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Abstract

An adapted version of the Multiple Scale Method is formulated to analyze 1:1 resonant multiple Hopf bifurcations
of discrete autonomous dynamical systems, in which, for quasi static variations of the parameters, an arbitrary number
m of critical eigenvalues simultaneously crosses the imaginary axis. The algorithm therefore requires discretizing con
tinuous systems in advance. The method employs fractional power expansion of a perturbation parameter, both in the
state variables and in time, as suggested by a formal analogy with the eigenvalue sensitivity analysis of nilpotent (defec
tive) matrices, also illustrated in detail. The procedure leads to an order m differential bifurcation equation in the com
plex amplitude of the unique critical eigenvector, which is able to capture the dynamics of the system around the
bifurcation point. The procedure is then adapted to the specific case of a double Hopf bifurcation (m 2), for which
a step by step, computationally oriented version of the method is furnished that is directly applicable to solve practical
problems. To illustrate the algorithm, a family of mechanical systems, subjected to aerodynamic forces triggering 1:1
resonant double Hopf bifurcations is considered. By analyzing the relevant bifurcation equation, the whole scenario
is described in a three dimensional parameter space, displaying rich dynamics.

Keywords: Resonant Hopf bifurcations; Multiple scale method; Coalescent eigenvalues; Nilpotent matrices; Fractional powers
expansions; Homoclinic bifurcations; Quasi periodic motions

1. Introduction equilibrium state. Small variations around a stable equi
librium point do not modify the qualitative nature of the

Autonomous dynamic systems subjected to quasi sta local flow in the state space, so that the dynamics remain
tic variations in their parameters usually modify their substantially unaltered. However, for sufficiently large

variations of the parameters, a sudden qualitative mod
ification of the flow can take place, typically entailing a
lose of stability of the equilibrium state. In this case a
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be static (or divergence) if the critical eigenvalue is zero,
while it is called dynamic (or Hopf) if it has a non zero
imaginary part. Simple bifurcations are structurally sta
ble in families of one parameter systems (i.e. have the
same properties of sufficiently close systems or, in other
words, are robust under small perturbations [1]). A mul
tiple bifurcation manifests itself when a cluster of eigen
values is simultaneously critical. It is structurally stable
in families of multi parameter systems. The objective
of the bifurcation analysis is to study the system dynam
ics around the bifurcation point in the parameter space.

The most popular method used to investigate bifur
cations is the center manifold method (CMM) [1,2]. This
consists (a) in finding the manifold of the state space to
which the dynamics asymptotically tend, and (b) in
reducing the multi (or even infinite ) dimensional sys
tem to an equivalent low dimensional system, which de
scribes the essential dynamics that develop on the
manifold. In recent years the authors have developed
an alternative approach, based on the multiple scale
method (MSM) [3], which furnishes the reduced equation
of the motion without describing the center manifold in
advance [4 7]. The main results of the analysis are re
sumed in a review paper [8].

Attention is here focused on multiple Hopf bifurca
tions. In [9], nonresonant double Hopf bifurcations (which
occur when the imaginary parts of the critical eigen
values are in an irrational ratio) were studied using the
CMM. More recently, the CMM has been employed
to analyze a vibro impact system that exhibits the same
type of double bifurcation [10]. In [4] nonresonant dou
ble Hopf bifurcations are studied by the MSM. Succes
sively, the MSM is applied in [11] to analyze simple
Hopf bifurcations occurring in delay systems and in
[12] to study nonresonant double Hopf bifurcations,
where an automatic procedure to analyze the critical sce
nario is developed. In [5,13,14] resonant double Hopf
bifurcations of types 1:2 and 1:3 were analyzed using
the MSM. The more difficult case of 1:1 resonance, in
which the two couples of imaginary eigenvalues coa
lesce, was addressed in [15], by applying the CMM,
and in [22] by the MSM.

In this paper an algorithm based on the MSM is
implemented to study 1:1 resonant m Hopf bifurcations,
in which m imaginary eigenvalues coalesce at the critical
point, with m being arbitrary. The method is then spe
cialized to the case in which m 2 and a computation
ally oriented version is furnished. The algorithm
applies to finite dimensional discrete systems. Therefore,
if the system under study is infinite dimensional continu
ous) it must be discretized in advance, through a finite
element or Galerkin approach, before the procedure is
applied. Other reduction methods, such as those de
scribed in [18], which account for the passive (i.e. non
critical modes), are not strictly necessary if a numerical
approach is adopted, since the MSM itself selects the

passive contributions, provided the discretization proc
ess performed is sufficiently refined. Direct applications
of the MSM to continuous systems will constitute the
object of forthcoming papers [17].

2. Problem position

An N dimensional, autonomous, dynamical system is
considered, of state variables x € RY, depending on a set
p € RM of control parameters. Let

% = F(x,p) (1)

be the equation of motion governing the free evolution
of the system. It is assumed that Eq. (1) admits the triv
ial equilibrium path x 0, Vp, i.e. it has previously been
reduced by a suitable change of variable to the so called
local form. 1t is further admitted that (x,p) (0,0) is a
bifurcation point O, at which the Jacobian matrix
F? := F,(0,0) admits a couple of eigenvalues /, *io
having algebraic multiplicity m > 1, the remaining eigen
values being all stable. The codimension of the manifold
in the parameter space on which such a bifurcation oc
curs (here referred to as the linear codimension of the
bifurcation [8]) is equal to M :=2m 1, since the van
ishing of the real part of the eigenvalues requires that
m conditions be satisfied, while the coalescence of their
imaginary parts entails m 1 additional conditions. In
order to render the bifurcation structurally stable, an
M parameter family of dynamical systems (Eq. (1)) is
therefore considered, in which the critical system natu
rally appears at point O.

Except for special cases, of higher codimension, only
one critical eigenvector u exists associated with 4y, so
that the matrix Fg has an incomplete set of eigenvectors
(and for this reason is often called a defective or nilpotent
matrix). It is well known from algebra that a chain of m
generalized (right) eigenvectors can be built up to com
plete the base, by recursively solving the equations:

(F 2Dw=w_, k=23,....m 2)

X

where u; = u is the proper right eigenvector. A complete
base of left generalized eigenvectors can also be found
by recursively solving the equations:

D)=V, j=mom 1,....2 (3)

where H denotes the transposed conjugate and v, is the
(unique) proper left eigenvector. The left and right
eigenvectors satisfy the orthonormalization properties
v}*uk = J;. This means that all the eigenvectors u; of
the chain, except for the higher order eigenvector u,,, be
long to the range of the operator Fg Zol. This circum
stance differs from that occurring in the non defective
case (m 1) for which vilu; #£ 0.

