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Abstract An algorithm of parametric optimization to achieve optimalcyclic gaits in space
for a thirteen-link 3D bipedal robot with twelve actuated joints is proposed. The cyclic walk-
ing gait is composed of successive single support phases andimpulsive impacts with full
contact between the sole of the feet and the ground. The evolution of the joints are chosen as
spline functions. The parameters to define the spline functions are determined using an opti-
mization under constraints on the dynamic balance, on the ground reactions, on the validity
of impact, on the torques and on the joints velocities. The cost functional considered is rep-
resented by the integral of the torques norm. The torques andthe constraints are computed
at sampling times during one step to evaluate the cost functional for a feasible walking gait.
To improve the convergence of the optimization algorithm the explicit analytical gradient of
the cost functional with respect to the optimization parameters is calculated using the recur-
sive computation of torques. The algorithm is tested for a bipedal robot whose numerical
walking results are presented.

Keywords
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1 Introduction

The design of walking cyclic gaits for legged robots and particularly the bipeds has at-
tracted the interest of many researchers for several decades. Due to the unilateral constraints
of the biped with the ground and the great number of degrees offreedom, this problem is
not trivial. Intuitive methods can be used to obtain walkinggaits as in [1]. Using physical
considerations, the authors of [1] defined polynomial functions in time for an experimental
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planar biped. This method is efficient. However, to build a bipedal robot and to choose the
appropriate actuators or to improve the autonomy of a biped,an optimization algorithm can
lead to very interesting results. In [2] the Pontryagin’s principle is used to design impact-
less nominal trajectories for a planar biped with feet. However, the calculations are complex
and difficult to extend to the 3D case. Furthermore the adjoint equations are not stable and
highly sensitive to the initial conditions [3]. As a consequence a parametric optimization
is a useful tool to find optimal motion. For example, in robotics, basis functions as poly-
nomial functions, splines, truncated fourier series are used to approximate the motion of
the joints, [4], [5], [6], [7], [8], [9] and [10]. The choice of optimization parameters is not
unique. The torques, the Cartesian coordinates or joint coordinates can be used. Discrete
values for the torques defined at sampling times are used as optimization parameters in [11].
However it is necessary, when the torque is an optimized variable, to use the direct dynamic
model to find the joint accelerations. Then integrations areused to obtain the evolution of
the reference trajectory in velocity and in position. Thus this approach requires much calcu-
lations: the direct dynamic model is complex and many evaluations of this model are used
in the integration process. In [12], [13], [14], [15], [16] or [9] to overcome this difficulty, the
parametric optimization defines the reference trajectories of Cartesian coordinates or joint
coordinates for 2D bipeds with feet or without feet. An extension of this strategy is given in
this paper to obtain a cyclic walking gait for a 3D biped with twelve motorized joints.

The evaluation of the cost criterion requires multibody system dynamics computations.
The gradient of the criterion necessary in the optimizationprocess is usually solved numer-
ically through the finite difference method. This fact leadsto an ill-conditioning and a poor
convergence. Furthermore with finite difference approximations for the gradient, round-off
errors appear. Then it is not possible to ensure a bounded condition number for the approx-
imated Hessian. The optimization algorithms can stop prematurely [17]. Therefore some
papers proposed optimization algorithms with the exact analytic gradient, [18], [8] and [9].
The problem of the optimal control and the recursive dynamics-based computer animation
with the derivation of the explicit analytic gradients needed in the dynamic equations is ad-
dressed in [18]. The inverse dynamics model and the derivatives with respect to the path
parameters, useful for the evaluation of the gradient and the Hessian are computed recur-
sively for the general class of multi-body systems addressed in [8]. A walking gait with
double support phases is designed for a five-link planar biped without actuated ankles in [9].
The calculation of the analytic gradient for the criterion and the constraints is made for
this walking gait taking into account the characteristics of the over-actuated phases (double
support), the under-actuated phases (single support) and the impacts.

A step (a half stride) of the cyclic walking gait is uniquely composed of a single support
and an instantaneous double support which is modeled by passive impulsive equations. This
walking gait is simpler than the human gait. But, with this simple model the coupling effect
between the motion in frontal plane and sagittal plane can bestudied. A finite time double
support phase is not considered in this work currently because for rigid modeling of robot,
a double support phase can usually be obtained only when the velocity of the swing leg tip
before impact is null. This constraint has two effects. In the control process it will be diffi-
cult to touch the ground with a null velocity, as a consequence the real motion of the robot
will be far from the ideal cycle. Furthermore, large torquesare required to slow down the
swing leg before the impact and to accelerate the swing leg atthe beginning of the single
support. The energy cost of such a motion is higher than a motion with impact in the case
of a planar robot without feet [16], [9]. The evolution of joint variables are chosen as spline
functions of time instead of usual polynomial functions to prevent oscillatory phenomenon
during the optimization process (see [16], [19] or [20]). The coefficients of the spline func-
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tions are calculated as functions of initial, intermediateand final configurations, initial and
final velocities of the robot. These configuration and velocity variables can be considered as
optimization variables. Taking into account the impact andthe fact that the desired walking
gait is periodic, the number of optimization variables is reduced. In other study the period-
icity conditions are treated as equality constraints [21].The cost functional considered is
the integral of the torque norm, which is a common criterion for the actuators of robotic
manipulators, [4] and [22], [16] and [23]. During the optimization process, the constraints
on the dynamic balance, on the ground reactions, on the validity of impact, on the limits of
the torques, on the joints velocities and on the motion velocity of the bipedal robot are taken
into account. Therefore an inverse dynamic model is calculated during the single phase to
obtain the torques for a suitable number of sampling times. An impulsive model for the im-
pact on the ground with complete surface of the foot sole of the swing leg is deduced from
the dynamic model for the biped in double support phase. Thenit is possible to evaluate he
criterion cost, the constraints during the single support and at the impact.

