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Abstract. We consider a nonparametric regression estimator of conditional tails introduced by Goegebeur, Y.,
Guillou, A., Schorgen, G. (2013). Nonparametric regression estimation of conditional tails - the random covariate

case. It is shown that this estimator is uniformly strongly consistent on compact sets and its rate of convergence is
given.

Résumé. Nous considérons l’estimateur à noyau de l’indice des valeurs extrêmes conditionnel présenté dans Goe-
gebeur, Y., Guillou, A., Schorgen, G. (2013). Nonparametric regression estimation of conditional tails - the random

covariate case. Nous montrons la consistance uniforme presque sûre de cet estimateur sur les compacts et nous
calculons sa vitesse de convergence presque sûre.

Keywords: Tail-index, kernel estimation, strong uniform consistency.

1. Introduction

Extreme value analysis has attracted considerable attention in many fields of application, such as hydrology,
biology and finance, for instance. The main result of extreme value theory asserts that the asymptotic
distribution of the – properly rescaled – maximum of a sequence (Y1, . . . , Yn) of independent copies of a
random variable Y with distribution function F is a distribution having the form

Gγ(x) = exp(−(1 + γx)
−1/γ
+ ) where y+ = max(0, y)
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for some γ ∈ R, with G0(x) = exp(−e−x). The distribution function F is then said to belong to the maximum
domain of attraction of Gγ and the parameter γ is called the extreme value index. Many applications in
the areas of finance, insurance and geology, to name a few, can be found in the case when γ > 0, where F
is a heavy-tailed distribution i.e. the associated survival function F := 1 − F satisfies F (x) = x−1/γL(x),
where γ shall now be referred to as the tail-index and L is a slowly varying function at infinity: namely, L
satisfies, for all λ > 0, L(λx)/L(x) → 1 as x goes to infinity. In this case, the parameter γ clearly drives the
tail behavior of F ; its estimation is in general a first step of extreme value analysis. For instance, if the idea
is to estimate extreme quantiles – namely, quantiles with order αn > 1 − 1/n, where n is the sample size
– then one has to extrapolate beyond the available data using an extreme value model which depends on
the tail-index. For this reason, the problem of estimating γ has been extensively studied in the literature.
Recent overviews on univariate tail-index estimation can be found in the monographs of Beirlant et al. [2]
and de Haan and Ferreira [17].

In practice, it is often useful to link the variable of interest Y to a covariateX . In this situation, the tail-index
depends on the observed value x of the covariateX and shall be referred to, in the following, as the conditional
tail-index. Its estimation has been addressed in the recent extreme value literature, albeit mostly when the
covariates are nonrandom. Smith [31] and Davison and Smith [10] considered a parametric regression model
while Hall and Tajvidi [19] used a semi-parametric approach to estimate the conditional tail-index. Fully
nonparametric methods have been considered using splines (see Chavez-Demoulin and Davison [4]), local
polynomials (see Davison and Ramesh [9]), a moving window approach (see Gardes and Girard [12]), or a
nearest neighbor approach (see Gardes and Girard [13]), among others.

Less attention though has been paid to the random covariate case, despite its practical interest. One can
recall the works of Wang and Tsai [33], based on a maximum likelihood approach in the Hall class of
distribution functions (see Hall [18]), Daouia et al. [7] who use a fixed number of nonparametric conditional
quantile estimators to estimate the conditional tail-index, later generalized in Daouia et al. [6] to a regression
context with response distributions belonging to the general max-domain of attraction, and Goegebeur et
al. [16] and Gardes and Stupfler [14] who both provide adaptations of Hill’s estimator (Hill [22]), the latter
also studying an average of Hill-type statistics to improve the finite sample performance of the method.

In this paper, we focus on a nonparametric regression estimator of conditional tails introduced by Goegebeur
et al. [16]. The particular structure of this estimator makes it possible to study its uniform properties. Note
that uniform properties of estimators of the conditional tail-index are seldom considered in the literature. One
can think of the work of Gardes and Stupfler [14], who study the uniform weak consistency of their estimator.
Outside the field of conditional tail-index estimation, uniform convergence of the Parzen-Rosenblatt density
estimator (Parzen [28] and Rosenblatt [29]) was first considered by Nadaraya [27]. His results were then
improved by Silverman [30] and Stute [32], the latter proving a law of the iterated logarithm in this context.
Analogous results on kernel regression estimators were obtained by, among others, Mack and Silverman [26],
Härdle et al. [20] and Einmahl andMason [11]. Uniform consistency of isotonized versions of order−α quantile
estimators introduced in Aragon et al. [1] was shown in Daouia and Simar [8]. The case of estimators of
the left-truncated quantiles is considered in Lemdani et al. [25]. Finally, the uniform strong consistency of
a frontier estimator using kernel regression on high order moments was shown in Girard et al. [15].

The paper is organised as follows. Our main results are stated in Section 2. The estimator is shown to be
uniformly strongly consistent on compact sets in a semiparametric framework. The rate of convergence is
provided when a further condition on the bias is satisfied. The rate of uniform convergence is closely linked
to the rate of pointwise convergence in distribution established in Goegebeur et al. [16]. The proofs of the
main results are given in Section 3. Auxiliary results are postponed to the Appendix.

2. Main results

We assume that the covariate X takes its values in R
d for some d ≥ 1. We shall work in the following

semiparametric framework:
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(SP ) X has a probability density function f with support S ⊂ R
d having nonempty interior and the

conditional survival function of Y given X = x is such that

∀x ∈ S, ∀ y ≥ 1, F (y |x) = y−1/γ(x)L(y |x)

where γ(x) > 0 and L(· |x) is a slowly varying function at infinity.

The estimator of the conditional tail-index we shall study in this paper is defined as

γ̂n(x) :=

n∑

i=1

Kh(x−Xi)(log Yi − logωn,x)+1l{Yi>ωn,x}

n∑

i=1

Kh(x −Xi)1l{Yi>ωn,x}

. (1)

HereKh(u) := h−dK(u/h) whereK is a probability density function on R
d and h := hn is a positive sequence

tending to 0 while for all x, (ωn,x) is a positive sequence tending to infinity. Note that γ̂n(x) = T
(1)
n (x)/T

(0)
n (x)

where, for all t ≥ 0,

T (t)
n (x) :=

1

n

n∑

i=1

Kh(x −Xi)(log Yi − logωn,x)
t
+1l{Yi>ωn,x}.

The estimator (1) is an element of the family of estimators introduced in Goegebeur et al. [16], which can
be seen as an adaptation of the classical Hill estimator of the tail-index for univariate distributions (see
Hill [22]). Note that the threshold ωn,x is local, i.e. it depends on the point x where the estimation is to be
made, while the bandwidth h is global.

We first wish to state the uniform strong consistency of our estimator on an arbitrary compact subset Ω
of Rd contained in the interior of S. To this end, we first assume that for every x ∈ S the slowly varying
function L(· |x) appearing in F (· |x) is normalised (see Bingham et al. [3]):

(A1) For all x ∈ S and y ≥ 1,

L(y |x) = cL(x) exp

(∫ y

1

α(v |x)
v

dv

)

where cL(x) > 0 and α(· |x) is a function converging to 0 at infinity.

Let ‖ · ‖ be a norm on R
d and for r > 0, let Ωr be the set of those points in R

d whose distance to Ω is not
more than r:

Ωr = {x ∈ R
d | ∃x′ ∈ Ω, ‖x− x′‖ ≤ r}.

Remark that since Ω is contained in the interior of the closed set S, the distance of Ω to the boundary of S
must be positive. As a consequence, the set Ωr is contained in S for all r > 0 small enough. We can therefore
introduce some classical regularity assumptions:

(A2) For some r > 0, on Ωr, the functions f and γ are positive Hölder continuous functions, log cL is a
Hölder continuous function and α(y | ·) is a Hölder continuous function uniformly in y ≥ 1: for all x, x′ ∈ Ωr,

|f(x)− f(x′)| ≤ Mf‖x− x′‖ηf ,

|γ(x)− γ(x′)| ≤ Mγ‖x− x′‖ηγ ,

| log cL(x) − log cL(x
′)| ≤ McL‖x− x′‖ηcL ,

sup
y≥1

|α(y |x)− α(y |x′)| ≤ Mα‖x− x′‖ηα .

Let moreover η := ηγ ∧ ηcL ∧ ηα. We introduce the oscillation of x 7→ logωn,x at a point x ∈ R
d over the

ball B(x, ε):
∀ ε > 0, ∆(log ωn,x)(ε) := sup

z∈B(x, ε)

|logωn,x − logωn,z|
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and the quantity α(y |x) := supt≥y |α(t |x)| for all y ≥ 1. Our results are established under the following
classical regularity condition on the kernel:

(K) K is a probability density function which is Hölder continuous with Hölder exponent ηK > 0: for all
x, x′ ∈ R

d,
|K(x)−K(x′)| ≤MK‖x− x′‖ηK

and its support is included in the unit ball B of Rd.

Especially, if (K) holds then K is bounded with compact support. Let

vn(x) :=

√
nhd

logn
F (ωn,x |x)

and introduce the hypothesis

(C) For some b > 0, it holds that lim sup
n→∞

sup
x∈Ω

vn(x)∆(log ωn,x)(n
−b) <∞.