The aim of the analysis is to investigate the dynamics
of the nonlinear system around the bifurcation point O.



3. Multiple-Hopf bifurcation analysis

The multiscale perturbation method [3] is applied to
analyze defective codimension M Hopf bifurcations.
The method calls for the following steps, which will be
described in detail ahead: (a) expand Eq. (1) in a
Mc Laurin series of (x,p), namely *

1 1 1
¢ _ R0 0 (2 | RO 0 0
X = Fxx+§F“x +Fxp+ 6F"""x +2F“u

1o
+ ZFXW

X )

where an index denotes differentiation of the vector F
with respect to x or p; (b) expand the state vector X in
a suitable series of a perturbation parameter ¢; then scale
the parameter vector p by some suitable power of ¢, i.e.
Rr = &"i; then introduce several independent time scales
ty = %t for some By’s; (c) build up the perturbation
equations by separately equating the terms of the same
power of ¢ to zero in Eq. (4); (d) solve these equations
in sequence and enforce solvability (Freedholm) condi
tions at each step, obtaining amplitude modulation equa
tions on different time scales f#;; (¢) recombine the
amplitude equations by returning to the true time ¢
(reconstitution procedure [19,20]), in order to draw the
so called bifurcation equation ; (f) solve (often numeri
cally) this nonlinear equation to determine the nature
of the solution in different regions of the parameter space
around point O (i.e. build up the stability diagram).

All the steps, except for (b), are the same as those
performed in standard analysis of non defective bifurca
tions. However, while in that analysis integer powers of ¢
are employed, here fractional powers must be used both
in the state variable expansions and in the slow time
scales. Indeed, if one attempts to address the problem
by the standard method, the procedure will fail, due to
the fact that vilu; = 0 [8]. This circumstance is similar
to that which occurs in sensitivity analysis of defective
eigenvalues [21]. The order of the powers to be used,
however, is not known a priori, and this represents the
major difficulty in formulating the algorithm. By exploit
ing the analogy with the sensitivity of non singular pert
urbations, powers of order &' were successfully applied

3 Here the notation Guv, Guww,..., is used to denote
multilinear forms of degree 2, 3... ., i.e
N N N N N
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and similar expressions hold in Eq. (4).

in [7] to analyze multiple zero bifurcations of any codi
mension. Nevertheless, it is easy to check that, although
that algorithm also works for defective multiple Hopf
bifurcations, it is not efficient, since it entails trivial steps
in which several quantities turn out to be identically
zero. Moreover, such steps depend on the algebraic mul
tiplicity m of the critical eigenvalue being even or odd.
An alternative efficient procedure is developed here,
again suggested by the sensitivity of defective eigen
values to singular perturbations. In Appendix A the
analogy is detailed, and the motivation for the choice
of the fractional powers to be used is given. The two
cases, in which m is either even or odd, are dealt with
separately.

3.1. Even m case

The following series expansion for x and scaling for p
are adopted:

p=cj

2/m 4/m

X4+ ) (5)
i.e. odd powers of ¢ """ are omitted in the expansion of x/
¢. The state variables x are assumed to depend on several
time scales ¢;, for which x;,  x,(#;). By again omitting
odd terms and letting

ety =", (6)

X =¢&(Xg+ &%y + &

1/m

th=1t, 1=
the chain rule furnishes
d/dt =do+&/"dy + &/"dy + - - (7)

where dj :=0/0t; (k 2,4,...). Substitution of Egs. (5)
and (7) in Egs. (4), leads to the following perturbation
equations, written up to the "% order

e: (do Fg)xo =0
81+2/m : (do Fg)X2 = deo

81+4/m : (do Fg)X4 = dez d4X0
62 (do Fg)Xm = dZXm—Z d4X,,,,4
+o 4+ 1/2F X2
£2+2/m : (d() F?()Xm+2 = dzxm d4Xm72
+ -+ FLxex, (8)
83 : (dO Fg)xbn - d2x2m72 d4X2m,4

+ -+ FOX(XOXW! + XoXp2 + - - )
+ 1/6F, X + Fy, Xoft

grm . (do Fi)szz = diXom diXoyy+ -
+ FO (XOXm+2 + XoX;, + - )
+ 1/2F, X;x2 + F o



By solving these equations in sequence and using Egs.
(2) with 2y iw, the following solutions are drawn:

& Xy :A(t17t27...)ulel(0t0
8l+2/m CoxXy = dzAuzelmtO

. )
81+4/m DXy = (d%Alh + d4All2)Clth

in which 4 is a complex amplitude depending in an un
known way on the slow time scales. In Eqgs. (9) the
homogeneous solutions are neglected at higher levels
since they repeat the lowest order solution. If they were
accounted for, additional arbitrary amplitudes would
appear that, however, could be reabsorbed in the unique
unknown A at the end of the procedure. It should be
noted that Eqgs. (8) can be solved up to the &> order with
out requiring solvability, since all the resonant terms,
being linear combinations of the first m 1 generalized
eigenvectors, belong to the range of the operator. This is
a peculiar aspect of defective systems, not occurring in
generic systems, as discussed in detail in [8,21]. In partic
ular, X,Xy,...,X,,_> only contain the simple harmonic
w, while X,,,,X,,,+2, . - . , X2,,,_» also contain the double har
monic 2w, in addition to the constant term generated by
the quadratic nonlinearities. When the &* order equation
is reached, the resonant terms finally appear, produced
by the cubic nonlinearities F’_ x;, the quadratic nonline
arities F (XoX,,, and the parameter dependent term
F0 Xoll These resonant terms, which are proportional
to A A and Ap, all enter the first solvability condition,
which therefore has the following structure:

e dyd = &, (41, 4*4) (10)

where % is an algebraic linear operator. This is a nonlin

ear differential equation of the mth order governing the
amplitude evolution on the ¢, scale (amplitude modula

tion equation). In order to account for slower modula

tions, one has to proceed to the higher orders. There,
solvability conditions furnish amplitude equations of
the first order in the derivative of the highest scales, of
the type:

S mdydi A = Ly (oA, AAdy A, A2dA)
..................... (11)

By observing that, by virtue of Eq. (7), d"4/d¢" =
(&2/mdy+e¥mdy+ .. ) A= e(2dy + M mdydt )4,
all the solvability conditions can be combined to
obtain an unique differential equation of order m,
namely

d”4 ) . Vo

g = LA A4 A4 L5 ) (12)
to be referred to as the reconstituted modulation equation
or, more simply, as the bifurcation equation. In it, the
parameter ¢ has been reabsorbed according to the rules

ed — A, &—p, and ¢d/dt — d/dr. In Eq. (12)
d™ Aldr™ is a term of the ¢ order, while the right hand
member contains (separated by semicolons) all the terms
associated with frequency w of the order &, &2, ...,
up to the highest order accounted for in the analyszs For
example, if m 4, the bifurcation equation at the &

order reads:

A = P(pA, A4 pA, AAA, A2 A5 A, A4, A44) (13)

3.2. Odd m case

If m is odd, a complete series is adopted for x, namely
2/mXz 40 (14)

while the same ordering (Eq. (5,)) for p and the same
(even) time scales (Eq. (6)) are maintained, as in the
even m case. The following, more involved, perturbation
equations are drawn

1/m

X=¢(Xo+¢&"X; +¢

&
slJrl/m .