The dynamic model for a 3D biped with twelve degrees of freedom is more complex
than for a 2D biped with less degrees of freedom. So its computation cost is important in
the optimization process and the use of Newton-Euler methodto calculate the torque is
more appropriate than the Lagrange method usually used. Then for the 3D biped, in single
support, our model is founded on the Newton Euler algorithm,considering that the reference
frame is connected to a stance foot. The walking study includes impact phase. The problem
solved in [18] and [8] is to obtain an optimal motion beginning at a given state and ending at
another given state. Furthermore authors used Lie theoretic formulation of the equations of
motion and the analytic gradient. In our case the objective is to define cyclic walking for the
3D Biped. Lie theoretic formulation is avoided because for rigid bodies in serial or closed
chains, recursive ordinary differential equations founded on the Newton-Euler algorithm is
appropriate see [24]. Then explicit analytic gradient of the cost functional with respect to
the parameters for the optimization problem is calculated using the recursive Newton-Euler
algorithm to obtain the torques.

The paper is organized as follows. The 3D biped and its dynamic model are presented
in Section 2. The cyclic walking gait and the constraints aredefined in Section 3. The opti-
mization parameters, optimization process and the cost functional are discussed in Section
4. The calculations to obtain the analytic gradient are detailed in Section 5. Furthermore
a summary of the global optimization process is given in Section 5. Simulation results are
presented in Section 6. Section 7 contains our conclusion and perspectives.

2 Model of the bipedal robot

2.1 Biped model

We considered an anthropomorphic bipedal robot with thirteen rigid links connected by
twelve motorized joints to form a serial structure. It is composed of a torso, which is not
directly actuated, and two identical open chains called legs which are connected at the hips.
Each leg is composed of two massive links connected by a jointcalled knee. The link at the
extremity of each leg is called foot which is connected at theleg by a joint called ankle. Each
revolute joint is assumed to be independently actuated and ideal (frictionless). The ankles
of the bipedal robot consist of the pitch and the roll axes, the knees consist of the pitch axis
and the hips consist of the roll, pitch and yaw axes to constitute a biped walking system
shown in figure 1. The action to walk associates single support phases separated by impacts
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with full contact between the sole of the feet and the ground,thus a model in single support,
and an impact model are derived. The dynamic model in single support is used to evaluate
the required torque thus only the inverse dynamic model is necessary. The impact model is
used to determine the velocity of the robot after the impact,the torques are zero during the
impact, thus a direct impact model is required.

The periodic walk studied includes a symmetrical behavior when the support is on right
leg and left leg, thus only the behavior during a step is computed, the behavior during the
following step is deduced by symmetry rules. As a consequence only the modeling on right
leg in support is considered in the following.

2.2 Geometric description of the biped

For a planar robot any parametrization of the robot can be used, for a 3D model of robot with
many degrees of freedom a systematic parametrization of therobot must be developed. Many
studies have been conducted for the robot manipulator, thusthe parametrization proposed
for the robot manipulator is re-used for the walking robot. The first difficulty is to choose
a base link for a walking robot. Since the right leg is in support during all the studied step.
The supporting foot is considered as base link.

To define the geometric structure of the biped we assume that the link 0 (stance foot) is
the base of the bipedal robot while the link 12 (swing foot) isthe terminal link. Therefore
we have a simple open loop robot which the geometric structure can be described using the
notation of Khalil and Kleinfinger [25]. The definition of thelink frames is presented in
figure 1 and the corresponding geometric parameters are given in table 1, where:

– a( j) denotes the frame antecedent to the framej
– The geometric parameters (α j , θ j , r j , d j ) determine the location of the framej with

respect to its antecedenta( j).

The frameR0, which is fixed to the tip of the right foot (determined by the width lp and the
lengthLp), is defined such that the axisz0 is directed along the axis of frontal joint ankle.
The frameR13 is fixed to the tip of the left foot with the same orientation asR0.

j a( j) α j θ j r j d j

1 0 0 q1 l1 d1

2 1
π
2

q2 0 0

3 2 0 q3 0 d3
4 3 0 q4 l4 d4

5 4 −
π
2

q5−
π
2

0 0

6 5 −
π
2

q6 0 0

7 6 0 q7 0 d7

8 7
π
2

q8−
π
2

0 0

9 8 −
π
2

q9 0 0

10 9 0 q10 l10 = l4 d10 = d4
11 10 0 q11 0 d11 = d3

12 11
π
2

q12 0 0

13 12 0 q13 l13 = −l1 d13 = d1

Table 1: Geometric parameters of the biped.
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Fig. 1: The multi-body model and link frames of the bipedal robot.

2.3 Dynamic model in single support phase

During the single support phase, our objective is only to determine the inverse dynamic
model. The joint position, velocity and acceleration are known. The actuator torques must
be calculated. Since the contact between the stance foot andthe ground is unilateral, the
ground reaction (forces and torques) must also be deduced. The Newton-Euler algorithm
(see [26]) can be adapted to determine the ground wrench.

During the single support phase the stance foot is assumed toremain in flat contact on the
ground,i.e., no sliding motion, no take-off, no rotation. Therefore the biped is equivalent to a
12-DoF manipulator. Letq∈R

12 be the generalized coordinates, whereq1, ...,q12 denote the
relative angles of the joints,q̇ ∈ R

12 andq̈ ∈ R
12 are the velocity vector and the acceleration

vector respectively. The dynamic model is represented by the following relation
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[

R0

Γ

]

= NE(q, q̇, q̈,R13) (1)

whereΓ ∈ R
12 is the joint torques vector,R0 ∈ R

6 is the ground wrench (forces and mo-
ments) exerted by the ground on the stance foot andR13∈R

6 represents the wrench, exerted
by the terminal link on the ground. In single support phaseR13 = 06×1.

2.3.1 Newton-Euler algorithm

The Newton-Euler method permits to calculate the dynamic model as defined in equa-
tion (1). This method proposed by Luh, Walker et Paul [27] is based on two recursive
calculations. Associated with our choice of parametrization the following algorithm is ob-
tained [26]. The forward calculation, from the base (stancefoot) to the terminal link (swing
foot) determines the velocity, the accelerations and the total forces and moments for each
link. Then the backward calculations, from swing foot to stance foot, gives the joint torques
and reaction forces using equation of equilibrium of each link successively.

