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Abstract An algorithm of parametric optimization to achieve optimgtlic gaits in space
for a thirteen-link 3D bipedal robot with twelve actuatethjs is proposed. The cyclic walk-
ing gait is composed of successive single support phasegrandsive impacts with full
contact between the sole of the feet and the ground. Thetéwolf the joints are chosen as
spline functions. The parameters to define the spline fanstare determined using an opti-
mization under constraints on the dynamic balance, on thergt reactions, on the validity
of impact, on the torques and on the joints velocities. Thet fimctional considered is rep-
resented by the integral of the torques norm. The torquestandonstraints are computed
at sampling times during one step to evaluate the cost fumeltior a feasible walking gait.
To improve the convergence of the optimization algorithmeRplicit analytical gradient of
the cost functional with respect to the optimization partargeis calculated using the recur-
sive computation of torques. The algorithm is tested forpethal robot whose numerical
walking results are presented.

Keywords

3D Bipedal robot, Robot dynamics, Fully actuated robot, M@&aEuler algorithm, Cyclic
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1 Introduction

The design of walking cyclic gaits for legged robots and ipalarly the bipeds has at-
tracted the interest of many researchers for several decBde to the unilateral constraints
of the biped with the ground and the great number of degreé®eflom, this problem is
not trivial. Intuitive methods can be used to obtain walkgaits as in [1]. Using physical
considerations, the authors of [1] defined polynomial fiom in time for an experimental
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planar biped. This method is efficient. However, to build pebbial robot and to choose the
appropriate actuators or to improve the autonomy of a bigedptimization algorithm can
lead to very interesting results. In [2] the Pontryaginmpiple is used to design impact-
less nominal trajectories for a planar biped with feet. Hamvgethe calculations are complex
and difficult to extend to the 3D case. Furthermore the atgguations are not stable and
highly sensitive to the initial conditions [3]. As a consegue a parametric optimization
is a useful tool to find optimal motion. For example, in robstibasis functions as poly-
nomial functions, splines, truncated fourier series ardus approximate the motion of
the joints, [4], [5], [6], [7], [8], [9] and [10]. The choicef@mptimization parameters is not
unique. The torques, the Cartesian coordinates or jointdioates can be used. Discrete
values for the torques defined at sampling times are usediasizgtion parameters in [11].
However it is necessary, when the torque is an optimizedlbbaj to use the direct dynamic
model to find the joint accelerations. Then integrationsused to obtain the evolution of
the reference trajectory in velocity and in position. Thuis fipproach requires much calcu-
lations: the direct dynamic model is complex and many evalna of this model are used
in the integration process. In [12], [13], [14], [15], [16] [®] to overcome this difficulty, the
arametric optimization defines the reference trajecdarfeCartesian coordinates or joint
é}ordinates for 2D bipeds with feet or without feet. An esien of this strategy is given in
this paper to obtain a cyclic walking gait for a 3D biped witfetve motorized joints.

The evaluation of the cost criterion requires multibodytegsdynamics computations.
The gradient of the criterion necessary in the optimizagimtess is usually solved numer-
ically through the finite difference method. This fact le&dlan ill-conditioning and a poor
convergence. Furthermore with finite difference approxioms for the gradient, round-off
errors appear. Then it is not possible to ensure a boundetitmonnumber for the approx-
imated Hessian. The optimization algorithms can stop pteraly [17]. Therefore some
papers proposed optimization algorithms with the exaclyéingyradient, [18], [8] and [9].
The problem of the optimal control and the recursive dynarbiased computer animation
with the derivation of the explicit analytic gradients neddn the dynamic equations is ad-
dressed in [18]. The inverse dynamics model and the deraativith respect to the path
parameters, useful for the evaluation of the gradient aedHssian are computed recur-
sively for the general class of multi-body systems addikasd8]. A walking gait with
double support phases is designed for a five-link planarbigghout actuated ankles in [9].
The calculation of the analytic gradient for the criteriamdathe constraints is made for
this walking gait taking into account the characteristitthe over-actuated phases (double
support), the under-actuated phases (single supportharichpacts.