Our uniform strong consistency result may now be stated:

Theorem 1. Assume that (SP ), (K), (A1) and (A2) hold and that

• inf
x∈Ω

vn(x) → ∞;

• inf
x∈Ω

ωn,x → ∞;

• hη sup
x∈Ω

logωn,x → 0;

• sup
x∈Ω

∆(log ωn,x)(h) → 0;

• sup
x∈Ω

α(y |x) → 0 as y → ∞.

Assume moreover that condition (C) is satisfied. Then it holds that

sup
x∈Ω

|γ̂n(x)− γ(x)| → 0 almost surely as n→ ∞.

Note that the hypotheses inf
x∈Ω

ωn,x → ∞ and sup
x∈Ω

α(y |x) → 0 as y → ∞ imply the convergence

sup
x∈Ω

α(ωn,x |x) → 0

which shall frequently be used in the proofs of our results. Besides, using the mean value theorem, it holds
that |eu − 1| ≤ 2|u| for u ∈ R such that |u| is sufficiently small. As a consequence, using the condition
sup
x∈Ω

∆(logωn,x)(h) → 0, this inequality implies that for n large enough

sup
x∈Ω

sup
z∈B(x, h)

∣∣∣∣
ωn,x

ωn,z
− 1

∣∣∣∣ ≤ 2 sup
x∈Ω

∆(log ωn,x)(h) → 0. (2)

Finally, the conditions

sup
x∈Ω

∆(logωn,x)(h) → 0 and lim sup
n→∞

sup
x∈Ω

vn(x)∆(log ωn,x)(n
−b) <∞

are satisfied if for instance ωn,x = ng(x) where g : S → R is a positive Hölder continuous function whose
Hölder exponent is not less than η. In other words, Theorem 1 requires that a continuity property on
x 7→ logωn,x be satisfied.

Our second aim is to compute the rate of uniform strong consistency of the estimator (1):
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Theorem 2. Assume that the conditions of Theorem 1 are satisfied. If moreover

lim sup
n→∞

(
sup
x∈Ω

vn(x) {α(ωn,x |x) ∨ hηf ∨ hη logωn,x ∨∆(log ωn,x)(h)}
)
<∞ (3)

then it holds that
sup
x∈Ω

vn(x) |γ̂n(x) − γ(x)| = O(1) almost surely as n→ ∞.

Let us highlight that condition (3) controls the bias of the estimator γ̂n. The terms hηf and hη logωn,x

correspond to the bias which stems from the use of a kernel regression, while the presence of the other terms
is due to the particular structure of the semiparametric model (SP ). Besides, as pointed out in Goegebeur et
al. [16], the rate of pointwise convergence of γ̂n(x) to γ(x) is [nh

dF (ωn,x |x)]1/2. Up to the term [logn]1/2, the
rate of uniform convergence of γ̂n to γ is therefore the infimum (over Ω) of the rate of pointwise convergence
of γ̂n(x) to γ(x).

3. Proofs of the main results

Before starting the proof of Theorem 1, let us note that assuming that (SP ), (A1) and (A2) hold then it is
easy to show that there exists a positive constant MF such that the function (x, y) 7→ logF (y |x) has the
following property: for all x, x′ ∈ Ωr such that ‖x− x′‖ ≤ 1 and y, y′ ≥ e,

∣∣∣∣log
F (y |x)
F (y′ |x′)

∣∣∣∣ ≤MF‖x− x′‖η log y +
(

1

γ(x′)
+ α(y ∧ y′ |x′)

)
| log y − log y′|. (4)

Moreover, if (A2) holds then one may take a positive number r such that the four conditions of the hypothesis
hold on Ω2r. Since Ωr is compact, f := supΩr f < ∞ and f := infΩr f > 0. As a consequence, the uniform
relative oscillation of f over the ball B(x, h) can be controlled as

sup
x∈Ωr

sup
z∈B(x, h)

∣∣∣∣
f(z)

f(x)
− 1

∣∣∣∣ = O(hηf ) → 0. (5)

Second, γ := supΩr γ <∞ and γ := infΩr γ > 0 and we thus have

sup
x∈Ωr

sup
z∈B(x, h)

∣∣∣∣
γ(z)

γ(x)
− 1

∣∣∣∣ = O(hηγ ) → 0. (6)

Third, we can write for all x, x′ ∈ Ωr and t ≥ 1

α(t |x) ≤ α(t |x′) + |α(t |x) − α(t |x′)|

and the roles of x and x′ are symmetric in the above inequality, so that taking the supremum over t ≥ y on
both sides yields

∀ y ≥ 1, |α(y |x)− α(y |x′)| ≤Mα‖x− x′‖ηα . (7)

We may now prove the key result for the proof of Theorem 1, which is a uniform law of large numbers for

T
(0)
n (x) and T

(1)
n (x). In what follows, we let µ

(t)
n (x) := E(T

(t)
n (x)).

Proposition 1. Assume that the conditions of Theorem 1 are satisfied. Then for every t ∈ {0, 1} it holds
that

sup
x∈Ω

vn(x)

∣∣∣∣∣
T

(t)
n (x)

µ
(t)
n (x)

− 1

∣∣∣∣∣ = O(1) almost surely as n→ ∞.
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Proof of Proposition 1. The proof is based on that of Lemma 1 in Härdle and Marron [21]: we shall in
fact show complete convergence in the sense of Hsu and Robbins [24]. Since Ω is a compact subset of Rd,
we may, for every n ∈ N \ {0}, find a finite subset Ωn of Ω such that:

∀x ∈ Ω, ∃χ(x) ∈ Ωn, ‖x− χ(x)‖ ≤ n−b and ∃ c > 0, |Ωn| = O(nc) ,

where b, which we may take to be not less than 1/d + 1/2ηK , is given by condition (C) and |Ωn| stands
for the cardinality of Ωn. Notice that, since nhd → ∞, one has n−b/h → 0, so that one can assume that
eventually χ(x) ∈ B(x, h) for all x ∈ Ω. Next, remark that ‖x − χ(x)‖ ≤ n−b ≤ h ≤ 1 and that since
n−b ≤ h the convergences

n−bη sup
x∈Ω

logωn,x ≤ hη sup
x∈Ω

logωn,x → 0 and sup
x∈Ω

∆(log ωn,x)(n
−b) ≤ sup

x∈Ω
∆(log ωn,x)(h) → 0

hold. Consequently, Lemma 1 entails

sup
x∈Ω

∣∣∣∣
vn(x)

vn(χ(x))
− 1

∣∣∣∣ = sup
x∈Ω

∣∣∣∣∣

√
F (ωn,x |x)

F (ωn,χ(x) |χ(x))
− 1

∣∣∣∣∣→ 0. (8)

Pick ε > 0 and an arbitrary sequence of positive numbers (δn) converging to 0; using together (8) and the
triangular inequality thus shows that for n large enough

P

(
δn sup

x∈Ω
vn(x)

∣∣∣∣∣
T

(t)
n (x)

µ
(t)
n (x)

− 1

∣∣∣∣∣ > ε

)
≤ R1,n +R2,n

where

R1,n :=
∑

z∈Ωn

P

(
δn vn(z)

∣∣∣∣∣
T

(t)
n (z)

µ
(t)
n (z)

− 1

∣∣∣∣∣ >
ε

4

)

and R2,n := P

(
δn sup

x∈Ω
vn(x)

∣∣∣∣∣
T

(t)
n (x)

µ
(t)
n (x)

− T
(t)
n (χ(x))

µ
(t)
n (χ(x))

∣∣∣∣∣ >
ε

2

)
.

The goal of the proof is now to show that the series
∑

nR1,n and
∑

nR2,n converge. The result of Proposi-
tion 1 shall then be an easy consequence of Borel-Cantelli’s lemma and Lemma 6.

We start by controlling R1,n. To this end, apply Lemma 3 to get that there exists a positive constant κ such
that for n large enough,

∀ z ∈ Ωn, P

(
δn vn(z)

∣∣∣∣∣
T

(t)
n (z)

µ
(t)
n (z)

− 1

∣∣∣∣∣ >
ε

4

)
≤ 2 exp

[
− κ

16
ε2
nhdF (ωn,z | z)

δ2nv
2
n(z)

]
.

Use now the definition of vn(z) to get

R1,n = O

(
nc exp

[
− κ

16
ε2

logn

δ2n

])
.

Hence
∑

nR1,n converges.

We now turn to R2,n. Using the triangular inequality gives

R2,n ≤ P

(
δn sup

x∈Ω
vn(x)S1,n(x) >

ε

4

)
+ P

(
δn sup

x∈Ω
vn(x)S2,n(x) >

ε

4

)
=: R3,n +R4,n

where

S1,n(x) :=
1

n

n∑

i=1

∣∣∣∣∣
Kh(x−Xi)

µ
(t)
n (x)

− Kh(χ(x)−Xi)

µ
(t)
n (χ(x))

∣∣∣∣∣ (log Yi − logωn,χ(x))
t
+1l{Yi>ωn,χ(x)},

S2,n(x) :=
1

n

n∑

i=1

Kh(x−Xi)

µ
(t)
n (x)

∣∣∣(log Yi − logωn,x)
t
+1l{Yi>ωn,x} − (log Yi − logωn,χ(x))

t
+1l{Yi>ωn,χ(x)}

∣∣∣ ,
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and it is enough to show that the series
∑

nR3,n and
∑

nR4,n converge.