Forward recursive equations
Taking into account that the bipedal robot remains flat on theground, the initial condi-

tions are
0ω0 = 06×1,

0ω̇0 = 06×1 and 0V̇0 = −[ g 0 0]t (2)

the real acceleration is0V̇0 = 06×1 but, the choice to write0V̇0 = −[ g 0 0]t , whereg is the
gravity acceleration, allows to take into account the gravity effect.

For the link j with its associated frameRj , and considering the linkj − 1 as its an-
tecedent, its angular velocityjω j , and the linear velocityjV j of the originO j of Rj are

jω j = jω j−1 +σ j q̇ j
ja j (3)

jV j = jA j−1

(

j−1V j−1 + j−1 ∧
ω

j−1

j−1P j

)

+σ j q̇ j
ja j (4)

with jA j−1, the orientation matrix of the frameRj−1 in the frameRj , σ j = 0 when the joint
j is a revolute joint,σ j = 1 when the jointj is prismatic joint andσ j = 1−σ j , ja j is an unit
vector along thezj axis, j−1P j is the vector expressing the origin of frameRj in the frame
Rj−1. The angular acceleration of linkj and the linear acceleration of the originO j of Rj are

j ω̇ j = jA j−1
j−1ω̇ j−1 +σ

(

q̈ j
ja j +

j ∧
ω j−1q̇ j

j a j

)

(5)

j V̇ j = jA j−1
(

j−1V̇ j−1 + j−1 U j−1
j−1P j

)

+σ j

(

q̈ j
ja j +2 j ∧ω j−1q̇ j

j a j

)

(6)

where jU j = j
∧
ω̇ j +

j ∧
ω j

j ∧ω j .
The total inertial forces and moments for the linkj are

jF j = M j
j V̇ j +

j U j
jMS j (7)

jM j = jJ j
j ω̇ j +

j ∧
ω j

(

jJ j
jω j

)

+ j
∧

MS
j

j V̇ j (8)

with jJ j inertia tensor of the linkj with respect to the frameRj , jMS j is the first moments
vector of the link j around the origin of the frameRj andM j is the mass of the linkj. The
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antecedent link to the link 0 (stance foot) is not defined. Forthe iteration of the stance foot,
only the equations(7) and(8) are used.

Backward recursive equations
The backward recursive equations are given as, forj = 12, ...,0

j f j = jF j +
j f j+1

j−1f j = j−1A j
j f j (9)

jm j = jM j +
j A j+1

j+1m j+1 + j
∧
P j+1

j f j+1 (10)

where j f j is the resultant force, exerted on the linkj by its antecedent and by the actuators
j, jm j is the resultant moment, exerted on linkj by its antecedent and by the actuator
j. These recursive equations will be initialized by the forces and moments exerted on the
terminal link by the environmentnfn+1 andnmn+1. In single supportnfn+1 =12 f13 = 03×1,
nmn+1 =12 m13 = 03×1, with R13 = [12f13,

12m13]
t . When j = 0, R0 = [0f0,

0 m0]
t represents

the ground reaction force and moment expressed in the frameR0.
If we neglect the friction and the motor inertia effects, thetorque (or the force)Γ j , is

obtained by projectingm j (or f j ) along the joint axis (zj )

Γ j =
(

σ j
j f j +σ j

jm j
)t ja j (11)

Γ0 is not defined, since there is no actuator.

2.3.2 The zero Moment Point (ZMP) position

The ground reaction wrench is known in the frameR0. This frame is associated with the
stance foot, and the axisy0, z0 defined the sole of the stance foot. The position of theZMP
which is the point of the sole such that the moment exerted by the ground is zero along the
axisy0 andz0 is such that:

yZMP =
−0m0z

0 f0x
(12)

zZMP =
0m0y
0 f0x

(13)

If the position ofZMP is within the support polygon, the biped robot is in dynamic equilib-
rium, the stance foot remains flat on the ground.

2.4 Impact model for the instantaneous double support

At the impact, the previous supporting foot becomes the swing foot, and its velocity after
impact can be different from zero. As a consequence the parametrization of the biped must
be able to describe a non fixed stance foot. Since the dynamic model is calculated with the
Newton-Euler algorithm, it is very convenient to define the velocity of the link 0 with the
Newton variables:V0 the linear velocity of the origin of the frameR0 andω0 the angular
velocity of the frameR0. For the impact model, or the double support model the biped’s
position is expressed byX = [X0,α0,q]t ∈ R

18, X0 andα0 are the position and the orienta-
tion variables of the frameR0; the robot velocity isV = [0V0,

0 ω0, q̇]t ∈ R
18 and the robot

acceleration iṡV = [0V̇0,
0 ω̇0, q̈]t ∈ R

18.
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2.4.1 Dynamic model in double support

The impact model is deduced from the dynamic model in double support, when we assume
that the acceleration of the robot and the reaction force areDirac delta-functions.

The dynamical model in double support can be written:

D(X)V̇ +C(V,q)+G(X)+D12R13 = DΓΓ+D0R0 (14)

whereD ∈ R
18×18 is the symmetric definite positive inertia matrix,C ∈ R

18 represents the
Coriolis and centrifugal forces,G∈R

18 is the vector of gravity.R0 = [0f0,
0 m0]

t is the vector
of the ground reaction forces on the stance foot,R13 = [12f13,

12m13] represents the vector of
forces exerted by the swing foot on the ground,D12, DΓ andD0 are matrices that allows to
take into account the forces and torques in the dynamic model.

The model of impact can be deduced from (14) and is:

D(X)∆V +D12I13 = D0I0 (15)

whereI13 andI0 are the intensity of Dirac delta-function for the forcesR13 andR0. ∆V is
the variation of velocity at the impact,∆V = V+−V−, whereV− is the velocity of the robot
before impact andV+ its velocity after impact.

