uniform consistency of isotonized versions of order−α quantile estimators introduced in Aragon et al. [1]

was shown in Daouia and Simar [8]. The case of estimators of the left-truncated quantiles is considered

in Lemdani et al. [25]. Finally, the uniform strong consistency of a frontier estimator using kernel

regression on high order moments was shown in Girard et al. [15].
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The paper is organised as follows. Our main results are stated in Section 2. The estimator is shown to be

uniformly strongly consistent on compact sets in a semiparametric framework. The rate of convergence

is provided when a further condition on the bias is satis�ed. The rate of uniform convergence is closely

linked to the rate of pointwise convergence in distribution established in Goegebeur et al. [16]. The

proofs of the main results are given in Section 3. Auxiliary results are postponed to the Appendix.

2 Main results

We assume that the covariate X takes its values in Rd for some d ≥ 1. We shall work in the following

semiparametric framework:

(SP ) X has a probability density function f with support S ⊂ Rd having nonempty interior and the

conditional survival function of Y given X = x is such that

∀x ∈ S, ∀ y ≥ 1, F (y |x) = y−1/γ(x)L(y |x)

where γ(x) > 0 and L(· |x) is a slowly varying function at in�nity.

The estimator of the conditional tail-index we shall study in this paper is de�ned as

γ̂n(x) :=

n∑
i=1

Kh(x−Xi)(log Yi − logωn,x)+1l{Yi>ωn,x}

n∑
i=1

Kh(x−Xi)1l{Yi>ωn,x}

. (1)

Here Kh(u) := h−dK(u/h) where K is a probability density function on Rd and h := hn is a positive

sequence tending to 0 while for all x, (ωn,x) is a positive sequence tending to in�nity. Note that

γ̂n(x) = T
(1,1)
n (x)/T

(1,0)
n (x) where, for all s ≥ 1 and t ≥ 0,

T (s,t)
n (x) :=

1

n

n∑
i=1

Ks
h(x−Xi)(log Yi − logωn,x)t+1l{Yi>ωn,x}.

The estimator (1) is an element of the family of estimators introduced in Goegebeur et al. [16], which

can be seen as an adaptation of the classical Hill estimator of the tail-index for univariate distributions

(see Hill [22]). Note that the threshold ωn,x is local, i.e. it depends on the point x where the estimation

is to be made, while the bandwidth h is global.

We �rst wish to state the uniform strong consistency of our estimator on an arbitrary compact subset

Ω of Rd contained in the interior of S. To this end, we �rst assume that for every x ∈ S the slowly

varying function L(· |x) appearing in F (· |x) is normalised (see Bingham et al. [3]):

(A1) For all x ∈ S and y ≥ 1,

L(y |x) = cL(x) exp

(∫ y

1

α(v |x)

v
dv

)
where cL(x) > 0 and α(· |x) is a function converging to 0 at in�nity.
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Let ‖ · ‖ be a norm on Rd. The following classical regularity assumptions, needed to show the uniform

consistency of our estimator, are introduced:

(A2) On S, the functions f and γ are positive Hölder continuous functions, log cL is a Hölder

continuous function and α(y | ·) is a Hölder continuous function uniformly in y ≥ 1: for all x, x′ ∈ S,

|f(x)− f(x′)| ≤ Mf‖x− x′‖ηf ,

|γ(x)− γ(x′)| ≤ Mγ‖x− x′‖ηγ ,

| log cL(x)− log cL(x′)| ≤ McL‖x− x′‖ηcL ,

sup
y≥1
|α(y |x)− α(y |x′)| ≤ Mα‖x− x′‖ηα .

Conditions (SP ) and (A1) imply that, for all x, x′ ∈ S and all y, y′ ≥ 1,

log
F (y |x)

F (y |x′)
=

[
1

γ(x′)
− 1

γ(x)

]
log y + [log cL(x)− log cL(x′)] +

∫ y

1

α(v |x)− α(v |x′)
v

dv

and

log
F (y |x′)
F (y′ |x′)

=
1

γ(x′)
[log y′ − log y] +

∫ y

y′

α(v |x′)
v

dv.

Thus if (A2) holds then, if we introduce η := ηγ ∧ ηcL ∧ ηα and α(y |x) := sup
t≥y
|α(t |x)|, there exists

a positive constant MF such that the function (x, y) 7→ logF (y |x) has the following property: for all

x, x′ ∈ S such that ‖x− x′‖ ≤ 1 and y, y′ ≥ e,∣∣∣∣log
F (y |x)

F (y′ |x′)

∣∣∣∣ ≤MF ‖x− x
′‖η log y +

(
1

γ(x′)
+ α(y ∧ y′ |x′)

)
| log y − log y′|. (2)

Before stating our �rst result, let us highlight that under (A2) and since Ω is compact, f := sup
Ω
f <∞

and f := inf
Ω
f > 0. Besides, if ε := εn is a positive sequence converging to 0 then, applying Lemma 1,

it holds that for n large enough the ball B(x, ε) with center x and radius ε in Rd is contained in S

for every x ∈ Ω. As a consequence, the uniform relative oscillation of f over the ball B(x, h) can be

controlled as

sup
x∈Ω

sup
z∈B(x, h)

∣∣∣∣ f(z)

f(x)
− 1

∣∣∣∣ = O (hηf )→ 0. (3)

Second, γ := sup
Ω
γ <∞ and γ := inf

Ω
γ > 0 and we thus have

sup
x∈Ω

sup
z∈B(x, h)

∣∣∣∣γ(z)

γ(x)
− 1

∣∣∣∣ = O (hηγ )→ 0. (4)

Third, we can write for all x, x′ ∈ Ω and t ≥ 1

α(t |x) ≤ α(t |x′) + |α(t |x)− α(t |x′)|

and the roles of x and x′ are symmetric in the above inequality, so that taking the supremum over t ≥ y

on both sides yields

∀ y ≥ 1, |α(y |x)− α(y |x′)| ≤Mα‖x− x′‖ηα . (5)
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We �nally introduce the oscillation of x 7→ logωn,x at a point x ∈ Rd over the ball B(x, ε):

∀ ε > 0, ∆(logωn,x)(ε) := sup
z∈B(x, ε)

|logωn,x − logωn,z| .

Our results are established under the following classical regularity condition on the kernel:

(K) K is a probability density function which is Hölder continuous with Hölder exponent ηK > 0:

for all x, x′ ∈ Rd,

|K(x)−K(x′)| ≤MK‖x− x′‖ηK

and its support is included in the unit ball B of Rd.

Note that (K) implies that K is bounded with compact support. Especially, for every s ≥ 1 the

Ls−norm ‖K‖s of K is �nite.

Let vn(x) =

√
nhd

log n
F (ωn,x |x) and introduce the hypothesis

(C) For some b ≥ 1/d+ 1/2ηK , it holds that lim sup
n→∞

sup
x∈Ω

vn(x)∆(logωn,x)(n−b) <∞.

Our uniform strong consistency result may now be stated:

Theorem 1. Assume that (SP ), (K), (A1) and (A2) hold and that

• inf
x∈Ω

vn(x)→∞;

• inf
x∈Ω

ωn,x →∞;

• hη sup
x∈Ω

logωn,x → 0;

• sup
x∈Ω

∆(logωn,x)(h)→ 0;

• sup
x∈Ω

α(y |x)→ 0 as y →∞.

Assume moreover that condition (C) is satis�ed. Then it holds that

sup
x∈Ω
|γ̂n(x)− γ(x)| → 0 almost surely as n→∞.

Note that the hypotheses inf
x∈Ω

ωn,x →∞ and sup
x∈Ω

α(y |x)→ 0 as y →∞ imply the convergence

sup
x∈Ω

α(ωn,x |x)→ 0

which shall frequently be used in the proofs of our results. Besides, using the mean value theorem, it

holds that |eu − 1| ≤ 2|u| for u ∈ R such that |u| is su�ciently small. As a consequence, using the

condition sup
x∈Ω

∆(logωn,x)(h)→ 0, this inequality implies that for n large enough

sup
x∈Ω

sup
z∈B(x, h)

∣∣∣∣ωn,xωn,z
− 1

∣∣∣∣ ≤ 2∆(logωn,x)(h)→ 0. (6)

Finally, the conditions

sup
x∈Ω

∆(logωn,x)(h)→ 0 and lim sup
n→∞

sup
x∈Ω

vn(x)∆(logωn,x)(n−b) <∞
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(for some b ≥ 1/d+1/2ηK) are satis�ed if for instance ωn,x = ng(x) where g : S → R is a positive Hölder

continuous function whose Hölder exponent is not less than η. In other words, Theorem 1 requires that

a continuity property on x 7→ logωn,x be satis�ed.

Our second aim is to compute the rate of uniform strong consistency of the estimator (1):

Theorem 2. Assume that (SP ), (K), (A1) and (A2) hold and that

• inf
x∈Ω

vn(x)→∞;

• inf
x∈Ω

ωn,x →∞;

• hη sup
x∈Ω

logωn,x → 0;

• sup
x∈Ω

∆(logωn,x)(h)→ 0;

• sup
x∈Ω

α(y |x)→ 0 as y →∞.

If moreover

lim sup
n→∞

(
sup
x∈Ω

vn(x) {α(ωn,x |x) ∨ hηf ∨ hη logωn,x ∨∆(logωn,x)(h)}
)
<∞ (7)

then it holds that

sup
x∈Ω

vn(x) |γ̂n(x)− γ(x)| = O (1) almost surely as n→∞.

Let us highlight that condition (7) controls the bias of the estimator γ̂n. The terms hηf and hη correspond

to the bias which stems from the use of a kernel regression, while the presence of the other terms is due

to the particular structure of the semiparametric model (SP ). Besides, as pointed out in Goegebeur et

al. [16], the rate of pointwise convergence of γ̂n(x) to γ(x) is
√
nhdF (ωn,x |x). Up to the term

√
log n,

the rate of uniform convergence of γ̂n to γ is therefore the in�mum (over Ω) of the rate of pointwise

convergence of γ̂n(x) to γ(x). Finally, note that, if f , γ, log cL and α(y | ·) are all assumed to be Lipschitz

functions � namely, ηf = ηγ = ηcL = ηα = 1 � condition (7) is in fact

lim sup
n→∞

(
sup
x∈Ω

vn(x) {α(ωn,x |x) ∨ h logωn,x ∨∆(logωn,x)(h)}
)
<∞.