To deal with
∑

nR3, n use once again the triangular inequality to obtain

µ(t)
n (χ(x))

∣∣∣∣∣
Kh(x−Xi)

µ
(t)
n (x)

− Kh(χ(x) −Xi)

µ
(t)
n (χ(x))

∣∣∣∣∣ ≤ |Kh(x −Xi)−Kh(χ(x) −Xi)|

+

∣∣∣∣∣
µ
(t)
n (χ(x))

µ
(t)
n (x)

− 1

∣∣∣∣∣Kh(x−Xi).

Using hypothesis (K) and Lemma 4, there exists a positive constant M such that for n large enough:

∀x ∈ Ω, µ(t)
n (χ(x))

∣∣∣∣∣
Kh(x −Xi)

µ
(t)
n (x)

− Kh(χ(x) −Xi)

µ
(t)
n (χ(x))

∣∣∣∣∣ ≤
M

hd

{[
n−b

h

]ηK

∨∆(log ωn,x)(n
−b)

}
.

Besides

m̃
(t)
n (z) :=

1

n

n∑

i=1

K2h(z −Xi)(log Yi − logωn,z)
t
+1l{Yi>ωn,z}

is the empirical analogue of m
(t)
n (z) defined before Lemma 4; since the support of the random variable

Kh(x−Xi) is included in B(χ(x), 2h), one has for n large enough

∀x ∈ Ω, vn(x)S1,n(x) ≤ 2dVMvn(x)

{[
n−b

h

]ηK

∨∆(logωn,x)(n
−b)

}
m̃

(t)
n (χ(x))

µ
(t)
n (χ(x))

.

Moreover, since m̃
(t)
n (z) is a kernel estimator of m

(t)
n (z, z) for which the conditions of Lemma 2 are satisfied,

we get for n large enough:

∀ z ∈ Ωn, δnvn(z)
m̃

(t)
n (z)

µ
(t)
n (z)

≤ 2δnvn(z)

[
1 +

∣∣∣∣∣
m̃

(t)
n (z)

m
(t)
n (z)

− 1

∣∣∣∣∣

]
.

The fact that b ≥ 1/d+ 1/2ηK gives

sup
z∈Ωn

vn(z)

[
n−b

h

]ηK

≤
√
n

[
n−b

h

]ηK

≤
[

1

nhd

]ηK/d

→ 0.

Using first this convergence together with hypothesis (C) and (8) and then Lemma 3 entails for n large
enough:

R3,n ≤
∑

z∈Ωn

P

(
δnvn(z)

∣∣∣∣∣
m̃

(t)
n (z)

m
(t)
n (z)

− 1

∣∣∣∣∣ > ε

)
= O

(
nc exp

[
−κ′ε2 logn

δ2n

])

where κ′ is a positive constant. Hence
∑

nR3,n converges.

To control
∑

nR4,n first use Lemmas 2(iv) and 4 to get, for n large enough

sup
x∈Ω

m
(t)
n (χ(x))

µ
(t)
n (x)

= sup
x∈Ω

{
m

(t)
n (χ(x))

µ
(t)
n (χ(x))

µ
(t)
n (χ(x))

µ
(t)
n (x)

}
≤ 2.

Therefore, since the support of the random variable Kh(x −Xi) is included in B(χ(x), 2h), one has for n
large enough and all x ∈ Ω

S2,n(x) ≤ 2d+1V‖K‖∞S3,n(x)

where ‖K‖∞ := sup
B
K and

S3,n(x) :=
1

n

n∑

i=1

K2h(χ(x)−Xi)

m
(t)
n (χ(x))

∣∣∣(log Yi − logωn,x)
t
+1l{Yi>ωn,x} − (log Yi − logωn,χ(x))

t
+1l{Yi>ωn,χ(x)}

∣∣∣ .
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8 Y. Goegebeur et al.

We then get

R4,n ≤ P

(
δn sup

x∈Ω
vn(x)S3,n(x) >

ε

2d+3V‖K‖∞

)
=: R5,n

and it is enough to control
∑

nR5,n. We start by considering the case t = 0. In this case, S3,n(x) reduces to

S3,n(x) =
1

n

n∑

i=1

K2h(χ(x) −Xi)

m
(0)
n (χ(x))

1l{ωn,x∧ωn,χ(x)<Yi≤ωn,x∨ωn,χ(x)}.

Letting ρn,x := 2∆(logωn,x)(n
−b) and using (2), we have sup

x∈Ω
ρn,x → 0 and for n large enough

∀x ∈ Ω, (1− ρn,χ(x))ωn,χ(x) ≤ ωn,x ≤ (1 + ρn,χ(x))ωn,χ(x).

As a consequence, for n large enough it holds that

∀x ∈ Ω, S3,n(x) ≤
1

n

n∑

i=1

K2h(χ(x) −Xi)

m
(0)
n (χ(x))

1l{(1−ρn,χ(x))ωn,χ(x)<Yi≤(1+ρn,χ(x))ωn,χ(x)}.

Similarly to Lemma 5, let

Mn(x) := E(K2h(x−X)1l{(1−ρn,x)ωn,x<Y <(1+ρn,x)ωn,x})

and Un(x) :=
1

n

n∑

i=1

K2h(x−Xi)1l{(1−ρn,x)ωn,x<Yi<(1+ρn,x)ωn,x}.

Write

∀x ∈ Ω, δnvn(x)S3,n(x) ≤ δnvn(x)
Mn(χ(x))

m
(0)
n (χ(x))

[
1 +

∣∣∣∣
Un(χ(x))

Mn(χ(x))
− 1

∣∣∣∣
]
.

Use together Lemmas 2(iv) and 5 along with (8) to get for n large enough

∀x ∈ Ω, δnvn(x)S3,n(x) ≤
4

γ(χ(x))
δnvn(χ(x))ρn,χ(x)

[
1 +

∣∣∣∣
Un(χ(x))

Mn(χ(x))
− 1

∣∣∣∣
]
.

Recall that ρn,x = 2∆(logωn,x)(n
−b) and that condition (C) is satisfied to obtain

δn sup
z∈Ωn

vn(z)ρn,z → 0.

Therefore, since 0 < γ ≤ γ(χ(x)), the triangular inequality implies that

R5,n ≤
∑

z∈Ωn

P

(
δnvn(z)ρn,z

∣∣∣∣
Un(z)

Mn(z)
− 1

∣∣∣∣ >
εγ

2d+6V‖K‖∞

)

for n large enough. Lemma 5 now makes it clear that

R5,n = O

(
nc sup

z∈Ωn

exp

(
−κ′′

εγ

2d+6V‖K‖∞
vn(z)

logn

δn

))
= o

(
nc exp

(
−κ′′ε logn

δn

))

which proves that
∑

nR5,n converges in this case.

If now t = 1, we recall (45) in the proof of Lemma 4 to get for n large enough and for all x ∈ Ω

S3,n(x) =

∣∣∣∣log
ωn,x

ωn,χ(x)

∣∣∣∣
m

(0)
n (χ(x))

m
(1)
n (χ(x))

1

n

n∑

i=1

K2h(χ(x)−Xi)

m
(0)
n (χ(x))

1l{Yi>ωn,x∧ωn,χ(x)}.
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Uniform asymptotic properties of a nonparametric regression estimator of conditional tails 9

Use (2) and Lemma 2(iv) to get for n large enough

∀x ∈ Ω, S3,n(x) ≤ 2

γ
∆(log ωn,x)(n

−b)
1

n

n∑

i=1

K2h(χ(x) −Xi)

m
(0)
n (χ(x))

1l{Yi>ωn,χ(x)/2}

≤ 2

γ
∆(log ωn,x)(n

−b)
νn(χ(x))

m
(0)
n (χ(x))

[
1 +

∣∣∣∣
Vn(χ(x))

νn(χ(x))
− 1

∣∣∣∣
]

(9)

where

νn(x) := E(K2h(x−X)1l{Y >ωn,x/2}) and Vn(x) :=
1

n

n∑

i=1

K2h(x−Xi)1l{Yi>ωn,x/2}.

The family of sequences (ωn,x/2) clearly satisfies the hypotheses of Lemmas 2 and 3: in particular

sup
x∈Ω

∣∣∣∣∣
νn(x)

m
(0)
n (x)

F (ωn,x |x)
F (ωn,x/2 |x)

− 1

∣∣∣∣∣→ 0 (10)

and there exists a positive constant κ′′′ such that for n large enough

∀x ∈ Ω, P

(∣∣∣∣
Vn(x)

νn(x)
− 1

∣∣∣∣ > ε

)
≤ 2 exp

(
−κ′′′ε2 nhdF (ωn,x |x)

)
(11)

where the inequality F (ωn,x/2 |x) ≥ F (ωn,x |x) was used. We conclude by noting that according to (4),

lim sup
n→∞

sup
x∈Ω

∣∣∣∣log
F (ωn,x |x)
F (ωn,x/2 |x)

∣∣∣∣ ≤
log 2

γ
<∞ ⇒ 0 < lim sup

n→∞
sup
x∈Ω

F (ωn,x |x)
F (ωn,x/2 |x)

<∞.