81+3/m .

(
(
g™ (dy F
(
(

8]+4/m .

82 (dO Fg)xm — dzxm 2 d4xm—4
+1/2F
e (do FS)sz = dyXop—a  daXom-s (15)

+oee ng(x()xm + X1 X1+ )
+ 1/6FxxxX0 + quxol’«

83+1/m . (do Fx)szﬂ = dyXomo1  daXoy_3
+ -+ ng(XOXm+1 + XX, + - )
+ 1/2Fxxxx0x1 + Fguxlﬁ

gm (do Fg)szH = diXoy  diXoy_s

44 ng(X()Xerz + X1 X1 + )
+ 1/2Fxxxx0x2 + FSHXZI]'

+ 1/2FXXXX0X1

Since X is still given by Eq. (91), X2, X4, .. .,X2,,_> €
main unchanged in relation to the previous case (see
Egs. (9)); in particular they only contain the fundamen
tal harmonic. Moreover, since x; 0, then xj,
Xs,...,X,,_> also vanish, while X,,,X,,+2,...,X2,,+1 are
sums of double and zero harmonics. Therefore the even
terms of the series Xg, X, . . ., X2, X242, - - -, are identical
to those of Eqs. (8). When the &* perturbation equation
is considered, resonant terms appear through the mech
anism illustrated above, leading to a solvability condi



tion identical to Eq. (10). At the subsequent orders no
resonant terms appear in the equations in the odd terms.
Indeed, quadratic nonlinearities involve products x; x;,
in which (i,j) are either even or odd and therefore of
even resultant frequencies; similarly, cubic nonlinearities
involve products x,X;x; in which (i, 7, k) are either all odd
or two even and one odd and therefore still of even fre
quencies. Solvability is thus required only for the
equations in the even terms X,,, which are still of type
(11). Reconstituted bifurcation equations in the form
(12) are thus obtained, both for even and odd multiplic
1ty m.

4. Double Hopf-bifurcation

The multiple scale procedure developed in the previ
ous section is specialized to a system exhibiting a double
imaginary eigenvalue. By assuming m 2 in the series
expansion (5),, this contains, as a particular case, integer
powers of ¢ only. The relevant perturbation equations
(8) become

& (d() F?‘)XO =0
& (do FOxp= dpxo+ 1/2F x2
83 : (do F?()Xz; = dez d4X0 + F?‘HXQIAL
+ F xox> + 1/6F X} (16)
84 : (d() F?‘)X6 = d2X4 d4X2 d6X0
+ F 0 + Fy (XoXs +X3)
+ nguxéﬂ +1/ ZFSXXxgxz

By following the steps previously illustrated, the follow
ing solutions are found:

Xo = A(t1,t5, .. )we 4 c.c.
Xy = drAuye'® 4 1/24%2;,e2 4 1/2442,, + c.c.
Xy = (d4All2 +A2AZ111 +AZ1pﬂ)ei(DU[U (17)
+ AdzAleeizwom
+A3Z1116i3wﬂt0 + AdzA +Z;; +cC.C.
where X, is the generating solution and z;e¢ z",
YATRS ZV x ZM are solutions of linear algebraic equa
tions reported in Appendix B.

Similarly, the following solvability conditions are
found at the various orders:

& dyAd=Cypd + C 44
et 2dydyAd = ColidaA + Ci,AAdrA + C A% drA
(18)

where the coefficients Cy; € Z and C;, € Z X ZM are also
defined in Appendix B. By coming back to the true time
t, Egs. (18) are combined in a single equation. By taking
into account that:

d*4

T &3 (d3 + 2edads)A + O(&) (19)
Egs. (18) lead to the following bifurcation equation:
d’4 d4 d4
P Ciupd + C2ul‘a + Ciyd’A + CuzAAa
d4
CpA>— 20
+Ciz ar (20)

where the parameter ¢ has been reabsorbed according
the rules: e4 — A, ed/dt—d/dt, &p — p. Eq. (20) gov
erns the system’s asymptotic dynamics (i.e. for a suffi
ciently large time, for which the contribution of stable
eigenvalues has been extinguished). It is equivalent to
two first order equations in the two complex variables
(41,45) == (4,4).

To express the bifurcation equations in real form, it is
convenient to adopt a mixed (polar and Cartesian) form
for the complex amplitudes [22]

1 . 1 N
A, = Eae‘”7 A, = E(u + iv)e" (21)
Substituting Egs. (21) into (20) and separating real and
imaginary parts yields:

a=u

i :g(a,u,v,f); ) (22)
b= h(a,u,u, 07")

ad=v

where g and £ are cubic polynomials in the variables
(a,u,v). From Eq. (224), 0 can be expressed as a function
of @ and v and then substituted in (22,) and (223). It fol
lows that the amplitude modulation equations (22, 3)
(equal in number to the linear codimension of the prob
lem M 3) are uncoupled from the phase modulation .

After the bifurcation equations (22) have been
numerically integrated for a given set of parameters
and given initial conditions, the state is obtained as
X  &Xo+ &Xs + O(e%). By accounting for Egs. (17,2)
and remembering (Eqgs. (21)) that 4 A, di4d=
A = 4,, the state reads

1 . 1 )
X = — [aul 4 (u + iv)uz]e'“”’”)) + ZaZ(Z]]e21+(u)1?+0) 4 Z“)

2
+ c.c. + higher order terms (23)

The trivial solutiona u v 0 satisfies the bifurcation
equations (22) for any p, according to the existence of
the trivial equilibrium path x 0Vp. Steady state non
trivial solutions are obtained by vanishing the right hand
member of Eqs. (22, 53). These solutions correspond to
periodic motions (@ const) of the original system, of
nonlinear frequency Q := w + v/a. Their stability is gov
erned by the variational equations of Eq. (22); in con
trast, stability of the trivial solution calls for use of the
variation of Eq. (20) since, Eq. (22)4 becomes singular
when a 0. Finally, periodic solutions of Eqs. (22;3)



correspond to quasi periodic motions of the original sys
tem. Their stability is governed by the Floquet charac
teristic exponents.