3 Proofs of the main results

The key idea to show Theorem 1 is to prove uniform laws of large numbers for T
(1,0)
n (x) and T

(1,1)
n (x).

Proposition 1. Assume that (SP ), (K), (A1) and (A2) hold and that

• inf
x∈Ω

vn(x)→∞ ;

• inf
x∈Ω

ωn,x →∞ ;

• hη sup
x∈Ω

logωn,x → 0 ;
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• sup
x∈Ω

∆(logωn,x)(h)→ 0 ;

• sup
x∈Ω

α(y |x)→ 0 as y →∞.

Assume moreover that condition (C) holds. Then for every t ∈ {0, 1} and for every sequence of positive

numbers (δn) converging to 0 such that δn inf
x∈Ω

vn(x)→∞,

δn sup
x∈Ω

vn(x)

∣∣∣∣∣T (1,t)
n (x)

µ
(1,t)
n (x)

− 1

∣∣∣∣∣→ 0 almost surely as n→∞.

In particular,

sup
x∈Ω

∣∣∣∣∣T (1,t)
n (x)

µ
(1,t)
n (x)

− 1

∣∣∣∣∣→ 0 almost surely as n→∞.

Proof of Proposition 1. The proof is based on that of Lemma 1 in Härdle and Marron [21]: we shall

in fact show complete convergence in the sense of Hsu and Robbins [24]. Since Ω is a compact subset of

Rd, we may, for every n ∈ N \ {0}, �nd a �nite subset Ωn of Ω such that:

∀x ∈ Ω, ∃χ(x) ∈ Ωn, ‖x− χ(x)‖ ≤ n−b and ∃ c > 0, |Ωn| = O (nc) ,

where b ≥ 1/d+ 1/2ηK is given by condition (C) and |Ωn| stands for the cardinality of Ωn. Notice that,

since nhd →∞, one has

n−b

h
= n−b+1/d

[
1

nhd

]1/d

→ 0

so that one can assume that eventually χ(x) ∈ B(x, h) for all x ∈ Ω. Besides, since h→ 0, we can pick

n so large that h ≤ 1 and, using Lemma 1, such that B(x, h) ⊂ S for all x ∈ Ω. Remark that∣∣∣∣ vn(x)

vn(χ(x))
− 1

∣∣∣∣ =

∣∣∣∣∣
√

F (ωn,x |x)

F (ωn,χ(x) |χ(x))
− 1

∣∣∣∣∣ ; (8)

as ‖x− χ(x)‖ ≤ n−b ≤ h ≤ 1, and noting that since n−b ≤ h the convergences

n−bη sup
x∈Ω

logωn,x ≤ hη sup
x∈Ω

logωn,x → 0 and sup
x∈Ω

∆(logωn,x)(n−b) ≤ sup
x∈Ω

∆(logωn,x)(h)→ 0

hold, Lemma 2 and (8) entail

sup
x∈Ω

∣∣∣∣ vn(x)

vn(χ(x))
− 1

∣∣∣∣→ 0. (9)

Using together (9) and the triangular inequality shows that for n large enough

sup
x∈Ω

vn(x)

∣∣∣∣∣T (1,t)
n (x)

µ
(1,t)
n (x)

− 1

∣∣∣∣∣ ≤ sup
x∈Ω

vn(x)

∣∣∣∣∣T (1,t)
n (x)

µ
(1,t)
n (x)

− T
(1,t)
n (χ(x))

µ
(1,t)
n (χ(x))

∣∣∣∣∣+ 2 sup
x∈Ω

vn(χ(x))

∣∣∣∣∣T (1,t)
n (χ(x))

µ
(1,t)
n (χ(x))

− 1

∣∣∣∣∣ .
Picking ε > 0, the triangular inequality then yields

P

(
δn sup

x∈Ω
vn(x)

∣∣∣∣∣T (1,t)
n (x)

µ
(1,t)
n (x)

− 1

∣∣∣∣∣ > ε

)
≤ R1,n +R2,n
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where

R1,n :=
∑
z∈Ωn

P

(
δn vn(z)

∣∣∣∣∣T (1,t)
n (z)

µ
(1,t)
n (z)

− 1

∣∣∣∣∣ > ε

4

)

and R2,n := P

(
δn sup

x∈Ω
vn(x)

∣∣∣∣∣T (1,t)
n (x)

µ
(1,t)
n (x)

− T
(1,t)
n (χ(x))

µ
(1,t)
n (χ(x))

∣∣∣∣∣ > ε

2

)
.

The goal of the proof is now to show that the series
∑
nR1,n and

∑
nR2,n converge. The �rst convergence

in Proposition 1 shall then be an easy consequence of Borel-Cantelli's lemma. The second convergence

is a consequence of the straightforward inequalities

sup
x∈Ω

∣∣∣∣∣T (1,t)
n (x)

µ
(1,t)
n (x)

− 1

∣∣∣∣∣ ≤
{
δn inf

x∈Ω
vn(x)

}
sup
x∈Ω

∣∣∣∣∣T (1,t)
n (x)

µ
(1,t)
n (x)

− 1

∣∣∣∣∣ ≤ δn sup
x∈Ω

vn(x)

∣∣∣∣∣T (1,t)
n (x)

µ
(1,t)
n (x)

− 1

∣∣∣∣∣
which hold true for n large enough.

We start by controlling R1,n. To this end, apply Lemma 4 to get that there exists a positive constant

κ such that for n large enough,

∀ z ∈ Ωn, P

(
δn vn(z)

∣∣∣∣∣T (1,t)
n (z)

µ
(1,t)
n (z)

− 1

∣∣∣∣∣ > ε

4

)
≤ 2 exp

[
− κ

16
ε2 nh

dF (ωn,z | z)
δ2
nv

2
n(z)

]
.

Use now the de�nition of vn(z) to get

R1,n = O

(
nc exp

[
− κ

16
ε2 log n

δ2
n

])
.

Hence
∑
nR1,n converges.

We now turn to R2,n. Using the triangular inequality gives∣∣∣∣∣T (1,t)
n (x)

µ
(1,t)
n (x)

− T
(1,t)
n (χ(x))

µ
(1,t)
n (χ(x))

∣∣∣∣∣ ≤ S1,n(x) + S2,n(x)

where

S1,n(x) :=
1

n

n∑
i=1

∣∣∣∣∣Kh(x−Xi)

µ
(1,t)
n (x)

− Kh(χ(x)−Xi)

µ
(1,t)
n (χ(x))

∣∣∣∣∣ (log Yi − logωn,χ(x))
t
+1l{Yi>ωn,χ(x)},

S2,n(x) :=
1

n

n∑
i=1

Kh(x−Xi)

µ
(1,t)
n (x)

∣∣∣(log Yi − logωn,x)t+1l{Yi>ωn,x} − (log Yi − logωn,χ(x))
t
+1l{Yi>ωn,χ(x)}

∣∣∣ .
As a consequence

R2,n ≤ P
(
δn sup

x∈Ω
vn(x)S1,n(x) >

ε

4

)
+ P

(
δn sup

x∈Ω
vn(x)S2,n(x) >

ε

4

)
=: R3,n +R4,n

and it is enough to show that the series
∑
nR3,n and

∑
nR4,n converge.

To deal with
∑
nR3, n use once again the triangular inequality to obtain

µ(1,t)
n (χ(x))

∣∣∣∣∣Kh(x−Xi)

µ
(1,t)
n (x)

− Kh(χ(x)−Xi)

µ
(1,t)
n (χ(x))

∣∣∣∣∣ ≤ |Kh(x−Xi)−Kh(χ(x)−Xi)|

+

∣∣∣∣∣µ(1,t)
n (χ(x))

µ
(1,t)
n (x)

− 1

∣∣∣∣∣Kh(x−Xi).
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Using hypothesis (K) and Lemma 5, there exists a positive constant M such that for n large enough:

∀x ∈ Ω, µ(1,t)
n (χ(x))

∣∣∣∣∣Kh(x−Xi)

µ
(1,t)
n (x)

− Kh(χ(x)−Xi)

µ
(1,t)
n (χ(x))

∣∣∣∣∣ ≤ M

hd

{[
n−b

h

]ηK
∨∆(logωn,x)(n−b)

}
.

Besides

m̃(1,t)
n (z) :=

1

n

n∑
i=1

K2h(z −Xi)(log Yi − logωn,z)
t
+1l{Yi>ωn,z}

is the empirical analogue of m
(1,t)
n (z) de�ned before Lemma 5; since the support of the random variable

Kh(x−Xi) is included in B(χ(x), 2h), one has for n large enough

∀x ∈ Ω, vn(x)S1,n(x) ≤ 2dVMvn(x)

{[
n−b

h

]ηK
∨∆(logωn,x)(n−b)

}
m̃

(1,t)
n (χ(x))

µ
(1,t)
n (χ(x))

.

Moreover, since m̃
(1,t)
n (z) is a kernel estimator of m

(t)
n (z, z) for which the conditions of Lemma 3 are

satis�ed, we get for n large enough:

∀ z ∈ Ωn, δnvn(z)
m̃

(1,t)
n (z)

µ
(1,t)
n (z)

≤ 2δnvn(z)

[
1 +

∣∣∣∣∣ m̃(1,t)
n (z)

m
(1,t)
n (z)

− 1

∣∣∣∣∣
]
.

The fact that b ≥ 1/d+ 1/2ηK gives

sup
z∈Ωn

vn(z)

[
n−b

h

]ηK
≤
√
n

[
n−b

h

]ηK
≤
[

1

nhd

]ηK/d
→ 0.

Using this convergence together with hypothesis (C) and (9) entails for n large enough:

R3,n ≤
∑
z∈Ωn

P

(
δnvn(z)

∣∣∣∣∣ m̃(1,t)
n (z)

m
(1,t)
n (z)

− 1

∣∣∣∣∣ > ε

)
.

Finally, apply Lemma 4 to get

∑
z∈Ωn

P

(
δnvn(z)

∣∣∣∣∣ m̃(1,t)
n (z)

m
(1,t)
n (z)

− 1

∣∣∣∣∣ > ε

)
= O

(
nc exp

[
−κ′ε2 log n

δ2
n

])
where κ′ is a positive constant. Hence

∑
nR3,n converges.

