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Abstract

Electric fish sense the perturbations of a self generated electric field through their electro-
receptive skin. This sense allows them to navigate and reconstruct their environment in
conditions where vision and sonar cannot work. In this article, we use a sensor inspired
by this sense to address both problems of locating and estimating the size of small objects
(electrolocation) and navigating in a tank. . Based on a Kalman filter, any small object in the
surroundings of the motion controlled sensor can be modeled as an equivalent sphere whose
location is well estimated by the filter. As a first application to the problem of navigation,
the filter is included into a closed feedback loop in order to achieve wall following in a tank.
Our experimental results demonstrate the feasibility of this approach.

1 Introduction

Developed by several hundreds of fish species who have co-evolved on both African and South-
American continents, the electric sense was discovered by Lissman in 1958 [LM58]. In African
fish Gnathonemus Petersii for instance, the fish first polarizes its body with an electric organ
discharge (EOD) located at the base of its tail (Figure 1). This polarization is applied in short
pulses, generating a dipolar shaped electric field around the fish which is then distorted by the
objects in its surroundings. The fish "measures" the distortion of the electric fields using an array of
electro-receptors distributed along its body and infers an image of its surroundings through neural
processing intensively studied by neurobiologists [CBGB98, vdE06, EBM+08, EvdE11]. In order
to study the environment modalities sensed by the fish, biologists have developed many neuro-
ethological experiments in which fish are trained to recognize a given shape [vdESG+98, vdE99].

Electric fish can easily navigate in the dark or/and in turbid waters of confined unstructured
environments such as the roots of the trees in the flooded tropical forests which are their natural
habitat. Neither vision or technologies such as sonar can work in these conditions but the electric
sense is well-adapted for this niche. Based on this fact, McIver et al have recently exploited an ex-
perimental made of four point electrodes placed at the apices of a rhombus in a rigid moving frame
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driven by a Cartesian robot [SLM07]. In this device, two electrodes located at opposite apices of
the rhombus are polarized in voltage and play the role of the electric organ of discharge of the fish
while the other two electrodes play the role of receivers between which the voltage is measured.
Using Cartesian motion control of this sensor in a tank, they successfully located small spheres
through off-line particle filtering [SLM07, SLM08]. However, the body geometry of this sensor ide-
ally reduces to four point electrode, limiting its implementation on a real autonomous underwater
vehicle. Using an alternative sensor technology based on the measurement of current, Kalman
filtering technics have been applied to the reconstruction of the surroundings of an underwater
vehicle of realistic geometry [BBG08, LCA+10]. In [BBG08] the surroundings are constituted of
insulating infinite walls while in [LCA+10], the case of small (insulating and conducting) objects
is tackled. However, all these results have hither to been restricted to simulations. This article
presents experiments with these techniques in the context of localization and navigation these
techniques for the implementation of the electric sense. In controlled experimental conditions,
the problem of reconstruction of the state of small objects and tank navigation is addressed. We
define "reconstruction", as the estimation of the size and location of these objects in the sensor
frame. Because the electrical equations cannot be integrated analytically for an object of arbi-
trary shape [SYOPA04], we confine our investigations to the case of spherical objects. However,
we will see that objects of other shape such as cubes, can be modeled by equivalent spheres (and
"encapsulated" in them). As far as the problem of navigation is concerned, we propose a model
based approach in which the filter is included in a global feedback loop. We will illustrate the
case where the assigned task consists of following the walls of a tank.
Finally, until now, electric sense has never been applied to (at least to our knowledge): 1) the
problem of on-line reconstruction of scenes comprising walls, corners and small objects, 2) the
application of Kalman filtering technics to this problem and 3) the technological principle of our
electric sensor based on the current measurements. Furthermore, the application of Kalman fil-
tering technics to this problem as well as the technological principle of our electric sensor (based
on the current measurements) also contribute to the novelty of the approach. Lastly, in spite of
the long way that separates the results presented here in simplified conditions (few objects in a
tank) from the realization of the electric sense on a real autonomous vehicle, we believe that our
results have the potential to guide future research making use of this unique underwater sensing
modality.

Figure 1: The electric fish, here the Gnathonemus Petersii. (left) The basal electric field, (right)
the electric field is distorted by the presence of an object on its right.

The article is structured as follows. First, we briefly present the sensor technology (section 2)
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and experimental conditions. We then address models for perception and locomotion in section 3.
A solution to the problem of reconstructing a model of the surroundings is detailed in section 4.
Localization and reconstruction are tested in section 6 on an experimental test-bed as described
in section 5. The results of tests of navigation are reported in section 7. Finally, the article ends
with some concluding remarks and perspectives in section 8.

2 The sensor

This section briefly describes the physical principles of the sensor. We refer the reader to [SJB+11]
for a more detailed description. Our first generation of sensors were named "slender probes"
because of their high aspect ratio (length/thickness) shape. The sensor is composed of a body
with insulating wetted boundaries on which are fixed a set of m + 1 electrodes noted E0, E1...Em
(Figure 2). The rear (tail) electrode E0 and front (head) Em electrode, are both hemispherical
while electrodes fixed on the body are ring shaped. The 2-electrode probe has m = 1 and the
4-electrode probe has m = 3. The voltage imposed on Eα=1,2...m is the common ground while E0
is put under the controlled voltage U . Once the sensor immersed in a fluid, this active device
produces a field of current lines in its surroundings flowing from E0 to the other electrodes Eα=1,...,m.
These current lines are closed through an electric circuit inside the sensor. This circuit measures
the vector of the currents I = (I1, I2, ..., Im) flowing across the Eα=1,2,...,m. When an object is close
to the sensor, it generates perturbations of the electric lines creating a portrait that is measured
by the current measurement circuit. The entire device can be embarked on a mobile body such
as an underwater motion controlled vehicle.

Figure 2: Picture of a slender probe (left), measurement scheme with electric field lines (center)
and schematic view (right) of a 4-electrode sensor.

