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be static (or divergence) if the critical eigenvalue is zero,

while it is called dynamic (or Hopf) if it has a non zero

imaginary part. Simple bifurcations are structurally sta

ble in families of one parameter systems (i.e. have the

same properties of sufficiently close systems or, in other

passive contributions, provided the discretization proc

ess performed is sufficiently refined. Direct applications

of the MSM to continuous systems will constitute the

object of forthcoming papers [17].

considered, of state variables x 2 R , depending on a set

l 2 RM of control parameters. Let
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words, are robust under small perturbations [1]). A mul

tiple bifurcation manifests itself when a cluster of eigen

values is simultaneously critical. It is structurally stable

in families of multi parameter systems. The objective

of the bifurcation analysis is to study the system dynam

ics around the bifurcation point in the parameter space.

The most popular method used to investigate bifur

cations is the center manifold method (CMM) [1,2]. This

consists (a) in finding the manifold of the state space to

which the dynamics asymptotically tend, and (b) in

reducing the multi (or even infinite ) dimensional sys

tem to an equivalent low dimensional system, which de

scribes the essential dynamics that develop on the

manifold. In recent years the authors have developed

an alternative approach, based on the multiple scale

method (MSM) [3], which furnishes the reduced equation

of the motion without describing the center manifold in

advance [4 7]. The main results of the analysis are re

sumed in a review paper [8].

Attention is here focused on multiple Hopf bifurca

tions. In [9], nonresonant double Hopf bifurcations (which

occur when the imaginary parts of the critical eigen

values are in an irrational ratio) were studied using the

CMM. More recently, the CMM has been employed

to analyze a vibro impact system that exhibits the same

type of double bifurcation [10]. In [4] nonresonant dou

ble Hopf bifurcations are studied by the MSM. Succes

sively, the MSM is applied in [11] to analyze simple

Hopf bifurcations occurring in delay systems and in

[12] to study nonresonant double Hopf bifurcations,

where an automatic procedure to analyze the critical sce

nario is developed. In [5,13,14] resonant double Hopf

bifurcations of types 1:2 and 1:3 were analyzed using

the MSM. The more difficult case of 1:1 resonance, in

which the two couples of imaginary eigenvalues coa

lesce, was addressed in [15], by applying the CMM,

and in [22] by the MSM.

In this paper an algorithm based on the MSM is

implemented to study 1:1 resonant m Hopf bifurcations,

in which m imaginary eigenvalues coalesce at the critical

point, with m being arbitrary. The method is then spe

cialized to the case in which m 2 and a computation

ally oriented version is furnished. The algorithm

applies to finite dimensional discrete systems. Therefore,

if the system under study is infinite dimensional continu

ous) it must be discretized in advance, through a finite

element or Galerkin approach, before the procedure is

applied. Other reduction methods, such as those de

scribed in [18], which account for the passive (i.e. non

critical modes), are not strictly necessary if a numerical

approach is adopted, since the MSM itself selects the
2. Problem position

An N dimensional, autonomous, dynamical system is
N

_x ¼ Fðx; lÞ ð1Þ

be the equation of motion governing the free evolution

of the system. It is assumed that Eq. (1) admits the triv

ial equilibrium path x 0, "l, i.e. it has previously been

reduced by a suitable change of variable to the so called

local form. It is further admitted that (x,l) (0,0) is a

bifurcation point O, at which the Jacobian matrix

F0
x :¼ Fxð0; 0Þ admits a couple of eigenvalues k0 ±ix

having algebraic multiplicity m > 1, the remaining eigen

values being all stable. The codimension of the manifold

in the parameter space on which such a bifurcation oc

curs (here referred to as the linear codimension of the

bifurcation [8]) is equal to M :¼ 2m 1, since the van

ishing of the real part of the eigenvalues requires that

m conditions be satisfied, while the coalescence of their

imaginary parts entails m 1 additional conditions. In

order to render the bifurcation structurally stable, an

M parameter family of dynamical systems (Eq. (1)) is

therefore considered, in which the critical system natu

rally appears at point O.

Except for special cases, of higher codimension, only

one critical eigenvector u exists associated with k0, so
that the matrix F0

x has an incomplete set of eigenvectors

(and for this reason is often called a defective or nilpotent

matrix). It is well known from algebra that a chain of m

generalized (right) eigenvectors can be built up to com

plete the base, by recursively solving the equations:

ðF0
x k0IÞuk ¼ uk�1 k ¼ 2; 3; . . . ;m ð2Þ

where u1 � u is the proper right eigenvector. A complete

base of left generalized eigenvectors can also be found

by recursively solving the equations:

ðF0
x k0IÞHvj�1 ¼ vj j ¼ m; m 1; . . . ; 2 ð3Þ

where H denotes the transposed conjugate and vm is the

(unique) proper left eigenvector. The left and right

eigenvectors satisfy the orthonormalization properties

vHj uk ¼ djk. This means that all the eigenvectors uk of

the chain, except for the higher order eigenvector um, be

long to the range of the operator F0
x k0I. This circum

stance differs from that occurring in the non defective

case (m 1) for which vH1 u1 6¼ 0.

The aim of the analysis is to investigate the dynamics

of the nonlinear system around the bifurcation point O.



3. Multiple-Hopf bifurcation analysis

The multiscale perturbation method [3] is applied to

analyze defective codimension M Hopf bifurcations.

The method calls for the following steps, which will be

in [7] to analyze multiple zero bifurcations of any codi

mension. Nevertheless, it is easy to check that, although

that algorithm also works for defective multiple Hopf

bifurcations, it is not efficient, since it entails trivial steps

in which several quantities turn out to be identically
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described in detail ahead: (a) expand Eq. (1) in a

Mc Laurin series of (x,l), namely 3

_x ¼ F0
xxþ

1

2
F0
xxx

2 þ F0
xlxl þ 1

6
F0
xxxx

3 þ 1

2
F0
xxlx

2l

þ 1

2
F0
xllxl

2 þ 	 	 	 ð4Þ

where an index denotes differentiation of the vector F

with respect to x or l; (b) expand the state vector x in

a suitable series of a perturbation parameter e; then scale

the parameter vector l by some suitable power of e, i.e.
l ¼ eal̂; then introduce several independent time scales

tk ¼ ebk t for some bk�s; (c) build up the perturbation

equations by separately equating the terms of the same

power of e to zero in Eq. (4); (d) solve these equations

in sequence and enforce solvability (Freedholm) condi

tions at each step, obtaining amplitude modulation equa

tions on different time scales tk; (e) recombine the

amplitude equations by returning to the true time t

(reconstitution procedure [19,20]), in order to draw the

so called bifurcation equation ; (f) solve (often numeri

cally) this nonlinear equation to determine the nature

of the solution in different regions of the parameter space

around point O (i.e. build up the stability diagram).

All the steps, except for (b), are the same as those

performed in standard analysis of non defective bifurca

tions. However, while in that analysis integer powers of e
are employed, here fractional powers must be used both

in the state variable expansions and in the slow time

scales. Indeed, if one attempts to address the problem

by the standard method, the procedure will fail, due to

the fact that vHmu1 ¼ 0 [8]. This circumstance is similar

to that which occurs in sensitivity analysis of defective

eigenvalues [21]. The order of the powers to be used,

however, is not known a priori, and this represents the

major difficulty in formulating the algorithm. By exploit

ing the analogy with the sensitivity of non singular pert

urbations, powers of order e1/m were successfully applied

3 Here the notation Guv, Guvw, . . . , is used to denote

multilinear forms of degree 2, 3,. . ., i.e.:

Guv
XN XN

g u u ; Guvw
XN XN XN

g u u u

i 1 j 1

ij i j
i 1 j 1 k 1

ijk i j k

Therefore:

F0
xxx

2
XN
i 1

XN
j 1

oF

oxioxj

�����
0

xixj

and similar expressions hold in Eq. (4).
zero. Moreover, such steps depend on the algebraic mul

tiplicity m of the critical eigenvalue being even or odd.