5. An automatic procedure for evaluating the bifurcation
equation

In order to show the effectiveness of the proposed
method, we illustrate an algorithm which can be used
to evaluate numerically the coefficients of the bifurcation
equation (20) for a class of systems. The method does not
require repetition of the whole procedure for the specific
system under study, but only evaluation of the numeri
cal coefficients, which is achieved by performing ecle
mentary operations. In this respect the method is
user oriented, in contrast to other methods, such as,
for example, the center manifold method, which have
not yet been applied to furnish ready to use formulas.

A broad class of N dimensional mechanical systems
is considered, having equations:

x = (A + Bp)x + ¢(x) (24)

where the matrices A and B are constant, p is the control
parameter vector and the vector ¢(x) collects quadratic
and cubic nonlinearities. The ith equation (24) therefore
reads:

X; = Z a;x; + Z b +% Z CijiXjXk
- 7 ik

+- Z CimXxxt + O(x*p) (25)

]kl

where coefficients ¢’s are symmetrical with respect to
indices j,k,l. For this class Fg =A, Fgu = B. The follow
ing functions are defined:

Svu ) = vF =" by

ik
— VTR uw —
gv,u,w) :=v F uw =) cjvuw, (26)
ik
— vIR? - )
h(v,u,w,y) := v F uwy = E Cijl Uitk jWi))

igkl
The above functions associate a real number with the
dummy vectors v, u, p, w and y. By appropriately choos
ing the arguments, the functions (26) furnish all the
quantities necessary to evaluate the coefficients appear
ing in the bifurcation equation (20). In particular, by
taking v equal to the canonical vector e; {J;} (i

., N) they also make it possible to build up the vec
tor equations in Appendix B.

The following step by step algorithm is applied.

(a) Proper and generalized right eigenvectors are evalu
ated at the bifurcation point p 0 by solving
the equations: (A  ZAoDu; 0, (A  ZoDuy 1wy,
(A DT, 0, (A D%, v,and normalizing
the solutions according to vauk = 0j.

(b) To solve the nonsingular Eq. (B.1;) the known terms
of this equation are built up, as

Fu; = {g(e;,ur,u)} (27)

where the brackets collect the vector coefficients for j
running from 1 to N. Then z,, is evaluated by solv
ing the Equation (B.1;).

(c) By using arguments similar to step (b), all the non
singular equations (B.l,.s) are solved and
(z11,211,212,2111) are sequentially evaluated.

(d) To solve the singular Eq. (B.1s), the known terms of
this equation are built up, as

F?&lelul = {g(ej7 levul)}7

Fl ozt = {g(e;, z1,1)} %)
ngiﬁul = {g(e;,Z;;,m)},
F?(xxu%ﬁ] = {h(ej?ulaulaul)}
( Z11“1)“2 g(v2, 71, 1)y
F Z u Vy,Z1p, 0
(v; Fzn))uwy = g(va, 211, 0)uy (29)
(VzF leul)uz g(v2, 7y, up)wy
(vy'

(V27lll,lll,lll)llz

Then z,,, is evaluated by solving equation (B.1¢) un
der the constraint condition viz;;; = 0.

(e) To solve Eq. (B.1), p is first set equal to the canon
ical vector e;. The known terms then read

Fowe = {f(ej,ur,e0)}, (v Fy,uie)u

= f(va,up, €)uy (30)
By solving the relevant equation, the k th column of
the matrix Z,, is evaluated, provided it is orthogonal
to vy, since the operator is singular. By letting k run
from 1 to M, the whole matrix Z;, is obtained.

(f) Coefflicients C in Eqgs. (20) are finally evaluated by
Egs. (B.2); e.g.
Cop = {f(v2,m, &)
fork 1,2,...,M.

Vnguek} (3 1)

It should be noted, that the procedure illustrated
makes it possible to obtain a bifurcation equation para
metric in p, so that the procedure does not have to be
repeated for any choice of p. Once the algorithm has
been implemented, only the coefficients a;;, by, ¢ and
;s in Egs. (25) must be given for any specific system.

6. Sample system
6.1. Model and bifurcation equation

The structure of Fig. la, is analyzed. It consists of
two vertical rigid bars of length /, constrained at the



(b)

Fig. 1. (a) System of two rigid bars under aerodynamic
excitation and (b) Lagrangian parameters.

ground by two different linear visco elastic hinges joined
at their ends by a linear visco elastic control device,
which can have either positive or negative stiffness.
The structure is loaded by a fluid flow of uniform veloc
ity U orthogonal to the plane of the motion. By assum
ing the rotations ¢; (i 1,2) as Lagrangian parameters
(Fig. 1b) and applying the quasi static theory to express
the aerodynamic forces [23], the dimensional equations
of motion of the system in Fig. 1a, expanded up to the
third order, read

1 1
3 Pmi, + {ct + el + gb(cd + c{)l3Up} q,

CeZZQZ + (ktl + kelz)ql kelzqz

1 1 / " .
Sbp [g (2cq +ear+)l'q

1
300 (3ea 3¢+ + c{’)lsqf]

2 1 1
gkelzqf + Ekelzqfqz + 6kelzqg

. 1 ,. 1 ,.
celz(q?ql qu% zqih) =0

1 1
3 Pmg, c.l’q, + {cl +cl* + gb(cd +)l Up} 4,

1 1 U /)
kelqu + (ka + kelz)‘b zb/’ [g (2 +a+d)

1
X1 5op Bea+3ci+ e+ C{’)lséi}

2 1 |
SKLE + 5k lqq; + Gkl
. | 1.
cl? (qﬁqz Eq?ql quqi) =0
(32)

In Egs. (32) m is the mass per unit of length of the bars,
k, and k,, are the torsional stiffnesses, k. is the stiffness
of the extensional device, ¢, and ¢, are the damping coef
ficients of the extensional and torsional devices, p is the
air density, b is a characteristic length of the cross sec
tion of the bars, ¢4 and ¢ are the non dimensional drag
and lift coefficients and the apices denote differentiation

with respect to the attack angle. Egs. (32) are nondimen
sionalized by introducing the following quantities:

T =t wzfﬁ' e
- 14 1—ml37 e—zmwll
. 3¢ 1 ,
C1:W§ dlzz(Cd-FCl)
3 pbl
dy :E’;—](c;’wl +2¢)); (33)
1 (pbl\*
= 3 (%) (dl + ¢ + 3¢ + 3cq)
pb ke ktl
=" U = . -
ma ’ v mw%l’ g k,z