Based on these design, one can show [SJB+11], that for a given small aspect ratio (. 0.1)
of the sensor and a given sensitivity of its measurement electronics, the range of detection of a
perturbative objet is a constant factor of the sensor length. For instance, in our case with a sensi-
tivity of about 1/1000 and an aspect ratio of 1/22, the detection range of a wall is approximatively
equal to the sensor length which corresponds to the range of mormyride fish. Finally, this range
can be increased by increasing the length of the sensor (in fact the maximal length of a dipole
supported by its body).

3 Models

Here we describe the model of measurement that relates the sensor measurements to its surround-
ings.
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(a) Simple scene. (b) Complex scene.

Figure 3: Parametrization of a simple (with only one object, here a sphere) and a complex scene
(several objects, here a sphere and a corner). Note that dc = dcA (dcA being the axial range of
detection of a corner), if the sensor is parallel to the upper wall and dc = dcL (i.e. equal to the
lateral range of detection of a corner) if it is perpendicular to the upper wall).

3.1 Analytical model of measurement

The sensor is modeled as an array of m+1 spherical conducting electrodes aligned on a rigid line
that forms a solid axis [CHKN05]. In the following, the characteristics of the tested sensor are
illustrated in Figure 2 with a radius R = 1 cm, and total length L = 22 cm. The conductivity of
the water is γ = 0.04 S/m (that of ordinary tap water). An electric field is produced around the
sensor by imposing a voltage between one electrode E0 and all the others. This produces a field
of current lines flowing across the measurement electrodes. The corresponding measured currents
are influenced by the presence of objects in the sensor surroundings (Figure 3). An object placed
in the environment will modify the electric field and the corresponding measured currents. The
modeling of the measured currents can be accurately achieved by the boundary elements method
[PLIB11], but here we are interested in analytical models that are easily computed onboard. We
first evaluate the effect of a single small object (Figure 3(a)), and then, the combined effects of
such an object in presence of an insulating corner (Figure 3(b)). In the latter, we resort to the
"images modeling method" [Jak99]. The images modeling method is based on the use of imaginary
charges placed outwith of the physical domain in order to emulate the boundary conditions of the
problem. Although the modeling of spheres, walls and corners have been addressed in [LCA+10]
and [BBG08] respectively (and separately), the case of scenes comprising spheres and walls as
those studied later in our experiments has still not been considered. In all cases, the effects of
the electrically contrasted objects on the sensor measurements can be modeled as an expression
of the general form:

U = R(x, γ, γs)I, (1)

where U is the m × 1 vector of the imposed voltages, I is the m × 1 vector of the measured
currents, R is the (m ×m) resistance matrix of the scene, with x, the state vector gathering all
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the geometric parameters of the scene, and γs the electric conductivity of the sphere. For example,
in Figure 3(a), the sphere location with respect to the sensor is parameterized by a distance d, an
angle θ and the radius a. For this scene the state vector of geometric parameters is: x = (d, θ, a)T .
In all case, the measured currents of I can be expressed:

I = R−1(x, γ, γs)U, (2)

which is highly non linear with respect to the state. We shall now consider the sensor moving in a
cubic tank bounded by insulating walls ibetween which a small sphere has been placed. In these
conditions, the resistance R offered to the sensor takes the most general form :

R = A+ S+Wx +Wy +C, (3)

where

• A models the sensor’s own resistance, which depends only on the geometry of the robot as
detailed in [JGB+10, LCA+10].

• S models the influence of the sphere which depends on d, θ, a, γ, γs and is based on a model
initially proposed in [Ras96]. A further study of this influence is developed in [LCA+10].

• Wx, Wy and C model the wall and the corner influence (Figure 3(b)) and depends on dx
and θc (dy and θc). This influence is studied in [JGB+10].

Finally, the model of measurements takes the general form:

I = h(x, γ, γs). (4)

For the sake of simplicity we will assume that: 1) the objects are motionless in the tank frame;
2) the sensor moves in its equatorial plane which is also a symmetry plane (top-bottom) for the
objects; and 3) γ and γs are a priori known or measured [SJB+11]. The reconstruction thus only
concerns the geometric state x. It is in general difficult to estimate the scene’s parameters because
the model is non-linear and because of noise in the measurement. To overcome these difficulties,
the sensor moves in order to enrich the number of measurements and the information they contain.
In section 3.3, we present the model of displacement of the robot.

3.2 Sensor’s range

The objective of this section is to determine the maximal distance at which the sensor can detect
a perturbative object. When the range’s measured along its axis dA, its be named the axial range
of object detection and when it is measured perpendicularly to the axis, it is named lateral range
of object detection and denoted dL (see Figure 5(a)). To the end, we define the following norm :

Is = ‖I− I∞‖ , (5)

where I∞ is the vector of currents measured in an unbounded environment (i.e. without
objects, walls, or corners...), while I are the currents in the presence of objects. With our slender
probes immersed in the test bench (tank), the currents induced by noise have approximately a
norm Ib ≃ 10−6 A (see [SJB+11]). Thus, when the current Is > Ib, the sensor detects an object in
its surrounding. This threshold defines the range of the sensor beyond which it cannot perceive
any change in its environment. In the following we study the sensor’s range in presence of a sphere
and of a corner. In the case of a sphere same simulations were carried out in [LCA+10], while
those related to the corner have never been presented elsewhere.
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3.2.1 Range for a small object

The objective is to determine the distance at which the sensor detects a small object in an
unbounded environment (see Figure 3(a)). To this end, we place a conductive sphere at different
locations around the sensor within a 0.4m×0.4m area while avoiding collision with the sensor.
The norm of the current Is associated with each position of the conductive sphere is computed
for the 2-electrode (Figure 4(a)) and 4-electrode sensor (Figure 4(b)) using (5) with I given by
(4) and R = A + S in (3). In Figure 4(a), we clearly observe a "blind spot" at the middle of
the 2-electrode sensor. This characteristic is absent with the 4-electrode sensor Figure 4(b). This
feature is observed when the distance between any pair of electrodes is much higher than the size
a of the object. Thus, for any given length L, the area enclosed by a level contour Is(= Ib) of
the 4-electrode sensor is wider than that of the 2-electrode sensor. Figure 5(b) shows the axial
dsA and lateral dsL ranges of the 2-electrode and 4-electrode sensors for several values of radius
(a = [0.01, 0.03, 0.05, 0.10] m) of a conductive sphere (the upper index s means "sphere"). The
axial range dsA, is similar for both sensors, and for the 4-electrode sensor, dsL and dsA are also very
similar. With the 2-electrode sensor, the sensor can detect a sphere of radius a ≤ 0.01 m laterally,
only when this object is close to one of the electrodes. On the other hand, along the body of the
4-electrode sensor, such a small object can be always detected.