An alternative efficient procedure is developed here,

again suggested by the sensitivity of defective eigen

values to singular perturbations. In Appendix A the

analogy is detailed, and the motivation for the choice

of the fractional powers to be used is given. The two

cases, in which m is either even or odd, are dealt with

separately.

3.1. Even m case

The following series expansion for x and scaling for l
are adopted:

l ¼ e2l̂

x ¼ eðx0 þ e2=mx2 þ e4=mx4 þ 	 	 	Þ ð5Þ

i.e. odd powers of e1/m are omitted in the expansion of x/

e. The state variables x are assumed to depend on several

time scales ti, for which xk xk(ti). By again omitting

odd terms and letting

t0 ¼ t; t2 ¼ e2=mt; t4 ¼ e4=mt; . . . ð6Þ

the chain rule furnishes

d=dt ¼ d0 þ e2=md2 þ e4=md4 þ 	 	 	 ð7Þ

where dk :¼ o/otk (k 2,4, . . .). Substitution of Eqs. (5)

and (7) in Eqs. (4), leads to the following perturbation

equations, written up to the e3+2/m order

e : ðd0 F0
xÞx0 ¼ 0

e1þ2=m : ðd0 F0
xÞx2 ¼ d2x0

e1þ4=m : ðd0 F0
xÞx4 ¼ d2x2 d4x0

. . . . . . . . . . . . . . . . . . . . .

e2 : ðd0 F0
xÞxm ¼ d2xm�2 d4xm�4

þ 	 	 	 þ 1=2F0
xxx

2
0

e2þ2=m : ðd0 F0
xÞxmþ2 ¼ d2xm d4xm�2

þ 	 	 	 þ F0
xxx0x2

. . . . . . . . . . . . . . . . . . . . .

e3 : ðd0 F0
xÞx2m ¼ d2x2m�2 d4x2m�4

þ 	 	 	 þ F0
xxðx0xm þ x2xm�2 þ 	 	 	Þ

þ 1=6F0
xxxx

3
0 þ F0

xlx0l̂

e3þ2=m : ðd0 F0
xÞx2mþ2 ¼ d2x2m d4x2m�2 þ 	 	 	

þ F0
xxðx0xmþ2 þ x2xm þ 	 	 	Þ

þ 1=2F0
xxxx

2
0x2 þ F0

xlx2l̂

ð8Þ



By solving these equations in sequence and using Eqs.

(2) with k0 ix, the following solutions are drawn:

e : x0 ¼ Aðt1; t2; . . .Þu1eixt0

e1þ2=m : x2 ¼ d2Au2eixt0

ð9Þ

eA ! A; e2l̂ ! l, and e2/md/dt! d/dt. In Eq. (12)

dm A/dtm is a term of the e3 order, while the right hand

member contains (separated by semicolons) all the terms

associated with frequency x of the order e3, e3+2/m, . . . ,
up to the highest order accounted for in the analysis For

x ¼ eðx0 þ e x1 þ e x2 þ 	 	 	Þ ð14Þ
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e1þ4=m : x4 ¼ ðd2
2Au3 þ d4Au2Þeixt0

. . . . . . . . . . . . . . . . . . . . .

in which A is a complex amplitude depending in an un

known way on the slow time scales. In Eqs. (9) the

homogeneous solutions are neglected at higher levels

since they repeat the lowest order solution. If they were

accounted for, additional arbitrary amplitudes would

appear that, however, could be reabsorbed in the unique

unknown A at the end of the procedure. It should be

noted that Eqs. (8) can be solved up to the e3 order with
out requiring solvability, since all the resonant terms,

being linear combinations of the first m 1 generalized

eigenvectors, belong to the range of the operator. This is

a peculiar aspect of defective systems, not occurring in

generic systems, as discussed in detail in [8,21]. In partic

ular, x2,x4, . . . ,xm�2 only contain the simple harmonic

x, while xm,xm+2, . . . ,x2m�2 also contain the double har

monic 2x, in addition to the constant term generated by

the quadratic nonlinearities. When the e3 order equation
is reached, the resonant terms finally appear, produced

by the cubic nonlinearities F0
xxxx

3
0, the quadratic nonline

arities F0
xxx0xm, and the parameter dependent term

F0
xlx0l̂. These resonant terms, which are proportional

to A2A and Al̂, all enter the first solvability condition,

which therefore has the following structure:

e3 : dm
2 A ¼ LmðAl̂;A2AÞ ð10Þ

whereL is an algebraic linear operator. This is a nonlin

ear differential equation of the mth order governing the

amplitude evolution on the t2 scale (amplitude modula

tion equation). In order to account for slower modula

tions, one has to proceed to the higher orders. There,

solvability conditions furnish amplitude equations of

the first order in the derivative of the highest scales, of

the type:

e3þ2=m : md4d
m�1
2 A ¼ Lmþ1ðl̂d2A;AAd2A;A

2d2AÞ
. . . . . . . . . . . . . . . . . . . . . ð11Þ

By observing that, by virtue of Eq. (7), dmA=dtm ¼
ðe2=md2þ e4=md4þ . . .ÞmA¼ eðe2dm

2 þ e2þ2=mmd4d
m�1
2 þ			ÞA,

all the solvability conditions can be combined to

obtain an unique differential equation of order m,

namely

dmA
dtm

¼ LðlA;A2A; l _A;AA _A;A2 _A; . . .Þ ð12Þ

to be referred to as the reconstituted modulation equation

or, more simply, as the bifurcation equation. In it, the

parameter e has been reabsorbed according to the rules
example, if m 4, the bifurcation equation at the e4

order reads:

A
...

¼ LðlA;A2A; l _A;AA _A;A2 _A; l€A; _A
2
A;A _A _AÞ ð13Þ

3.2. Odd m case

If m is odd, a complete series is adopted for x, namely

1=m 2=m
while the same ordering (Eq. (52)) for l and the same

(even) time scales (Eq. (6)) are maintained, as in the

even m case. The following, more involved, perturbation

equations are drawn

e : ðd0 F0
xÞx0 ¼ 0

e1þ1=m : ðd0 F0
xÞx1 ¼ 0

e1þ2=m : ðd0 F0
xÞx2 ¼ d2x0

e1þ3=m : ðd0 F0
xÞx3 ¼ d2x1

e1þ4=m : ðd0 F0
xÞx4 ¼ d2x2 d4x0

. . . . . . . . . . . . . . . . . . . . .

e2 : ðd0 F0
xÞxm ¼ d2xm�2 d4xm�4

þ 	 	 	 þ 1=2F0
xxx

2
0

. . . . . . . . . . . . . . . . . . . . . :

e3 : ðd0 F0
xÞx2m ¼ d2x2m�2 d4x2m�4

þ 	 	 	 þ F0
xxðx0xm þ x1xm�1 þ 	 	 	Þ

þ 1=6F0
xxxx

3
0 þ F0

xlx0l̂

e3þ1=m : ðd0 F0
xÞx2mþ1 ¼ d2x2m�1 d4x2m�3

þ 	 	 	 þ F0
xxðx0xmþ1 þ x1xm þ 	 	 	Þ

þ 1=2F0
xxxx

2
0x1 þ F0

xlx1l̂

e3þ2=m : ðd0 F0
xÞx2mþ2 ¼ d2x2m d4x2m�2

þ 	 	 	 þ F0
xxðx0xmþ2 þ x1xmþ1 þ 	 	 	Þ

þ 1=2F0
xxxx

2
0x2 þ F0

xlx2l̂

þ 1=2F0
xxxx0x

2
1

ð15Þ

Since x0 is still given by Eq. (91), x2,x4, . . . ,x2m�2 re

main unchanged in relation to the previous case (see

Eqs. (9)); in particular they only contain the fundamen

tal harmonic. Moreover, since x1 0, then x3,

x5, . . . ,xm�2 also vanish, while xm,xm+2, . . . ,x2m+1 are

sums of double and zero harmonics. Therefore the even

terms of the series x0,x2, . . . ,x2m,x2m+2, . . . , are identical
to those of Eqs. (8). When the e3 perturbation equation

is considered, resonant terms appear through the mech

anism illustrated above, leading to a solvability condi



tion identical to Eq. (10). At the subsequent orders no

resonant terms appear in the equations in the odd terms.