The impact is assumed to be inelastic with complete surface of the foot sole touching
the ground. This means that the velocity of the swing foot impacting the ground is zero after
impact. Two cases are possible after an impact: the right foot (previous stance foot) takes
off the ground or both feet remain on the ground. In the first case, the vertical component
of the velocity of the taking-off foot just after an impact must be directed upwards and the
impulsive ground reaction in this foot equals zerosI0 = 06×1. In the second case, the right
foot velocity has to be zero just after an impact. The ground produces impulsive forces in
both feet. This implies that the vertical component of the impulsive ground reaction are
directed upwards. An impacting foot with zero velocity at impact, is a solution of the two
cases, there is no impact, the reaction forces on the two legsare null and the velocities of
the two feet after impact are null.

For our numerical tests, for the studied bipedal robot, onlythe first case gives a valid
solution. The swing foot velocity is zero before the impact (and there is no impact) or the
previous stance foot does not remain on the ground after the impact. Thus, the impact dy-
namic model is (see [28] and [29])

D(X)∆V = −D12I13 (16)

Dt
12V

+ = 06×1 (17)
[

0V−
0

0ω−
0

]

=

[

03×1

03×1

]

(18)

These equations form a system of linear equations which determines the impulse forcesI13

and the velocity vector of the biped after impactV+.

I13 =
(

Dt
12D

−1D12
)−1

Dt
12V

− (19)

V+ = −D−1D12
(

Dt
12D

−1D12
)−1

Dt
12V

− +V− (20)
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2.4.2 Calculation of the matrixD12

The wrenchR13 = [12f13,
12m13] is naturally expressed in the frameR12. The velocities of

link 12 with respect to the biped velocityV, can be expressed as

[

V12

ω12

]

=

[

V0 +
∧
ω

0

0P12

ω12

]

+J12q̇ (21)

where0P12 is the vector linking the origin of the frameR0 and the origin of the frameR12

expressed in the frameR0, J12 ∈ R
6×12 is the Jacobian matrix of the robot,J12q̇ represents

the effect of the joint velocities on the Cartesian velocityof link 12. The velocitiesV12 and
ω12 must be expressed in the frameR12, thus we write:

[

12V12
12ω12

]

=

[

12A0 −12A0
0
∧
P12

03×3
12A0

]

[

0V0
0ω0

]

+12J12q̇ (22)

where12A0 ∈ R
3×3 is the rotation matrix, which defines the orientation of the frameR0 with

respect to the frameR12. The expression (22) can be represented in matrix form as

[

12V12
12ω12

]

=

[

12A0 −12A0
0
∧
P12 |

| 12J1203×3
12A0 |

]

V. (23)

ThusD12 has the following structure

D12 =

[

12A0 −12A0
0
∧
P12 |

| 12J1203×3
12A0 |

]t

(24)

2.4.3 Calculation of the inertia matrixD

Following the same way, as the wrenchR0 is applied on the stance leg, in equation (14),
D0 = [I6×6 | 012×6]

t ∈ R
18×6. The matrixDΓ defines the actuated joint thus we have :DΓ =

[06×12 | I12×12]
t ∈ R

18×12.
When no force is applied on the swing leg, the dynamic model (14) becomes:

D(X)V̇ +C(V,q)+G(X) =

[

R0

Γ

]

(25)

Since the stance foot is assumed to remain in flat contact, theresultant ground reaction
force/momentR0 and the torquesΓ can be computed using the Newton-Euler algorithm
(see section 2.3). According to the method of Walker [30], the matrixD is calculated by the

algorithm of Newton-Euler, by noting from (14), that theith column ofD is equal to

[

R0

Γ

]

if

V = 018×1, g = 0, V̇ = ei , R13 = 06×1

ei ∈ R
18×1 is the unit vector, whose elements are zero except theith element which is equal

to 1. The vectorsC(V,q) andG(X) can be obtained in the same way thatD, however, for
the impact model the knowledge of these vectors are not necessary.
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3 Definition of the walking cycle

Because a walking biped gait is a periodical phenomenon our objective is to design a cyclic
biped gait. A complete walking cycle is composed of two phases: a single support phase
and a double support phase which is modeled through passive impact equations. The single
support phase begins with one foot which stays on the ground while the other foot swings
from the rear to the front. We assume that the double support phase is instantaneous. This
means that when the swing leg touches the ground the stance leg takes off. There are two
facets to be considered for this problem. The definition of reference trajectories and the
method to determine a particular solution of it. This section is devoted to the definition
of reference trajectories. The optimal process to choose the best solution of parameters,
allowing a symmetric step, from the point of view of a given cost functional will be described
in the next section.

3.1 Cyclic walking trajectory

Since the initial configuration is a double support configuration, both feet are on the ground,
the twelve joint coordinates are not independent. Because the absolute frame is attached to
the right foot we define the situation of the left foot by(yl f ,zl f ) and the situation of the
middle of the hips(xh,yh,zh,θh), both expressed inR0 frame.(yl f ,zl f ) are the Cartesian
coordinates, in the horizontal plane, of the left foot position, (xh,yh,zh) is the hip position
andθh defines the hip pitching angle. The two others parameters, orientation for the middle
of the hips in frontal and transverse planes, are chosen to beequal to zero. The orientation of
left foot is also chosen to be equal to zero. The values of the joint variables are solution of the
inverse kinematics problem for a leg, which may also be considered as a 6-link manipulator.
The problem is solved with a symbolic software, (SYMORO+, see [25]).

Let us consider, for the cyclic walking gait, the current step in the time interval[0, T].
In order to deduce the final configuration of the bipedal robotat time t = T, we impose
a symmetric role of the two legs, therefore from the initial configurationq0 = q(t = 0) in
double support, the final configurationqT = q(t = T) in double support is deduced as:

qT = Eq0 (26)

whereE ∈ R
12×12 is an inverted diagonal matrix which describes the exchangeof legs.