To control
∑
nR4,n �rst note that

m
(1,t)
n (χ(x))

µ
(1,t)
n (x)

=
m

(1,t)
n (χ(x))

µ
(1,t)
n (χ(x))

µ
(1,t)
n (χ(x))

µ
(1,t)
n (x)

and use Lemmas 3(iv) and 5 to get, for n large enough

sup
x∈Ω

m
(1,t)
n (χ(x))

µ
(1,t)
n (x)

≤ 2.

Therefore, since the support of the random variable Kh(x−Xi) is included in B(χ(x), 2h), one has for

n large enough and all x ∈ Ω

S2,n(x) ≤ 2d+1V‖K‖∞S3,n(x)
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where ‖K‖∞ := sup
B
K and

S3,n(x) :=
1

n

n∑
i=1

K2h(χ(x)−Xi)

m
(1,t)
n (χ(x))

∣∣∣(log Yi − logωn,x)t+1l{Yi>ωn,x} − (log Yi − logωn,χ(x))
t
+1l{Yi>ωn,χ(x)}

∣∣∣ .
We then get

R4,n ≤ P
(
δn sup

x∈Ω
vn(x)S3,n(x) >

ε

2d+3V‖K‖∞

)
=: R5,n

and it is enough to control
∑
nR5,n. We start by considering the case t = 0. In this case, S3,n(x)

reduces to

S3,n(x) =
1

n

n∑
i=1

K2h(χ(x)−Xi)

m
(1,0)
n (χ(x))

1l{ωn,x∧ωn,χ(x)<Yi≤ωn,x∨ωn,χ(x)}.

Letting ρn,x := 2∆(logωn,x)(n−b) and using (6), we have sup
x∈Ω

ρn,x → 0 and for n large enough

∀x ∈ Ω, (1− ρn,χ(x))ωn,χ(x) ≤ ωn,x ≤ (1 + ρn,χ(x))ωn,χ(x).

As a consequence, for n large enough it holds that

∀x ∈ Ω, S3,n(x) ≤ 1

n

n∑
i=1

K2h(χ(x)−Xi)

m
(1,0)
n (χ(x))

1l{(1−ρn,χ(x))ωn,χ(x)<Yi<(1+ρn,χ(x))ωn,χ(x)}.

Similarly to Lemma 6, let

M (1,0)
n (x) := E(K2h(x−X)1l{(1−ρn,x)ωn,x<Y<(1+ρn,x)ωn,x})

and U (1,0)
n (x) :=

1

n

n∑
i=1

K2h(x−Xi)1l{(1−ρn,x)ωn,x<Yi<(1+ρn,x)ωn,x}.

Write

∀x ∈ Ω, δnvn(x)S3,n(x) ≤ δnvn(x)
M

(1,0)
n (χ(x))

m
(1,0)
n (χ(x))

[
1 +

∣∣∣∣∣ U (1,0)
n (χ(x))

M
(1,0)
n (χ(x))

− 1

∣∣∣∣∣
]
.

Use together Lemmas 3(iv) and 6 along with (9) to get for n large enough

∀x ∈ Ω, δnvn(x)S3,n(x) ≤ 4

γ(χ(x))
δnvn(χ(x))ρn,χ(x)

[
1 +

∣∣∣∣∣ U (1,0)
n (χ(x))

M
(1,0)
n (χ(x))

− 1

∣∣∣∣∣
]
.

Recall that ρn,x = 2∆(logωn,x)(n−b) and that condition (C) is satis�ed to obtain

δn sup
z∈Ωn

vn(z)ρn,z → 0.

Therefore, since 0 < γ ≤ γ(χ(x)), the triangular inequality implies that

R5,n ≤
∑
z∈Ωn

P

(
δnvn(z)ρn,z

∣∣∣∣∣ U (1,0)
n (z)

M
(1,0)
n (z)

− 1

∣∣∣∣∣ > εγ

2d+6V‖K‖∞

)

for n large enough. Lemma 6 now makes it clear that

R5,n = O

(
nc sup

z∈Ωn

exp

(
−κ′′

εγ

2d+6V‖K‖∞
vn(z)

log n

δn

))
= o

(
nc exp

(
−κ′′ε log n

δn

))
which proves that

∑
nR5,n converges in this case.
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If now t = 1, we recall (49) in the proof of Lemma 5 to get for n large enough and for all x ∈ Ω

S3,n(x) =

∣∣∣∣log
ωn,x
ωn,χ(x)

∣∣∣∣ m(1,0)
n (χ(x))

m
(1,1)
n (χ(x))

1

n

n∑
i=1

K2h(χ(x)−Xi)

m
(1,0)
n (χ(x))

1l{Yi>ωn,x∧ωn,χ(x)}.

Use (6) and Lemma 3(iv) to get for n large enough

∀x ∈ Ω, S3,n(x) ≤ 2

γ
∆(logωn,x)(n−b)

1

n

n∑
i=1

K2h(χ(x)−Xi)

m
(1,0)
n (χ(x))

1l{Yi>ωn,χ(x)/2}

≤ 2

γ
∆(logωn,x)(n−b)

ν
(1,0)
n (χ(x))

m
(1,0)
n (χ(x))

[
1 +

∣∣∣∣∣V (1,0)
n (χ(x))

ν
(1,0)
n (χ(x))

− 1

∣∣∣∣∣
]

(10)

where

ν(1,0)
n (x) := E(K2h(x−X)1l{Y >ωn,x/2}) and V (1,0)

n (x) :=
1

n

n∑
i=1

K2h(x−Xi)1l{Yi>ωn,x/2}.

The family of sequences (ωn,x/2) clearly satis�es the hypotheses of Lemmas 3 and 4: in particular

sup
x∈Ω

∣∣∣∣∣ ν(1,0)
n (x)

m
(1,0)
n (x)

F (ωn,x |x)

F (ωn,x/2 |x)
− 1

∣∣∣∣∣→ 0 (11)

and there exists a positive constant κ′′′ such that for n large enough

∀x ∈ Ω, P

(∣∣∣∣∣V (1,0)
n (x)

ν
(1,0)
n (x)

− 1

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−κ′′′ε2 nhdF (ωn,x |x)

)
(12)

where the inequality F (ωn,x/2 |x) ≥ F (ωn,x |x) was used. We conclude by noting that according to (2)∣∣∣∣log
F (ωn,x |x)

F (ωn,x/2 |x)

∣∣∣∣ ≤ ( 1

γ(x)
+ α(ωn,x/2 |x)

)
log 2→ log 2

γ(x)

uniformly in x ∈ Ω, so that

lim sup
n→∞

sup
x∈Ω

∣∣∣∣log
F (ωn,x |x)

F (ωn,x/2 |x)

∣∣∣∣ <∞⇒ 0 < lim sup
n→∞

sup
x∈Ω

F (ωn,x |x)

F (ωn,x/2 |x)
<∞.

From this we obtain that

0 < lim sup
n→∞

sup
x∈Ω

ν
(1,0)
n (x)

m
(1,0)
n (x)

<∞.

This property entails the convergences

δn sup
x∈Ω

ν
(1,0)
n (x)

m
(1,0)
n (x)

→ 0 and sup
x∈Ω

∆(logωn,x)(n−b)
ν

(1,0)
n (x)

m
(1,0)
n (x)

→ 0. (13)

Reporting (11) along with (13) into (10), recalling condition (C) and using the triangular inequality

together with (9) shows that for n large enough,

R5,n ≤
∑
z∈Ωn

P

(
δnvn(z)

∣∣∣∣∣V (1,0)
n (x)

ν
(1,0)
n (x)

− 1

∣∣∣∣∣ > ε

)
.

Use now (12) to obtain

R5,n = O

(
nc exp

(
−κ′′′ε2 log n

δ2
n

))
so that

∑
nR5,n converges in this case as well. This completes the proof of Proposition 1.
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With Proposition 1 at hand, we can now prove Theorem 1 and Theorem 2.

Proof of Theorem 1. Notice that

γ̂n(x) =
µ

(1,1)
n (x)

µ
(1,0)
n (x)

T
(1,1)
n (x)

µ
(1,1)
n (x)

µ
(1,0)
n (x)

T
(1,0)
n (x)

. (14)

Applying Proposition 1 twice yields

sup
x∈Ω

∣∣∣∣∣T (1,1)
n (x)

µ
(1,1)
n (x)

µ
(1,0)
n (x)

T
(1,0)
n (x)

− 1

∣∣∣∣∣→ 0 as n→∞. (15)

Moreover, since

µ
(1,1)
n (x)

µ
(1,0)
n (x)

=
f(x)F (ωn,x |x)

µ
(1,0)
n (x)

[
µ

(1,1)
n (x)

f(x)F (ωn,x |x)
− γ(x)

]
+ γ(x)

[
f(x)F (ωn,x |x)

µ
(1,0)
n (x)

− 1

]
+ γ(x)

and recalling that γ is continuous and therefore bounded on the compact set Ω, using Lemma 3(i) and

(iv) twice entails

sup
x∈Ω

∣∣∣∣∣µ(1,1)
n (x)

µ
(1,0)
n (x)

− γ(x)

∣∣∣∣∣→ 0 as n→∞. (16)

The result follows by reporting (15) and (16) into (14).

Proof of Theorem 2. Note that because nhd →∞, the hypothesis

lim sup
n→∞

sup
x∈Ω

vn(x)∆(logωn,x)(h) <∞

entails condition (C). We can then apply Proposition 1 and Lemma 7 twice to get

sup
x∈Ω

vn(x)

∣∣∣∣∣µ(1,0)
n (x)

T
(1,0)
n (x)

− 1

∣∣∣∣∣ = O(1) and sup
x∈Ω

vn(x)

∣∣∣∣∣T (1,1)
n (x)

µ
(1,1)
n (x)

− 1

∣∣∣∣∣ = O(1) (17)

almost surely as n→∞. Moreover, Lemma 3 (iv) gives

sup
x∈Ω

1

α(ωn,x |x) ∨ hηf ∨ hη logωn,x

∣∣∣∣∣ µ
(1,0)
n (x)

f(x)F (ωn,x |x)
− 1

∣∣∣∣∣ = O(1),

sup
x∈Ω

1

α(ωn,x |x) ∨ hηf ∨ hη logωn,x

∣∣∣∣∣ µ
(1,1)
n (x)

f(x)F (ωn,x |x)
− γ(x)

∣∣∣∣∣ = O(1)

so that, using condition (7),

sup
x∈Ω

vn(x)

∣∣∣∣∣µ(1,1)
n (x)

µ
(1,0)
n (x)

− γ(x)

∣∣∣∣∣ = O(1). (18)

The result follows by reporting (17) and (18) into (14).