Indeed, quadratic nonlinearities involve products xi xj,

in which (i, j) are either even or odd and therefore of

even resultant frequencies; similarly, cubic nonlinearities

d2A
dt2

¼ e3ðd2
2 þ 2ed2d4ÞAþ Oðe5Þ ð19Þ

Eqs. (18) lead to the following bifurcation equation:

d2A dA 2 dA
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involve products xixjxk in which (i, j,k) are either all odd

or two even and one odd and therefore still of even fre

quencies. Solvability is thus required only for the

equations in the even terms x2k, which are still of type

(11). Reconstituted bifurcation equations in the form

(12) are thus obtained, both for even and odd multiplic

ity m.

4. Double Hopf-bifurcation

The multiple scale procedure developed in the previ
ous section is specialized to a system exhibiting a double

imaginary eigenvalue. By assuming m 2 in the series
expansion (5)2, this contains, as a particular case, integer

powers of e only. The relevant perturbation equations

(8) become

e : ðd0 F0
xÞx0 ¼ 0

e2 : ðd0 F0
xÞx2 ¼ d2x0 þ 1=2F0

xxx
2
0

e3 : ðd0 F0
xÞx4 ¼ d2x2 d4x0 þ F0

xlx0l̂

þ F0
xxx0x2 þ 1=6F0

xxxx
3
0

e4 : ðd0 F0
xÞx6 ¼ d2x4 d4x2 d6x0

þ F0
xlx2l̂ þ F0

xxðx0x4 þ x22Þ
þ F0

xxlx
2
0l̂ þ 1=2F0

xxxx
2
0x2

ð16Þ

By following the steps previously illustrated, the follow

ing solutions are found:

x0 ¼ Aðt1; t2; . . .Þu1eixt0 þ c:c:

x2 ¼ d2Au2eixt0 þ 1=2A2z11e
i2xt0 þ 1=2AAz11 þ c:c:

x4 ¼ ðd4Au2 þ A2Az111 þ AZ1ll̂Þeix0 t0

þ Ad2Az12ei2x0t0

þ A3z111e
i3x0t0 þ Ad2Aþ z12 þ c:c:

ð17Þ

where x0 is the generating solution and zij 2 ZN,

Z1l 2 ZN · ZM are solutions of linear algebraic equa

tions reported in Appendix B.

Similarly, the following solvability conditions are

found at the various orders:

e3 : d2
2A ¼ C1lblAþ C111A

2A

e4 : 2d2d4A ¼ C2lbld2Aþ C112AAd2Aþ C112A
2d2A

ð18Þ

where the coefficients Cijk 2 Z and Cjl 2 Z · ZM are also

defined in Appendix B. By coming back to the true time

t, Eqs. (18) are combined in a single equation. By taking

into account that:
dt2
¼ C1llAþ C2ll

dt
þ C111A Aþ C112AA

dt

þ C112A
2 dA
dt

ð20Þ

where the parameter e has been reabsorbed according

the rules: eA!A, ed/dt!d/dt, e2bl ! l. Eq. (20) gov
erns the system�s asymptotic dynamics (i.e. for a suffi

ciently large time, for which the contribution of stable

eigenvalues has been extinguished). It is equivalent to

two first order equations in the two complex variables

ðA1;A2Þ :¼ ðA; _AÞ.
To express the bifurcation equations in real form, it is

convenient to adopt a mixed (polar and Cartesian) form

for the complex amplitudes [22]

A1 ¼
1

2
aeih; A2 ¼

1

2
ðuþ ivÞeih ð21Þ

Substituting Eqs. (21) into (20) and separating real and

imaginary parts yields:

_a ¼ u

_u ¼ gða; u; v; _h; lÞ
_v ¼ hða; u; v; _h; lÞ
a _h ¼ v

8>>><
>>>: ð22Þ

where g and h are cubic polynomials in the variables

(a,u,v). From Eq. (224), _h can be expressed as a function

of a and v and then substituted in (222) and (223). It fol

lows that the amplitude modulation equations (221,2,3)

(equal in number to the linear codimension of the prob

lem M 3) are uncoupled from the phase modulation _h.
After the bifurcation equations (22) have been

numerically integrated for a given set of parameters

and given initial conditions, the state is obtained as

x ex0 + e2x2 + O(e3). By accounting for Eqs. (171,2)

and remembering (Eqs. (21)) that A A1, d1A ¼
_A ¼ A2, the state reads

x ¼ 1

2
½au1 þ ðuþ ivÞu2�eiðxtþhÞ þ 1

4
a2ðz11e2iþðxtþhÞ þ z11Þ

þ c:c:þ higher order terms ð23Þ

The trivial solution a u v 0 satisfies the bifurcation

equations (22) for any l, according to the existence of

the trivial equilibrium path x 0"l. Steady state non

trivial solutions are obtained by vanishing the right hand

member of Eqs. (221,2,3). These solutions correspond to

periodic motions (a const) of the original system, of

nonlinear frequency X :¼ x + v/a. Their stability is gov

erned by the variational equations of Eq. (22); in con

trast, stability of the trivial solution calls for use of the

variation of Eq. (20) since, Eq. (22)4 becomes singular

when a 0. Finally, periodic solutions of Eqs. (221,2,3)



correspond to quasi periodic motions of the original sys

tem. Their stability is governed by the Floquet charac

teristic exponents.

5. An automatic procedure for evaluating the bifurcation

(b) To solve the nonsingular Eq. (B.11) the known terms

of this equation are built up, as

F0
xxu

2
1 ¼ fgðej; u1; u1Þg ð27Þ

where the brackets collect the vector coefficients for j

The structure of Fig. 1a, is analyzed. It consists of
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equation

In order to show the effectiveness of the proposed

method, we illustrate an algorithm which can be used

to evaluate numerically the coefficients of the bifurcation

equation (20) for a class of systems. The method does not

require repetition of the whole procedure for the specific

system under study, but only evaluation of the numeri

cal coefficients, which is achieved by performing ele

mentary operations. In this respect the method is

user oriented, in contrast to other methods, such as,

for example, the center manifold method, which have

not yet been applied to furnish ready to use formulas.

A broad class of N dimensional mechanical systems

is considered, having equations:

_x ¼ ðAþ BlÞxþ cðxÞ ð24Þ

where the matrices A and B are constant, l is the control

parameter vector and the vector c(x) collects quadratic

and cubic nonlinearities. The ith equation (24) therefore

reads:

_xi ¼
X
i

aijxj þ
X
j;k

ljbijkxk þ
1

2

X
j;k

cijkxjxk

þ 1

6

X
j;k;l

cijklxjxkxl þ Oðx2lÞ ð25Þ

where coefficients c�s are symmetrical with respect to

indices j,k,l. For this class F0
x ¼ A; F0

xl ¼ B. The follow
ing functions are defined:

f ðv; u; lÞ :¼ vTF0
xlul ¼

X
i;j;k

bijkviujlk

gðv; u;wÞ :¼ vTF0
xxuw ¼

X
i;j;k

cijkviujwk

hðv; u;w; yÞ :¼ vTF0
xxxuwy ¼

X
i;j;k;l

cijklviujwkyl

ð26Þ

The above functions associate a real number with the

dummy vectors v, u, l, w and y. By appropriately choos

ing the arguments, the functions (26) furnish all the

quantities necessary to evaluate the coefficients appear

ing in the bifurcation equation (20). In particular, by

taking v equal to the canonical vector ej {dij} (i,j

1,2, . . . ,N) they also make it possible to build up the vec

tor equations in Appendix B.