The parameters u (nondimensional wind velocity), v
(nondimensional stiffness of the extensional spring)
and 7 (torsional stiffness ratio) are assumed as control
parameters, i.e. p := {u,v,5}. The parameter u will be re
ferred to as distinguished parameter, since it represents
the intensity of the external load; the remaining two, v
and 5, will be referred to as splitting parameters, since
they are responsible for the tuning of the critical eigen
values. An eigenvalue analysis of the (linearized) equa
tions of motion shows that at p pg a 1:1 resonant
double Hopf bifurcation occurs, with

1y = 2(5%59; vo=0 ny=1+4¢+4E  (34)
By defining incremental parameters p:=p p, and
omitting the hat, the equations of motion are put in
the state form (24), where the dot now denotes differen
tiation with respect to the dimensionless temporal scale,
7, X = (x1,%2,x3,%)" = (¢,,4,,¢,4,)" is the state vector

0] 1 0] 0

are the Jacobian matrix and its first variation evaluated
at the bifurcation point O, respectively; finally,
¢ (0,¢1(x),0,c2(x))T is the nonlinearity vector evalu
ated at p 0, where

d; . .
er =dox; +—x; + 2008 vxade v

Ho

’ (37)
¢ = dox; + H—‘xi +20né xné naé

0
The following values of the nondimensional parame
ters are taken: & & 0.05; 4, 1.345, d, O,



ds 1.251 (corresponding to a square cross section of
the bars). Consequently, the critical parameters are
o 0.149, vy 0,y 1.210 and the associate double
eigenvalue is Ay *il.049. The non vanishing coeffi
cients in the equations of motion (25) assume the follow
ing values: 251 1, any 1, A4 01, asq 1, [27%) 01,
[27%] 121, b221 05, b212 135, b223 30, b421 3,
baos 3, bazz 1, baya 135 cn 841,
2112 188, 2112 01, 2114 005, C2334 005,

C4444 188, C4334 01, C4112 005, C4233 0.05.
Proper and generalized eigenvectors are found to be
0.499i 1.0
0.524 0.499i
u = 5 u = . )
0.476 0.454i
0.499i 15.238
1.0 0.062
0.062 4 1.0491 0.0651
v = . , V2= . (38)
1.423  1.1541 0.071i
1.0+ 1.291i 0.062

Since d, 0, quadratic terms in Eqs. (37) are identically
zero (i.e. F’ 0), and therefore the system is symmet
ric. This entails the vanishing of some terms in Egs.
(B.1). By solving these equations the following solutions
are found:

21 =0, z,=0 z,=0, z,=0
0.133
] oa4si
BTN 0027 (0
0.399
32.757 4 25.849i
27.112 + 34.3701
24.722 4 0.8251
0.859  25.929i (39)
7.197 5.709i 1.423  26.133i
5.988 7.553i 27418 1.677i
5.443  0.168i 10.681 + 11.218i
0.175 4 5.7091 11.849 + 11.1991
0.125 0.171i
0.150 4+ 0.1311
0.003 4+ 0.1191
0.125 4 0.0101

), =

Finally, the coefficients defined by Egs. (B.2) are evalu
ated, and bifurcation equation (20) built up

A =1 i0.00414x + (0.0088 i0.1845)v
0.0293n]4 + [2.1271u + (1.8194
+1i2.2094)v +10.04781]4 + ( 0.0023
+10.2335)4%4 + ( 19.5833 +10.0669)444
+ (1.5764 4-i0.0110)4%4 (40)

6.2. Numerical results

The mechanical behavior of the system around the
bifurcation point is investigated. The three dimensional
linear stability diagram of the trivial solution is plotted
in Fig. 2a (exact surface) and 2b (approximate surface),
obtained from an eigenvalue analysis of the Jacobian
matrix of Eq. (32) or (40), respectively. The surfaces
are the loci of simple Hopf bifurcations; at the crossing
of two branches non resonant double Hopf bifurcations
occur, while at the singular points O and W, the two
bifurcations are in 1:1 resonant condition. The approxi
mate locus is tangent to the exact locus at point O, as
shown in Fig. 2c. However, it cannot describe either
the loop or the coexisting bifurcation point W. The
investigation must therefore be confined to a small re
gion around O.

By sectioning the 3D plots of Fig. 2a and b with
planes v const and  const (i.e. by fixing one of the
two splitting parameters and letting the second vary to
gether with the distinguished parameter ), the plots in
Fig. 3 are obtained, where exact and approximate
boundaries are compared. Two Hopf curves #; and
A, are illustrated, from which periodic solutions in
the state variables x (i.e. steady state amplitude solu
tions @  const) bifurcate. When v const (Fig. 3a c),
the accordance between the two sets is good for 1 > 0;
in contrast, due to the existence of a vertical asymptote,
no approximate curves exist when 5 <0. In contrast,
when n const >0 (Fig. 3d f), the two sets have the
same qualitative aspect. In particular, at 0 (Fig.
3d), curves #| and #, are almost tangent at the origin.
Due to the fast variation of the curvature of the exact
boundaries, there exists a region (shaded in the figure)
in which the number of the bifurcation points encoun
tered along a path v const is different in the two cases
(namely, four for the exact, two for the approximate).
However, when 5 exceeds the value n #5* 0.0026
(Fig. 3e) where ', has a vertical tangent at O, this dis
crepancy disappears (see Fig. 3f).

The amplitude a of the periodic solutions bifurcating
from the #, and #, boundaries of Fig. 3a,b,d,e are
found as equilibrium points of the bifurcation equation
(40); they are illustrated in the following (qualitative)
Figs. 4 7, respectively (bifurcation diagrams). Fig. 4
refers to v 0. The approximate boundaries in Fig. 4a
limit four regions %, in which i 0,1,2,3 periodic solu
tions exist (in addition to the trivial one). As shown in
Fig. 4b, two branches bifurcate from the positive g
half axis, each dying on a distinct u half axis. Due to
the fold exhibited, by the two surfaces close to the u axis
(see the sections ¢ const in Fig. 4c), more periodic
solutions than surfaces coexist in the shaded region of
Fig. 4a. This also appears from the cross sections
n const of Fig. 4d, where the dashed curves refer to
n 0 and are produced by the folds.
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Fig. 2. Linear stability diagram of the trivial solution: (a) exact solution; (b) approximate solution and (c) section at v = 0; continuous
line: approximate solution and dashed line: exact solution.
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Fig. 3. Sections of the linear stability diagram: (a) (c) v = const; (d) (f) n = const; continuous line: approximate solutions, dashed line:
exact solutions.