Taking into account the impulsive impact(16)-(18), we can compute the velocity vector
of the biped after the impact. Therefore, the joint rates after impact,q̇+, can be calculated
when the joint velocities before the impact,q̇−, is known. The use of the defined matrixE
allows us to calculate the initial joint ratesq̇0 = q̇(t = 0) for the current step as:

q̇0 = Eq̇+. (27)

By this way the conditions of cyclic motion are satisfied and the initial and final velocities
and the configuration are completly defined byq0 andq̇−.

3.2 Constraints

In order to insure that the trajectory is possible, many constraints have to be considered.
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3.2.1 Magnitude constraints on position, velocities and torque

– Each actuator has physical limits such that

|Γi |−Γi,max≤ 0, for i = 1, ...,12 (28)

whereΓi,max denotes the maximum value for each actuator.

|q̇i |− q̇i,max≤ 0, for i = 1, ...,12 (29)

whereq̇i,max denotes the maximum joint rate for each actuator.
– The upper and lower bounds of joints for the configurations during the motion are:

qi,min ≤ qi ≤ qi,max, for i = 1, ...,12 (30)

qi,min andqi,max respectively stands for the minimum and maximum joint limits.

3.2.2 Geometric constraints in double support phase

– The distanced(hip, f oot) between the foot in contact with the ground and the hip must
remain within a maximal value,i.e.,

d(hip, f oot) ≤ lhip. (31)

This condition must hold for final configurations of the double support phase.
– In order to avoid the internal collision of both feet throughthe lateral axis the heel and

the toe of the left foot must satisfy

yheel≤−a andytoe≤−a (32)

with a >
lp

2
andlp is the width of right foot.

3.2.3 Walking constraints

– During the single support phase to avoid collisions of the swing leg with the stance leg
or with the ground, constraints on the positions of the four corners of the swing foot are
defined.

– We must take into account the constraints on the ground reaction R0 = [R0x,R0y,R0z]
t for

the stance foot in single support phase as well as impulsive forcesI13 = [I13x, I13y, I13z]
t

on the foot touching the ground in instantaneous double support phase. The ground
reaction forces in single support and the impulsive forces at the impact must be directed
upward, then the conditions of no take off are deduced:

R0x ≥ 0 (33)

I13x ≥ 0. (34)

The ground reaction in single support and the impulsive forces at the impact must be
inside a friction cone defined by the friction coefficientµ. This is equivalent to write

√

R2
0y +R2

0z ≤ µR0x (35)
√

I2
13y + I2

13z ≤ µI13x (36)
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– In order to maintain the balance in dynamic walking, the ZeroMoment Point which is
equivalent to the Center of Pressure (CoP), (see [31], [32], [33]), must be within the
interior of the support polygon of the biped stance foot. Then for a rectangular foot the
CoPmust satisfy

−lp

2
< CoPy <

lp

2
, (37)

−Lp < CoPz < 0 (38)

wherelp is the width andLp is the length of the feet.
– An average walking rate is imposed. Thus

VdT −d = 0 (39)

whered is the step length,T is the step duration andVd is a desired speed of walking.

4 Parametric optimization

4.1 The cubic spline

The biped is driven by 12 torques, and its configuration is given in single support phase by
12 coordinates grouped in vectorq. To define the joint evolution, cubic spline functions [34]
are used for constructing the joint trajectories. For each joint j, ( j = 1, . . . ,12) a cubic spline
function has the form:

q j(t) =



















ϕ j,1(t) i f t1 ≤ t < t2
ϕ j,2(t) i f t2 ≤ t < t3

...
...

ϕ j,n−1(t) i f tn−1 ≤ t ≤ tn

(40)

wheren is the number of selected knots.ϕ j1(t), . . . ,ϕ jn−1(t) are polynomials of third-order
such that:

ϕ j,k(t) =
3

∑
i=0

ai
j,k(t − tk)

i , for t ∈ [tk, tk+1], k = 1, ...,n−1 (41)

whereai
j,k are calculated such that the position, velocity and acceleration are always con-

tinuous int1, ..., tn. The cubic spline functions are uniquely defined by specifying an initial
configurationq0, an initial velocityq̇0 (both att = t1 = 0), a final configurationqT , and a fi-
nal velocityq̇T (both att = tn = T) in double support, withn−2 intermediate configurations
in single support andT the duration of this single support. Consequently, the configurations
will be defined by a small number of optimization parameters.

4.2 Optimization parameters

A parametric optimization problem has to be solved to designa cyclic bipedal gait with
successive single supports and passive impacts (no impulsive torques are applied at impact).
For a step defined on the time interval[0, T] this problem depends on parameters to prescribe
then−2 intermediate configurations, the final velocityq̇T in the single support phase and,
using the geometric model, the configuration of the biped at impact. Taking into account the
conditions(26) and(27) the minimal number of parameters necessary to define the joint
motion are:
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1. (n− 2)× 12 parameters are needed to define then− 2 intermediate configurations in
single support phase.

2. The joint rates of the biped before the impact are also prescribed by twelve parameters,
q̇−

i (i = 1, ...,12).
3. The position of the left foot denoted by(yl f ,zl f ) in the horizontal plane as well as the

situation of the middle of the hips defined by(xh,yh,zh,θh) in double support phase are
chosen as parameters.

0x

0y

0z

hz

hy

hx

lf
z

lf
x

l fy

hq

1p

6p

5p

2p
3p

=4p

Fig. 2: The geometric configuration of six parameters that define the initial configuration of the robot.

Then the total number of parameters is : 18+(n−2)×12. Let us remark that to define
the initial and final configurations for the step, when both leg feet touch the ground, nine
parameters are required. However, we define these configurations with six parameters only.
These six parameters, see figure 2, are defined by the vectorpG = [p1 p2 p3 p4 p5 p6]

t with
the following geometric configuration data:

1. p1 : height of pelvis.
2. p2 : position of the trunk followingy0 in the frameR0.
3. p3 : position of the trunk followingz0 in the frameR0.
4. p4 : orientation of the trunk in the sagittal plane.
5. p5 : distance between the feet in the frontal plane.
6. p6 : distance between the feet in the sagittal plane.