The following step by step algorithm is applied.

(a) Proper and generalized right eigenvectors are evalu

ated at the bifurcation point l 0 by solving

the equations: (A k0I)u1 0, (A k0I)u2 u1,

(A k0I)
Tv2 0, (A k0I)

Tv1 v2 and normalizing

the solutions according to vTj uk ¼ djk .
running from 1 to N. Then z11 is evaluated by solv

ing the Equation (B.11).

(c) By using arguments similar to step (b), all the non

singular equations (B.12-5) are solved and

ðz11; z11; z12; z111Þ are sequentially evaluated.

(d) To solve the singular Eq. (B.16), the known terms of

this equation are built up, as

F0
xxz11u1 ¼ fgðej; z11; u1Þg;
F0
xxz11u1 ¼ fgðej; z11; u1Þg
F0
xxz11u1 ¼ fgðej; z11; u1Þg;
F0
xxxu

2
1u1 ¼ fhðej; u1; u1; u1Þg

ð28Þ

ðvH2 F0
xxz11u1Þu2 ¼ gðv2; z11; u1Þu2

ðvH2 F0
xxz11u1Þu2 ¼ gðv2; z11; u1Þu2

ðvH2 F0
xxz11u1Þu2 ¼ gðv2; z11; u1Þu2

ðvH2 F0
xxxu

2
1u1Þu2 ¼ hðv2; u1; u1; u1Þu2

ð29Þ

Then z111 is evaluated by solving equation (B.16) un

der the constraint condition vT1 z111 ¼ 0.

(e) To solve Eq. (B.17), l is first set equal to the canon

ical vector ek. The known terms then read

F0
xlu1ek ¼ ff ðej; u1; ekÞg; ðvT2F0

xlu1ekÞu2
¼ f ðv2; u1; ekÞu2 ð30Þ

By solving the relevant equation, the k th column of

the matrix Z1l is evaluated, provided it is orthogonal

to v1, since the operator is singular. By letting k run

from 1 to M, the whole matrix Z1l is obtained.

(f) Coefficients C in Eqs. (20) are finally evaluated by

Eqs. (B.2); e.g.

C2l ¼ ff ðv2; u2; ekÞ vT2Z1lekg ð31Þ

for k 1,2, . . . ,M.

It should be noted, that the procedure illustrated

makes it possible to obtain a bifurcation equation para

metric in l, so that the procedure does not have to be

repeated for any choice of l. Once the algorithm has

been implemented, only the coefficients aij, bijk, cijk and

cijkl in Eqs. (25) must be given for any specific system.

6. Sample system

6.1. Model and bifurcation equation
two vertical rigid bars of length l, constrained at the



ground by two different linear visco elastic hinges joined

at their ends by a linear visco elastic control device,

which can have either positive or negative stiffness.

The structure is loaded by a fluid flow of uniform veloc

ity U orthogonal to the plane of the motion. By assum

with respect to the attack angle. Eqs. (32) are nondimen

sionalized by introducing the following quantities:

s ¼ x1t; x2
1 ¼

3kt1
ml3

; ne ¼
3ce

2mx1l

2tk1tk

(a) (b)

Fig. 1. (a) System of two rigid bars under aerodynamic

excitation and (b) Lagrangian parameters.
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ing the rotations qi (i 1,2) as Lagrangian parameters

(Fig. 1b) and applying the quasi static theory to express

the aerodynamic forces [23], the dimensional equations

of motion of the system in Fig. 1a, expanded up to the

third order, read

1

3
l3m€q1 þ ct þ cel

2 þ 1

6
bðcd þ c0lÞl3Uq

� 	
_q1

cel
2 _q2 þ ðkt1 þ kel

2Þq1 kel
2q2

1

2
bq

1

8
ð2c0d þ cl þ c00l Þl4 _q21

�
1

30U
ð3cd þ 3c00d þ c0l þ c00l Þl5 _q31

	
2

3
kel

2q31 þ
1

2
kel

2q21q2 þ
1

6
kel

2q32

cel
2 q21 _q1

1

2
q21 _q2

1

2
q22 _q2


 �
¼ 0

1

3
l3m€q2 cel

2 _q1 þ ct þ cel
2 þ 1

6
bðcd þ c0lÞl3Uq

� 	
_q2

kel
2q1 þ ðkt2 þ kel

2Þq2
1

2
bq

1

8
ð2c0d þ cl þ c00l Þ

�

�l4 _q22
1

30U
ð3cd þ 3c00d þ c0l þ c00l Þl5 _q32

	
2

3
kel

2q32 þ
1

2
kel

2q1q
2
2 þ

1

6
kel

2q31

cel
2 q22 _q2

1

2
q21 _q1

1

2
_q1q

2
2


 �
¼ 0

ð32Þ

In Eqs. (32) m is the mass per unit of length of the bars,

kt1 and kt2 are the torsional stiffnesses, ke is the stiffness

of the extensional device, ce and ct are the damping coef

ficients of the extensional and torsional devices, q is the

air density, b is a characteristic length of the cross sec

tion of the bars, cd and cl are the non dimensional drag

and lift coefficients and the apices denote differentiation
nt ¼
3ct

2mx1l
3
; d1 ¼

1

2
ðcd þ c0lÞ

d2 ¼
3

16

qbl
m1

ðc00l þ cl þ 2c0dÞ;

d3 ¼
1

20

qbl
m1


 �2

ðc00l þ c0l þ 3c00d þ 3cdÞ

l ¼ qb
mx1

U ; m ¼ ke
mx2

1l
; g ¼ kt1

kt2

ð33Þ

The parameters l (nondimensional wind velocity), m
(nondimensional stiffness of the extensional spring)

and g (torsional stiffness ratio) are assumed as control

parameters, i.e. l :¼ {l,m,g}. The parameter l will be re

ferred to as distinguished parameter, since it represents

the intensity of the external load; the remaining two, m
and g, will be referred to as splitting parameters, since

they are responsible for the tuning of the critical eigen

values. An eigenvalue analysis of the (linearized) equa

tions of motion shows that at l l0 a 1:1 resonant

double Hopf bifurcation occurs, with

l0 ¼
2ðnt þ neÞ

d1

; m0 ¼ 0 g0 ¼ 1þ 4ne þ 4n2
e ð34Þ

By defining incremental parameters bl :¼ l l0 and

omitting the hat, the equations of motion are put in

the state form (24), where the dot now denotes differen

tiation with respect to the dimensionless temporal scale,

s, x ¼ ðx1; x2; x3; x4ÞT ¼ ðq1; _q1; q2; _q2Þ
T
is the state vector

ð35Þ

and

ð36Þ

are the Jacobian matrix and its first variation evaluated

at the bifurcation point O, respectively; finally,

c (0,c1(x), 0,c2(x))
T is the nonlinearity vector evalu

ated at l 0, where

c1 ¼ d2x22 þ
d3

l0

x32 þ 2x21x2ne x21x4ne x23x4ne

c2 ¼ d2x24 þ
d3

l0

x34 þ 2x23x4ne x21x2ne x2x23ne

ð37Þ

The following values of the nondimensional parame

ters are taken: ne nt 0.05; d1 1.345, d2 0,



d3 1.251 (corresponding to a square cross section of

the bars). Consequently, the critical parameters are

l0 0.149, m0 0, g0 1.210 and the associate double

eigenvalue is k0 ±i1.049. The non vanishing coeffi

cients in the equations of motion (25) assume the follow

6.2. Numerical results

The mechanical behavior of the system around the

bifurcation point is investigated. The three dimensional

linear stability diagram of the trivial solution is plotted
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ing values: a12 1, a21 1, a24 0.1, a34 1, a42 0.1,

a43 1.21; b221 0.5, b212 1.35, b223 3.0, b421 3,

b423 3, b433 1, b414 1.35; c2222 8.41,

c2112 1.88, c2112 0.1, c2114 0.05, c2334 0.05,

c4444 1.88, c4334 0.1, c4112 0.05, c4233 0.05.