When v # 0 (Fig. 5) the coalescence between #| and discussed for Fig. 3d. Accordingly, this upper periodic

A, is destroyed. Again, the folds of the surfaces deter solution exists only in the range 0 < < n*.
mine coexisting solutions in the shaded regions of Fig. When 5 >»n* the bifurcation diagram changes as
Sa. The whole scenario appears as a perturbation of that illustrated in Fig. 7. The main difference in comparison
of Fig. 4, produced by the splitting parameter v. with Fig. 6 is represented by the disappearance of the
Let us now examine the bifurcation diagram forn 0 upper periodic solution. Other aspects remain qualita
(Fig. 6). The boundaries »#; and s, are shown in tively unmodified.
Fig. 6a. From them, the periodic solutions sketched To describe completely the scenario around the bifur
in Fig. 6b, bifurcate. They coexist in the shaded region cation point, quasi periodic (more precisely bi periodic)
of Fig. 6a, as also appears from the sections of Fig. solutions are sought. These bifurcate from the periodic
6¢c. In addition to the two solutions, a third periodic solutions through Neimark bifurcations (also called sec
solution is found, represented by the upper surface in ondary Hopf bifurcations). In the amplitude representa
Fig. 6b. This latter surface does not bifurcate from tion of the motion furnished by Eqgs. (22), quasi periodic
any curve of the ¢ 0 plane. However, as will become motions (a periodic) originate from periodic motions
evident below, this is an erroneous result due to bad (a const) through Hopf bifurcations. A Jacobian eigen

approximation of the exact boundaries, as already value analysis is therefore performed along the branches
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Fig. 5. Bifurcation diagram for v = const # 0: (a), (c), (d) cross sections and (b) 3D view.

a const by varying one control parameter, and Hopf
bifurcations are detected. By following a numerical pro
cedure (implemented in the program AUTO®), the
curves of min max modulating amplitude are then
built up. The results of the analysis are illustrated in

Fig. 8. In the upper part of the figure (Fig. 8a) the
approximate #; and #, boundaries of Fig. 3 are dis
played (heavy lines). In addition, Neimark boundaries
A" are indicated (thin lines), together with homoclinic
boundaries # oy (dashed lines), where the limit cycles
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for the amplitudes (quasi periodic solutions) disappear and Q for quasi periodic motions. In Fig. 8a six paths
after colliding with a saddle (periodic solution). In each (I VI) are marked, along which the bifurcation

region the type of attractor is indicated, P for periodic diagrams of the lower part of the figure (Fig. 8b) are
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Fig. 8. Bifurcation diagrams along different paths: (a) periodic (#;) solutions, quasi periodic (./";) solutions, homoclinic boundaries
(# om), periodic attractor (P), quasi periodic attractor (Q); (b) amplitudes of periodic solutions (stable heavy lines, unstable thin lines),
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regions the values assumed by the amplitude in quasi
periodic motions. Finally, small circles denotes exact

obtained. Here, heavy lines denote stable periodic solu
tions, thin lines unstable periodic solutions, and shaded
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Fig. 9. Projection of trajectories onto the configuration plane: (I) first order; (II) second order; (a) periodic motion 7 in Fig. 8b and

(b) quasi periodic motion 75 in Fig. 8b.

numerical results drawn by integration of the equations
of motion (32). Along path I, an unstable periodic mo
tion bifurcates at point A (lying on a Hopf boundary)
from the trivial solution. A second branch of stable peri
odic solutions loses stability at point B (on the Neimark
curve) and gives rise to stable quasi periodic motions.
Along path II, at C, where the two Hopf boundaries
coalesce, two distinct paths arise, one stable and the
other unstable. The stable path bifurcates in a quasi
periodic solution at D (on the ./ curve). However, it
disappears at E (on the /¢, curve), after colliding with
the trivial solution. Along path III, a stable and an
unstable periodic motion bifurcate from the trivial
solution at points A4 and C, respectively. The first one
undergoes a Neimark bifurcation at B, after which the
quasi periodic solution disappears at E as a consequence
of colliding with the trivial solution. Along path IV two
unstable periodic solutions are found originating from
a 0atpoints 4 and B. However, a third upper solution
is found, not bifurcating from any point. The numerical
results, obtained by integration of Egs. (32), confirmed
the existence of this solution, bifurcating from a 0 at
point J. The approximation is excellent for sufficiently
large s, but the perturbation solution is unable to de
scribe this bifurcation. The discrepancy is explained by
the fact, already commented in Fig. 3d, that two bifurca
tion points are lost, due to the bad approximation of the
A boundaries. Along path V, the bifurcated solutions
at A and B are initially unstable. They become stable
at points D (not shown in Fig. 8a) and C, respectively,
where stable quasi periodic motions arise. The latter
match each other and form a closed loop. A similar phe
nomenon is observed along path VI. However, one
path is originally stable, while the other is unstable.
After Neimark bifurcations they change stability, while
quasi periodic solutions merge themselves.

Finally, Fig. 9 represents the projection of some tra
jectories onto the configuration (¢;,¢,) plane. They were
obtained by using Egs. (23). Fig. 9a refers to the periodic
motion 7} marked along path IIT in Fig. 8b. The thin
line represents the first order approximation, depending
only on the proper vector u;, while the heavy line repre

sents the second order approximation, accounting also
for the generalized eigenvector u,. This, in the case
examined, slightly modifies the length of the ellipsis,
but does not entail any rotations, differently from find
ings of a similar problem dealt within [16]. It should
be noted that double harmonics are absent in the sec
ond order solution, due to the symmetry of the system.
In Fig. 9b a quasi periodic motion is illustrated, refer
ring to point 7, marked in Fig. 8b. Both the first and
second order approximations are displayed in the figure.
The trajectories are spirals confined between the ap,;,
and an,, amplitudes. Second order terms significantily
affect only the former.

7. Conclusions

An algorithm based on the Multiple Scale Method
has been developed to analyze 1:1 resonant m Hopf
bifurcations in autonomous discrete systems. The bifur
cation occurs when, for certain critical values of the con
trol parameters, the Jacobian matrix at an equilibrium
point admits m coincident eigenvalues with zero real
part. Such a bifurcation is structurally stable in a family
of systems depending on M:=2m 1 parameters,
where M is the linear codimension of the bifurcation.
Since the Jacobian matrix is defective, only one proper
eigenvector exists at the critical point, so that the eigen
space must be completed by generalized eigenvectors. By
exploiting a formal analogy with sensitivity analysis of
nilpotent (defective) matrices, a perturbation method
has been developed, that is able to furnish a bifurcation
equation governing the essential dynamics around the
bifurcation. It turns out to be an mth order differential
equation in the complex amplitude of the unique critical
eigenvector. The method calls for the use of fractional
powers expansions of both state variables and time, as
opposed to integer power expansions used for non
defective bifurcations. In order to improve the efficiency
of the method by avoiding trivial steps, even series are
used for time and even o complete series for the state var
iables, depending on whether the multiplicity m of the



critical eigenvalue is even or odd. This procedure is sug
gested by the analogous sensitivity problem when the
perturbation is of singular type (i.e. it belongs to the
range of the operator). This circumstance always occurs
in the Hopf bifurcation problem, since quadratic non
linearities do not produce resonant terms.