This property together with (10) entails the convergences

δn sup
x∈Ω

νn(x)

m
(0)
n (x)

→ 0 and sup
x∈Ω

∆(log ωn,x)(n
−b)

νn(x)

m
(0)
n (x)

→ 0. (12)

Reporting (10) along with (12) into (9), recalling condition (C) and using the triangular inequality together
with (8) shows that for n large enough,

R5,n ≤
∑

z∈Ωn

P

(
δnvn(z)

∣∣∣∣
Vn(x)

νn(x)
− 1

∣∣∣∣ > ε

)
= O

(
nc exp

(
−κ′′′ε2 logn

δ2n

))

where (11) was used in the last step. As a consequence,
∑

nR5,n converges in this case as well. This completes
the proof of Proposition 1.

With Proposition 1 at hand, we can now prove Theorem 1 and Theorem 2.

Proof of Theorem 1. Notice that

γ̂n(x) =
µ
(1)
n (x)

µ
(0)
n (x)

T
(1)
n (x)

µ
(1)
n (x)

µ
(0)
n (x)

T
(0)
n (x)

. (13)

Applying Proposition 1 twice yields

sup
x∈Ω

∣∣∣∣∣
T

(1)
n (x)

µ
(1)
n (x)

µ
(0)
n (x)

T
(0)
n (x)

− 1

∣∣∣∣∣→ 0 almost surely as n→ ∞. (14)

Moreover, recalling that γ is continuous and therefore bounded on the compact set Ω, using Lemma 2(i)
and (iv) twice entails

sup
x∈Ω

∣∣∣∣∣
µ
(1)
n (x)

µ
(0)
n (x)

− γ(x)

∣∣∣∣∣→ 0 as n→ ∞. (15)

The result follows by reporting (14) and (15) into (13).
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10 Y. Goegebeur et al.

Proof of Theorem 2. Note that because nhd → ∞, the hypothesis

lim sup
n→∞

sup
x∈Ω

vn(x)∆(log ωn,x)(h) <∞

entails condition (C). Besides, Proposition 1 yields

sup
x∈Ω

vn(x)

∣∣∣∣∣
µ
(0)
n (x)

T
(0)
n (x)

− 1

∣∣∣∣∣ = O(1) and sup
x∈Ω

vn(x)

∣∣∣∣∣
T

(1)
n (x)

µ
(1)
n (x)

− 1

∣∣∣∣∣ = O(1) (16)

almost surely as n→ ∞. Moreover, Lemma 2 (iv) gives

sup
x∈Ω

1

α(ωn,x |x) ∨ hηf ∨ hη logωn,x

∣∣∣∣∣
µ
(t)
n (x)

f(x)F (ωn,x |x)
− γt(x)

∣∣∣∣∣ = O(1)

for t ∈ {0, 1}, so that using condition (3),

sup
x∈Ω

vn(x)

∣∣∣∣∣
µ
(1)
n (x)

µ
(0)
n (x)

− γ(x)

∣∣∣∣∣ = O(1). (17)

The result follows by reporting (16) and (17) into (13).

Appendix: Auxiliary results and proofs

The first lemma of this section is a technical result that gives an upper bound for the oscillation of the
log-conditional survival function.

Lemma 1. Assume that (SP ), (A1) and (A2) hold. Let moreover ε := εn, ε
′ := ε′n and ε′′ := ε′′n be three

positive sequences tending to 0 and assume that

• inf
x∈Ω

ωn,x → ∞ ;

• ε′′η sup
x∈Ω

logωn,x → 0 ;

• sup
x∈Ω

∆(log ωn,x)(ε
′) → 0 ;

• sup
x∈Ω

α(y |x) → 0 as y → ∞.

Then it holds that, for n large enough,

∀ (x, x′) ∈ Ω× Ωε, ∀(z, z′) ∈ B(x, ε′)×B(x′, ε′′),

∣∣∣∣log
F (ωn,z | z′)
F (ωn,x |x′)

∣∣∣∣ ≤MF ε
′′η logωn,z +

2

γ
∆(log ωn,x)(ε

′).

In particular,

sup
x∈Ω

sup
x′∈Ωε

sup
z∈B(x, ε′)

sup
z′∈B(x′, ε′′)

1

ε′′η logωn,x ∨∆(logωn,x)(ε′)

∣∣∣∣
F (ωn,z | z′)
F (ωn,x |x′)

− 1

∣∣∣∣ = O(1).

Proof of Lemma 1. Pick (x, x′) ∈ Ω × Ωε and (z, z′) ∈ B(x, ε′) × B(x′, ε′′). Use (4) to get for n large
enough

∣∣∣∣log
F (ωn,z | z′)
F (ωn,x |x′)

∣∣∣∣ ≤MF‖x′ − z′‖η logωn,z +

(
1

γ(x′)
+ α(ωn,z ∧ ωn,x |x′)

)
|logωn,x − logωn,z| .
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Uniform asymptotic properties of a nonparametric regression estimator of conditional tails 11

For every y ≥ 1, inequality (7) entails

sup
x∈Ωε

α(y |x) ≤ sup
x∈Ω

α(y |x) +Mαε
ηα . (18)

Using then (2) with ε′ instead of h, we get inf
x∈Ω

inf
z∈B(x, ε′)

ωn,z ∧ ωn,x = inf
x∈Ω

ωn,x(1 + o(1)) → ∞, so that

sup
x∈Ω

sup
x′∈Ωε

sup
z∈B(x, ε′)

α(ωn,z ∧ ωn,x |x′) → 0.

Especially, since 0 < γ ≤ γ(x′), we obtain for n large enough:

∀ (x, x′) ∈ Ω× Ωε, ∀(z, z′) ∈ B(x, ε′)×B(x′, ε′′),

∣∣∣∣log
F (ωn,z | z′)
F (ωn,x |x′)

∣∣∣∣ ≤MF ε
′′η logωn,z +

2

γ
∆(logωn,x)(ε

′)

which is the first part of the result. To prove the second part, note that because sup
x∈Ω

∆(log ωn,x)(ε
′) → 0 it

holds that for n large enough

∀ (x, x′) ∈ Ω×Ωε, ∀(z, z′) ∈ B(x, ε′)×B(x′, ε′′),

∣∣∣∣log
F (ωn,z | z′)
F (ωn,x |x′)

∣∣∣∣ ≤ 2MF ε
′′η logωn,x +

2

γ
∆(logωn,x)(ε

′).

Consequently

sup
x∈Ω

sup
x′∈Ωε

sup
z∈B(x, ε′)

sup
z′∈B(x′, ε′′)

1

ε′′η logωn,x ∨∆(logωn,x)(ε′)

∣∣∣∣log
F (ωn,z | z′)
F (ωn,x |x′)

∣∣∣∣ = O(1).

Using the equivalent eu − 1 = u(1 + o(1)) therefore completes the proof of Lemma 1.

The second lemma examines the behavior of the conditional moment

m(t)
n (x, z) := E((log Y − logωn,x)

t
+1l{Y >ωn,x} |X = z)

and that of its smoothed version µ
(t)
n (x) = E(Kh(x−X)m

(t)
n (x, X)). Let Γ be Euler’s Gamma function:

∀ t > 0, Γ(t) :=

∫ +∞

0

vt−1e−v dv.

Lemma 2. Assume that (SP ), (A1) and (A2) hold. Pick t ≥ 0 and assume that K is a bounded probability
density function on R

d with support included in B. If moreover

• inf
x∈Ω

ωn,x → ∞ ;

• hη sup
x∈Ω

logωn,x → 0 ;

• sup
x∈Ω

α(y |x) → 0 as y → ∞

then, as n→ ∞, the following estimations hold:

(i) sup
x∈Ω

sup
z∈B(x, h)

1

α(ωn,x |x) ∨ hηα

∣∣∣∣∣
m

(t)
n (x, z)

γt(z)Γ(t+ 1)F (ωn,x | z)
− 1

∣∣∣∣∣ = O(1).

(ii) sup
x∈Ω

sup
z∈B(x,h)

1

α(ωn,x |x) ∨ hη logωn,x

∣∣∣∣∣
m

(t)
n (x, z)

m
(t)
n (x, x)

− 1

∣∣∣∣∣ = O(1).

(iii) sup
x∈Ω

1

α(ωn,x |x) ∨ hηf ∨ hη logωn,x

∣∣∣∣∣
µ
(t)
n (x)

f(x)m
(t)
n (x, x)

− 1

∣∣∣∣∣ = O(1).
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(iv) sup
x∈Ω

1

α(ωn,x |x) ∨ hηf ∨ hη logωn,x

∣∣∣∣∣
µ
(t)
n (x)

f(x)γt(x)Γ(t + 1)F (ωn,x |x)
− 1

∣∣∣∣∣ = O(1).