A step (a half stride) of the cyclic walking gait is uniquelyroposed of a single support
and an instantaneous double support which is modeled biwvpasgulsive equations. This
walking gait is simpler than the human gait. But, with thisiple model the coupling effect
between the motion in frontal plane and sagittal plane castindied. A finite time double
support phase is not considered in this work currently beedor rigid modeling of robot,
a double support phase can usually be obtained only wheretbeity of the swing leg tip
before impact is null. This constraint has two effects. la tlontrol process it will be diffi-
cult to touch the ground with a null velocity, as a conseqeehe real motion of the robot
will be far from the ideal cycle. Furthermore, large torqaes required to slow down the
swing leg before the impact and to accelerate the swing Iéigeabeginning of the single
support. The energy cost of such a motion is higher than aometith impact in the case
of a planar robot without feet [16], [9]. The evolution of jbivariables are chosen as spline
functions of time instead of usual polynomial functions teyent oscillatory phenomenon
during the optimization process (see [16], [19] or [20]) eTdvefficients of the spline func-
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tions are calculated as functions of initial, intermediatel final configurations, initial and
final velocities of the robot. These configuration and vejoeariables can be considered as
optimization variables. Taking into account the impact #relfact that the desired walking
gait is periodic, the number of optimization variables idueed. In other study the period-
icity conditions are treated as equality constraints [dtje cost functional considered is
the integral of the torque norm, which is a common criterionthe actuators of robotic
manipulators, [4] and [22], [16] and [23]. During the optization process, the constraints
on the dynamic balance, on the ground reactions, on theityatiflimpact, on the limits of
the torques, on the joints velocities and on the motion vglad the bipedal robot are taken
into account. Therefore an inverse dynamic model is caledlduring the single phase to
obtain the torques for a suitable number of sampling timesirdpulsive model for the im-
pact on the ground with complete surface of the foot sole ®fthing leg is deduced from
the dynamic model for the biped in double support phase. Tttismossible to evaluate he
criterion cost, the constraints during the single suppadtat the impact.

The dynamic model for a 3D biped with twelve degrees of freed® more complex
than for a 2D biped with less degrees of freedom. So its coatiout cost is important in
the optimization process and the use of Newton-Euler metbazhlculate the torque is
more appropriate than the Lagrange method usually useah fbin¢he 3D biped, in single
support, our model is founded on the Newton Euler algorittonsidering that the reference
frame is connected to a stance foot. The walking study ireduchpact phase. The problem
solved in [18] and [8] is to obtain an optimal motion begirgat a given state and ending at
another given state. Furthermore authors used Lie thedoetnulation of the equations of
motion and the analytic gradient. In our case the objective tlefine cyclic walking for the
3D Biped. Lie theoretic formulation is avoided because fgidrbodies in serial or closed
chains, recursive ordinary differential equations fouhda the Newton-Euler algorithm is
appropriate-see [24]. Then explicit analytic gradient @& twost functional with respect to
the parameters for the optimization problem is calculatgdgithe recursive Newton-Euler
algorithm to obtain the torques.

The paper is organized as follows. The 3D biped and its dyoanaidel are presented
in Section 2. The cyclic walking gait and the constraintsdefned in Section 3. The opti-
mization parameters, optimization process and the costifumal are discussed in Section
4. The calculations to obtain the analytic gradient areildetan Section 5. Furthermore
a summary of the global optimization process is given ini8ack. Simulation results are
presented in Section 6. Section 7 contains our conclusidmparspectives.