Proper and generalized eigenvectors are found to be

u1 ¼

0:499i

0:524

0:476

0:499i

8>>><
>>>:

9>>>=
>>>;; u2 ¼

1:0

0:499i

0:454i

15:238

8>>><
>>>:

9>>>=
>>>;;

v1 ¼

1:0

0:062þ 1:049i

1:423 1:154i

1:0þ 1:291i

8>>><
>>>:

9>>>=
>>>;; v2 ¼

0:062

0:065i

0:071i

0:062

8>>><
>>>:

9>>>=
>>>; ð38Þ

Since d2 0, quadratic terms in Eqs. (37) are identically

zero (i.e. Fxx
0 0), and therefore the system is symmet

ric. This entails the vanishing of some terms in Eqs.

(B.1). By solving these equations the following solutions

are found:

z11 ¼ 0; z12 ¼ 0; z11 ¼ 0; z12 ¼ 0

z111 ¼

0:133

0:418i

0:127i

0:399

8>><
>>:

9>>=
>>;;

z111 ¼

32:757þ 25:849i

27:112þ 34:370i

24:722þ 0:825i

0:859 25:929i

8>><
>>:

9>>=
>>;

Z1l ¼

7:197 5:709i 1:423 26:133i

5:988 7:553i 27:418 1:677i

5:443 0:168i 10:681þ 11:218i

0:175þ 5:709i 11:849þ 11:199i

2
6664

0:125 0:171i

0:150þ 0:131i

0:003þ 0:119i

0:125þ 0:010i

3
7775

ð39Þ

Finally, the coefficients defined by Eqs. (B.2) are evalu

ated, and bifurcation equation (20) built up

€A ¼ ½ i0:00414l þ ð0:0088 i0:1845Þm
0:0293g�Aþ ½2:1271l þ ð1:8194

þ i2:2094Þm þ i0:0478g� _Aþ ð 0:0023

þ i0:2335ÞA2Aþ ð 19:5833þ i0:0669ÞAA _A

þ ð1:5764þ i0:0110ÞA2 _A ð40Þ
in Fig. 2a (exact surface) and 2b (approximate surface),

obtained from an eigenvalue analysis of the Jacobian

matrix of Eq. (32) or (40), respectively. The surfaces

are the loci of simple Hopf bifurcations; at the crossing

of two branches non resonant double Hopf bifurcations

occur, while at the singular points O and W, the two

bifurcations are in 1:1 resonant condition. The approxi

mate locus is tangent to the exact locus at point O, as

shown in Fig. 2c. However, it cannot describe either

the loop or the coexisting bifurcation point W. The

investigation must therefore be confined to a small re

gion around O.

By sectioning the 3D plots of Fig. 2a and b with

planes m const and g const (i.e. by fixing one of the

two splitting parameters and letting the second vary to

gether with the distinguished parameter l), the plots in

Fig. 3 are obtained, where exact and approximate

boundaries are compared. Two Hopf curves H1 and

H2 are illustrated, from which periodic solutions in

the state variables x (i.e. steady state amplitude solu

tions a const) bifurcate. When m const (Fig. 3a c),

the accordance between the two sets is good for g > 0;

in contrast, due to the existence of a vertical asymptote,

no approximate curves exist when g < 0. In contrast,

when g const > 0 (Fig. 3d f), the two sets have the

same qualitative aspect. In particular, at g 0 (Fig.

3d), curves H1 and H2 are almost tangent at the origin.

Due to the fast variation of the curvature of the exact

boundaries, there exists a region (shaded in the figure)

in which the number of the bifurcation points encoun

tered along a path m const is different in the two cases

(namely, four for the exact, two for the approximate).

However, when g exceeds the value g g* 0.0026

(Fig. 3e) where H2 has a vertical tangent at O, this dis

crepancy disappears (see Fig. 3f).

The amplitude a of the periodic solutions bifurcating

from the H1 and H2 boundaries of Fig. 3a,b,d,e are

found as equilibrium points of the bifurcation equation

(40); they are illustrated in the following (qualitative)

Figs. 4 7, respectively (bifurcation diagrams). Fig. 4

refers to m 0. The approximate boundaries in Fig. 4a

limit four regions Ri in which i 0,1,2,3 periodic solu

tions exist (in addition to the trivial one). As shown in

Fig. 4b, two branches bifurcate from the positive g
half axis, each dying on a distinct l half axis. Due to

the fold exhibited, by the two surfaces close to the l axis

(see the sections l const in Fig. 4c), more periodic

solutions than surfaces coexist in the shaded region of

Fig. 4a. This also appears from the cross sections

g const of Fig. 4d, where the dashed curves refer to

g 0 and are produced by the folds.



When m 5 0 (Fig. 5) the coalescence between H1 and

H2 is destroyed. Again, the folds of the surfaces deter

mine coexisting solutions in the shaded regions of Fig.

5a. The whole scenario appears as a perturbation of that

of Fig. 4, produced by the splitting parameter m.

discussed for Fig. 3d. Accordingly, this upper periodic

solution exists only in the range 0 < g < g*.
When g > g* the bifurcation diagram changes as

illustrated in Fig. 7. The main difference in comparison

with Fig. 6 is represented by the disappearance of the

(a) (b)

(c)

Fig. 2. Linear stability diagram of the trivial solution: (a) exact solution; (b) approximate solution and (c) section at m = 0; continuous

line: approximate solution and dashed line: exact solution.
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Fig. 3. Sections of the linear stability diagram: (a) (c) m = const; (d) (f) g = const; continuous line: approximate solutions, dashed line:

exact solutions.
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Let us now examine the bifurcation diagram for g 0

(Fig. 6). The boundaries H1 and H2 are shown in

Fig. 6a. From them, the periodic solutions sketched

in Fig. 6b, bifurcate. They coexist in the shaded region

of Fig. 6a, as also appears from the sections of Fig.

6c. In addition to the two solutions, a third periodic

solution is found, represented by the upper surface in

Fig. 6b. This latter surface does not bifurcate from

any curve of the a 0 plane. However, as will become

evident below, this is an erroneous result due to bad

approximation of the exact boundaries, as already
upper periodic solution. Other aspects remain qualita

tively unmodified.

To describe completely the scenario around the bifur

cation point, quasi periodic (more precisely bi periodic)

solutions are sought. These bifurcate from the periodic

solutions through Neimark bifurcations (also called sec

ondary Hopf bifurcations). In the amplitude representa

tion of the motion furnished by Eqs. (22), quasi periodic

motions (a periodic) originate from periodic motions

(a const) through Hopf bifurcations. A Jacobian eigen

value analysis is therefore performed along the branches



a const by varying one control parameter, and Hopf

bifurcations are detected. By following a numerical pro

cedure (implemented in the program AUTO�), the

curves of min max modulating amplitude are then

built up. The results of the analysis are illustrated in

Fig. 8. In the upper part of the figure (Fig. 8a) the

approximate H1 and H2 boundaries of Fig. 3 are dis

played (heavy lines). In addition, Neimark boundaries

N are indicated (thin lines), together with homoclinic

boundaries HOM (dashed lines), where the limit cycles

(a) (b)

(c) (d)

Fig. 4. Bifurcation diagram for m = 0: (a), (c), (d) cross sections and (b) 3D view.

(a) (b)

(c) (d)

Fig. 5. Bifurcation diagram for m = const5 0: (a), (c), (d) cross sections and (b) 3D view.
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for the amplitudes (quasi periodic solutions) disappear

after colliding with a saddle (periodic solution). In each

region the type of attractor is indicated, P for periodic

and Q for quasi periodic motions. In Fig. 8a six paths

(I VI) are marked, along which the bifurcation

diagrams of the lower part of the figure (Fig. 8b) are

(a) (b)

(c) (d)

Fig. 6. Bifurcation diagram for g = 0: (a), (c), (d) cross sections and (b) 3D view.