Proof of Lemma 2. (i) When t = 0, there is nothing to prove, since m
(0)
n (x, z) = F (ωn,x | z) and Γ(1) = 1.

In the case t > 0, an integration by parts yields

m(t)
n (x, z) =

∫ +∞

ωn,x

t
(log y − logωn,x)

t−1

y
F (y | z) dy = t F (ωn,x | z)

∫ +∞

1

(log r)t−1F (rωn,x | z)
rF (ωn,x | z)

dr.

From (SP ) and (A1), one has

∣∣∣∣
F (rωn,x | z)
rF (ωn,x | z)

− r−1/γ(z)−1

∣∣∣∣ = r−1/γ(z)−1

∣∣∣∣∣exp
(∫ rωn,x

ωn,x

α(v | z)
v

dv

)
− 1

∣∣∣∣∣ . (19)

For all y ∈ R, the mean value theorem yields |ey − 1| ≤ |y|e|y|. Meanwhile,

∣∣∣∣∣

∫ rωn,x

ωn,x

α(v | z)
v

dv

∣∣∣∣∣ ≤ α(ωn,x | z) log r. (20)

Choosing n so large that sup
x∈Ω

sup
z∈B(x, h)

α(ωn,x | z) < 1/2γ, (18), (19) and (20) together imply that, for all

x ∈ Ω and z ∈ B(x, h),

∣∣∣∣
∫ +∞

1

(log r)t−1

[
F (rωn,x | z)
rF (ωn,x | z)

− r−1/γ(z)−1

]
dr

∣∣∣∣ ≤ (α(ωn,x |x) +Mαh
ηα)

∫ +∞

1

(log r)t r−1/2γ−1dr

which, since the integral on the right-hand side of this inequality converges, gives

sup
x∈Ω

sup
z∈B(x, h)

1

α(ωn,x |x) ∨ hηα

∣∣∣∣
∫ +∞

1

(log r)t−1

[
F (rωn,x | z)
rF (ωn,x | z)

− r−1/γ(z)−1

]
dr

∣∣∣∣ = O(1)

as n→ ∞. An elementary change of variables and the well-known equality tΓ(t) = Γ(t+ 1) thus entail

sup
x∈Ω

sup
z∈B(x, h)

1

α(ωn,x |x) ∨ hηα

∣∣∣∣∣
m

(t)
n (x, z)

F (ωn,x | z)
− γt(z)Γ(t+ 1)

∣∣∣∣∣ = O(1)

as n→ ∞ and (i) is proven.

(ii) Since for all x ∈ Ω, 0 < γ ≤ γ(x) ≤ γ <∞, applying (i) entails

sup
x∈Ω

sup
z∈B(x,h)

1

α(ωn,x |x) ∨ hηα

∣∣∣∣∣
m

(t)
n (x, z)

γt(z)Γ(t+ 1)F (ωn,x | z)
γt(x)Γ(t + 1)F (ωn,x |x)

m
(t)
n (x, x)

− 1

∣∣∣∣∣ = O(1) . (21)

Moreover, hypothesis (A2) and the mean value theorem yield

∣∣∣∣
γt(x)

γt(z)
− 1

∣∣∣∣ ≤
[
1

γt
sup

γ≤r≤γ

∣∣trt−1
∣∣
]
sup
x∈Ω

sup
z∈B(x,h)

|γ(x)− γ(z)| = O(hηγ ). (22)

Besides, using Lemma 1 gives

sup
x∈Ω

sup
z∈B(x,h)

1

hη logωn,x

∣∣∣∣
F (ωn,x |x)
F (ωn,x | z)

− 1

∣∣∣∣ = O(1). (23)
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Uniform asymptotic properties of a nonparametric regression estimator of conditional tails 13

Note finally that since η ≤ ηγ ∧ ηα and inf
x∈Ω

ωn,x → ∞ one has

sup
x∈Ω

hηγ ∨ hηα

hη logωn,x
→ 0.

Using then (22) and (23) together with (21) yields (ii).

(iii) Let us remark that for all x ∈ Ω:

µ
(t)
n (x)

f(x)m
(t)
n (x, x)

=

∫

B

K(u)
f(x− hu)

f(x)

m
(t)
n (x, x− hu)

m
(t)
n (x, x)

du.

From (5) and (ii) it follows that

sup
x∈Ω

sup
z∈B(x, h)

1

α(ωn,x |x) ∨ hηf ∨ hη logωn,x

∣∣∣∣∣
f(z)

f(x)

m
(t)
n (x, z)

m
(t)
n (x, x)

− 1

∣∣∣∣∣→ 0

as n→ ∞, which yields (iii).

(iv) This is a straightforward consequence of (i) and (iii).

The third lemma is essential to prove Proposition 1. It gives a uniform exponential bound for large deviations

of T
(0)
n and T

(1)
n .

Lemma 3. Assume that (SP ), (A1) and (A2) hold. Assume that K is a bounded probability density function
on R

d with support included in B. If moreover

• inf
x∈Ω

ωn,x → ∞ ;

• hη sup
x∈Ω

logωn,x → 0 ;

• sup
x∈Ω

α(y |x) → 0 as y → ∞

then there exists a positive constant κ such that for all n large enough, one has for t ∈ {0, 1} and every
ε > 0 small enough:

∀x ∈ Ω, P

(∣∣∣∣∣
T

(t)
n (x)

µ
(t)
n (x)

− 1

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−κε2 nhdF (ωn,x |x)

)
.

Proof of Lemma 3. For every x ∈ Ω:

P

(∣∣∣∣∣
T

(0)
n (x)

µ
(0)
n (x)

− 1

∣∣∣∣∣ > ε

)
= P

(∣∣∣hdT (0)
n (x) − hdµ(0)

n (x)
∣∣∣ > εhdµ(0)

n (x)
)
.

Notice now that if Wn,i(x) := hdKh(x−Xi)1l{Yi>ωn,x} then

hdT (0)
n (x) − hdµ(0)

n (x) =
1

n

n∑

i=1

[Wn,i(x)− E(Wn,i(x))]

is a mean of bounded, centered, independent and identically distributed random variables. Define

τn(x) :=
ε

‖K‖∞
nhdµ(0)

n (x) and λn(x) :=
ε‖K‖∞ hdµ

(0)
n (x)

Var(Wn, 1(x))
.
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14 Y. Goegebeur et al.

Bernstein’s inequality (see Hoeffding [23]) yields, for all ε > 0:

P

(∣∣∣∣∣
T

(0)
n (x)

µ
(0)
n (x)

− 1

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− τn(x)λn(x)

2(1 + λn(x)/3)

)
.

Applying Lemma 2(iii) yields for n large enough:

inf
x∈Ω

τn(x)

nhdF (ωn,x |x)
≥

εf

2‖K‖∞
. (24)

Moreover, sinceWn, 1(x) is bounded by ‖K‖∞, it follows from the inequalityW 2
n, 1(x) ≤ ‖K‖∞Wn, 1(x) that

sup
x∈Ω

1

λn(x)
≤ sup

x∈Ω

E(W 2
n, 1(x))

ε‖K‖∞ hdµ
(0)
n (x)

≤ 1

ε
. (25)

Finally, it holds that

τn(x)λn(x)

2(1 + λn(x)/3)
≥
{
inf
x∈Ω

τn(x)

nhdF (ωn,x |x)

}{
inf
x∈Ω

1

2(1/λn(x) + 1/3)

}
nhdF (ωn,x |x).

Using (24), (25) and the fact that the function t 7→ 1/[2(t+ 1/3)] is decreasing on R+, it is then clear that
for all n large enough, if ε > 0 is small enough, there exists a positive constant κ1 that is independent of ε
such that

∀x ∈ Ω, P

(∣∣∣∣∣
T

(0)
n (x)

µ
(0)
n (x)

− 1

∣∣∣∣∣ > ε

)
≤ 2 exp

[
−κ1ε2 nhdF (ωn,x |x)

]
.

We now turn to T
(1)
n (x). For every x ∈ Ω, it holds that

P

(∣∣∣∣∣
T

(1)
n (x)

µ
(1)
n (x)

− 1

∣∣∣∣∣ > ε

)
= P

(
T

(1)
n (x)

µ
(1)
n (x)

− 1 > ε

)
+ P

(
T

(1)
n (x)

µ
(1)
n (x)

− 1 < −ε
)

=: u1,n(x) + u2,n(x).