Appendix: Auxiliary results and proofs

The �rst lemma of this section is a topological result which shall be needed in several proofs.
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Lemma 1. Let S be the support of f . Assume that S has nonempty interior, and let Ω be a compact set

of Rd contained in the interior of S. Then there exists β > 0 such that for every x ∈ Ω, B(x, β) ⊂ S.

Proof of Lemma 1. Let U denote the interior of S and ∂S = S \ U be the (topological) boundary of

S. Note that ∂S is a closed set since it is the intersection of two closed sets in Rd; since Ω is a compact

set and ∂S is a closed set with Ω ∩ ∂S = ∅, it holds that

∃β > 0, d(Ω, ∂S) := inf
x∈Ω

inf
s∈∂S

‖x− s‖ = 2β > 0. (19)

We shall now prove the result. Pick x ∈ Ω. If one could �nd y ∈ B(x, β) ∩ Sc � where Sc is the

complement of the set S � then the real number

t0 = inf{t ∈ [0, 1] | zt := (1− t)x+ ty /∈ S}

would belong to (0, 1) since x ∈ U and y ∈ Sc which are both open sets. Therefore, because for

every t ∈ (0, t0), zt ∈ S and there exists a nonincreasing sequence (tk) converging to t0 such that

(ztk) ⊂ Sc ⊂ U c which is a closed set, one has

zt0 = lim
t↑t0

zt ∈ S and zt0 = lim
k→∞

ztk ∈ U c.

Hence zt0 ∈ S ∩U c = ∂S, but ‖x− zt0‖ = t0‖x− y‖ < β, which contradicts (19): Lemma 1 is proven.

The second lemma of this section is a technical result that gives an upper bound for the oscillation of

the log-conditional survival function.

Lemma 2. Assume that (SP ), (A1) and (A2) hold. Let moreover ε := εn and ε′ := ε′n be two positive

sequences tending to 0 and assume that

• inf
x∈Ω

ωn,x →∞ ;

• ε′η sup
x∈Ω

logωn,x → 0 ;

• sup
x∈Ω

∆(logωn,x)(ε)→ 0 ;

• sup
x∈Ω

α(y |x)→ 0 as y →∞.

Then it holds that, for n large enough,

∀x, x′ ∈ Ω, ∀(z, z′) ∈ B(x, ε)×B(x′, ε′),

∣∣∣∣log
F (ωn,z | z′)
F (ωn,x |x′)

∣∣∣∣ ≤MF ε
′η logωn,z +

2

γ
∆(logωn,x)(ε).

In particular,

sup
x, x′∈Ω

sup
z∈B(x, ε)

sup
z′∈B(x′, ε′)

1

ε′η logωn,x ∨∆(logωn,x)(ε)

∣∣∣∣F (ωn,z | z′)
F (ωn,x |x′)

− 1

∣∣∣∣ = O(1).
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Proof of Lemma 2. Lemma 1 shows that for n large enough, B(x, ε) and B(x, ε′) are contained in S

for every x ∈ Ω. Pick x, x′ ∈ Ω and (z, z′) ∈ B(x, ε)×B(x′, ε′). Use (2) to get for n large enough∣∣∣∣log
F (ωn,z | z′)
F (ωn,x |x′)

∣∣∣∣ ≤MF ‖x
′ − z′‖η logωn,z +

(
1

γ(x′)
+ α(ωn,z ∧ ωn,x |x′)

)
|logωn,x − logωn,z| .

Since (z, z′) ∈ B(x, ε)×B(x′, ε′), one has

‖x′ − z′‖ ≤ ε′ and |logωn,x − logωn,z| ≤ ∆(logωn,x)(ε).

Besides, using (6) with ε instead of h, we get inf
x∈Ω

inf
z∈B(x, ε)

ωn,z ∧ωn,x = inf
x∈Ω

ωn,x(1 + o(1))→∞, so that

sup
x, x′∈Ω

sup
z∈B(x, ε)

α(ωn,z ∧ ωn,x |x′)→ 0.

Especially, since 0 < γ ≤ γ(x′), we obtain for n large enough:

∀x, x′ ∈ Ω, ∀(z, z′) ∈ B(x, ε)×B(x′, ε′),

∣∣∣∣log
F (ωn,z | z′)
F (ωn,x |x′)

∣∣∣∣ ≤MF ε
′η logωn,z +

2

γ
∆(logωn,x)(ε)

which is the �rst part of the result. To prove the second part, note that because sup
x∈Ω

∆(logωn,x)(ε)→ 0

it holds that for n large enough

∀x, x′ ∈ Ω, ∀(z, z′) ∈ B(x, ε)×B(x′, ε′),

∣∣∣∣log
F (ωn,z | z′)
F (ωn,x |x′)

∣∣∣∣ ≤ 2MF ε
′η logωn,x +

2

γ
∆(logωn,x)(ε).

Consequently

sup
x, x′∈Ω

sup
z∈B(x, ε)

sup
z′∈B(x′, ε′)

1

ε′η logωn,x ∨∆(logωn,x)(ε)

∣∣∣∣log
F (ωn,z | z′)
F (ωn,x |x′)

∣∣∣∣ = O(1).

Using the equivalent eu − 1 = u(1 + o(1)) therefore completes the proof of Lemma 2.

The third lemma examines the behavior of the conditional moment

m(t)
n (x, z) := E((log Y − logωn,x)t+1l{Y >ωn,x} |X = z)

and that of its smoothed version µ
(s,t)
n (x) := E(Ks

h(x−X)m
(t)
n (x, X)). Let Γ be Euler's Gamma function:

∀ t > 0, Γ(t) :=

∫ +∞

0

vt−1e−v dv.

Lemma 3. Assume that (SP ), (A1) and (A2) hold. Pick s ≥ 1, t ≥ 0 and assume that K is a bounded

probability density function on Rd with support included in B. If moreover

• inf
x∈Ω

ωn,x →∞ ;

• hη sup
x∈Ω

logωn,x → 0 ;

• sup
x∈Ω

α(y |x)→ 0 as y →∞

then, as n→∞, the following estimations hold:

14



(i) sup
x∈Ω

sup
z∈B(x, h)

1

α(ωn,x |x) ∨ hηα

∣∣∣∣∣ m
(t)
n (x, z)

γt(z)Γ(t+ 1)F (ωn,x | z)
− 1

∣∣∣∣∣ = O (1).

(ii) sup
x∈Ω

sup
z∈B(x,h)

1

α(ωn,x |x) ∨ hη logωn,x

∣∣∣∣∣m(t)
n (x, z)

m
(t)
n (x, x)

− 1

∣∣∣∣∣ = O (1).

(iii) sup
x∈Ω

1

α(ωn,x |x) ∨ hηf ∨ hη logωn,x

∣∣∣∣∣ hd(s−1)µ
(s,t)
n (x)

‖K‖ss f(x)m
(t)
n (x, x)

− 1

∣∣∣∣∣ = O (1).

(iv) sup
x∈Ω

1

α(ωn,x |x) ∨ hηf ∨ hη logωn,x

∣∣∣∣∣ hd(s−1)µ
(s,t)
n (x)

‖K‖ss f(x)γt(x)Γ(t+ 1)F (ωn,x |x)
− 1

∣∣∣∣∣ = O (1).

Proof of Lemma 3. Using Lemma 1, we can pick n large enough such that B(x, h) ⊂ S for all x ∈ Ω.

(i) When t = 0, there is nothing to prove, since m
(0)
n (x, z) = F (ωn,x | z) and Γ(1) = 1. In the case t > 0,

an integration by parts yields

m(t)
n (x, z) =

∫ +∞

ωn,x

t
(log y − logωn,x)t−1

y
F (y | z) dy = t F (ωn,x | z)

∫ +∞

1

(log r)t−1F (rωn,x | z)
rF (ωn,x | z)

dr.

From (SP ) and (A1), one has∣∣∣∣F (rωn,x | z)
rF (ωn,x | z)

− r−1/γ(z)−1

∣∣∣∣ = r−1/γ(z)−1

∣∣∣∣∣exp

(∫ rωn,x

ωn,x

α(v | z)
v

dv

)
− 1

∣∣∣∣∣ . (20)

For all y ∈ R, the mean value theorem yields |ey − 1| ≤ |y|e|y|. Meanwhile,∣∣∣∣∣
∫ rωn,x

ωn,x

α(v | z)
v

dv

∣∣∣∣∣ ≤ α(ωn,x | z) log r. (21)

Since (5) gives α(ωn,x | z) ≤ α(ωn,x |x) +Mαh
ηα for all x ∈ Ω and z ∈ B(x, h), it holds that

sup
x∈Ω

sup
z∈B(x, h)

α(ωn,x | z) ≤ sup
x∈Ω

α(ωn,x |x) +Mαh
ηα → 0 as n→∞. (22)

Choosing n so large that sup
x∈Ω

sup
z∈B(x, h)

α(ωn,x | z) < 1/2γ, (20) and (21) together imply that, for all x ∈ Ω

and z ∈ B(x, h),∣∣∣∣∫ +∞

1

(log r)t−1

[
F (rωn,x | z)
rF (ωn,x | z)

− r−1/γ(z)−1

]
dr

∣∣∣∣ ≤ (α(ωn,x |x) +Mαh
ηα)

∫ +∞

1

(log r)t r−1/2γ−1dr

which, since the integral on the right-hand side of this inequality converges, gives

sup
x∈Ω

sup
z∈B(x, h)

1

α(ωn,x |x) ∨ hηα

∣∣∣∣∫ +∞

1

(log r)t−1

[
F (rωn,x | z)
rF (ωn,x | z)

− r−1/γ(z)−1

]
dr

∣∣∣∣ = O (1)

as n→∞. Rewriting with an elementary change of variables∫ +∞

1

(log r)t−1 r−1/γ(z)−1 dr = γt(z)Γ(t)

and using the well-known equality tΓ(t) = Γ(t+ 1), we get

sup
x∈Ω

sup
z∈B(x, h)

1

α(ωn,x |x) ∨ hηα

∣∣∣∣∣m(t)
n (x, z)

F (ωn,x | z)
− γt(z)Γ(t+ 1)

∣∣∣∣∣ = O (1)
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as n→∞ and (i) is proven.