(a) (b)

(c) (d)

Fig. 7. Bifurcation diagram for g = const > g*: (a), (c), (d) cross sections and (b) 3D view.
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obtained. Here, heavy lines denote stable periodic solu

tions, thin lines unstable periodic solutions, and shaded

regions the values assumed by the amplitude in quasi

periodic motions. Finally, small circles denotes exact

(a)

(b)

Fig. 8. Bifurcation diagrams along different paths: (a) periodic (Hi) solutions, quasi periodic (Ni) solutions, homoclinic boundaries

(HOM ), periodic attractor (P), quasi periodic attractor (Q); (b) amplitudes of periodic solutions (stable heavy lines, unstable thin lines),

quasi periodic solutions (shaded regions), exact solutions (circles).
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numerical results drawn by integration of the equations

of motion (32). Along path I, an unstable periodic mo

tion bifurcates at point A (lying on a Hopf boundary)

from the trivial solution. A second branch of stable peri

odic solutions loses stability at point B (on the Neimark

sents the second order approximation, accounting also

for the generalized eigenvector u2. This, in the case

examined, slightly modifies the length of the ellipsis,

but does not entail any rotations, differently from find

ings of a similar problem dealt within [16]. It should

has been developed to analyze 1:1 resonant m Hopf

bifurcations in autonomous discrete systems. The bifur

Fig. 9. Projection of trajectories onto the configuration plane: (I) first order; (II) second order; (a) periodic motion T1 in Fig. 8b and

(b) quasi periodic motion T2 in Fig. 8b.
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curve) and gives rise to stable quasi periodic motions.

Along path II, at C, where the two Hopf boundaries

coalesce, two distinct paths arise, one stable and the

other unstable. The stable path bifurcates in a quasi

periodic solution at D (on the N curve). However, it

disappears at E (on the HOM curve), after colliding with

the trivial solution. Along path III, a stable and an

unstable periodic motion bifurcate from the trivial

solution at points A and C, respectively. The first one

undergoes a Neimark bifurcation at B, after which the

quasi periodic solution disappears at E as a consequence

of colliding with the trivial solution. Along path IV two

unstable periodic solutions are found originating from

a 0 at points A and B. However, a third upper solution

is found, not bifurcating from any point. The numerical

results, obtained by integration of Eqs. (32), confirmed

the existence of this solution, bifurcating from a 0 at

point J. The approximation is excellent for sufficiently

large l�s, but the perturbation solution is unable to de

scribe this bifurcation. The discrepancy is explained by

the fact, already commented in Fig. 3d, that two bifurca

tion points are lost, due to the bad approximation of the

H boundaries. Along path V, the bifurcated solutions

at A and B are initially unstable. They become stable

at points D (not shown in Fig. 8a) and C, respectively,

where stable quasi periodic motions arise. The latter

match each other and form a closed loop. A similar phe

nomenon is observed along path VI. However, one

path is originally stable, while the other is unstable.

After Neimark bifurcations they change stability, while

quasi periodic solutions merge themselves.

Finally, Fig. 9 represents the projection of some tra

jectories onto the configuration (q1,q2) plane. They were

obtained by using Eqs. (23). Fig. 9a refers to the periodic

motion T1 marked along path III in Fig. 8b. The thin

line represents the first order approximation, depending

only on the proper vector u1, while the heavy line repre
be noted that double harmonics are absent in the sec

ond order solution, due to the symmetry of the system.

In Fig. 9b a quasi periodic motion is illustrated, refer

ring to point T2 marked in Fig. 8b. Both the first and

second order approximations are displayed in the figure.

The trajectories are spirals confined between the amin

and amax amplitudes. Second order terms significantily

affect only the former.

7. Conclusions

An algorithm based on the Multiple Scale Method
cation occurs when, for certain critical values of the con

trol parameters, the Jacobian matrix at an equilibrium

point admits m coincident eigenvalues with zero real

part. Such a bifurcation is structurally stable in a family

of systems depending on M :¼ 2m 1 parameters,

where M is the linear codimension of the bifurcation.

Since the Jacobian matrix is defective, only one proper

eigenvector exists at the critical point, so that the eigen

space must be completed by generalized eigenvectors. By

exploiting a formal analogy with sensitivity analysis of

nilpotent (defective) matrices, a perturbation method

has been developed, that is able to furnish a bifurcation

equation governing the essential dynamics around the

bifurcation. It turns out to be an mth order differential

equation in the complex amplitude of the unique critical

eigenvector. The method calls for the use of fractional

powers expansions of both state variables and time, as

opposed to integer power expansions used for non

defective bifurcations. In order to improve the efficiency

of the method by avoiding trivial steps, even series are

used for time and even o complete series for the state var

iables, depending on whether the multiplicity m of the



critical eigenvalue is even or odd. This procedure is sug

gested by the analogous sensitivity problem when the

perturbation is of singular type (i.e. it belongs to the

range of the operator). This circumstance always occurs

in the Hopf bifurcation problem, since quadratic non

k0 :¼ k(0) is critical. In fact, a nonlinear problem could

never be analogous to a linear one; in contrast, this anal

ogy holds in a perturbation perspective, in which the

nonlinear problem is transformed to become a sequence

of linear problems. Therefore, once x̂ has been expanded
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linearities do not produce resonant terms.

The method has then been specialized for a 1:1 reso

nant double Hopf bifurcation (m 2) and a step by step

algorithm has been described to evaluate the coefficients

of the bifurcation equation by starting directly from the

coefficients of the nonlinear equations of motion, thus

avoiding the need to follow the whole asymptotic proce

dure for each specific problem. The relevant second

order bifurcation equation in a complex quantity is

equivalent to three real first order equations, uncoupled

from a fourth one, so that the original system is reduced

to a three dimensional system. By numerically solving

this equation, the qualitative behaviour of the system

can be studied in a three dimensional parameter space

around the bifurcation point. By referring to a sample

mechanical system, where the dynamical instability is

triggered by aerodynamic forces, the complete scenario

has been built up. The dynamics around a defective dou

ble Hopf bifurcation have been found very rich, consist

ing in periodic and quasi periodic solutions, suffering

homoclinic bifurcations occurring on certain codimen

sion 1 manifolds. The results furnished by the perturba

tion method have been found agree well with numerical

solutions obtained from direct numerical integrations of

the equations of motion.
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Appendix A. The sensitivity analysis analogy

The expanded equations of motion (4) can also be
written as:

0 0 0 2 0 2
½Fx þ eð1=2Fxxx̂þ FxllÞ þ e ð1=6Fxxxx̂ þ 	 	 	Þ D�x̂ ¼ 0
ðA:1Þ

where the change of variable x ! ex̂ is introduced and

D d/dt is posed. In this form, the equations resemble a

perturbed linear eigenvalue problem, namely

½ðA0 þ eA1 þ e2A2 þ 	 	 	Þ kðeÞ�wðeÞ ¼ 0 ðA:2Þ

in which the eigenvalue k takes the place of the operator

D. Eq. (A.2) governs the so called sensitivities of the

eigenpairs (k,w) and appears, for example, in the analy

sis of stability of an equilibrium path, along which
in a series of e, the matrices in Eq. (A.1) must be consid

ered not as unknowns, but rather as known terms fur

nished by the lower order approximations. Indeed,

these matrices are e dependent, so that a strict analogy

holds if and only if the matrices Ak in Eq. (A.2) also

depend on e. However, this aspect can be ignored, since

it is unessential to the analysis to be developed here.

Let us assume that both the matrices Fx
0 and A0 ad

mit a defective eigenvalue k0 ±ix of algebraic multi

plicity m and geometrical multiplicity 1. It is known

[19] that problem (A.2) is solved by a complete e1/m series

expansion of both the eigenvalue k and the eigenvector

w. By exploiting the analogy, the same expansions are

used for the operator D and the state variables x̂. To

make the discussion easier, specific values m 3,4 are

considered.