We shall then give a uniform Chernoff-type exponential bound (see Chernoff [5]) for both terms on the
right-hand side of the above inequality. We start by considering u1,n(x). Let

ϕn(s, x) := E(exp(sKh(x−X)(log Y − logωn,x)+1l{Y >ωn,x}))

be the moment generating function of the random variable Kh(x−X)(log Y − logωn,x)+1l{Y >ωn,x}. Markov’s
inequality entails, for every q > 0,

u1,n(x) = P

(
exp

(
q
T

(1)
n (x)

µ
(1)
n (x)

)
> exp(q[ε+ 1])

)
≤ exp

(
−q[ε+ 1] + n logϕn

(
q

nµ
(1)
n (x)

, x

))
. (26)

Our goal is now to use inequality (26) with a suitable value q∗(ε, x) for q. To this end, notice that

ϕn(s, x) =

∫

Rd\B(x, h)

f(z) dz +

∫

B(x, h)

ψn(sKh(x− z) |x, z) f(z) dz

where
ψn(s |x, z) := E(exp(s(log Y − logωn,x)+1l{Y >ωn,x}) |X = z)

is the conditional moment generating function of the random variable (log Y − logωn,x)+1l{Y >ωn,x} given

X = z. In particular, since f is a probability density function on R
d,

ϕn(s, x) = 1 +

∫

B(x, h)

[ψn(sKh(x− z) |x, z)− 1] f(z) dz. (27)
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Uniform asymptotic properties of a nonparametric regression estimator of conditional tails 15

This equality makes it clear that it is enough to study the behavior of ψn(· |x, z). One has

ψn(s |x, z) = 1− F (ωn,x | z) + E

([
Y

ωn,x

]s
1l{Y >ωn,x} |X = z

)
.

From this we deduce that

ψn(s |x, z) = 1 + F (ωn,x | z)
∫ +∞

1

sts
F (tωn,x | z)
tF (ωn,x | z)

dt.

A use of (19) and (20) therefore entails, for all s < 1/γ,

ψn(s |x, z) = 1 + sF (ωn,x | z)
([

1

γ(z)
− s

]−1

+Rn(s |x, z)
)

(28)

where Rn(s |x, z) satisfies, for all δ > 0, if n is large enough,

sup
x∈Ω

sup
z∈B(x, h)

|Rn(s |x, z)| ≤ sup
x∈Ω

sup
z∈B(x, h)

α(ωn,x | z)
∫ +∞

1

vs−1/γ−1+δ log v dv.

Since by (18) it holds that sup
x∈Ω

sup
z∈B(x, h)

α(ωn,x | z) → 0 we get, for all δ > 0:

sup
s<1/γ−δ

sup
x∈Ω

sup
z∈B(x, h)

|Rn(s |x, z)| → 0 (29)

as n→ ∞. We shall now derive a suitable value for the parameter q. Given X = x, if the remainder term Rn

were identically 0, then one would have m
(1)
n (x, x) = γ(x)F (ωn,x |x) and thus an optimal value of q would

be obtained by minimizing the function

q 7→ −q[1 + ε] + n log

[
1 +

q

n

[
1− q

nF (ωn,x |x)

]−1
]
.

Straightforward but cumbersome computations lead to the optimal value

q⋆c,+(ε) := nF (ωn,x |x)

[
2− F (ωn,x |x)

]
−
√[

2− F (ωn,x |x)
]2 − 4ε

ε+ 1

[
1− F (ωn,x |x)

]

2
[
1− F (ωn,x |x)

] . (30)

Since we are mostly interested in what happens in the limit n→ ∞ and ε→ 0, we may examine the behavior
of q⋆c,+(ε) in this case. Using (30), we get the following asymptotic equivalent

q∗c,+(ε) = nF (ωn,x |x)
ε

2(ε+ 1)
.

Note that since q∗c,+(ε)/[nm
(1)
n (x, x)] = ε/[2γ(x)(ε+1)] is positive and converges to 0 as ε→ 0, the moment

generating function ψn(· |x, x) at q∗c,+(ε)/[nm
(1)
n (x, x)] is well-defined and finite for ε small enough and

therefore this choice of q is valid. Back to our original context, taking into account the presence of the
covariate X motivates the following value for q:

q∗n,+(ε, x) :=
Mε

ε+ 1
nhdf(x)F (ωn,x |x)

where M is a positive constant to be chosen later. For ε small enough and for n so large that the quantity

ϕn

(
q∗n,+(ε, x)/(nµ

(1)
n (x)), x

)
is well-defined and finite for all x ∈ Ω, replacing q by q∗n,+(ε, x) in the right-

hand side of (26) gives

∀x ∈ Ω, u1,n(x) ≤ exp

(
−Mεnhdf(x)F (ωn,x |x) + n logϕn

(
q∗n,+(ε, x)

nµ
(1)
n (x)

, x

))
. (31)
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16 Y. Goegebeur et al.

Using the classical inequality log(1 + r) ≤ r for all r > 0 together with (27) and (28), we obtain

logϕn(s, x) ≤
∫

B(x, h)

[ψn(sKh(x− z) |x, z)− 1] f(z) dz

≤
∫

B(x, h)

sKh(x− z)F (ωn,x | z)
([

1

γ(z)
− sKh(x− z)

]−1

+Rn(sKh(x− z) |x, z)
)
f(z) dz.

According to Lemma 2(iv),

q∗n,+(ε, x)

nµ
(1)
n (x)

=
Mε

ε+ 1
hdf(x)

F (ωn,x |x)
µ
(1)
n (x)

=M
εhd

γ(x)(ε+ 1)
[1 + r1,n(x)] (32)

where r1,n(x) → 0 as n goes to infinity, uniformly in x ∈ Ω. As a consequence, using an elementary Taylor
expansion, we get, for all z ∈ B(x, h),

[
1

γ(z)
−
q∗n,+(ε, x)

nµ
(1)
n (x)

Kh(x− z)

]−1

= γ(z)

[
1 +

γ(z)

γ(x)

Mε

ε+ 1
hd[1 + r1,n(x)]Kh(x− z)

+ k

(
γ(z)

γ(x)

Mε

ε+ 1
hd[1 + r1,n(x)]Kh(x − z)

)]

where k(r)/r → 0 as r goes to 0. Letting

pn(x, z) :=
γ(z)

γ(x)
[1 + r1,n(x)]h

dKh(x− z)

and using (6), the uniform convergence of r1,n to 0 and the fact that K is bounded yields

pn(x, z) = hdKh(x− z) + r2,n(x, z) where sup
x∈Ω

sup
z∈B(x, h)

|r2,n(x, z)| → 0

as n goes to infinity. Especially,

[
1

γ(z)
−
q∗n,+(ε, x)

nµ
(1)
n (x)

Kh(x− z)

]−1

= γ(z)

[
1 +

Mε

ε+ 1
hdKh(x − z) + εr3,n(ε, x, z)

]
(33)

where r3,n(ε, x, z) → 0 as ε goes to 0 and n goes to infinity, uniformly in x ∈ Ω and z ∈ B(x, h). Besides,
since for every ε0 > 0

sup
ε<ε0

sup
x∈Ω

sup
z∈B(x, h)

∣∣∣∣∣
q∗n,+(ε, x)

nµ
(1)
n (x)

Kh(x − z)− Mε

ε+ 1

hdKh(x − z)

γ(x)

∣∣∣∣∣→ 0

as n goes to infinity and

sup
n∈N

sup
x∈Ω

sup
z∈B(x, h)

∣∣∣∣
Mε

ε+ 1

hdKh(x− z)

γ(x)

∣∣∣∣→ 0

as ε goes to 0, (29) yields for ε small enough

sup
x∈Ω

sup
z∈B(x, h)

∣∣∣∣∣Rn

(
q∗n,+(ε, x)

nµ
(1)
n (x)

Kh(x− z) |x, z
)∣∣∣∣∣→ 0 (34)

as n goes to infinity. Using together (6), (32), (33) and (34) entails that there exist functions r4,n = r4,n(x, z)
and r5,n = r5,n(ε, x, z) satisfying

sup
x∈Ω

sup
z∈B(x, h)

|r4,n(x, z)| → 0 as n→ ∞

and sup
x∈Ω

sup
z∈B(x, h)

|r5,n(ε, x, z)| → 0 as ε→ 0 and n→ ∞
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Uniform asymptotic properties of a nonparametric regression estimator of conditional tails 17

such that

logϕn

(
q∗n,+(ε, x)

nµ
(1)
n (x)

, x

)
≤
∫

B(x, h)

Mε

ε+ 1
hd
[
1 +

Mε

ε+ 1
hdKh(x− z)

]
F (ωn,x | z)Kh(x− z) f(z) dz

+
Mε

ε+ 1
hd
∫

B(x, h)

F (ωn,x | z) [r4,n(x, z) + εr5,n(ε, x, z)]Kh(x − z) f(z) dz.

Recalling (5) and (23), we get, for n large enough and ε small enough, the inequality

∀x ∈ Ω, logϕn

(
q∗n,+(ε, x)

nµ
(1)
n (x)

, x

)
≤ Mε

ε+ 1

[
1 + 2

Mε

ε+ 1
‖K‖22

]
hdf(x)F (ωn,x |x).

Using this result together with (31) and recalling that 0 < f ≤ f(x) entails, for n large enough and ε small
enough,

∀x ∈ Ω, u1,n(x) ≤ exp

(
f

[
−Mε+

Mε

ε+ 1

[
1 + 2

Mε

ε+ 1
‖K‖22

]]
nhdF (ωn,x |x)

)
.

A straightforward computation shows that M∗
+ := (ε+ 1)/(4‖K‖22) is the optimal value for M in the above

inequality; this value yields

∀x ∈ Ω, u1,n(x) ≤ exp

(
− ε2

8‖K‖22
fnhdF (ωn,x |x)

)
= exp

(
−κ2ε2nhdF (ωn,x |x)

)

where κ2 is a positive constant independent of ε.