(a) The contours of the iso-current Is for the 2-
electrode sensor.

(b) The contours of the iso-current Is for the 4-
electrode sensor.

Figure 4: The contours of the iso-current Is for a sphere of radius 0.01 m. The sensor cannot
detect objects in the hatched part.
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(a) Illustration of the axial and lateral ranges of de-
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Figure 5: Axial and lateral ranges of detection of a sphere.

3.2.2 Sensor’s range in a corner

The objective is to determine the distance at which the 4-electrode sensor detects a corner (see
Figure 3(b)). We put the 4-electrode sensor at different locations at an orientation α to the corner
and compute (5) with I given by (4) and R = A + Wx + Wy + C, in (3). Figures 6(a) and
6(b) display the current Is for orientations of α = 0◦ and α = 45◦. When the sensor orientation
changes, the iso-current plots shift from those of Figure 6(a) to those of Figure 6(b). Note that
when the sensor moves towards the corner in parallel to one of the walls (α = 0◦), it perceives
the front wall better than the lateral wall (dcA > dcL). When the sensor tilts, the influence of the
corner increases. Quantitatively, when the sensor follows the wall in parallel, the detection range
of a corner is about dcA ≈ 0.65 m ≈ 3 times the sensor’s length (i.e. dcA ≃ 3L = 3× 22cm).

(a) The contours of the iso-current Is for a
sensor tilted of α = 0

◦.
(b) The contours of the iso-current Is for a sensor
tilted of α = 45

◦.

Figure 6: The contours of the current Is for the sensor close to a corner. When the sensor is in
the hatched part bounded by the iso-current Is = Ib, it cannot detect the corner.
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3.3 Robot displacement model

The sensor motion is modeled as that of a non-holonomic unicycle whose motion parallel to the
lateral y body axis is constrained to zero (Figure 2). The velocities V‖ (axial velocity, i.e. along
the x body axis) and Ω⊥ (yawing velocity) define the vector of control inputs u = (V‖,Ω⊥)

T .
In the scene of Figure 3(b), the sphere and the corner (defined by the walls Wx, Wy and their
intersection C) are fixed in space, so the model of displacement of the scene with respect to the
sensor can be expressed in the discrete form:

-Displacement model of the corner:







dk+1
x = dkx − V k

‖ cos(θ
k
c )∆t,

dk+1
y = dky − V k

‖ sin(θ
k
c )∆t,

θk+1
c = θkc + Ωk

⊥∆t,

-Displacement model of the sphere:











dk+1 = dk − V k
‖ cos(θ

k)∆t,

θk+1 = θk + (Ωk
⊥ +

V k

‖
sin(θk)

dk
)∆t,

ak+1 = ak,

(6)

where ∆t is the sampling period, and k denotes the time step at which the vector of geometric
variables is computed as xk = (dkx, d

k
y, θ

k
c , d

k, θk, ak)T . Finally, the displacement model can be
written in the general form :

xk+1 = f(xk,uk), (7)

where xk is the geometric state vector of the scene and the vector of control inputs is uk =
(V k

‖ ,Ω
k
⊥)

T .

4 Kalman Filter

The objective of the observer is to estimate the geometric parameters of the environment gathered
into the (geometric) state vector x. The chosen observer is an unscented Kalman filter [SJ97]. This
choice has the advantages of the classical extanded Kalman filter [Kal60, NdS90] while avoiding
the complex analytical linearization of the displacement equations (7) and measurement model
(4). As with any Kalman filter, our filter requires the definition of some matrices which tune its
dynamic features. The first is the covariance matrix Pk which is related to the state variables xk

and represents a trust indicator associated with the estimated state, a small covariance meaning
that the state is precisely known, and a large covariance that it is imprecisely known. The evolution
of Pk is defined by the unscented Kalman filter algorithm. Two other matrices are required: Qm,
which defines whether the model (7) is well known or not, and Qs, which determines the level
of noise in the measurements (4). The principle of the unscented Kalman filter is reminded in
Figure 7. Based on its covariance Pk, the filter computes some sampling points (called "sigma
points" χ

k+1) around the estimated state x̂k using a deterministic sampling technique known as
the unscented transform. It then propagates the sigma points χ according to: 1) the evolution
model χk+1 = f(χk,uk); and 2) the model of measurements ỹ = h(χk, γ, γs), which improves the
convergence of the estimated state x̂k+1 and the covariance Pk+1.
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Figure 7: Chart flow illustrating the principle of the unscented Kalman filter.

The equations of the unscented Kalman filter are summarized in the following set of recursive
equations: in step k, the estimated state is x̂k with covariance matrix Pk. In the first step, this
the filter computes the "sigma points" χ

k+1 around the estimated state x̂k using the unscented
transform:







χ
k
0 = x̂k,

χ
k
i

= x̂k +
√

(N + κ)(Pk +Qm) for i = 1 to N,

χ
k
i

= x̂k −
√

(N + κ)(Pk +Qm) for i = N + 1 to 2N,

(8)

where N is the size of the state vector and κ is a parameter that must be chosen (κ=1). These
sigma χ

k
i

points are weighted using weight coefficients:

W0 =
κ

κ+N
,Wi =

1

2(κ+N)
,

In a second step the filter propagates the sigma points χ according to:

• The evolution model:

χ̃
k+1
i

= f(χk
i
,uk), i = 0, ..., 2N,

x̃k+1 =
2N
∑

i=0

(

Wiχ̃
k+1
i

)

,

P̃k+1 =
2N
∑

i=0

(

Wi

(

χ̃
k+1
i

− x̃k+1
)T (

χ̃
k+1
i

− x̂k+1
)

)

,

(9)

where χ̃
k+1
i

is the estimated value of χk
i
, uk is the input control, x̃k+1 is the state prediction

and P̃k+1 is the predicted covariance.