(ii) Since for all x ∈ Ω, 0 < γ ≤ γ(x) ≤ γ <∞, applying (i) entails

sup
x∈Ω

sup
z∈B(x,h)

1

α(ωn,x |x) ∨ hηα

∣∣∣∣∣ m
(t)
n (x, z)

γt(z)Γ(t+ 1)F (ωn,x | z)
γt(x)Γ(t+ 1)F (ωn,x |x)

m
(t)
n (x, x)

− 1

∣∣∣∣∣ = O (1) . (23)

Moreover, using the mean value theorem:∣∣∣∣γt(x)

γt(z)
− 1

∣∣∣∣ ≤ 1

γt
sup

γ≤r≤γ

∣∣trt−1
∣∣ |γ(x)− γ(z)| .

Recalling that 0 < γ ≤ γ <∞ and that (A2) holds, this implies the estimation

sup
x∈Ω

sup
z∈B(x,h)

∣∣∣∣γt(x)

γt(z)
− 1

∣∣∣∣ = O(hηγ ). (24)

Besides, using Lemma 2 gives

sup
x∈Ω

sup
z∈B(x,h)

1

hη logωn,x

∣∣∣∣F (ωn,x |x)

F (ωn,x | z)
− 1

∣∣∣∣ = O(1). (25)

Note �nally that since η ≤ ηγ ∧ ηα and inf
x∈Ω

ωn,x →∞ one has

sup
x∈Ω

hηγ ∨ hηα
hη logωn,x

→ 0.

Using then (24) and (25) together with (23) yields (ii).

(iii) Let us remark that for all x ∈ Ω:

hd(s−1)µ
(s,t)
n (x)

f(x)m
(t)
n (x, x)

=

∫
B

Ks(u)
f(x− hu)

f(x)

m
(t)
n (x, x− hu)

m
(t)
n (x, x)

du.

From (3) and (ii) it follows that

sup
x∈Ω

sup
z∈B(x, h)

1

α(ωn,x |x) ∨ hηf ∨ hη logωn,x

∣∣∣∣∣ f(z)

f(x)

m
(t)
n (x, z)

m
(t)
n (x, x)

− 1

∣∣∣∣∣→ 0

as n→∞, which yields (iii).

(iv) Write for all x ∈ Ω:

hd(s−1)µ
(s,t)
n (x)

‖K‖ss f(x)γt(x)Γ(t+ 1)F (ωn,x |x)
=

hd(s−1)µ
(s,t)
n (x)

‖K‖ss f(x)m
(t)
n (x, x)

m
(t)
n (x, x)

γt(x)Γ(t+ 1)F (ωn,x |x)

and use (i) and (iii) together to prove (iv).

The fourth lemma is essential to prove Proposition 1. It gives a uniform exponential bound for large

deviations of T
(1,0)
n and T

(1,1)
n .

Lemma 4. Assume that (SP ), (A1) and (A2) hold. Assume that K is a bounded probability density

function on Rd with support included in B. If moreover

• inf
x∈Ω

ωn,x →∞ ;
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• hη sup
x∈Ω

logωn,x → 0 ;

• sup
x∈Ω

α(y |x)→ 0 as y →∞

then there exists a positive constant κ such that for all n large enough, one has for t ∈ {0, 1} and every

ε > 0 small enough:

∀x ∈ Ω, P

(∣∣∣∣∣T (1,t)
n (x)

µ
(1,t)
n (x)

− 1

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−κε2 nhdF (ωn,x |x)

)
.

Proof of Lemma 4. Using Lemma 1, we can pick n large enough such that B(x, h) ⊂ S for all x ∈ Ω.

We start by considering T
(1,0)
n (x). For every x ∈ Ω:

P

(∣∣∣∣∣T (1,0)
n (x)

µ
(1,0)
n (x)

− 1

∣∣∣∣∣ > ε

)
= P

(∣∣∣hdT (1,0)
n (x)− hdµ(1,0)

n (x)
∣∣∣ > εhdµ(1,0)

n (x)
)
.

Notice now that if Wn,i(x) := hdKh(x−Xi)1l{Yi>ωn,x} then

hdT (1,0)
n (x)− hdµ(1,0)

n (x) =
1

n

n∑
i=1

[Wn,i(x)− E(Wn,i(x))]

is a mean of bounded, centered, independent and identically distributed random variables. De�ne

τn(x) :=
ε

‖K‖∞
nhdµ(1,0)

n (x) and λn(x) := ε‖K‖∞ hdµ(1,0)
n (x)

1

Var(Wn, 1(x))
.

Bernstein's inequality (see Hoe�ding [23]) yields, for all ε > 0:

P

(∣∣∣∣∣T (1,0)
n (x)

µ
(1,0)
n (x)

− 1

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− τn(x)λn(x)

2(1 + λn(x)/3)

)
.

Applying Lemma 3(iii) yields for n large enough:

inf
x∈Ω

τn(x)

nhdF (ωn,x |x)
≥

εf

2‖K‖∞
. (26)

Moreover, for all x ∈ Ω:

1

λn(x)
=

E(W 2
n, 1(x))− [E(Wn, 1(x))]

2

ε‖K‖∞ hdµ
(1,0)
n (x)

.

Since Wn, 1(x) is bounded by ‖K‖∞, it follows that

sup
x∈Ω

1

λn(x)
≤ sup
x∈Ω

E(W 2
n, 1(x))− [E(Wn, 1(x))]

2

ε‖K‖∞ hdµ
(1,0)
n (x)

≤ 1

ε
. (27)

Finally, it holds that

τn(x)λn(x)

2(1 + λn(x)/3)
≥
{

inf
x∈Ω

τn(x)

nhdF (ωn,x |x)

}{
inf
x∈Ω

1

2(1/λn(x) + 1/3)

}
nhdF (ωn,x |x).

Using (26), (27) and the fact that the function t 7→ 1/[2(t+1/3)] is decreasing on R+, it is then clear that

for all n large enough, if ε > 0 is small enough, there exists a positive constant κ1 that is independent

of ε such that

∀x ∈ Ω, P

(∣∣∣∣∣T (1,0)
n (x)

µ
(1,0)
n (x)

− 1

∣∣∣∣∣ > ε

)
≤ 2 exp

[
−κ1ε

2 nhdF (ωn,x |x)
]
.
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We now turn to T
(1,1)
n (x). For every x ∈ Ω, it holds that

P

(∣∣∣∣∣T (1,1)
n (x)

µ
(1,1)
n (x)

− 1

∣∣∣∣∣ > ε

)
= P

(
T

(1,1)
n (x)

µ
(1,1)
n (x)

− 1 > ε

)
+ P

(
T

(1,1)
n (x)

µ
(1,1)
n (x)

− 1 < −ε

)
=: u1,n(x) + u2,n(x).

We shall then give a uniform Cherno�-type exponential bound (see Cherno� [5]) for both terms on the

right-hand side of the above inequality. We start by considering u1,n(x). Write for all q > 0:

u1,n(x) = P

(
exp

(
q
T

(1,1)
n (x)

µ
(1,1)
n (x)

)
> exp(q[ε+ 1])

)
.

Letting

ϕn(s, x) := E(exp(sKh(x−X)(log Y − logωn,x)+1l{Y >ωn,x}))

be the moment generating function of the random variable Kh(x − X)(log Y − logωn,x)+1l{Y >ωn,x},

Markov's inequality entails

u1,n(x) ≤ exp

(
−q[ε+ 1] + n logϕn

(
q

nµ
(1,1)
n (x)

, x

))
. (28)

Our goal is now to use inequality (28) with a suitable value q∗(ε, x) for q. To this end, notice that

ϕn(s, x) =

∫
Rd
ψn(sKh(x− z) |x, z) f(z) dz

=

∫
Rd\B(x, h)

f(z) dz +

∫
B(x, h)

ψn(sKh(x− z) |x, z) f(z) dz

where

ψn(s |x, z) := E(exp(s(log Y − logωn,x)+1l{Y >ωn,x}) |X = z)

is the conditional moment generating function of the random variable (log Y − logωn,x)+1l{Y >ωn,x} given

X = z. In particular, since f is a probability density function on Rd,

ϕn(s, x) = 1 +

∫
B(x, h)

[ψn(sKh(x− z) |x, z)− 1] f(z) dz. (29)

This equality makes it clear that it is enough to study the behavior of ψn(· |x, z). One has

ψn(s |x, z) = 1− F (ωn,x | z) + E
([

Y

ωn,x

]s
1l{Y >ωn,x} |X = z

)
. (30)

We then work on the last term, which equals

E
([

Y

ωn,x

]s
1l{Y >ωn,x} |X = z

)
= F (ωn,x | z) + E

(∫ +∞

1

sts−11l{Y >tωn,x} dt |X = z

)
and since the integrand is a positive measurable function, switching the expectation and the integral

sign implies that

E
([

Y

ωn,x

]s
1l{Y >ωn,x} |X = z

)
= F (ωn,x | z) +

∫ +∞

1

sts−1F (tωn,x | z) dt. (31)

Using (30) and (31) together yields

ψn(s |x, z) = 1 + F (ωn,x | z)
∫ +∞

1

sts
F (tωn,x | z)
tF (ωn,x | z)

dt.
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A use of (20) and (21) therefore entails, for all s < 1/γ,

ψn(s |x, z) = 1 + sF (ωn,x | z)

([
1

γ(z)
− s
]−1

+Rn(s |x, z)

)
(32)

where Rn(s |x, z) satis�es, for all δ > 0, if n is large enough,

sup
x∈Ω

sup
z∈B(x, h)

|Rn(s |x, z)| ≤ sup
x∈Ω

sup
z∈B(x, h)

α(ωn,x | z)
∫ +∞

1

vs−1/γ−1+δ log v dv.