Providing a uniform exponential bound for u2,n(x) starts by noticing that, for all q > 0,

u2,n(x) ≤ exp

(
−q[ε− 1] + n logϕn

(
− q

nµ
(1)
n (x)

, x

))
.

Recall (27) and use the inequality log(1− r) ≤ −r for all r ∈ (0, 1) to get

logϕn(−s, x) ≤
∫

B(x, h)

[ψn(−sKh(x− z) |x, z)− 1] f(z) dz.

We choose q as

q∗n,−(ε, x) :=
ε

4‖K‖22
nhdf(x)F (ωn,x |x)

which, using the ideas developed to control u1,n(x), yields

∀x ∈ Ω, u2,n(x) ≤ exp
(
−κ2ε2nhdF (ωn,x |x)

)
.

for some constant κ2 > 0. Setting κ = κ1 ∧ κ2 completes the proof of Lemma 3.

The fourth lemma of this section establishes a uniform control of the relative oscillation of x 7→ µ
(t)
n (x).

Before stating this result, we let

m
(t)
n (x) := E(K2h(x−X)m(t)

n (x, X))

where K := 1lB/V is the uniform kernel on R
d, with V being the volume of the unit ball of Rd; let further

Kh(u) := h−dK(u/h).

Lemma 4. Assume that (SP ), (K), (A1) and (A2) hold. Pick t ∈ {0, 1} and let ε := εn be a sequence of
positive real numbers such that ε ≤ h. If moreover
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18 Y. Goegebeur et al.

• inf
x∈Ω

ωn,x → ∞ ;

• hη sup
x∈Ω

logωn,x → 0 ;

• sup
x∈Ω

∆(log ωn,x)(ε) → 0 ;

• sup
x∈Ω

α(y |x) → 0 as y → ∞

then

sup
x∈Ω

sup
z∈B(x, ε)

1

[ε/h]
ηK ∨∆(logωn,x)(ε)

∣∣∣∣∣
µ
(t)
n (z)

µ
(t)
n (x)

− 1

∣∣∣∣∣ = O(1) .

Proof of Lemma 4. For all x ∈ Ω and z ∈ B(x, ε), we have
∣∣∣µ(0)

n (x)− µ(0)
n (z)

∣∣∣ ≤ E
(
|Kh(x −X)−Kh(z −X)| 1l{Y >ωn,x}

)
+ E

(
Kh(z −X)

∣∣1l{Y >ωn,x} − 1l{Y >ωn,z}

∣∣)

=: R
(0)
1,n(x, z) +R

(0)
2,n(x, z) (35)

and we shall handle both terms in the right-hand side separately. Hypothesis (K) and the inclusion B(z, h) ⊂
B(x, 2h) entail that

|Kh(x−X)−Kh(z −X)| ≤ MK

hd

[ ε
h

]ηK

1l{X∈B(x, 2h)}. (36)

From (36), we get

sup
z∈B(x, ε)

R
(0)
1,n(x, z) ≤ 2dMKV m

(0)
n (x)

[ ε
h

]ηK

. (37)

Because K is a probability density function on R
d with support included in B, applying Lemma 2(iii) implies

that

sup
x∈Ω

∣∣∣∣∣
m

(0)
n (x)

µ
(0)
n (x)

− 1

∣∣∣∣∣→ 0 as n→ ∞ (38)

which, together with (37), yields

sup
x∈Ω

sup
z∈B(x, ε)

[ ε
h

]−ηK R
(0)
1,n(x, z)

µ
(0)
n (x)

= O(1). (39)

We now turn to the second term. One has

R
(0)
2,n(x, z) = E

(
Kh(z −X)

∣∣F (ωn,x |X)− F (ωn,z |X)
∣∣) . (40)

Furthermore, using Lemma 1 with ε′′ = 0 entails

sup
x∈Ω

sup
x′∈B(x, 2h)

sup
z∈B(x, ε)

1

∆(logωn,x)(ε)

∣∣∣∣
F (ωn,z |x′)
F (ωn,x |x′)

− 1

∣∣∣∣ = O(1). (41)

Besides, hypothesis (K) and the inclusion B(z, h) ⊂ B(x, 2h) imply that

E(Kh(z −X)m(0)
n (x, X)) ≤ 2dMKV m

(0)
n (x). (42)

Using the obvious identity

|F (ωn,x |X)− F (ωn,z |X)| = m(0)
n (x, X)

∣∣∣∣
F (ωn,z |X)

F (ωn,x |X)
− 1

∣∣∣∣ (43)
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Uniform asymptotic properties of a nonparametric regression estimator of conditional tails 19

and recalling that the support of the random variable Kh(z −X) is contained in B(z, h) ⊂ B(x, 2h), (40)
and (41) yield:

sup
x∈Ω

sup
z∈B(x, ε)

1

∆(log ωn,x)(ε)

R
(0)
2,n(x, z)

m
(0)
n (x)

= O(1),

and (38) entails

sup
x∈Ω

sup
z∈B(x, ε)

1

∆(logωn,x)(ε)

R
(0)
2,n(x, z)

µ
(0)
n (x)

= O(1). (44)

Applying (35) together with (39) and (44) gives

sup
x∈Ω

sup
z∈B(x, ε)

1

[ε/h]
ηK ∨∆(log ωn,x)(ε)

∣∣∣∣∣
µ
(0)
n (z)

µ
(0)
n (x)

− 1

∣∣∣∣∣ = O(1)

which shows Lemma 4 in this case.

We now turn to the case t = 1. Note that for all real numbers a, b ≥ 1 such that a 6= b one has

∀ y ≥ 1, |(log y − log a)+1l{y>a} − (log y − log b)+1l{y>b}| ≤ | log b− log a|1l{y>a∧b}. (45)

Inequality (45) then implies, for all x ∈ Ω and z ∈ B(x, ε):
∣∣∣µ(1)

n (x) − µ(1)
n (z)

∣∣∣ ≤ E
(
|Kh(x−X)−Kh(z −X)| (log Y − logωn,x)+1l{Y >ωn,x}

)

+

∣∣∣∣log
ωn,x

ωn,z

∣∣∣∣E
(
Kh(z −X)1l{Y >ωn,x∧ωn,z}

)

=: R
(1)
1,n(x, z) +R

(1)
2,n(x, z) (46)

and we shall once again take care of both terms in the right-hand side of this inequality. Start by using (36)
to get

sup
z∈B(x, ε)

R
(1)
1,n(x, z) ≤ 2dMKV m

(1)
n (x)

[ ε
h

]ηK

. (47)

We now use the same idea developed to control R
(0)
1,n(x, z): applying Lemma 2(iii) entails

sup
x∈Ω

∣∣∣∣∣
m

(1)
n (x)

µ
(1)
n (x)

− 1

∣∣∣∣∣→ 0 as n→ ∞

which, together with (47), yields

sup
x∈Ω

sup
z∈B(x, ε)

[ ε
h

]−ηK R
(1)
1,n(x, z)

µ
(1)
n (x)

= O(1). (48)

To control the second term, write

sup
z∈B(x, ε)

R
(1)
2,n(x, z) ≤ ∆(log ωn,x)(ε) sup

z∈B(x, ε)

E
(
Kh(z −X)1l{Y >ωn,x∧ωn,z}

)
.

Note that since ωn,x ∧ ωn,z is either equal to ωn,x or ωn,z, we can write, for all z ∈ B(x, ε)

E
(
Kh(z −X)1l{Y >ωn,x∧ωn,z}

)
≤ E

(
Kh(z −X)m(0)

n (x, X)
)
∨ E

(
Kh(z −X)m(0)

n (z, X)
)
.
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Recall now (41) and (43) to obtain, for n large enough, uniformly in x ∈ Ω and z ∈ B(x, ε),

E
(
Kh(z −X)1l{Y >ωn,x∧ωn,z}

)
≤ 2E

(
Kh(z −X)m(0)

n (x, X)
)
. (49)

Finally, using (42) and (49) yields:

sup
x∈Ω

sup
z∈B(x, ε)

1

∆(log ωn,x)(ε)

R
(1)
2,n(x, z)

m
(0)
n (x)

= O(1),

and (38) entails

sup
x∈Ω

sup
z∈B(x, ε)

1

∆(log ωn,x)(ε)

R
(1)
2,n(x, z)

µ
(0)
n (x)

= O(1)

so that Lemma 2(iv) gives

sup
x∈Ω

sup
z∈B(x, ε)

1

∆(logωn,x)(ε)

R
(1)
2,n(x, z)

µ
(1)
n (x)

= O(1). (50)

Applying (46) together with (48) and (50) implies that

sup
x∈Ω

sup
z∈B(x, ε)

1

[ε/h]
ηK ∨∆(log ωn,x)(ε)

∣∣∣∣∣
µ
(1)
n (z)

µ
(1)
n (x)

− 1

∣∣∣∣∣ = O(1)

which completes the proof of Lemma 4.