2 Model of the bipedal robot
2.1 Biped model

We considered an anthropomorphic bipedal robot with teirtegid links connected by
twelve motorized joints to form a serial structure. It is queed of a torso, which is not
directly actuated, and two identical open chains called leich are connected at the hips.
Each leg is composed of two massive links connected by agaited knee. The link at the
extremity of each leg is called foot which is connected atélgeoy a joint called ankle. Each
revolute joint is assumed to be independently actuated éewl (frictionless). The ankles
of the bipedal robot consist of the pitch and the roll axes kihees consist of the pitch axis
and the hips consist of the roll, pitch and yaw axes to carsti& biped walking system
shown in figure 1. The action to walk associates single sugp@ases separated by impacts
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with full contact between the sole of the feet and the grotimgs a model in single support,
and an impact model are derived. The dynamic model in singdpart is used to evaluate
the required torque thus only the inverse dynamic modeléesgary. The impact model is
used to determine the velocity of the robot after the impihettorques are zero during the
impact, thus a direct impact model is required.

The periodic walk studied includes a symmetrical behavioemthe support is on right
leg and, left leg, thus only the behavior during a step is cdeghuthe behavior during the
following step is deduced by symmetry rules. As a conseqeienty the modeling on right
leg in support is considered in the following.

2.2 Geometric description of the biped

For a planar robot any parametrization of the robot can be,disea 3D model of robot with
many degrees of freedom a systematic parametrization odbieé must be developed. Many
studies have been conducted for the robot manipulator,ttteiparametrization proposed
for the robot manipulator is re-used for the walking robdieTirst difficulty is to choose
a base link for a walking robot. Since the right leg is in supplaring all the studied step.
The supporting foot is considered as base link.

To define the geometric structure of the biped we assumehbdink O (stance foot) is
the base of the bipedal robot while the link 12 (swing foothis terminal link. Therefore
we have a simple open loop robot which the geometric straatan be described using the
notation of Khalil and Kleinfinger [25]. The definition of tHik frames is presented in
figure 1 and the corresponding geometric parameters are gitable 1, where:

— a(j) denotes the frame antecedent to the frgme
— The geometric parametergj( 6;, r;, d;) determine the location of the framewith
respect to its antecedeat;j).

The frameRy, which is fixed to the tip of the right foot (determined by thilth [, and the
lengthL,), is defined such that the axis is directed along the axis of frontal joint ankle.
The frameRy3 is fixed to the tip of the left foot with the same orientatiorRas

i Ta) [ g J rj dj
1 0 0 a1 I1 dy
2 | 1 g % 0 0
3| 2 0 03 0 ds
4 3 0 Oa I ds
5 4 | -0 g g 0 0
6 | 5 72[ O 0 0
7 6 0 a7 0 d7
8| 7 | I | g- g 0 0
9 | 8 —Zg o 0 0
10 9 0 di0 lio=14 | dio=0s4
11 | 10 0 Gu1 0 t11 =03
2| 1 g Q2 0 0
13 12 0 013 liz=—I1 | diz=ds

Table 1: Geometric parameters of the biped.
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Fig. 1: The multi-body model and link frames of the bipedal robot

2.3 Dynamic model in single support phase

During the single support phase, our objective is only tedeine the inverse dynamic
model. The joint position, velocity and acceleration arewn. The actuator torques must
be calculated. Since the contact between the stance foathanground is unilateral, the
ground reaction (forces and torques) must also be deduderiNéwton-Euler algorithm

(see [26]) can be adapted to determine the ground wrench.

During the single support phase the stance foot is assumiethain in flat contact on the
ground,.e., no sliding motion, no take-off, no rotation. Therefore tliygdal is equivalentto a
12-DoF manipulator. Laj € R? be the generalized coordinates, wheye.., g1, denote the
relative angles of the jointg, € R'? andg € R'? are the velocity vector and the acceleration
vector respectively. The dynamic model is represented &éyalfiowing relation
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wherel™ € R1? is the joint torques vectoR, € R is the ground wrench (forces and mo-
ments) exerted by the ground on the stance footRyack R represents the wrench, exerted
by the terminal link on the ground. In single support phesg= Op1.