Since by (22) it holds that sup
x∈Ω

sup
z∈B(x, h)

α(ωn,x | z)→ 0 we get, for all δ > 0:

sup
s<1/γ−δ

sup
x∈Ω

sup
z∈B(x, h)

|Rn(s |x, z)| → 0 (33)

as n → ∞. We shall now derive a suitable value for the parameter q. Given X = x, if the remainder

term Rn were identically 0, then one would have m
(1)
n (x, x) = γ(x)F (ωn,x |x) and thus an optimal value

of q would be obtained by minimizing the function

q 7→ −q[1 + ε] + n log

[
1 +

q

n

[
1− q

nF (ωn,x |x)

]−1
]
.

Straightforward but cumbersome computations lead to the optimal value

q?c,+(ε) := nF (ωn,x |x)

[
2− F (ωn,x |x)

]
−
√[

2− F (ωn,x |x)
]2 − 4ε

ε+ 1

[
1− F (ωn,x |x)

]
2
[
1− F (ωn,x |x)

] . (34)

Since we are mostly interested in what happens in the limit n → ∞ and ε → 0, we may examine the

behavior of q?c,+(ε) in this case. Using (34), we get the following asymptotic equivalent

q∗c,+(ε) = nF (ωn,x |x)
ε

2(ε+ 1)
.

Note that since q∗c,+(ε)/[nm
(1)
n (x, x)] = ε/[2γ(x)(ε + 1)] is positive and converges to 0 as ε → 0, the

moment generating function ψn(· |x, x) at q∗c,+(ε)/[nm
(1)
n (x, x)] is well-de�ned and �nite for ε small

enough and therefore this choice of q is valid. Back to our original context, taking into account the

presence of the covariate X motivates the following value for q:

q∗n,+(ε, x) :=
Mε

ε+ 1
nhdf(x)F (ωn,x |x)

where M is a positive constant to be chosen later. For ε small enough and for n so large that the

quantity ϕn

(
q∗n,+(ε, x)/(nµ

(1,1)
n (x)), x

)
is well-de�ned and �nite for all x ∈ Ω, replacing q by q∗n,+(ε, x)

in the right-hand side of (28) gives

∀x ∈ Ω, u1,n(x) ≤ exp

(
−Mεnhdf(x)F (ωn,x |x) + n logϕn

(
q∗n,+(ε, x)

nµ
(1,1)
n (x)

, x

))
. (35)

Using the classical inequality log(1 + r) ≤ r for all r > 0 together with (29), we obtain

logϕn(s, x) ≤
∫
B(x, h)

[ψn(sKh(x− z) |x, z)− 1] f(z) dz.
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Applying (32) entails

logϕn(s, x)≤
∫
B(x, h)

sKh(x− z)F (ωn,x | z)

([
1

γ(z)
− sKh(x− z)

]−1

+Rn(sKh(x− z) |x, z)

)
f(z) dz.

According to Lemma 3(iv),

q∗n,+(ε, x)

nµ
(1,1)
n (x)

=
Mε

ε+ 1
hdf(x)

F (ωn,x |x)

µ
(1,1)
n (x)

= M
εhd

γ(x)(ε+ 1)
[1 + r1,n(x)] (36)

where supx∈Ω |r1,n(x)| → 0 as n goes to in�nity. As a consequence, using an elementary Taylor expan-

sion, we get, for all z ∈ B(x, h),[
1

γ(z)
−
q∗n,+(ε, x)

nµ
(1,1)
n (x)

Kh(x− z)

]−1

= γ(z)

[
1 +

γ(z)

γ(x)

Mε

ε+ 1
hd[1 + r1,n(x)]Kh(x− z)

+ k

(
γ(z)

γ(x)

Mε

ε+ 1
hd[1 + r1,n(x)]Kh(x− z)

)]
where k(r)/r → 0 as r goes to 0. Letting

pn(x, z) :=
γ(z)

γ(x)
[1 + r1,n(x)]hdKh(x− z)

and using (4), the uniform convergence of r1,n to 0 and the fact that K is bounded yields

pn(x, z) = hdKh(x− z) + r2,n(x, z) where sup
x∈Ω

sup
z∈B(x, h)

|r2,n(x, z)| → 0

as n goes to in�nity. Especially,[
1

γ(z)
−
q∗n,+(ε, x)

nµ
(1,1)
n (x)

Kh(x− z)

]−1

= γ(z)

[
1 +

Mε

ε+ 1
hdKh(x− z) + εr3,n(ε, x, z)

]
(37)

where r3,n(ε, x, z) → 0 as ε goes to 0 and n goes to in�nity, uniformly in x ∈ Ω and z ∈ B(x, h).

Besides, since for every ε0 > 0

sup
ε<ε0

sup
x∈Ω

sup
z∈B(x, h)

∣∣∣∣∣q∗n,+(ε, x)

nµ
(1,1)
n (x)

Kh(x− z)− Mε

ε+ 1

hdKh(x− z)
γ(x)

∣∣∣∣∣→ 0

as n goes to in�nity and

sup
n∈N

sup
x∈Ω

sup
z∈B(x, h)

∣∣∣∣ Mε

ε+ 1

hdKh(x− z)
γ(x)

∣∣∣∣→ 0

as ε goes to 0, (33) yields for ε small enough

sup
x∈Ω

sup
z∈B(x, h)

∣∣∣∣∣Rn
(
q∗n,+(ε, x)

nµ
(1,1)
n (x)

Kh(x− z) |x, z

)∣∣∣∣∣→ 0 (38)

as n goes to in�nity. Using together (4), (36), (37) and (38) entails that there exist functions r4,n =

r4,n(x, z) and r5,n = r5,n(ε, x, z) satisfying

sup
x∈Ω

sup
z∈B(x, h)

|r4,n(x, z)| → 0 as n→∞

and sup
x∈Ω

sup
z∈B(x, h)

|r5,n(ε, x, z)| → 0 as ε→ 0 and n→∞
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such that

logϕn

(
q∗n,+(ε, x)

nµ
(1,1)
n (x)

, x

)
≤
∫
B(x, h)

Mε

ε+ 1
hd
[
1 +

Mε

ε+ 1
hdKh(x− z)

]
F (ωn,x | z)Kh(x− z) f(z) dz

+
Mε

ε+ 1
hd
∫
B(x, h)

F (ωn,x | z) [r4,n(x, z) + εr5,n(ε, x, z)]Kh(x− z) f(z) dz.

Recalling (3) and (25), we get, for n large enough and ε small enough, the inequality

∀x ∈ Ω, logϕn

(
q∗n,+(ε, x)

nµ
(1,1)
n (x)

, x

)
≤ Mε

ε+ 1

[
1 + 2

Mε

ε+ 1
‖K‖22

]
hdf(x)F (ωn,x |x).

Using this result together with (35) and recalling that 0 < f ≤ f(x) entails, for n large enough and ε

small enough,

∀x ∈ Ω, u1,n(x) ≤ exp

(
f

[
−Mε+

Mε

ε+ 1

[
1 + 2

Mε

ε+ 1
‖K‖22

]]
nhdF (ωn,x |x)

)
.

A straightforward computation shows that the optimal value for M in the above inequality is

M∗+ :=
ε+ 1

4‖K‖22

for which

∀x ∈ Ω, u1,n(x) ≤ exp

(
− ε2

8‖K‖22
fnhdF (ωn,x |x)

)
= exp

(
−κ2ε

2nhdF (ωn,x |x)
)

where κ2 is a positive constant independent of ε.

Providing a uniform exponential bound for u2,n(x) starts by noticing that, for all q > 0,

u2,n(x) ≤ exp

(
−q[ε− 1] + n logϕn

(
− q

nµ
(1,1)
n (x)

, x

))
.

Considering again the conditional framework, if the remainder term Rn in (32) were identically 0, an

optimal value of q would be obtained by minimizing the function

q 7→ −q[ε− 1] + n log

[
1− q

n

[
1 +

q

nF (ωn,x |x)

]−1
]
.

Burdensome computations lead to the optimal value

q?c,−(ε) := nF (ωn,x |x)

−
[
2− F (ωn,x |x)

]
+

√[
2− F (ωn,x |x)

]2
+

4ε

1− ε
[
1− F (ωn,x |x)

]
2
[
1− F (ωn,x |x)

]
which yields the following asymptotic equivalent as n→∞ and ε→ 0:

q∗c,−(ε) = nF (ωn,x |x)
ε

2(1− ε)
.

Adapting this in our framework motivates the following value for q:

q∗n,−(ε, x) :=
Mε

1− ε
nhdf(x)F (ωn,x |x)
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where M is a positive constant to be chosen later. Recall (29) to write, for all s > 0,

ϕn(−s, x) = 1−
∫
B(x, h)

[1− ψn(−sKh(x− z) |x, z)] f(z) dz.

Using the well-known inequality log(1− r) ≤ −r for all r > 0, we get

logϕn(−s, x) ≤
∫
B(x, h)

[ψn(−sKh(x− z) |x, z)− 1] f(z) dz.

Replacing s by q∗n,−(ε, x)/nµ
(1,1)
n (x), the ideas developed to control u1,n(x) entail, for n large enough,

∀x ∈ Ω, u2,n(x) ≤ exp

(
f

[
Mε− Mε

1− ε

[
1− 2

Mε

1− ε
‖K‖22

]]
nhdF (ωn,x |x)

)
.

A straightforward computation shows that the optimal value for M in the above inequality is

M∗− :=
1− ε

4‖K‖22
for which

∀x ∈ Ω, u2,n(x) ≤ exp
(
−κ2ε

2nhdF (ωn,x |x)
)
.

Setting κ = κ1 ∧ κ2 completes the proof of Lemma 4.

The �fth lemma of this section establishes a uniform control of the relative oscillation of x 7→ µ
(s,t)
n (x).

Before stating this result, we let

m(s,t)
n (x) := E(Ks2h(x−X)m(t)

n (x, X))

where K := 1lB/V is the uniform kernel on Rd, with V being the volume of the unit ball of Rd; let further

Kh(u) := h−dK(u/h).

Lemma 5. Assume that (SP ), (K), (A1) and (A2) hold. Pick s ≥ 1, t ∈ {0, 1} and let ε := εn be a

sequence of positive real numbers such that ε ≤ h. If moreover

• inf
x∈Ω

ωn,x →∞ ;

• hη sup
x∈Ω

logωn,x → 0 ;

• sup
x∈Ω

∆(logωn,x)(ε)→ 0 ;

• sup
x∈Ω

α(y |x)→ 0 as y →∞

then

sup
x∈Ω

sup
z∈B(x, ε)

1

[ε/h]
ηK ∨∆(logωn,x)(ε)

∣∣∣∣∣µ(s,t)
n (z)

µ
(s,t)
n (x)

− 1

∣∣∣∣∣ = O (1) .