Even m 4 case

The two problems are shown in Table 1. The sensitiv

ity analysis is discussed first. Using the series expansions

of Eqs. (a), the perturbation equations (b) are drawn.

Eq. (b1) admits the solution (c1); Eq. (b2) can be solved

for any k1, since its known term u1 belongs to the range

of the operator, and furnishes the solution (c2), with k1
still indeterminate. Similarly, Eq. (b3,4) admits the solu

tion (c3,4), with arbitrary k1, k2 and k3. By proceeding to

higher orders, a solvability condition is first required at

the e order, where the highest element of the chain u4 ap

pears together with the perturbation A1 w0. By requiring

orthogonality to v4, the degree four algebraic equation

(d1) in the unknown k1 is drawn, from which m 4 roots

are found (the so called first order sensitivities of the

multiple eigenvalue k0). The relevant solution w4 (Eq.

(c4)) depends on the sensitivities k2, k3 and k4, still un
known; it also contains a particular solution ŵ4 to the

problem ðA0 k0IÞŵ4 ¼ km
1 A1u1, which can be ren

dered unique by enforcing a suitable normalization con

dition, e.g. vH1 ŵ4 ¼ 0. At e5/4 order, in contrast, a linear

equation (d2) in k2 is found, from which one value of k2
is drawn for each of the m 4 first order sensitivities.

Similarly, at higher orders, linear equations in k3, k4,
. . . follows. The coefficients of series (a) are thus evalu

ated. It can be seen that the left members of the solvabil

ity equations (d) are the monomials of the expansion of

the m th power of Dk:¼k k0. It therefore seems con

venient to combine all the equations (d) in a unique alge

braic equation (e) of degree m 4. This can be referred

to as the reconstituted sensitivity equation.

As a special case, if the perturbation vH4 A1u1 is equal

to zero (singular perturbation), first order solvability

equation (d1) furnishes k1 0. As a consequence, higher

order solvability conditions (d2,3,4) identically vanish.



Table 1

Eigenpair sensitivity and bifurcation analysis: m = 4

Sensitivity analysis Bifurcation analysis

w w0 þ e1=4w1 þ e1=2w2 þ
k k0 þ e1=4k1 þ e1=2k2 þ

ðaÞ
x eðx0 þ e1=4x1 þ e1=2x2 þ Þ
d=dt d0 þ e1=4d1 þ e1=2d2 þ

ða0Þ

e0 : ðA0 k0IÞw0 0

e1=4 : ðA0 k0IÞw1 k1w0

e1=2 : ðA0 k0IÞw2 k1w1 þ k2w0

e3=4 : ðA0 k0IÞw3 k1w2 þ k2w1

þ k3w 0

e : ðA0 k0IÞw4 k1w3 þ k2w2

þ k3w1 þ k4w0 A1w0

e5=4 : ðA0 k0IÞw5 k1w4 þ k2w3

þ k3w2 þ þ k5w0 A1w1

e3=2 : ðA0 k0IÞw6 k1w5 þ k2w4

þ þ k6w0 A1w2

e7=4 : ðA0 k0IÞw7 k1w6 þ k2w5

þ þ k7w0 A1w3

e2 : ðA0 k0IÞw8 k1w7 þ k0w8

A1w4

A2w0

. . . . . . . . . . . .

ðbÞ

e : ðd0 F0xÞx0 0

e1þ1=4 : ðd0 F0xÞx1 d1x0

e1þ1=2 : ðd0 F0xÞx2 d1x1 d2x0

e1þ3=4 : ðd0 F0xÞx3 d1x2 d2x1

d3x 0

e2 : ðd0 F0xÞx4 d1x3 d2x2

d3x1 d4x0 þ 1=2F0
xxx

2
0

e1þ5=4 : ðd0 F0xÞx5 d1x4 d2x3

d3x2 þ d5x0 þ Fxx0x0x1
e1þ3=2 : ðd0 F0xÞx6 d1x5 d2x4

þ d6x0 þ F0xxx0x2 þ F0xxx21
e1þ7=4 : ðd0 F0xÞx7 d1x6 d2x5

þ d7x0 þ F0xxx0x3 þ 2F0
xxx1x2

e3 : ðd0 F0xÞx8 d1x7 þ d8x0

þ F0
xxðx0x4 þ x1x3 þ Þ

þ 1=6F0xxxx
3
0 þ F0

xlx0l̂

. . . . . . . . . . . . . . . . . .

ðb0Þ

e0 : w0 u1

e1=4 : w1 k1u2

e1=2 : w2 k2
1u3 þ k2u2

e3=4 : w3 k3
1u4 þ 2k1k2u3

þ k3u2

e : w4 ŵ4 þ 3k2
1k2u4

þ ðk2
2 þ 2k1k3Þu3 þ k4u2

e5=4 : w5 ŵ5 þ 3ðk2
1k3 þ k1k

2
2Þu4

þ 2ðk2k3 þ k1k4Þu3
þ k5u2

e3=2 : w6 ŵ6 þ ðk3
2 þ 3k2

1k4Þu4

þ ðk2
3 þ 2k2k4 þ 2k1k5Þu3

þ k6u2

. . . . . . . . .

ðcÞ

e : x0 Au1eixt0

e1þ1=4 : x1 d1Au2e
ixt0

e1þ1=2 : x2 ðd2
1Au3 þ d2Au2Þeixt0

e1þ3=4 : x3 ðd3
1Au4 þ 2d1d2Au3

þ d3Au2Þeixt0

e2 : x4 x̂4 þ ½3d2d2Au4

þ ðd2
2Aþ 2d1d3AÞu3 þ d4Au2�eixt0

e1þ5=4 : x5 x̂5 þ ½3ðd2
1d3Aþ d1d

2
2AÞu4

þ 2ðd2d3Aþ d1d4AÞu3

þ d5Au2�eixt0

e1þ3=2 : x6 x̂6 þ ðd3
2Aþ 3d2

1d4AÞu4

þ ðd2
3Aþ 2d2d4Aþ 2d1d5AÞu3

þ d6Au2�eixt0

. . . . . . . . .

ðc0Þ

(continued on next page)
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Finally, at order e2 (see Eqs. (d5)), a third order non

trivial equation determines second order sensitivity k2,
if vH4 A2u1 6¼ 0. Therefore k k0 O(e1/2). It is possible

to check that w1, w3,. . . also vanish. One can therefore

adopt a series expansion of e2/m, both for the eigenvalue

similar problem arises in the bifurcation analysis, where

an even series would make it impossible to place F0
xxx

2
0.

Therefore the algorithm of Section 3.2 must be

used.

braic problems:

Table 1 (continued)

Sensitivity analysis Bifurcation analysis

e : k4
1 vH4 A1u1

e5=4 : 4k2k
3
1 f ðk1Þ

e3=2 : 4k3k
3
1 k1f ðk1; k2Þ

e7=4 : 4k4k
3
1 k1f ðk1; k2; k3Þ

e2 : 4k5k
3
1 þ k4

2 k1f ðk1; k2; k3; k4Þ

þ vH4 A1ŵ4

þ vH4 A2u1

. . . . . . . . .

ðdÞ

e2 : d4
1A 0

e1þ5=4 : 4d2d
3
1A f ðd1AÞ

e1þ3=2 : 4d3d
3
1A d1Af ðd1A; d2AÞ

e1þ7=4 : 4d4d
3
1A d1Af ðd1A; d2A; d3AÞ

e3 : 4d5d
3
1Aþ d4

2A d1Af ðd1A; . . .Þ

þ vH4 F0
xxu1x̂4

þ vH4 F0
xxxu

3
1

. . . . . . . . .

ðd0Þ

Dk4 þ c1ðlÞDk3 þ þ c4ðlÞ 0 ðeÞ D4A LðlA;A2�A;l _A;A�A _A;þ Þ ðe0Þ
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k and for the eigenvector w, furnishing non trivial infor

mation at each step.