The two others parameters, orientation of the middle of the hips in frontal and transverse
planes, are fixed to zero.
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To summarize, the components of the joint evolutionq are equal to the basis functions
qi (40) and we can write the joint motion with respect to the set of parametersP as

q = ϕ(P, t) (42)

q̇ = ϕ̇(P, t) (43)

q̈ = ϕ̈(P, t) (44)

whereϕ is the vector of componentsϕi(t) (40) defining the cubic splines for the jointi,
i = 1, ...,12. The chosen vector of optimization parametersP can be written:

P =









P1

P2

P3

P4









=









qint1

qint2

q̇T

pG









(45)

Four our numerical testsn = 4 and then two intermediate configurationsqint1 andqint2

of the 3D biped in single support are considered.

4.3 Criterion

In the optimization process we consider, as cost functionalJ, the integral of the norm of the
torque divided by the step length. In other words we are minimizing a quantity proportional
to the energy lost in the actuators for a motion of one meter. This general form of minimal
energy performance represents the losses by Joule effects for the electrical motors

J =
1
d

Z T

0
ΓtΓdµ (46)

To impose an average motion velocity, we take into account the equality constraint (39)
in (46) as a penalty function, the cost functionalJ can be write as

J =
1
d

Z T

0
ΓtΓdµ+ρ

(

VdT −d
)2

(47)

whereρ > 0 is a penalty factor.

4.4 Statement of the optimization problem to design a cyclicwalking gait for the 3D biped

Many values of parameters can give a periodic bipedal gait satisfying constraints(28)-(34) .
A parametric optimization process, that objective is to minimize J under nonlinear con-
straints, is used to find a particular nominal motion with thesplines (40) as basis functions.
This optimization problem can be formally stated as

Minimize J(P)
subject tog j(P) ≤ 0 j = 1,2, ..., l

}

(48)

whereJ(P) is the cost functional to minimize withl constraintsg j(P) ≤ 0 to satisfy. These
constraints are given in section 3.2. The nonlinear constrained problem is solved by using
the Matlab functionfmincon. This optimization function provides an optimization algorithm
based on the Sequential Quadratic Programming (SQP). Thereare forty-two parameters for
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this nonlinear optimization problem: twenty-four for the two intermediate configurations
in single support, twelve for the joint rates before the impact and six to solve the inverse
kinematics problem, subject to the constraints given by(28)-(34). The optimization prob-
lem (48) is numerically solved by using the exact analytic gradient of the cost functional
with respect to the forty-two parameters. The calculation of this gradient is detailed in the
following section.

5 Gradient of the cost functional

The optimization process uses the dynamic model (1) to calculate the torque vectorΓ for
sampling times{0, ..., tk, ...,T} and to evaluate the cost functional (46) on the current step.
ThenΓ is function ofq, q̇ andq̈ of which the components equal basis functionsqi (40) and
their associated time derivatives ˙qi andq̈i , i = 1, ...,12:

Γ = Γ(q, q̇, q̈) (49)

The general formula of the gradient of the cost functional with respect to the vectorP
(45) is

∂J
∂P

=
∂

∂P

(

1
p6

)

Z T

0
ΓtΓdµ+

1
p6

∂
∂P

(

Z T

0
ΓtΓdµ

)

+ρ
∂

∂P

(

(VdT − p6)
2
)

=

[

∂J
∂P1

t ∂J
∂P2

t ∂J
∂P3

t ∂J
∂P4

t]t

(50)

The calculation of each components of
∂J
∂P

will be detailed now.

– Calculation of
∂J

∂P1
=

∂J
∂qint1

and
∂J

∂P2
=

∂J
∂qint2

: The covered distancep6 for a step does

not depend on the intermediate configurationsqint1 andqint2. Then the calculation of the
gradient of the cost functional with respect toP1, the way being similar forP2, leads to

∂J
∂P1

=
2
p6

Z T

0
Γt ∂Γ

∂qint1
dµ (51)

Tacking into account the relations (42), (43) and (44) and with the partial derivative
formulas for composed functions, the partial derivative ofΓ with respect toqint1 can be
written,

∂Γ
∂qint1

=
∂Γ
∂q

∂q
∂qint1

+
∂Γ
∂q̇

∂q̇
∂qint1

+
∂Γ
∂q̈

∂q̈
∂qint1

(52)

– Calculation of
∂J

∂P3
=

∂J
∂q̇T

: For the optimization problem the covered distanced is not

defined with the velocity vectoṙqT . Furthermore via the algebraic matrix equation (16)
and (17) and the cyclic walking conditions (26) and (27), theinitial velocity vectorq̇0

after impact is function of the final velocity vector before impact and the configuration
of the 3D biped in double support such that:

q̇0 = q̇0(P3,P4) = q̇0(q̇T ,pG) (53)
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In consequence using (42), (43), (44) and (53) the gradient of the cost functional with
respect toP3 is:

∂J
∂P3

=
2
p6

Z T

0
Γt ∂Γ

∂q̇T
dµ (54)

where,
∂Γ
∂q̇T

=
∂Γ
∂q

∂q
∂q̇T

+
∂Γ
∂q̇

∂q̇
∂q̇T

+
∂Γ
∂q̈

∂q̈
∂q̇T

. (55)

with,
∂q

∂q̇T
=

∂ϕ
∂q̇0

∂q̇0

∂q̇T
+

∂ϕ
∂q̇T

,

∂q̇
∂q̇T

=
∂ϕ̇
∂q̇0

∂q̇0

∂q̇T
+

∂ϕ̇
∂q̇T

,

∂q̈
∂q̇T

=
∂ϕ̈
∂q̇0

∂q̇0

∂q̇T
+

∂ϕ̈
∂q̇T

.