Proof of Lemma 5. Using Lemma 1, we can pick n large enough such that B(x, 2h) ⊂ S for all x ∈ Ω.

We start by the case t = 0. For all x ∈ Ω and z ∈ B(x, ε), we have∣∣∣µ(s,0)
n (x)− µ(s,0)

n (z)
∣∣∣ ≤ E

(
|Ks

h(x−X)−Ks
h(z −X)| 1l{Y >ωn,x}

)
+ E

(
Ks
h(z −X)

∣∣1l{Y >ωn,x} − 1l{Y >ωn,z}
∣∣)

=: R
(0)
1,n(x, z) +R

(0)
2,n(x, z) (39)
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and we shall handle both terms in the right-hand side separately. Since by the mean value theorem, for

all 0 ≤ a < b

|as − bs| ≤ max
t∈[a, b]

∣∣sts−1
∣∣ |a− b|,

hypothesis (K) and the inclusion B(z, h) ⊂ B(x, 2h) entail that there exists a constant cK,s > 0 such

that

|Ks
h(x−X)−Ks

h(z −X)| ≤ cK,s
hsd

[ ε
h

]ηK
1l{X∈B(x, 2h)}. (40)

From (40), we get

sup
z∈B(x, ε)

R
(0)
1,n(x, z) ≤ cK,s(2dV)s m(s,0)

n (x)
[ ε
h

]ηK
. (41)

Because K is a probability density function on Rd with support included in B, applying Lemma 3(iii)

with K instead of K implies that

sup
x∈Ω

∣∣∣∣∣ m
(s,0)
n (x)

(2h)−d(s−1)‖K‖ssf(x)m
(0)
n (x, x)

− 1

∣∣∣∣∣→ 0 as n→∞.

Applying Lemma 3(iii) once again then gives

sup
x∈Ω

∣∣∣∣∣m(s,0)
n (x)

µ
(s,0)
n (x)

− 2−d(s−1) ‖K‖ss
‖K‖ss

∣∣∣∣∣→ 0 as n→∞ (42)

which, together with (41), yields

sup
x∈Ω

sup
z∈B(x, ε)

[ ε
h

]−ηK R
(0)
1,n(x, z)

µ
(s,0)
n (x)

= O(1). (43)

We now turn to the second term. One has

R
(0)
2,n(x, z) = E

(
Ks
h(z −X)

∣∣F (ωn,x |X)− F (ωn,z |X)
∣∣) . (44)

Furthermore, using Lemma 2 with ε′ = 0 and the inclusion B(x, 2h) ⊂ S for all x ∈ Ω entails

sup
x∈Ω

sup
x′∈B(x, 2h)

sup
z∈B(x, ε)

1

∆(logωn,x)(ε)

∣∣∣∣F (ωn,z |x′)
F (ωn,x |x′)

− 1

∣∣∣∣ = O(1). (45)

Besides, hypothesis (K) and the inclusion B(z, h) ⊂ B(x, 2h) imply that

E(Ks
h(z −X)m(0)

n (x, X)) ≤ cK,s(2dV)s m(s,0)
n (x) (46)

where cK,s was introduced earlier. Using the obvious identity

|F (ωn,x |X)− F (ωn,z |X)| = m(0)
n (x, X)

∣∣∣∣F (ωn,z |X)

F (ωn,x |X)
− 1

∣∣∣∣ (47)

and recalling that the support of the random variable Ks
h(z −X) is contained in B(z, h) ⊂ B(x, 2h),

(44) and (45) yield:

sup
x∈Ω

sup
z∈B(x, ε)

1

∆(logωn,x)(ε)

R
(0)
2,n(x, z)

m
(s,0)
n (x)

= O(1),
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and (42) entails

sup
x∈Ω

sup
z∈B(x, ε)

1

∆(logωn,x)(ε)

R
(0)
2,n(x, z)

µ
(s,0)
n (x)

= O(1). (48)

Applying (39) together with (43) and (48) gives

sup
x∈Ω

sup
z∈B(x, ε)

1

[ε/h]
ηK ∨∆(logωn,x)(ε)

∣∣∣∣∣µ(s,0)
n (z)

µ
(s,0)
n (x)

− 1

∣∣∣∣∣ = O(1)

which shows Lemma 5 in this case.

We now turn to the case t = 1. Note that for all real numbers a, b ≥ 1 such that a 6= b one has

∀ y ≥ 1, |(log y − log a)+1l{y>a} − (log y − log b)+1l{y>b}| ≤ | log b− log a|1l{y>a∧b}. (49)

Inequality (49) then implies, for all x ∈ Ω and z ∈ B(x, ε):∣∣∣µ(s,1)
n (x)− µ(s,1)

n (z)
∣∣∣ ≤ E

(
|Ks

h(x−X)−Ks
h(z −X)| (log Y − logωn,x)+1l{Y >ωn,x}

)
+

∣∣∣∣log
ωn,x
ωn,z

∣∣∣∣E (Ks
h(z −X)1l{Y >ωn,x∧ωn,z}

)
=: R

(1)
1,n(x, z) +R

(1)
2,n(x, z) (50)

and we shall once again take care of both terms in the right-hand side of this inequality. Start by using

(40) to get

sup
z∈B(x, ε)

R
(1)
1,n(x, z) ≤ cK,s(2dV)s m(s,1)

n (x)
[ ε
h

]ηK
. (51)

We now use the same idea developed to control R
(0)
1,n(x, z): since K is a probability density function on

Rd with support included in B, applying Lemma 3(iii) with K instead of K implies that

sup
x∈Ω

∣∣∣∣∣ m
(s,1)
n (x)

(2h)−d(s−1)‖K‖ssf(x)m
(1)
n (x, x)

− 1

∣∣∣∣∣→ 0 as n→∞.

Applying Lemma 3(iii) gives

sup
x∈Ω

∣∣∣∣∣m(s,1)
n (x)

µ
(s,1)
n (x)

− 2−d(s−1) ‖K‖ss
‖K‖ss

∣∣∣∣∣→ 0 as n→∞

which, together with (51), yields

sup
x∈Ω

sup
z∈B(x, ε)

[ ε
h

]−ηK R
(1)
1,n(x, z)

µ
(s,1)
n (x)

= O(1). (52)

To control the second term, write

sup
z∈B(x, ε)

R
(1)
2,n(x, z) ≤ ∆(logωn,x)(ε) sup

z∈B(x, ε)

E
(
Ks
h(z −X)1l{Y >ωn,x∧ωn,z}

)
.

Note that since ωn,x ∧ ωn,z is either equal to ωn,x or ωn,z, we can write, for all z ∈ B(x, ε)

E
(
Ks
h(z −X)1l{Y >ωn,x∧ωn,z}

)
≤ E

(
Ks
h(z −X)m(0)

n (x, X)
)
∨ E

(
Ks
h(z −X)m(0)

n (z, X)
)
.
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Recall now (45) and (47) to obtain, for n large enough, uniformly in x ∈ Ω and z ∈ B(x, ε),

E
(
Ks
h(z −X)1l{Y >ωn,x∧ωn,z}

)
≤ 2E

(
Ks
h(z −X)m(0)

n (x, X)
)
. (53)

Finally, using (46) and (53) yields:

sup
x∈Ω

sup
z∈B(x, ε)

1

∆(logωn,x)(ε)

R
(1)
2,n(x, z)

m
(s,0)
n (x)

= O(1),

and (42) entails

sup
x∈Ω

sup
z∈B(x, ε)

1

∆(logωn,x)(ε)

R
(1)
2,n(x, z)

µ
(s,0)
n (x)

= O(1)

so that Lemma 3(iv) gives

sup
x∈Ω

sup
z∈B(x, ε)

1

∆(logωn,x)(ε)

R
(1)
2,n(x, z)

µ
(s,1)
n (x)

= O(1). (54)

Applying (50) together with (52) and (54) implies that

sup
x∈Ω

sup
z∈B(x, ε)

1

[ε/h]
ηK ∨∆(logωn,x)(ε)

∣∣∣∣∣µ(s,1)
n (z)

µ
(s,1)
n (x)

− 1

∣∣∣∣∣ = O(1)

which completes the proof of Lemma 5.

The sixth lemma of this section provides a uniform control of both the di�erence of two versions of

µ
(1,0)
n (x) for two families of thresholds that are uniformly asymptotically equivalent and the empirical

analogue of this quantity.

Lemma 6. Assume that (SP ), (A1) and (A2) hold. Assume that K is a bounded probability density

function on Rd with support included in B and that

• inf
x∈Ω

ωn,x →∞ ;

• hη sup
x∈Ω

logωn,x → 0 ;

• sup
x∈Ω

α(y |x)→ 0 as y →∞.

For an arbitrary family of positive sequences (ρn,x) such that sup
x∈Ω

ρn,x → 0 as n→∞, let

M (1,0)
n (x) := E(Kh(x−X)1l{(1−ρn,x)ωn,x<Y≤(1+ρn,x)ωn,x})

and U (1,0)
n (x) :=

1

n

n∑
i=1

Kh(x−Xi)1l{(1−ρn,x)ωn,x<Yi≤(1+ρn,x)ωn,x}.

Then

sup
x∈Ω

∣∣∣∣∣ γ(x)M
(1,0)
n (x)

2f(x)ρn,xF (ωn,x |x)
− 1

∣∣∣∣∣→ 0

and there exists a positive constant κ such that for all n large enough, one has for every ε > 0 small

enough:

∀x ∈ Ω, P

(
ρn,x

∣∣∣∣∣ U (1,0)
n (x)

M
(1,0)
n (x)

− 1

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−κεnhdF (ωn,x |x)

)
.
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Proof of Lemma 6. Using Lemma 1, we can pick n large enough such that B(x, h) ⊂ S for all x ∈ Ω.

We start by noting that

M (1,0)
n (x) = E

(
Kh(x−X)ρn,xF (ωn,x |X)

[
F ((1− ρn,x)ωn,x |X)

ρn,xF (ωn,x |X)
− F ((1 + ρn,x)ωn,x |X)

ρn,xF (ωn,x |X)

])
.