2.3.1 Newton-Euler algorithm

The Newton-Euler method permits to calculate the dynamidehas defined in equa-
tion (1). This method proposed by Luh, Walker et Paul [27] ésdd on two recursive
calculations. Associated with our choice of parametriwathe following algorithm is ob-
tained [26]. The forward calculation, from the base (staoog) to the terminal link (swing
foot) determines the velocity, the accelerations and tked forces and moments for each
link. Then the backward calculations, from swing foot tans&foot, gives the joint torques
and reaction forces using equation of equilibrium of eack $uccessively.

Forward recursive equations

Taking into account that the bipedal robot remains flat orgtie&ind, the initial condi-
tions are .

0('00 = 06x1a O(bO = 06><1 and OVO = _[g 0 O}t (2)

the real acceleration B/, = 0g,1 but, the choice to writ8V, = —[g 0 0]', whereg is the
gravity acceleration, allows to take into account the dyesffect.

For the link j with its associated framB;, and considering the link —1 as its an-
tecedent, its angular velocitw;, and the linear velocityV/; of the originO; of R; are

j(k)j = jwj,1+6j q; jaj 3)

. . . N o

ij = JAj_l (] 1Vj_1+J l(x)jflpj) +0j qj Jaj 4)
with 1A; 4, the orientation matrix of the franf®_; in the frameR;, o; = 0 when the joint
j is arevolute jointg; = 1 when the join§ is prismatic joint and; = 1—0gj, 'a; is an unit

vector along the; axis, | ~P; is the vector expressing the origin of frarRgin the frame
R;j_1. The angular acceleration of lijkand the linear acceleration of the orighj of R; are

L D1 . AL
looj = 'AH&);—HG(Q; 'aj +! wj—lqj'aj> ()
]Vj = ]Aj_l (J_le_1+J_lUj_1]_1Pj) + 0j (qj ‘aj —l—ZJw,-_lqua,-) (6)

) A ) )
wherelU; = 1o; +! 6\.)]‘ J&j.
The total inertial forces and moments for the lipkre

IFj =M Vi +1U; s, @)
. o . o Coa
JM] = JJJ‘ ](bj+J(/bj (JJj ](A)j)+J MSjVj (8)

with 1J; inertia tensor of the link with respect to the framB;, 'MS; is the first moments
vector of the linkj around the origin of the framig; andM; is the mass of the link. The



antecedent link to the link O (stance foot) is not defined.tReriteration of the stance foot,
only the equation$7) and(8) are used.

Backward recursive equations

The backward recursive equations are given asj ferl2,...,0

it =F+ i
i =1 9)
. . . . A .

Imj =M+ A T My P (10)

wherelf; is the resultant force, exerted on the lipby its antecedent and by the actuators
i imj is the resultant moment, exerted on lifkoy its antecedent and by the actuator
j- These recursive equations will be initialized by the fearemd moments exerted on the
terminal link by the environmerif,,,; and"my1. In single supporff,,; =213 = 03,1,
"My 1 =22 M3 = 03,1, With Ryz = [*%f13,22my3)'. Whenj = 0, Rg = [°fo,mg]! represents
the ground reaction force and moment expressed in the fRyme

If we neglect the friction and the motor inertia effects, theque (or the forceJ ;, is
obtained by projecting; (or f;) along the joint axis;)

M= (0;'fj+0;'m;)" I (11)
o is not defined, since there is no actuator.

2.3.2 The zero Moment Point (ZMP) position

The ground reaction wrench is known in the fraRe This frame is associated with the
stance foot, and the axyg, zy defined the sole of the stance foot. The position ofZMP
which is the point of the sole such that the moment exertedhéygtound is zero along the
axisyp andz, is such that:

0

Mo

Yzmp = 5 — for (12)
0

Thy, (13)

ZzmMp =
If the position ofZMP is within the support polygon, the biped robot is in dynangaiéb-
rium, the stance foot remains flat on the ground.