The fifth lemma of this section provides a uniform control of both the difference of two versions of µ
(0)
n (x)

for two families of thresholds that are uniformly asymptotically equivalent and the empirical analogue of
this quantity.

Lemma 5. Assume that (SP ), (A1) and (A2) hold. Assume that K is a bounded probability density function
on R

d with support included in B and that

• inf
x∈Ω

ωn,x → ∞ ;

• hη sup
x∈Ω

logωn,x → 0 ;

• sup
x∈Ω

α(y |x) → 0 as y → ∞.

For an arbitrary family of positive sequences (ρn,x) such that sup
x∈Ω

ρn,x → 0 as n→ ∞, let

Mn(x) := E(Kh(x−X)1l{(1−ρn,x)ωn,x<Y ≤(1+ρn,x)ωn,x})

and Un(x) :=
1

n

n∑

i=1

Kh(x−Xi)1l{(1−ρn,x)ωn,x<Yi≤(1+ρn,x)ωn,x}.

Then

sup
x∈Ω

∣∣∣∣
γ(x)Mn(x)

2f(x)ρn,xF (ωn,x |x)
− 1

∣∣∣∣→ 0

and there exists a positive constant κ such that for all n large enough, one has for every ε > 0 small enough:

∀x ∈ Ω, P

(
ρn,x

∣∣∣∣
Un(x)

Mn(x)
− 1

∣∣∣∣ > ε

)
≤ 2 exp

(
−κεnhdF (ωn,x |x)

)
.
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Proof of Lemma 5. We start by noting that

Mn(x) = E

(
Kh(x−X)ρn,xF (ωn,x |X)

[
F ((1 − ρn,x)ωn,x |X)

ρn,xF (ωn,x |X)
− F ((1 + ρn,x)ωn,x |X)

ρn,xF (ωn,x |X)

])
.

Use then (SP ) and (A1) to get, for an arbitrary z ∈ B(x, h),

F ((1 ± ρn,x)ωn,x | z)
ρn,xF (ωn,x | z)

=
(1± ρn,x)

−1/γ(z)

ρn,x
exp

(∫ (1±ρn,x)ωn,x

ωn,x

α(v | z)
v

dv

)
. (51)

Since 0 < γ ≤ γ(z) and sup
x∈Ω

ρn,x → 0, a Taylor expansion of the exponential function in a neighborhood of

0 yields

(1± ρn,x)
−1/γ(z)

ρn,x
=

1

ρn,x
∓ 1

γ(z)
(1 + r1,±,n(x, z)) (52)

where r1,+,n(x, z) and r1,−,n(x, z) converge to 0 as n → ∞, uniformly in x ∈ Ω and z ∈ B(x, h). Besides,
for all u ∈ (−1, 1),

∣∣∣∣∣

∫ (1+u)ωn,x

ωn,x

α(v | z)
v

dv

∣∣∣∣∣ ≤
{
α(ωn,x | z)| log(1 + u)| if u > 0

α((1 + u)ωn,x | z)| log(1 + u)| if u < 0
(53)

so that, because inf
x∈Ω

ωn,x → ∞, sup
x∈Ω

ρn,x → 0 and sup
x∈Ω

α(y |x) → 0 as y → ∞:

exp

(∫ (1±ρn,x)ωn,x

ωn,x

α(v | z)
v

dv

)
= 1 +

∫ (1±ρn,x)ωn,x

ωn,x

α(v | z)
v

dv (1 + r2,±,n(x, z))

where r2,+,n(x, z) and r2,−,n(x, z) converge to 0 as n→ ∞, uniformly in x ∈ Ω and z ∈ B(x, h). Moreover,
(53) yields

sup
x∈Ω

sup
z∈B(x, h)

1

ρn,x

∣∣∣∣∣

∫ (1±ρn,x)ωn,x

ωn,x

α(v | z)
v

dv

∣∣∣∣∣→ 0 as n→ ∞.

Plugging this together with (52) into (51) and recalling that 0 < γ ≤ γ(z) entails

sup
x∈Ω

sup
z∈B(x, h)

∣∣∣∣
γ(z)

2

[
F ((1− ρn,x)ωn,x | z)
ρn,xF (ωn,x | z)

− F ((1 + ρn,x)ωn,x | z)
ρn,xF (ωn,x | z)

]
− 1

∣∣∣∣→ 0 as n→ ∞.

Consequently,

sup
x∈Ω

∣∣∣∣∣
Mn(x)

2E
(
Kh(x−X)ρn,xF (ωn,x |X)/γ(X)

) − 1

∣∣∣∣∣→ 0 as n→ ∞. (54)

Recalling (5) and (6), we get

sup
x∈Ω

∣∣∣∣∣
E
(
Kh(x−X)F (ωn,x |X)/γ(X)

)

µ
(0)
n (x)/γ(x)

− 1

∣∣∣∣∣→ 0.

It only remains to recall (54) and to apply Lemma 2(iv) to obtain

sup
x∈Ω

∣∣∣∣
γ(x)Mn(x)

2f(x)ρn,xF (ωn,x |x)
− 1

∣∣∣∣→ 0. (55)
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We proceed by controlling Un(x). For every x ∈ Ω,

P

(
ρn,x

∣∣∣∣
Un(x)

Mn(x)
− 1

∣∣∣∣ > ε

)
= P

(∣∣hdUn(x) − hdMn(x)
∣∣ > ε

hdMn(x)

ρn,x

)
.

Notice now that if Zn,i(x) := hdKh(x −Xi)1l{(1−ρn,x)ωn,x<Yi≤(1+ρn,x)ωn,x}, then

hdUn(x) − hdMn(x) =
1

n

n∑

i=1

[Zn,i(x) − E(Zn,i(x))]

is a mean of bounded, centered, independent and identically distributed random variables. Define

τn(x) :=
ε

‖K‖∞
nhdMn(x)

ρn,x
and λn(x) := ε‖K‖∞

hdMn(x)

ρn,x

1

Var(Zn, 1(x))
.

Bernstein’s inequality (see Hoeffding [23]) yields, for all ε > 0,

P

(
ρn,x

∣∣∣∣
Un(x)

Mn(x)
− 1

∣∣∣∣ > ε

)
≤ 2 exp

(
− τn(x)λn(x)

2(1 + λn(x)/3)

)
.

Applying (55) yields, for n large enough,

inf
x∈Ω

τn(x)

nhdF (ωn,x |x)
≥

εf

γ‖K‖∞
. (56)

Moreover, since Z2
n, 1(x) ≤ ‖K‖∞Zn, 1(x), it follows that

sup
x∈Ω

1

λn(x)
≤ sup

x∈Ω
ρn,x

E(Z2
n, 1(x))

ε‖K‖∞ hdMn(x)
≤ 1

ε
sup
x∈Ω

ρn,x → 0 (57)

as n→ ∞. Finally, it holds that

τn(x)λn(x)

2(1 + λn(x)/3)
≥
{
inf
x∈Ω

τn(x)

nhdF (ωn,x |x)

}{
inf
x∈Ω

1

2(1/λn(x) + 1/3)

}
nhdF (ωn,x |x).

Using (56) and (57) it is then clear that, for all n large enough, if ε > 0 is small enough, there exists a
positive constant κ that is independent of ε such that

∀x ∈ Ω, P

(
ρn,x

∣∣∣∣
Un(x)

Mn(x)
− 1

∣∣∣∣ > ε

)
≤ 2 exp

[
−κεnhdF (ωn,x |x)

]
.

This completes the proof of Lemma 5.

The final lemma is the last step in the proof of Theorem 2.

Lemma 6. Let (Xn) be a sequence of positive real-valued random variables such that for every positive
nonrandom sequence (δn) converging to 0, the random sequence (δnXn) converges to 0 almost surely. Then

P

(
lim sup
n→∞

Xn = +∞
)
= 0 i.e. Xn = O(1) almost surely.

Proof of Lemma 6. Assume that there exists ε > 0 such that P

(
lim sup
n→∞

Xn = +∞
)

≥ ε. Since by

definition lim sup
n→∞

Xn = lim
n→∞

sup
p≥n

Xp is the limit of a nonincreasing sequence, one has

∀ k ∈ N, ∀n ∈ N, P


⋃

p≥n

{Xp ≥ k}


 ≥ ε⇒ ∀ k ∈ N, ∀n ∈ N, ∃n′ ≥ n, P




n′⋃

p=n

{Xp ≥ k}


 ≥ ε/2.
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It is thus easy to build an increasing sequence of integers (Nk) such that

∀ k ≥ 1, P




Nk+1−1⋃

p=Nk

{Xp ≥ k}


 ≥ ε/2.

Let δn = 1/k if Nk ≤ n < Nk+1. It is clear that (δn) is a positive sequence which converges to 0. Besides,
for all k ∈ N \ {0} it holds that

P

(
sup
p≥Nk

δpXp ≥ 1

)
= P


 ⋃

p≥Nk

{δpXp ≥ 1}


 ≥ P




Nk+1−1⋃

p=Nk

{δpXp ≥ 1}


 = P




Nk+1−1⋃

p=Nk

{Xp ≥ k}


 ≥ ε/2.

Hence (δnXn) does not converge almost surely to 0, from which the result follows.
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