Use then (SP ) and (A1) to get, for an arbitrary z ∈ B(x, h),

F ((1− ρn,x)ωn,x | z)
ρn,xF (ωn,x | z)

=
(1− ρn,x)−1/γ(z)

ρn,x
exp

(
−
∫ ωn,x

(1−ρn,x)ωn,x

α(v | z)
v

dv

)
(55)

and
F ((1 + ρn,x)ωn,x | z)
ρn,xF (ωn,x | z)

=
(1 + ρn,x)−1/γ(z)

ρn,x
exp

(∫ (1+ρn,x)ωn,x

ωn,x

α(v | z)
v

dv

)
. (56)

Remark that using a Taylor expansion of the exponential function in a neighborhood of 0, there exists

a function ϕ : R→ R converging to 0 at 0 such that for all h > 0:

(1 + h)−1/γ(z) = exp

(
− log(1 + h)

γ(z)

)
= 1− log(1 + h)

γ(z)

(
1 + ϕ

(
log(1 + h)

γ(z)

))
;

since 0 < γ ≤ γ(z) and sup
x∈Ω

ρn,x → 0, this yields

(1− ρn,x)−1/γ(z)

ρn,x
=

1

ρn,x
+

1

γ(z)
(1 + r1,n(x, z)) (57)

and
(1 + ρn,x)−1/γ(z)

ρn,x
=

1

ρn,x
− 1

γ(z)
(1 + r2,n(x, z)) (58)

where r1,n(x, z) and r2,n(x, z) satisfy

sup
x∈Ω

sup
z∈B(x, h)

|r1,n(x, z)| → 0 and sup
x∈Ω

sup
z∈B(x, h)

|r2,n(x, z)| → 0 as n→∞.

Besides, for all h > 0, ∣∣∣∣∣
∫ ωn,x

(1−h)ωn,x

α(v | z)
v

dv

∣∣∣∣∣ ≤ α((1− h)ωn,x | z)| log(1− h)| (59)

so that, because inf
x∈Ω

ωn,x →∞, sup
x∈Ω

ρn,x → 0 and sup
x∈Ω

α(y |x)→ 0 as y →∞:

exp

(
−
∫ ωn,x

(1−ρn,x)ωn,x

α(v | z)
v

dv

)
= 1−

∫ ωn,x

(1−ρn,x)ωn,x

α(v | z)
v

dv (1 + r3,n(x, z))

where r3,n(x, z) satis�es

sup
x∈Ω

sup
z∈B(x, h)

|r3,n(x, z)| → 0 as n→∞.

Similarly ∣∣∣∣∣
∫ (1+h)ωn,x

ωn,x

α(v | z)
v

dv

∣∣∣∣∣ ≤ α(ωn,x | z)| log(1 + h)| (60)

and therefore

exp

(∫ (1+ρn,x)ωn,x

ωn,x

α(v | z)
v

dv

)
= 1 +

∫ (1+ρn,x)ωn,x

ωn,x

α(v | z)
v

dv (1 + r4,n(x, z))

26



where r4,n(x, z) satis�es

sup
x∈Ω

sup
z∈B(x, h)

|r4,n(x, z)| → 0 as n→∞.

Moreover, (59) and (60) yield

sup
x∈Ω

sup
z∈B(x, h)

1

ρn,x

∣∣∣∣∣
∫ ωn,x

(1−ρn,x)ωn,x

α(v | z)
v

dv

∣∣∣∣∣→ 0 and sup
x∈Ω

sup
z∈B(x, h)

1

ρn,x

∣∣∣∣∣
∫ (1+ρn,x)ωn,x

ωn,x

α(v | z)
v

dv

∣∣∣∣∣→ 0

as n→∞. Plugging this together with (57) and (58) into (55) and (56) and recalling that 0 < γ ≤ γ(z)

entails

sup
x∈Ω

sup
z∈B(x, h)

∣∣∣∣γ(z)

2

[
F ((1− ρn,x)ωn,x | z)
ρn,xF (ωn,x | z)

− F ((1 + ρn,x)ωn,x | z)
ρn,xF (ωn,x | z)

]
− 1

∣∣∣∣→ 0

as n→∞. Consequently,

sup
x∈Ω

∣∣∣∣∣ M
(1,0)
n (x)

2E
(
Kh(x−X)ρn,xF (ωn,x |X)/γ(X)

) − 1

∣∣∣∣∣→ 0. (61)

Write then

E
(
Kh(x−X)F (ωn,x |X)/γ(X)

)
=

∫
B

K(u)F (ωn,x |x− hu)
f(x− hu)

γ(x− hu)
du.

Recalling (3) and (4), we get

sup
x∈Ω

∣∣∣∣∣E
(
Kh(x−X)F (ωn,x |X)/γ(X)

)
µ

(1,0)
n (x)/γ(x)

− 1

∣∣∣∣∣→ 0.

It only remains to recall (61) and to apply Lemma 3(iv) to obtain

sup
x∈Ω

∣∣∣∣∣ γ(x)M
(1,0)
n (x)

2f(x)ρn,xF (ωn,x |x)
− 1

∣∣∣∣∣→ 0. (62)

We proceed by controlling U
(1,0)
n (x). For every x ∈ Ω,

P

(
ρn,x

∣∣∣∣∣ U (1,0)
n (x)

M
(1,0)
n (x)

− 1

∣∣∣∣∣ > ε

)
= P

(∣∣∣hdU (1,0)
n (x)− hdM (1,0)

n (x)
∣∣∣ > ε

hdM
(1,0)
n (x)

ρn,x

)
.

Notice now that if Zn,i(x) := hdKh(x−Xi)1l{(1−ρn,x)ωn,x<Yi≤(1+ρn,x)ωn,x}, then

hdU (1,0)
n (x)− hdM (1,0)

n (x) =
1

n

n∑
i=1

[Zn,i(x)− E(Zn,i(x))]

is a mean of bounded, centered, independent and identically distributed random variables. De�ne

τn(x) :=
ε

‖K‖∞
nhdM

(1,0)
n (x)

ρn,x
and λn(x) := ε‖K‖∞

hdM
(1,0)
n (x)

ρn,x

1

Var(Zn, 1(x))
.

Bernstein's inequality (see Hoe�ding [23]) yields, for all ε > 0,

P

(
ρn,x

∣∣∣∣∣ U (1,0)
n (x)

M
(1,0)
n (x)

− 1

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− τn(x)λn(x)

2(1 + λn(x)/3)

)
.

Applying (62) yields, for n large enough,

inf
x∈Ω

τn(x)

nhdF (ωn,x |x)
≥

εf

γ‖K‖∞
. (63)
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Moreover, for all x ∈ Ω,

1

λn(x)
= ρn,x

E(Z2
n, 1(x))− [E(Zn, 1(x))]

2

ε‖K‖∞ hdM
(1,0)
n (x)

.

Since Zn, 1(x) is bounded by ‖K‖∞, it follows that

sup
x∈Ω

1

λn(x)
≤ sup
x∈Ω

ρn,x
E(Z2

n, 1(x))− [E(Zn, 1(x))]
2

ε‖K‖∞ hdµ
(1,0)
n (x)

≤ 1

ε
sup
x∈Ω

ρn,x → 0 (64)

as n→∞. Finally, it holds that

τn(x)λn(x)

2(1 + λn(x)/3)
≥
{

inf
x∈Ω

τn(x)

nhdF (ωn,x |x)

}{
inf
x∈Ω

1

2(1/λn(x) + 1/3)

}
nhdF (ωn,x |x).

Using (63), (64) and the fact that the function t 7→ 1/[2(t+1/3)] is decreasing on R+, it is then clear that,

for all n large enough, if ε > 0 is small enough, there exists a positive constant κ that is independent of

ε such that

∀x ∈ Ω, P

(
ρn,x

∣∣∣∣∣ U (1,0)
n (x)

M
(1,0)
n (x)

− 1

∣∣∣∣∣ > ε

)
≤ 2 exp

[
−κεnhdF (ωn,x |x)

]
.

This completes the proof of Lemma 6.

The �nal lemma is the last step in the proof of Theorem 2.

Lemma 7. Let (Xn) be a sequence of positive real-valued random variables such that for every positive

nonrandom sequence (δn) converging to 0, the random sequence (δnXn) converges to 0 almost surely.

Then

P
(

lim sup
n→∞

Xn = +∞
)

= 0 i.e. Xn = O(1) almost surely.

Proof of Lemma 7. Assume that there exists ε > 0 such that P
(

lim sup
n→∞

Xn = +∞
)
≥ ε. Since by

de�nition lim sup
n→∞

Xn = lim
n→∞

sup
p≥n

Xp is the limit of a nonincreasing sequence, one has

∀ k ∈ N, ∀n ∈ N, P

⋃
p≥n

{Xp ≥ k}

 ≥ ε.
From this we deduce

∀ k ∈ N, ∀n ∈ N, ∃n′ ≥ n, P

 n′⋃
p=n

{Xp ≥ k}

 ≥ ε/2. (65)

We now build a sequence (Nk) by induction: start by using (65) with k = n = 1 =: N1 to obtain

N2 > N1 such that

P

N2−1⋃
p=N1

{Xp ≥ 1}

 ≥ ε/2.
Then for an arbitrary k ≥ 1, if Nk is given, apply (65) to get Nk+1 > Nk such that

P

Nk+1−1⋃
p=Nk

{Xp ≥ k}

 ≥ ε

2
.
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The sequence (Nk) is thus an increasing sequence of integers. Let δn = 1/k if Nk ≤ n < Nk+1. It is

clear that (δn) is a positive sequence which converges to 0. Besides, for all k ∈ N \ {0} it holds that

P
(

sup
p≥Nk

δpXp ≥ 1

)
= P

 ⋃
p≥Nk

{δpXp ≥ 1}

 ≥ P

Nk+1−1⋃
p=Nk

{δpXp ≥ 1}

 = P

Nk+1−1⋃
p=Nk

{Xp ≥ k}

 ≥ ε

2
.

This entails

lim inf
n→∞

P
(

sup
p≥n

δpXp ≥ 1

)
≥ ε/2 > 0.

Hence (δnXn) does not converge almost surely to 0, from which the result follows.
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