The method has then been specialized for a 1:1 reso
nant double Hopf bifurcation (m 2) and a step by step
algorithm has been described to evaluate the coefficients
of the bifurcation equation by starting directly from the
coefficients of the nonlinear equations of motion, thus
avoiding the need to follow the whole asymptotic proce
dure for each specific problem. The relevant second
order bifurcation equation in a complex quantity is
equivalent to three real first order equations, uncoupled
from a fourth one, so that the original system is reduced
to a three dimensional system. By numerically solving
this equation, the qualitative behaviour of the system
can be studied in a three dimensional parameter space
around the bifurcation point. By referring to a sample
mechanical system, where the dynamical instability is
triggered by aerodynamic forces, the complete scenario
has been built up. The dynamics around a defective dou
ble Hopf bifurcation have been found very rich, consist
ing in periodic and quasi periodic solutions, suffering
homoclinic bifurcations occurring on certain codimen
sion 1 manifolds. The results furnished by the perturba
tion method have been found agree well with numerical
solutions obtained from direct numerical integrations of
the equations of motion.
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Appendix A. The sensitivity analysis analogy

The expanded equations of motion (4) can also be
written as:

[FO + &(1/2F% + Fop) + &(1/6FL & + )

XXX

Dk =0
(A.1)

where the change of variable x — X is introduced and
D d/dt is posed. In this form, the equations resemble a
perturbed linear eigenvalue problem, namely

[(Ag +eA; + A +--) Ae)w(e) =0 (A2)

in which the eigenvalue / takes the place of the operator
D. Eq. (A.2) governs the so called sensitivities of the
eigenpairs (1,w) and appears, for example, in the analy
sis of stability of an equilibrium path, along which

2o := A(0) is critical. In fact, a nonlinear problem could
never be analogous to a linear one; in contrast, this anal
ogy holds in a perturbation perspective, in which the
nonlinear problem is transformed to become a sequence
of linear problems. Therefore, once X has been expanded
in a series of ¢, the matrices in Eq. (A.1) must be consid
ered not as unknowns, but rather as known terms fur
nished by the lower order approximations. Indeed,
these matrices are ¢ dependent, so that a strict analogy
holds if and only if the matrices A, in Eq. (A.2) also
depend on ¢. However, this aspect can be ignored, since
it is unessential to the analysis to be developed here.

Let us assume that both the matrices F,” and A, ad
mit a defective eigenvalue 1y *iw of algebraic multi
plicity m and geometrical multiplicity 1. It is known
[19] that problem (A.2) is solved by a complete '™ series
expansion of both the eigenvalue A and the eigenvector
w. By exploiting the analogy, the same expansions are
used for the operator D and the state variables X. To
make the discussion easier, specific values m 3,4 are
considered.

Even m 4 case

The two problems are shown in Table 1. The sensitiv
ity analysis is discussed first. Using the series expansions
of Egs. (a), the perturbation equations (b) are drawn.
Eq. (b,) admits the solution (c); Eq. (by) can be solved
for any /,, since its known term u; belongs to the range
of the operator, and furnishes the solution (c,), with 4,
still indeterminate. Similarly, Eq. (bs4) admits the solu
tion (c3 4), with arbitrary 4;, 4, and 3. By proceeding to
higher orders, a solvability condition is first required at
the ¢ order, where the highest element of the chain uy ap
pears together with the perturbation A, wy. By requiring
orthogonality to vy, the degree four algebraic equation
(d;) in the unknown 4; is drawn, from which m 4 roots
are found (the so called first order sensitivities of the
multiple eigenvalue 4o). The relevant solution w4 (Eq.
(c4)) depends on the sensitivities A, 43 and A4, still un
known; it also contains a particular solution w, to the
problem (Ay ZAoI)Ws = A7  Aju;, which can be ren
dered unique by enforcing a suitable normalization con
dition, e.g. vitw, = 0. At &' order, in contrast, a linear
equation (d,) in 4, is found, from which one value of 4,
is drawn for each of the m 4 first order sensitivities.
Similarly, at higher orders, linear equations in As, A4,
... follows. The coefficients of series (a) are thus evalu
ated. It can be seen that the left members of the solvabil
ity equations (d) are the monomials of the expansion of
the m th power of Al:=] Ay. It therefore seems con
venient to combine all the equations (d) in a unique alge
braic equation (e) of degree m 4. This can be referred
to as the reconstituted sensitivity equation.

As a special case, if the perturbation vﬁIAlul is equal
to zero (singular perturbation), first order solvability
equation (d;) furnishes 2; 0. As a consequence, higher
order solvability conditions (d,34) identically vanish.



Table 1

Eigenpair sensitivity and bifurcation analysis: m = 4

Sensitivity analysis

Bifurcation analysis

1/4 1/2

W Wot+&eTw +&/wy +

A /l() +81/411 +81/Zﬂz +

e (A ADw, 0
g/ (Ao ADw;  Aiwp
g2 (Ag ADwa  Lw + Aw
& (Ao ZoDws  Aiwy + dow,

e (Ao AD)ws  Aws + Aow,
+ 23w+ Wy AWy
4 (A AoD)Ws  Aiwa + Zow;
+2w+ 4 Aswg Aywp (b)
&7 (Ay ADwe  Liws + Aawy
+  +lWo Aw,
PUA (Ao ZoDw;  Aiwe + Zaws
+  + AW Aws

62 : (Ao j.(]I)Wg )v1W7 + j.()Wg
A1W4
Axwy
80 W u
81/4 W ;L]Uz
8]/2 W A.%ll3 + /lzllz
& wy a4 220w

+ 23w,
£ Wy W4t 3Afizu4
+ (2 + 220 23)u5 + Aaw
M ws Ws o+ 3(AT A + 4143wy
+2(Aads + A ls)us
+ Asup
&7 we  We+ (A; + 3/1%24)!14
+ (V3 + 2224 + 200 25)us
+ Agly

X e(xo+eix e Px+ )

d/dr

SRSV
g2

434

454

glH3/2 .

fH/4

81+1/4 .
8l+]/2 .

81+3/4 .

81+5/4 .