– Calculation of
∂J

∂P4
=

∂J
∂pG

: The initial and final configurationsq0 andqT are found us-

ing the inverse geometric model thanks to the parameters vectorpG = [p1, p2, p3, p4, p5, p6]
t

and to the relation (26). The covered distance is directly function ofq0 andqT . The cal-
culation of the gradient of the cost functional with respectto P4 is given by

∂J
∂P4

= −
1
p2

6

∂p6

∂pG

Z T

0
ΓtΓdµ+

2
p6

Z T

0
Γt ∂Γ

∂pG
dµ+2ρ

(

p6−VdT
)

(56)

where,
∂Γ

∂pG
=

∂Γ
∂q

∂q
∂pG

+
∂Γ
∂q̇

∂q̇
∂pG

+
∂Γ
∂q̈

∂q̈
∂pG

(57)

Since the vectorpG is function of the initial and final configurationsq0 andqT and using
the relation (53) the partial derivative ofq with respect ofpG can be written

∂q
∂pG

=
∂ϕ
∂q0

∂q0

∂pG
+

∂ϕ
∂qT

∂qT

∂pG
+

∂ϕ
∂q̇0

∂q̇0

∂pG
,

∂q̇
∂pG

=
∂ϕ̇
∂q0

∂q0

∂pG
+

∂ϕ̇
∂qT

∂qT

∂pG
+

∂ϕ̇
∂q̇0

∂q̇0

∂pG

and
∂q̈

∂pG
=

∂ϕ̈
∂q0

∂q0

∂pG
+

∂ϕ̈
∂qT

∂qT

∂pG
+

∂ϕ̈
∂q̇0

∂q̇0

∂pG
.

The partial derivative
∂q̇0

∂pG
, using the equation (27) with the constant matrixE, can be

rewritten such as
∂q̇0

∂pG
= E

∂q̇+

∂pG
.

The algebraic impact equations (16) and (17) can be concatenated such as:

[

D D12

Dt
12 06×6

][

V+

I13

]

=

[

DV−

06×1

]

(58)

christine
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The partial derivative of the matrix equation (58) versuspG is:







∂D
∂pG

∂D12

∂pG
∂Dt

12

∂pG
06×6











V+

I13



+





D D12

Dt
12 06×6











∂V+

∂pG
∂I13

∂pG






=









∂DV−

∂pG

06×1









(59)

The matrix equation (59) can be rewritten







∂V+

∂pG
∂I13

∂pG






= W









−







∂D
∂pG

∂D12

∂pG
∂Dt

12

∂pG
06×6











V+

I13



+









∂DV−

∂pG

06×1

















(60)

with

W =

[

D D12

Dt
12 06×6

]−1

and
W11 = D−1(I18×18−D12(Dt

12D
−1D12)

−1Dt
12D

−1)
W21 = (Dt

12D
−1D12)

−1Dt
12D

−1 = Wt
12

W22 = −(Dt
12D

−1D12)
−1.

Finally we have:









∂V+

∂pG

∂I13

∂pG









=









−W11

(

∂D
∂pG

V+ +
∂D12

∂pG
I13

)

−W12
∂Dt

12

∂pG
V+ +W11

∂D
∂pG

V−

−W21

(

∂D
∂pG

V+ +
∂D12

∂pG
I13

)

−W22
∂Dt

12

∂pG
V+ +W21

∂D
∂pG

V−









(61)

With the knowledge ofqT , the solutionsV+ and I13 of the impact equation (58) and
using (18) which stipulates that before impact the stance foot is motionless such as

V− = [01×3,01×3, q̇−T ]t whereq̇− = q̇T , variable
∂q+

∂pG
is equal to:

∂q+

∂pG
=

(

−W11

(

∂D
∂pG

(V+ −V−)+
∂D12

∂pG
I13

)

−W12
∂Dt

12

∂pG
V+

)

((7:18)×1)

(62)

To summarize, in this section 5 we present the main necessaryconnections to calculate
the gradient of the cost functional. Of course the computation of this gradient is heavy.

However, we can remark that only the terms
∂Γ
∂q

,
∂Γ
∂q̇

and
∂Γ
∂q̈

have to be included in the

recursive dynamics computation defined by the Newton-Eulerequations. Their calculations
are detailed in [35].

In conclusion the algorithm to obtain an optimal cyclic walking gait for the biped can
be summarized by:
Step 1: Give initial values for each components of the parameter vectorP (45).
Step 2: With the parametersP4 = pG compute the initial configuration and from the equa-

tion (26) the final configuration.
Step 3: With the final configurations, the parametersP3 = q̇T and the equations (16), (17)

and (27) compute the initial velocitẏq0.
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Step 4: For timet1 = 0 to tn = T, compute the spline functions (40) for the initial and final
configurations and the parametersP1 = qint1 and P2 = qint2. Compute their first and
second derives with respect to time.

Step 5: For sampling time{0, ..., tk, ...,T}, solve recursively the inverse dynamics (2)-(11)
to compute the torques, the position of the Center of PressureCoP, the constraints and

the partial derivatives
∂Γ
∂q

,
∂Γ
∂q̇

and
∂Γ
∂q̈

.

Step 6: Using the Euler method approximate the integral of the square vector of torques to
compute the cost functional and its gradient respect to the parameter vectorP.

Step 7: If the condition to stop the optimization are satisfied, stop, in other case go to step
1 with a new parameter vector given by the optimization process.

6 Simulations results

To validate our proposed method, we present the results of anoptimal motion for the biped
shown in figure 1. The desired trajectory was obtained by the optimization process presented
in Section IV with a desired average velocity of 1m/s. The case of optimisation with both
finite difference and analytical gradients of the cost functional are considered. In the case of
finite difference gradient, the algorithm was terminated after 513 iterations (22858 function
evaluations). The final value of the objective function was 9354.792 and the total elapsed
time was 3355.92 s. For the analytical gradient, the algorithm was terminated after 407 iter-
ations (18236 function evaluations), with a total computation time of 6822.48 s and the final
value of the objective function 6295.95. The introduction of the analytical gradient, showed
a better stability in the optimization process and a good convergence to find a minimum
local.
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Fig. 3: Comparison of optimization processes: curves corresponding to the convergence behavior of the algo-
rithm with the analytical and finite difference gradients are solid and dash-dotted, respectively.