The bifurcation problem is now addressed. By using

expansions (a 0) in Table 1 the perturbation equations

(b 0) follows. The analogy with Eqs. (b) should be noted.

At the e2 order the perturbation F0
xxx

2
0 appears. How

ever, since x0 is a harmonic function of time, this term

is not resonant, since it is the sum of a double harmonic

and a constant term. There therefore occurs a circum

stance similar to the singular perturbation of the sensi

tivity problem. In contrast, resonance is produced by

the cubic nonlinearity F0
xxxx

3
0, appearing at the e3 order.

As a consequence, odd terms in the expansions of x and

D vanish. This suggests omitting them in advance, in or

der to obtain simpler equations. Moreover, the scaling

l ¼ e2l̂ must be introduced to render F0
xlx0l̂ of the same

order as the resonant term F0
xxxx

3
0. The algorithm of Sec

tion 3.1 follows.

Odd m 3 case

This case is illustrated in Table 2. In sensitivity anal

ysis, similarly to the previous case, when the singular

perturbation vH3 A1u1 ¼ 0 occurs, the odd terms of the

k series all vanish. However, while odd terms w1

w3 0, in contrast w5, w7, . . ., are different from zero,

so that a complete series of e1/m must be used for odd

m. However, an expansion of w based on fractional pow

ers of e2/m, would not produce an e2 order perturbation
equation in which to place the perturbation A2w0. A
Appendix B. Particular solutions and coefficients

The vectors and matrices zij, Zil appearing in Eqs.

(17) are obtained by solving the following linear alge
ði2xE F0
xÞz11 ¼ F0

xxu
2
1

ði2xE F0
xÞz12 ¼ z11 þ F0

xxu1u2

ð F0
xÞz11 ¼ F0

xxu1u1

ð F0
xÞz12 ¼

1

2
½ z11 z11 þ 2F0

xxu1u2�

ði3xE F0
xÞz111 ¼

1

2
½F0
xxz11u1 þ

1

3
F0
xxxu

3
1�

ðixE F0
xÞz111 ¼

1

2
½F0
xxz11u1 þ F0

xxz11u1

þ F0
xxz11u1 þ F0

xxxz11u
2
1u1

vT2 ðF0
xxz11u1 þ F0

xxz11u1

þ F0
xxz11u1 þ F0

xxxz11u
2
1u1Þu2�

ðixE F0
xÞZ1ll̂ ¼ F0

xcu1l̂ vT2 ðF0
xcu1l̂Þu2

ðB:1Þ

where E is the identity matrix. Since (ixE Fx
0) is

singular, the solutions of Eqs. (B.15,6) are not unique.

To avoid indeterminacies, a normalization condition



must be enforced, e.g. by imposing vH1 z111 ¼ 0;
vH1 Z1l ¼ 0.

The coefficients Cijh and the row vectors Cil appear

ing in Eqs. (20) are given by:

Table 2

Eigenpair sensitivity and bifurcation analysis: m = 3

Sensitivity analysis Bifurcation analysis

w w0 þ e1=3w1 þ e2=3w2 þ
k k0 þ e1=3k1 þ e2=3k2 þ

ðaÞ
x eðx0 þ e1=3x1 þ e2=3x2 þ Þ

d=dt d0 þ e1=3d1 þ e2=3d2 þ
ða0Þ

e0 : ðA0 k0IÞw0 0

e1=3 : ðA0 k0IÞw1 k1w0

e2=3 : ðA0 k0IÞw2 k1w1 þ k2w0

e : ðA0 k0IÞw3 k1w2 þ k2w1

þ k3w0 A1w0

e4=3 : ðA0 k0IÞw4 k1w3 þ k2w2

þ k3w1 þ k4w0 A1w1

e5=3 : ðA0 k0IÞw5 k1w4 þ k2w3

þ þ k5w0 A1w2

e2 : ðA0 k0IÞw6 k1w5 þ þ k6w0

A1w3

A2w0

. . . . . . . . . . . . . . . . . .

ðbÞ

e : ðd0 F0
xÞx0 0

e1þ1=3 : ðd0 F0
xÞx1 d1x0

e1þ2=3 : ðd0 F0
xÞx2 d1x1 d2x0

e2 : ðd0 F0
xÞx3 d1x2 d2x1

d3x0 þ 1=2F0
xxx

2
0

e1þ4=3 : ðd0 F0
xÞx4 d1x3 d2x2

d3x1 d4x0 þ F0
xxe2x0x1

e1þ5=3 : ðd0 F0
xÞx5 d1x4 d2x3

þ d5x0 þ F0
xxx0x2 þ F

0
xxx

2
1

e3 : ðd0 F0
xÞx6 d1x5 þ d6x0

þ F0
xxðx0x3 þ x1x2 þ Þ

þ 1=6F0
xxxx

3
0 þ F0

xlx0l̂

. . . . . . . . . . . . . . . . . .

ðb0Þ

e0 : w0 u1

e1=3 : w1 k1u2

e2=3 : w2 k2
1u3 þ k2u2

e : w3 ŵ3 þ 2k1k2u3 þ k3u2

e4=3 : w4 ŵ4 þ ðk2
2 þ 2k1k3Þu3

þ k4u2

. . . . . . . . . . . . . . . . . .

ðcÞ

e : x0 Au1e
ixt0

e1þ1=3 : x1 d1Au2eixt0

e1þ2=3 : x2 ðd2
1Au3 þ d2Au2Þeixt0

e2 : x3 x̂3 þ ½2d1d2Au3 þ d3Au2�eixt0

e1þ4=3 : x4 x̂4 þ ½ðd2
2Aþ 2d1d3AÞu3

þ d4Au2�eixt0

. . . . . . . . . . . . . . . . . .

ðc0Þ

e : k3
1 vH3 A1u1

e4=3 : 3k2k
2
1 f ðk1Þ

e5=3 : 3k3k
2
1 k1f ðk1; k2Þ

e2 : 3k4k
2
1 þ k3

2 k1f ðk1; k2; k3Þ
þ vH3 A1ŵ3

þ vH3 A2u1

. . . . . . . . . . . . . . . . . .

ðdÞ

e2 : d3
1A 0

e1þ4=3 : 3d2d
2
1A f ðd1AÞ

e1þ5=3 : 3d3d
2
1A d1Af ðd1A; d2AÞ

e3 : 3d4d
2
1Aþ d3

2A d1Af ðd1A; . . .Þ
þ vH3 F0

xxu1x̂3

þ vH4 F0
xxxu

3
1 þ . . .

. . . . . . . . . . . . . . . . . .

ðd0Þ

Dk3 þ c1ðlÞDk2 þ þ c3ðlÞ 0 ðeÞ D3A LðlA;A2�A;l _A;A�A _A;þ Þ ðe0Þ
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C1ll̂ ¼ vT2F0
xcu1l̂

C2ll̂ ¼ vT2 ð�Z1ll̂ þ F0
xlu2l̂Þ

C11�1 ¼ 1=2vT2 ðF0
xxz1�1u1 þ F0

xxz11�u1 þ F0
xx�z1�1u1

þ F0 u2�u Þ

[9] Cohen DS. Bifurcation from multiple complex eigenvalues.

J Math Anal Appl 1977;57:505–21.

[10] Wen GL. Codimension-2 Hopf bifurcation of a two-

degree-of-freedom vibro-impact system. J Sound Vibrat

2000;242(3):475–85.

2722 A. Luongo et al. / Computers and Structures 82 (2004) 2705–2722
xxx 1 1

C1�12 ¼ vT2 ð�2z11�1 þ F0
xxz�12u1 þ F0

xxz12�u1

þ 1=2F0
xxz1�1u2 þ 1=2F0

xx�z1�1u2

þ F0
xxxu1�u1u2Þ

C11�2 ¼ vT2 ð�z11�1 þ F0
xx�z�12u1 þ 1=2F0

xxz11�u2

þ 1=2F0
xxxu

2
1�u2Þ

ðB:2Þ
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