ST

do + Sl/4d1 + Sl/zdz +

(do F)xo 0

(do FOx dixo

(do FO)x;  dix;  daxg

(do Fi)x,x di\xy  dyx
d;x 0

(do EO)x4y  dixs doxy
dsx;  dyxo + 1/2F0 X2
(do F)xs dixy  dyXs
dsx; + dsXo + Fyx,XoXi (b')

(do Fg)x6 diXs  d)Xy4

+ dexo + F) xox; + F x?
(do Fg)x7 diXg drXs

+ d7Xg + F?‘XXQX:; + ZF?‘XX|X2
(do Flxg  dix;+ dgxo

+F (xoXs +x1%3+ )

+1/6F x} + ngxoll

XXX

oty

Xg Auje
X dlAuzei‘”’"
X2 (diAus + dyAwy)e
s (diAuy + 2ddrAus
+ dzAuy )&
Xy X4+ [3drdrAuy
+ (d2A + 2ddsA)us + dyAuy)e "
X5 Xs+ [B(ddsd + did3A)uy
+ 2(dad34 + d1dsA)us
+ d5Au2}ei“”0
Xe X+ (34 +3didA)uy
+ (d2A + 2d>dud + 2d1dsA)us
+ dsAuy e

(continued on next page)



Table 1 (continued)

Sensitivity analysis

Bifurcation analysis
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Finally, at order &> (see Egs. (ds)), a third order non
trivial equation determines second order sensitivity A,
if vi'Aou; #£ 0. Therefore 2 Jg 0(e"%). 1t is possible
to check that wy, ws,... also vanish. One can therefore
adopt a series expansion of ¢, both for the eigenvalue
A and for the eigenvector w, furnishing non trivial infor
mation at each step.

The bifurcation problem is now addressed. By using
expansions (a’) in Table 1 the perturbation equations
(b’) follows. The analogy with Egs. (b) should be noted.
At the ¢ order the perturbation ngxf) appears. How
ever, since X, is a harmonic function of time, this term
is not resonant, since it is the sum of a double harmonic
and a constant term. There therefore occurs a circum
stance similar to the singular perturbation of the sensi
tivity problem. In contrast, resonance is produced by
the cubic nonlinearity F°_x3, appearing at the &* order.
As a consequence, odd terms in the expansions of x and
D vanish. This suggests omitting them in advance, in or
der to obtain simpler equations. Moreover, the scaling
1 = &2fi must be introduced to render Fg XoJt of the same
order as the resonant term F’_ x3. The algorithm of Sec
tion 3.1 follows.

Odd m 3 case

This case is illustrated in Table 2. In sensitivity anal
ysis, similarly to the previous case, when the singular
perturbation vi'A;u; = 0 occurs, the odd terms of the
A series all vanish. However, while odd terms w;
w3 0, in contrast ws, wy, ..., are different from zero,
so that a complete series of ¢/ must be used for odd
m. However, an expansion of w based on fractional pow
ers of ¢, would not produce an ¢ order perturbation
equation in which to place the perturbation A,w,. A

similar problem arises in the bifurcation analysis, where
an even series would make it impossible to place F x2.
Therefore the algorithm of Section 3.2 must be
used.

Appendix B. Particular solutions and coefficients

The vectors and matrices z;, Z,, appearing in Eqs.
(17) are obtained by solving the following linear alge
braic problems:

(i20E )z, = F) u?
(lsz FS)Z[z = 1z + nglhlh

( Fg)zu = ngllllll
1
( F?()ZIZ = E[ Z, 7y +21:‘23(“1“2]

. 1 1
(30E  F)zy; == [F)zyu + 5 F)_ui]

2 3 XXX (B. 1)

—

(iwE Fg)zm = [ngz,,u|+F2xz“u1

2
+ ngzllul + ngleluful
V;(F?(xzuul + ngzllul

+ ngzllul + ngxz“uful)uz]

(iE  F)Zyup=Fmp vy (Fuiu

where E is the identity matrix. Since (iwE F.%) is
singular, the solutions of Egs. (B.1s¢) are not unique.
To avoid indeterminacies, a normalization condition



Table 2

Eigenpair sensitivity and bifurcation analysis: m = 3

Sensitivity analysis

Bifurcation analysis

W wo e Pw e wy +
Lo o+ e+ + @)
£ (Ay ADwy 0
g (Ao ADw;  Aiwp
&7 (Ao ZoDwy  Aiwy + Aaw
e (Ao ADws 4wy + Jow;
+ 3wy Awg
&3 (Ao ZoDwy AWz + Jow,
+ AW+ AWy Agwy (b)
&P (Ao ZoDws  Aywy + Jows
+ +Aswo  Aiw,
&: (Ag ADWs  Ws+ 4 JeWo
Aws
Arwy
£owe ow
&7 w Aw
&P W, /ﬁug + Jouy
er Wy Wi+ 24 hu + Aw (c)
&P wy o Wa o (Ag +24123)u;
+ 4
g /lf' V?Alul
R 3hA f(h)
&R 3000 Aif(h,h)
&1 3+ Iaf (A, a) (d)
+ ViAW
+ V];Azlll
AZ +aWA?+  +am 0 (e)

2/3

X exo+elx +ePx+ )

d/dt  dy+&Pd) + &3dy +
e: (dy Flxo 0
g3 (dy Fg)xl diX
g (dy FOx,  dixy dixg
& (do F?()x_; dix> d)x,
d3xo + 1/2F) x2
3 (dy Fg)X4 dixs  drxy
dsx,  dyXo + nge2x0x1
P (dy F)xs dixXs drXs
+ dsxo + F° xox; + F° x2
& (do F)xs dixs + dsXo
+ ng(xox_; +x1X2+ )
+1/6F X5 + FyXol
e xXg Aue?
P x diAuye™
g2 x, (deug + drAu, )&l

& X; X3+ [2d1d2A113 + d}Al]z]eiw'O

81+4/3 DXy X4 + [(d%A + 2d1d3A)ll3
T d4Auz]eimt0
&: di4 0
e 3dydiA f(dhA)
B 3dydiA diAf(diA,drA)

& 3dydlA+dA  diAf(diA,. )
+VIF u %,
+ vy Fygu) + ..

DA L (nA,A’4;pd, 444, + )

(b)

(d)

(@)

must be enforced, e.g. by imposing vilz;; =0,

VII_IZIP =0.

ing in Egs. (20) are given by:

The coefficients Cyy, and the row vectors C,, appear



Ciufi = v, F) uji

Coult = V3 (—Zuht + Fwp)

Cui = 1/2v; (B zyiuy + Yz + F 7wy
+F utuy)

Ciny = V3 (=227 + Fyzpou + Flzp00) (B2)
+1/2F) z;1w, + 1/2F), 71w,
+F ui )

Ciia = V3 (—2yy1 + Fy 2wy + 1/2F 211

+ 1/2F ul@,)

XXX
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