• The model of measurements, which is given by:

ỹk+1
i = h(χ̃k+1

i
, γ, γs), i = 0, ..., 2N,

Îk+1 =
2N
∑

i=0

Wiỹ
k+1
i ,

(10)

where ỹk+1
i is the measurement prediction and Îk+1 is the estimated measurement.
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• A correction on the estimated state:

x̂k+1 = x̃k+1 +Kk+1

(

Ik − Îk+1

)

,

Pk+1 = P̃k+1 −Kk+1PyyK
T
k+1,

(11)

where
Kk+1 = PxyPyy

−1,

Pyy =
2N
∑

i=0

(

Wi

(

ỹk+1
i − Îk+1

)T (

ỹk+1
i − Îk+1

)

)

+Qs,

Pxy =
2N
∑

i=0

(

Wi

(

χ̃
k+1
i

− x̃k+1
)T

(

ỹk+1
i − Îk+1

))

,

(12)

x̂k+1 is the estimated state of xk+1 and Pk+1 is the estimated covariance.

5 Experimental setup

We now report some experimental results which illustrate the filter performances. Section 5.1
describes the test bench. We first assess the accuracy of the model used by the filter (4), and then
introduce the experiments based on the filter.

5.1 Tank and cartesian robot

An automated test bench consisting in a tank of one cubic meter volume and a three-axis cartesian
robot has been built to test our electrolocation sensors and algorithms in controlled and repeatable
conditions (see Figure 8). The robot is fixed on top of the aquarium and allows the probes
to be positioned in translation along X and Y with a precision of 1/10mm. The maximum
speed is 300mm/s (≃ 1km/h) for both translations. Orientation in the (X, Y ) plane is adjusted
in increments of 0.023◦ using an absolute yaw-rotation stage whose maximum velocity is 80◦/s
(13.5tr/min). The motion of the three axis robot is controlled using simulink software with the
dSpace system. The probes are positioned in the aquarium at adjustable height (Z) using a rigid
glass epoxy fibre tube. This vertical insulating tube forms a conduit for the cables conveying the
signal from the probe electrodes. The electrolocation signals are first processed by an analogue
chain (amplification and filtering) then digitally converted using a 16 bit ADC (DS2004) card
with a resolution of 0.3mV/bit (range +/− 10V ).
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Figure 8: Electrolocation test bench: the sensor is attached to the tip of a stick whose planar
motions are controlled with a Cartesian robot fixed on the top of the tank.

5.2 Validation of the current model

We first compare the measured and the modeled currents for the 2 and 4-electrode sensors. Two
validation tests are carried out. The first validates the model of the empty tank, while the second
assesses the model of a sphere in an unbounded environment. Note that the simulation of a slender
probe in presence of a sphere has been done in [LCA+10] with the same sensor and in [BGJ+12]
for a more complex sensor including a left-right partition of the electrodes (i.e. with a kind of
"binocular" sensor). Likewise, the simulation of the sensor with walls has been done in [BBG08]
and with corners in [JGB+10].

5.2.1 Current model of the tank

The first test consists in moving the sensor (V‖ = 0.04m/s) in the tank at a constant distance (dd =
15cm) from the walls (see Figure 3(b)) and comparing the measured currents with those calculated
by the model (4), with the actual state x, and with the actual conductivity γ. Figure 9(a) shows
the modeled and measured currents for the 2 and 4-electrode sensors. The modeled currents show
a discontinuities (points A in Figure 10) as well as some discrepancies with experimental results.
This is probably due to the fact that the global model of the sensor in the tank (as given by a
boundary elements numerical code for example) is in our case replaced by the local models of the
four corners between which commutations are forced (at points A). This choice has been adopted
for several reasons: 1◦) the sensor has a local perception of the corners bounded by dcA (of section
3.2). 2◦) A global analytical model would require to define an infinite number of images (like
two mirrors positioned face to face), what would cause problems of convergence of the method
of images. 3◦) At last, in the perspective of using this model for observation, local models will
allow us to navigate without à priori knowledge of the size of the tank. The details of how the
commutations are managed will be treated in section 7 when dealing with navigation. Figure 9(b)
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shows the 3 measured currents of the sensor (red) as well as the model calculated currents (black),
when the 4-electrode sensor follows the walls of the tank. The results show that the measured and
calculated currents are sufficiently close to each other in order to consider the model good enough
to be used for the reconstruction and navigation task.
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Figure 9: Measured (red) and modeled currents (black) with the real state vector x when the
sensors follow the walls of the tank (V‖ = 0.04m/s and dd = 15cm) (see also Figure 14).

5.2.2 Current model of the sphere

In the following, a small object (sphere, cube) in the surroundings of the sensor is modeled as a
sphere whose the size and location (related to the sensor) have to be reconstructed by the filter.
Before testing the sphere localization algorithm, two preliminary tests were carried out in order to
assess whether the modeling assumptions which will model any object as its encapsulating sphere,
are justified.
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(b) The probe approaches a insulating cube.