The convergence speed and the number of iterations are compared for the optimization
process with the analytical gradient and finite difference gradients of the cost functional.
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Figure 3 shows the number of iterations for both optimization processes, while table 3 shows
a summary of the results for several walking rates.

Physical Parameters Mass(kg) Length(m)

Torso 40.55 d7 = 0.120
Hip joints 2.04 linked to torso

Thigh 2.08 d4 = 0.3
Shin 1.75 d3 = 0.3

Ankle joints 0.65 d1 = 0.105
Foot 1.64 Lp = 0.214, lp = 0.136

Table 2: Parameters of the 3D biped, see figure 1
.

Figure 4 shows the evolution of the optimal motion for one step with duration, of a
single support, equal 0.4 s. For the simulation, we use the physical parameters given intable
2. The bipedal robot has the height of 1.30mand the weight of 56.86kg. The inertia of each
link are also taken into account in the dynamic model.

The results shown have been obtained withTs = 0.4 s. The optimal motion is such that
the step length is 0.4 m and the walking rate is imposed to 1m/s. The simulation of the
optimal motion for one step is illustrated in figure 4 and for 3walking steps in figure 9.
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Fig. 4: Stick animation of a simulation of walking biped takingone step.

The normal components of the ground reaction forces of the stance foot during one step
are presented in figure 5. The average vertical reaction force is 547.81N, which is coherent
with the weight of the robot which the mass equals 56.86 Kg. In the optimisation process,
the chosen friction coefficient is 0.7., the condition of nonsliding is satisfied as it can be
seen in figure 5.

The figure 6 shows the evolution of the trajectory of the center of pressureCoP con-
sidering one and two intermediate configurations. In both cases, the evolution of theCoP is
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Fig. 5: The ground reaction forces during the single supportphase.

always inside the rectangle determined bylp = 0.136mandLp = 0.214m, that is, the robot
maintains the balance during the motion. From figure 6, it canbe seen that considering two
intermediate configurations, the evolution of theCoP presents amplitudes lower. Because
the minimal distance between ofCoP and the boundary of the foot is large, smaller foot
is acceptable for this cyclic motion. The criterion cost, considering only one intermediate
configuration, is 6472.5N2 ·m·s.
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Fig. 6: The evolution ofCoP trajectory: curves corresponding toCoP trajectory considering one and two
intermediate configurations are dotted and solid, respectively.

In figure 7, the evolution of the cost criteria is drawn as function of several walking rates.
A faster walking motion than 1.2 m/s can not be obtained.

The curves in figure 8, illustrate the evolution of torques cost of each joint of stance and
swing leg as function of the walking rate. The torques cost ofswing leg is less important
than the torques cost of stance leg. For slow motion, less than 0.6 m/s, the torque cost of the
stance hip is less important, while that for a walking gait faster than 0.9 m/s this torque cost
increases considerably.
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Fig. 7: The evolution of the cost criteria with analytical gradient.

(a) stance leg

(b) swing leg

Fig. 8: The cost of the joint torques: curves corresponding to the torque costs of the ankle and knee are
dash-dotted and solid, respectively. The dotted curve corresponds to the torque cost of the hip.

7 Conclusion

Optimal joint reference trajectories for cyclic walking gaits of a 3D biped have been found.
A methodology to design such optimal trajectories is developed. The definition of optimal
trajectories is useful to test a robot design. In order to usea classical optimization technique,
the optimal trajectory is described by a set of parameters: we choose to define the evolution
of the actuated relative angle as spline functions. A cyclicsolution is desired. The number
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Fig. 9: Cyclic motion of the bipedal robot.

Walking rate(m/s) Gradient Number of iterations Function evaluations Optimum value Time (sec)

0.4
analytical 593 26461 7221.53 10677.15

finite differences 487 21235 7218.6 9071.95

0.5
analytical 398 17780 5807.57 6862.54

finite differences 401 17499 5809.45 7567.15

0.6
analytical 560 24964 5108.99 9488.86

finite differences 488 21260 4998.15 9280.12

0.7
analytical 449 20145 4794.33 7677.10

finite differences 772 33590 4815.49 17895.15

0.8
analytical 564 25212 5205.01 9689.82

finite differences 813 35356 6104.05 14738.13

0.9
analytical 438 19590 5961.33 7471.96

finite differences 895 39767 5984.20 5820.21

1.0
analytical 407 18236 6295.95 6822.48

finite differences 513 22858 9354.79 3355.92

1.1
analytical 452 20208 7130.79 7856.68

finite differences 429 18613 15856 8321.76

Table 3: Optimization results. For each optimal motion, the vector of initial parameters was the same for both
optimal process. All of the simulations were performed on computer equipped with a processor 2.0 GHzCore
Duo from Intel.

of the optimization variables is reduced by taking into account of the cyclicity condition
explicitly.

Some inequality constraints such as the limits on the torques and the velocities, the
condition of no sliding during motion and impact, some limits on the motion of the free
leg are taken into account. The cost functional is calculated from the integral of the torques
norm. The torques are computed for sampling times using the inverse dynamic model. This
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model is obtained with the recursive Newton-Euler algorithm. The reference frame is the
stance foot.

In the optimization process, a calculation of the gradient by a finite approximation can
generate numerical errors for the Hessian computation. Then to improve the convergence of
the optimization algorithm, the explicit analytical gradient with respect to the optimization
parameters is calculated using the recursive equations of the dynamic model. Optimal mo-
tions for a given duration of the step and for a walking rate imposed have been obtained. The
numerical results obtained are realistic with respect to the size of the walker under study.

The proposed method to define an optimal motion will be tested, considering a sub-phase
of rotation of the supporting phase about the toe, closer to human. Another perspective is to
evaluate the gradient of constraints with respect to the optimization parameters.
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