Figure 10: Measured (red) and modeled currents (black) with the real state vector x when the
probe approaches a small object (sphere model).
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All these tests were carried out by comparing the actual measurements with those given by the
model (4), once the model has been informed of the actual geometric (and electric) parameters
of the scene. In the first test, a sphere is placed in the middle of the tank. In this location the
electric effect of the walls are small, and the measurements are recorded in the conditions of Figure
3(a). The measurements are then computed using the model (4) with the actual extended state
(x, γ, γs), and for a scene approximated by a sphere immersed in an unbounded fluid domain.
The results show that the measured and calculated currents are sufficiently close to each other in
order to consider the model of the sphere as enough accurate for our filter. These differences have
essentially two origins. Firstly, the model of the sphere assumes that its size is small with respect
to the spatial variations of the basal electric field produced by the sensor, a condition which is not
satisfied here (the diameter of the sphere is about 6cm, i.e. of the order of the length of the sensor).
Secondly, the insulating parts of the sensor are approximated as in [JGB+10] (we refer the reader
to [BGJ+12] for a more accurate model of the sensor). In the second test, the measurements are
carried out with a cube located in the middle of the tank, and compared with the same model as
that used in the previous test (a single sphere in an unbounded environment). Here, the sensor
moves in a straight line with V‖ = 0.04m/s and Ω⊥ = 0. The Figures 10(a)-10(b) show the 3
measured currents of the sensor (red) as well as the model calculated currents (black), when the
probe approaches the object. The results in Figure 10(a), were produced using an insulating
sphere of a radius a = 0.0305 m. The results show that the measured and calculated currents are
sufficiently similar to consider the model of the sphere good enough for its reconstruction. The
plots in Figure 10(b) were obtained using a real insulating cube (of side-length a = 0.040 m) located
in the middle of the tank, and with the model of a sphere of radius a = 0.037 m. The measured and
calculated currents are enough close to each other, in order to conclude that the approximation of
a cube by an equivalent sphere is justified. Going further into the details, let us point out that the
peaks of the measured currents (for both the sphere and the cube) coincide well with those given
by the sphere model. Thus, since each of these extrema corresponds to a configuration where one
electrode is in font of the object center, they are directly related to the localization of the real
objects and its spherical model in the sensor frame. As a result, the approximation of a compact
object (as the cube) by a sphere should not compromise the localization of the object. Physically,
this can be explained by the fact that the multipolar expansion (on a basis of spherical harmonics
for instance) of the cube and the sphere responses to an external field can be only distinguished
at a high order of expansion, while localization essentially requires the lowest order contributions.
Finally, these properties will be confirmed and exploited in section 6 when we will address the
electrolocation of small objects.

6 Electro-localization

Three experiments were carried out in our test bench to calibrate the performance of the algorithms
of object reconstruction and localization. Two used the conditions illustrated in Figure 3(a), first
with a small insulating sphere, and second, with a small insulating cube. In both experiments,
the object was modeled by an equivalent sphere whose size and location are estimated. The third
experiment used the scenario of Figure 3(b), where an insulating sphere is placed in a corner while
the robot follows the walls of the tank. All these experiments were carried out with the 4-electrode
sensor. The third experiment focussed on the ability of the algorithm to extract the parameters
of a small object, immersed in a complex scene. For each of the experiments, we recorded the
velocity (V‖ and Ω⊥) and the measured currents I = (I1, I2, I3)

T .
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6.1 Reconstruction of a sphere in a simple scene (fig. 3(a))

By "simple scene", we mean that there is only one small object (here a sphere) in the sensor
surroundings. In this first test devoted to the (geometric) state reconstruction, the robot moves
forward in the tank in which an insulating sphere with a radius a has been immersed. The real
and estimated initial states of the scene are defined by: (d = 0.257 m, θ = 0.294 rad, a = 0.0305
m) and: d̂ = d−0.1 m, θ̂ = θ+0.2 rad, â = a−0.02 m). Figure 11(a) shows the change over time
of the real (red) and estimated (blue) states of the sphere. Figure 11(b) represents the real (cyan)
and the estimated (blue) scenes over time. When the object is close to the head (first electrode,
at time t = 2 s), the sphere is quite well localized but its estimated size is higher than its actual
size. When it is located between the head and the tail (2s < t < 8s), the estimated size of the
sphere is close to its actual size. When the object is close to the emitter (t = 8s), the real sphere
(its location and size) is again well reconstructed with a small estimation error. Finally, let us
remark that in all experiments, "reconstruction" reaches its highest level of accuracy when the
probe overtakes the object of interest and leaves it behind its back. This is due to the fact that
the last electrode being the emitter, when the object is close to it, all the receivers are strongly
perturbed by the object so increasing the information content of the measurement, compared to
the receivers which are excited one by one. Furthermore, the emitter passing close to the object
at the end, it benefits from the work of all the receivers and achieve the localization.
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(a) Real (red) and estimated (blue) state of the
sphere.
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(b) Real (cyan) and the estimated (blue) scene.

Figure 11: Reconstruction of a sphere in a simple scene (V‖ = 0.04m/s). The state of the sphere
is (d, θ, a).

Since the size and the location of the reconstructed object converge toward their real values,
this experiment shows that thanks to the sensor motion, the filter can solve the ambiguity between
size and distance and can distinguish a small object at short distance from a bigger one at a larger
distance. However, the electric parameters of the scene being known a priori by the filter, the
other ambiguity between conductivity and size1 is still an open problem for the approach.

1The perturbed currents produced by a small object contain a factor including the size times a function of the
electric conductance of the object and water named contrast factor.
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6.2 Reconstruction of a cube in a simple scene (Figure 3(a))

This second test is carried out in the same conditions as the first, except that the object is now
an insulating cube. The filter estimates the parameters of an equivalent sphere using the sphere
model. The initial real and estimated states of the scene are set to be: (d = 0.225 m, θ = 0.298
rad, a = 0.037 m (equivalent radius)) and: (d̂ = d − 0.1 m, θ̂ = θ + 0.2 rad, â = 0.001 m).
Figure 12(a) shows the change over time of the real (red) and estimated (blue) state of the cube.
Figure 12(b) represents the actual (cyan) and the estimated (blue) scenes at different times of the
sensor motion. As in the previous test, when the object is close to the head (t = 2 s), the cube
is quite well localized but its estimated size is greater than the actual length of the side of the
cube. When the object is close to the emitter (t = 8s), its equivalent sphere is well reconstructed
and the estimated error (on size and location) is small. This test illustrates a common feature of
all the tests carried out: the estimated equivalent sphere always encapsulates the cube, and its
location is well estimated. This confirms the prediction of section 5.2 and is due to the fact that
when excited by an external field (here the basal field emitted by the sensor), any small compact
object appears (from the point of view of the electric measurements of the sensor) as a polarized
sphere at the leading order.
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(a) Real (red) and estimated (blue) state of the
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(b) Real (cyan) and the estimated (blue) scene.

Figure 12: Reconstruction of a cube in a simple scene (V‖ = 0.04m/s) using the model of a sphere:
the cube is encapsulated in an equivalent sphere of state (d, θ, a)

In nature, electric fish are able to distinguish between different shaped objects of close multi-
polar signatures (typically a cube and a sphere) [vdESG+98]. For instance, this can be achieved
by exploring more actively the object by using motions of "va et vient" or alternately turning the
head and the tail towards the object. In this case, we could explore the sharp edges of the cube
where electric charges are accumulated by virtue of the peak effect. However, this article being
focused on localization and not on shape recognition, its objective is rather to show that any small
compact object can be encapsulated in an equivalent sphere with comparable size and location.

6.3 Localization and reconstruction of a sphere in a complex scene.

This test is carried out using the conditions illustrated in Figure 3(b), with an insulating sphere
located in a corner while the robot follows the wall. This test focuses on the ability of the filter
to extract the parameters of a small object in a complex scene. The sphere has a radius a (m).
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The actual initial state of the scene is: (dx = 0.3 m, dy = 0.3 m, θw = 0 rad, d = 0.4 m, θ = 1.57

rad, a = 0.0305 m) and the initial estimated state of the scene is : (d̂x = dx, d̂y = dy, θ̂w = θw,

d̂ = d − 0.08 m, θ̂ = θ + 0.03 rad, â = a − 0.02 m). Figure 13(b) shows the real and estimated
state of the corner with respect to time. Figure 13(a) shows the real and the estimated state
of the sphere with respect to time. Figure 13(c) represents the actual and the estimated scene
at different times. At t = 0 s the position of the real walls is known a priori (thus the initial
estimate error for the wall state is null). For times between 0 < t < 8 s, the sensor does not detect
the sphere because it is too distant. At t > 8 s the sensor perceives the perturbation due to the
sphere and the estimated parameters of the sphere converge toward their actual values. For times
between 8 < t < 23 s, the sensor is close to the sphere and for t > 20s the sphere is quite well
localized. This test highlights that it is possible to distinguish (localize and reconstruct) a small
object immersed in a complex scene, when the sensor is close to this object.
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Figure 13: Reconstruction of a sphere in a complex scene (V‖ = 0.04m/s).
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7 Electro-navigation

The problem of electro-navigation based on the knowledge of environment derived from the electric
sense will now be addressed. The sensor is put into our test bench and the objective of the control
law is to follow the walls of the tank at a given distance dd. This distance must be less than the
sensor range and large enough to avoid collision of the robot with the tank during the experiment,
a value of dd = 0.15 m is chosen. Due to the range of the sensor compared with the size of the
tank, we designed a control law based on a local model composed of a corner only (see Figure
3(b)). The state feedback in the control law uses the estimated state computed by the Kalman
filter. In addition to the nominal task of following the walls, we also assessed the robustness of
the solution.

7.1 Control law

Figure 14: Parametrization of the sensor following the walls of the tank (the upper index "d"
means "desired").
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The motion of the robot with respect to the environment is defined by equation (6). The control
inputs are V‖ and Ω⊥. The control law uses the observed value with respect to the corner frame.
Turning around the tank is first considered. The control task is decomposed into two sub-tasks
(see Figure 14). Firstly, the robot has to follow the axis X (θdc = 0) at the distance ddy = 0.15 m.
Secondly, when the robot reaches the corner (dx < dcx = 0.2 m), the robot has to follow the axis
Y , (θdc = π/2) at the distance ddx = 0.15 m. While following the walls, the forward velocity of the
robot is kept constant, while the angular velocity Ω⊥ is controlled to achieve the task. Thus, the
objective of the first task consists in forcing the two following outputs to equal zero:

{

y1 = θdc − θc,
y2 = ddy − dy.

(13)

To achieve this objective a simple proportional control law is proposed:

Ω⊥ = kd(d
d
y − dy) + kθ(θ

d
c − θc). (14)

Using (6), the evolution of this distance dy is:

ḋy = V‖sin(θc). (15)

Deriving this equation and using (14), the behavior in closed loop becomes:

d̈y = V‖(kd(d
d
y − dy) + kθ(θ

d
c − θc))cos(θc). (16)

The linearization of (15) and (16) around the desired position (θdc = 0) gives:

{

ḋy = V‖θc,

d̈y = V‖kd(d
d
y − dy)− V‖kθ(θc).

(17)

By combining the first equation with the second, we find:

d̈y = −kθḋy − V‖kd(d
d
y − dy). (18)

The gains kθ and kt can be easily chosen to ensure the convergence of dy to ddy for any fixed velocity
V‖. Using (14), it is clear that θc will also converge toward its desired value. In the experiment,
the values chosen are V‖ = 0.04 m/s, kθ = 2, kd = 25. To follow the second wall, a similar control
law is used, but it is the distance dx that is controlled in this case and not dy. Thus, the control
law becomes:

Ω⊥ = kd(d
d
x − dx) + kθ(θ

d
c − θc), (19)

with θdc = π/2. Note that when the robot reaches the corner, the desired values θdc and ddy are
not instantaneously switched to their desired values θdc = π/2 and ddy = 0.15 m. This avoids the
large variations of Ω⊥ which would occur in this case. In fact, θdc (t) and ddy(t) are parameterized
with cubic polynomials allowing then to commute smoothly from one subtask to the other. This
is achieved over 30 sampling periods each of 15 ms.

Despite its apparent specificity, this control law has a certain generality. For instance, it also
works when the walls are not straight but smoothly and moderately curved. Indeed, in this case,
(14) can be used with y defining now the instantaneous tangent to the wall, with respect to which
the sensor is positioned at a distance dy and tilted of an angle θc. Furthermore, in the case where
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the curvature of the followed wall becomes too high or even presents some discontinuities, the
same control law can be used by introducing a 90◦ corner. In this case the law will still work, as
long as the variations of the corner angle do not exceed ±20◦, as we have seen on experiments
with different orientations of a removable wall suddenly placed in the corners of our tank. Finally,
going beyond this limit would need to come back to the modeling of the corner. Indeed, while
in the case of obtuse angles the method of images still applies, in the case of acute angles, more
sophisticated approaches based on the expansion of electric field on orthogonal functional basis
would be required [Jak99].

7.2 Change of observed model and of control law

Allowing for the range of the sensor, the following strategy is proposed (see Figure 15) to achieve
the task of following the walls. When the robot follows the Y -axis, it departs from the corner
and the effect of the rear wall WX along the X-axis decreases. When the effect of WX becomes
negligible (around dy > dcA = 0.7 m, see section 3.2), the local model used by the filter considers a
new front wall. This is simply achieved by rotating the frame of the previous corner by π/2. Then,
the X and Y axes are permuted and the task “following a wall along X” becomes “following a wall
along Y ” with dx replacing dy. Note that since the size of the tank is unknown, the value of dx is
unknown too. The corresponding initial value of dx is fixed to the sensor range dcA of section 3.2.
The weighting matrix associated with dx is initialized with a large value since the estimation error
is high in this case. The control law is thus decomposed into 2 tasks that are used alternatively as
shown in Figure 15. Note that the commutation of control law is based on the observed values dx
and dy, and the local model is redefined after re-initialization of the observers when dy > dcA. In

Figure 15: The complete control strategies including change of tasks and of local models. The
turn around the tank is described by the loop in the lowest part of the figure. The part in the
dotted box corresponds to the initialization of the motion of the robot in the tank.
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the general case, the robot is initially not on the desired trajectory. It first moves straight forward
until it reaches a wall. Then, it follows this wall as shown in Figure 15. Finally, let us make the
following further remarks:

• In Figure 15, the superscripts "-" and "+" are used to denote the observed state "just
before" and "just after" the commutation of local models.

• In principle, in the control strategy, dcA denotes the range at which the sensor detects a front
wall (i.e. a corner). However, since the length of a tank side is less than twice the sensor
range, in practice we artificially decrease the range to dcA = 0.5 m.

More fundamentally, due to the limited range of our sensor, it is artificial and even dangerous
to use a global model of the environment. Indeed, when no measurement is available to inform
one part of such a global model, the integration of the motion model leads to a drift of the model
of the environment. On the other hand, when using a local model of the environment, it is in
general difficult to consider a convenient local model. In fact, if it is easy to remove an object
from the local model when it becomes out of range for the sensor, it is much more difficult to add
a new object entering the detection bubble of the sensor. In particular, we have to define what
new object we have to add to the scene and when it has to be added. Up till now, we did not get
answers to all of those questions in the general case. In our particular case, the task consists in
following the tank boundaries on the right side of the sensor. To achieve this task, only corners
were considered as local models for the sensor. The commutations between these local models
were managed as follows. As soon as the wall in the back of the sensor becomes out of its range, it
is removed from the model and replaced by a front wall (this corresponds to replace a first model
of a corner by a second one rotated of 90◦ with respect to the first). Till the front wall is not
sensed by the robot its distance from the sensor will remain at a value higher than the range. This
approach can be used to follow the boundary of any bounded space without any object.

7.3 Following a wall.

The 2-electrode sensor’s trajectory follows the wall at a constant distance (dd = 0.15 m). As
shown in [LCA+10], a yawing motion increases the convergence of the Kalman filter. The yawing
motion is introduced by adding a harmonic component to Ω⊥ comparable to that observed in the
swimming gait of the fish. The amplitude of this yawing oscillation is 10◦ and its frequency is
0.2 Hz. Figure 16(a) shows the sensor trajectory with and without yawing and Figure 16(b) shows
the real and estimated state. The sensor starts from a random point (point A), the feedback control
law uses the relative position of the sensor with respect to the environment (corner) estimated by
the Kalman filter. For as long as it has not detected the wall, the sensor goes straight forward
(A). As soon as a wall is detected, the sensor starts to follow it (from B to C). When the distance
between the sensor and the wall in front of it is equal to a desired distance, the sensor turns around
the corner (from C to D). The result shows that we can use the 2-electrode device to achieve a
basic task such as following a wall.
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(a) Sensor’s center trajectory. The blue line is the
trajectory without yawing and the dotted red line
is the trajectory with yawing.
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Figure 16: Motion in straight line with and without yawing (V‖ = 0.04 m/s and dd = 15cm).

7.4 Robust test: removable wall

In this test, we made 2 laps of the tank (Figure 17) and during the second lap (dotted line), we put
a removable wall (wall marked with dotted line on Figure 17) at a distance of 0.1m from the first
one. Then, the tank 1× 1× 1m becomes a parallelepiped of 0.9× 1× 1m. The controlled sensor
has no additional information and has to detect and follow the new wall (from A to B). Figure
18 shows the sensor position x = [dx, dy, θc] measured with the Cartesian robot (in blue) and that

estimated x̂ = [d̂x, d̂y, θ̂c] with electric sense (in green). So when the sensor follows the removable
wall (from A to B) during the second lap, we show a gap of 0.1 m on dx (or dy depending on the
corner reference), which is the distance between the removable and real tank wall. The 2-electrode
sensor detects the new wall and turns (Figure 17(a)). However, close to points A and B (Figure
18(a)), the estimation of the scene’s parameters d̂x and d̂y are both simultaneously disrupted by
the new wall. In the same conditions but using the 4-electrode sensor (Figure 18(b)), only one of
the estimated parameters d̂x or d̂y is disrupted. This result shows that for the 2 and 4-electrode
sensors, the closed feedback control loop is robust to the variations of the wall’s position.
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Figure 17: Turning a corner with removable wall (V‖ = 0.04m/s and dd = 15cm). The blue line is
the trajectory without the wall and the dot red line is the trajectory with the wall.
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Figure 18: Estimated and measured states with an additional wall. The line is the error without
the wall and the dot line is the error with the wall.

7.5 Robust test: wall with lump

The aim of this test is to assess the robustness of the law to an un-modeled perturbative object.
For that purpose, we placed a small insulating sphere (with a radius = 0.0325m) in the tank close
to a wall (on the previous sensor’s trajectory). As in the previous case, the local model used by
the filter is that of a corner and the additional sphere is not considered in the model. Figure 19(a)
shows the trajectory of the 2-electrode sensor with the sphere in its path. At the beginning the
sensor is not perturbed by the sphere (which can be considered as a lump on the wall). The sensor
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moves forward until it reaches the desired distance from the wall, then it follows the wall as in the
previous tests. When the sensor follows the wall on which there is a lump, the measured current
progressively decreases because of the insulating sphere. The estimated parameters d̂x, d̂y decrease
and the sensor moves away. The control law ensures a constant distance between the sensor and
the wall. When the sphere is between the two electrodes of the 2-electrode sensor, it is in its
blind spot, and so moves closer to the wall. Suddenly the sphere reappears in the sensor’s range,
decreasing the current. As a result, the sensor goes quickly away and collides with the sphere.
Figure 19(b) displays the result of the same test but with the 4-electrode sensor. In this case, the
sensor avoids the lump, which has never disappeared from its range. Thus, this test shows that
increasing the measurement surface on the sensor increases the robustness of the navigation.

While the global behaviors of the navigation are satisfactory, due to the closed loop structure
it is in general difficult to separate the effect of the measurements from that of the control law.
However, this experiment shows how the measurements can have a strong influence on the global
performances of the navigation. Let us also note that this test is only a robustness test since
the control law is not designed to cope with the presence of a perturbative object. Consequently,
a correct behavior cannot be obtained for any position of the object. In the general case, the
proposed control law (based on a model of the environment) could be mixed with a reflex con-
troller allowing to avoid obstacles through fast reactive laws which directly feedback the electric
measurements [LBCS12].

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

X (m)

Y
 (

m
)

(a) Additional sphere on the sensor’s trajectory with the
2-electrode probe

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

X (m)

Y
 (

m
)

(b) Additional sphere on the sensor’s trajectory with the
4-electrode probe

Figure 19: Robustness tests (V‖ = 0.04m/s and dd = 15cm). An insulating sphere is suddenly
placed on the path of the sensor.

23



8 Conclusion and perspectives

Using a sensor inspired by electric fish, we have shown experimentally that a 2-electrode probe
is capable of navigating in a tank with flat walls, but when an obstacle (lump) appears on the
sensor’s trajectory, the sensor cannot avoid it. This drawback is essentially due to the lateral range
of the sensor which is limited by the configuration of the electrodes (number and location) and the
presence of blind spots. However, upgrading to a 4-electrodes sensor leads to the disappearance of
these blind spots and enables the sensor to avoid an un-modeled object located on its trajectory.
.

We have shown that small objects can be reconstructed and localized as equivalent spheres in
both simple and complex scenes. These results are encouraging, but leave much future work to
be pursued. For instance, the differences in measured current between a sphere and a cube are
too small to allow the Kalman filter to distinguish between them. Another way to improve the
results presented here concerns the used of the richness of the sensor measurements. With the
current sensor design the reconstruction of a sphere (or a cube) suffers from intrinsic ambiguity
due to the symmetry of the sensor. For instance, two identical objects located symmetrically
on both side of the sensor will generate the same measurements. This scenario is illustrated on
Figure 20(b), where the estimated state of the scene is initialized to a symmetric position so
leading to a reconstructed sphere symmetric to the real sphere with respect to the sensor axis.
In order to disambiguate this kind of situation, we developed a sensor in which the electrodes
are separated into two lateral (left and right) measurement sub-electrodes [BBG08, BGJ+12].
Among its advantages, this "binocular" sensor allows for the identification of the electric nature
(insulating or conducting) of the material used for the objects, thus releasing us from the need for
a priori knowledge of γ and γs. The implementation of these models in the unscented Kalman
filters is now in progress.

This article has presented our current approach to the reconstruction and navigation problems.
As a further step we will have to include this filter in a global control feedback loop which will
allow a real underwater robot to navigate in a complex scene. Towards this goal we have recently
proposed another solution to the navigation problem. Based on sensor based control laws, this
alternative reactive approach requires no model of the scene and considers the navigation problem
as a low level reflex control problem [BLCS12].
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Figure 20: Reconstruction of a symmetric sphere in a simple scene.
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Finally, beyond these first results, many things remain to be done before equipping an op-
erational underwater vehicle with electric sense. In this perspective, the Angels project [Ang09]
has developed small underwater robots (modules) capable of navigating in swarm (see Figure
21). Recently, we have implemented the electric sense on these robots. As expected the range of
electric sense is about the length of the modules. Remarkably, first experiments in salty water
show that the same range can be obtained in sea water with slight adaptation of the electronic
measurements [SJB+11]. Currently, we are implementing reactive controllers [BLCS12, LBCS12]
for obstacle avoidance on our modules. In the future, we will apply the control laws and scene
reconstruction techniques described above to perform autonomous mapping of an unknown envi-
ronment.

Figure 21: The ANGELS module (left CAD, right real robot), designed by the CRIM Lab of
Scuola Superiore Sant’Anna. The small hemispherical electrodes should be noted. The module is
axially propelled (V‖) by two top and down propellers. One lateral propeller crosses laterally the
body and ensures the steering (Ω⊥).
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