2.4 Impact model for the instantaneous double support

At the impact, the previous supporting foot becomes the g#aot, and its velocity after
impact can be different from zero. As a consequence the gresation of the biped must
be able to describe a non fixed stance foot. Since the dynawdeins calculated with the
Newton-Euler algorithm, it is very convenient to define thiedoeity of the link 0 with the
Newton variablesVy the linear velocity of the origin of the fram&, and wy the angular
velocity of the frameRy. For the impact model, or the double support model the biped’
position is expressed By = [Xg,0o,q]' € R, X, andag are the position and the orienta-
tion variables of the fram®&; the robot velocity isvV = [OVO,OQ)O,Q]‘ € R18 and the robot
acceleration i%/ = [°V,%, §]' € RS,



2.4.1 Dynamic model in double support

The impact model is deduced from the dynamic model in doulghpart, when we assume
that the acceleration of the robot and the reaction forc®aee delta-functions.
The dynamical model in double support can be written:

D(X)V +C(V,q) + G(X) + D12R13 = DI +DgRy (14)

whereD < R*®*18 js the symmetric definite positive inertia matri®,c R*® represents the
Coriolis and centrifugal force§ € R8s the vector of gravityRo = [°fo,° m]' is the vector
of the ground reaction forces on the stance fBat = [*%f13,%?m;3] represents the vector of
forces exerted by the swing foot on the groubd,, Dr andDg are matrices that allows to
take into account the forces and torques in the dynamic model

The model of impact can be deduced from (14) and is:

D(X)AV+D12| 13= Dolo (15)

wherel 3 andlg are the intensity of Dirac delta-function for the fordeg andRg. AV is
the variation of velocity at the impadV = V' —V~, whereV~ is the velocity of the robot
before impact an®/ ™ its velocity after impact.

The impact is assumed to be inelastic with complete surfatieecfoot sole touching
the ground. This means that the velocity of the swing footdntimg the ground is zero after
impact. Two cases are possible after an impact: the right(foevious stance foot) takes
off the ground or both feet remain on the ground. In the firsecshe vertical component
of the velocity of the taking-off foot just after an impact ste directed upwards and the
impulsive ground reaction in this foot equals zetgps= Os«1. In the second case, the right
foot velocity has to be zero just after an impact. The grourtdipces impulsive forces in
both feet. This implies that the vertical component of theuisive ground reaction are
directed upwards. An impacting foot with zero velocity apmet, is a solution of the two
cases, there is no impact, the reaction forces on the twoalkegeull and the velocities of
the two feet after impact are null.

For our numerical tests, for the studied bipedal robot, ahé/first case gives a valid
solution. The swing foot velocity is zero before the impaid there is no impact) or the
previous stance foot does not remain on the ground aftentpadt. Thus, the impact dy-
namic model is (see [28] and [29])

D(X)AV = —Dyal13 (16)
Dt12V+ = Ogx1 a7)
Vol Osxl]
{"wa} - [Om (18)

These equations form a system of linear equations whichrdates the impulse forcdss
and the velocity vector of the biped after impatt.

_ -1 _
l13 = (DD 'Dy2) DY,V (19)
Vt = —D 1Dy, (D},D 1Dyp) DLV + Vo (20)



2.4.2 Calculation of the matri®;,

The wrenchRyz = [*%f13,%2my3] is naturally expressed in the franRe,. The velocities of
link 12 with respect to the biped velocity, can be expressed as

Viz | _

W12
where®Py, is the vector linking the origin of the franf& and the origin of the fram&y.
expressed in the franf&), J1» € R%12 is the Jacobian matrix of the robdt,( represents

the effect of the joint velocities on the Cartesian velooityink 12. The velocities/1, and
w12 Must be expressed in the fralRg, thus we write:

12V12 _
12('012

wherel?A, € R3%3 js the rotation matrix, which defines the orientation of tterfeR, with
respect to the framBy,. The expression (22) can be represented in matrix form as

20
Vo + P12
W12

+J12G (21)

A
12A0 _12A0 OP12

Vol 124 .
+J 22
03,3 127, [0000} 120 (22)

12y 12 125 0P

{12 12} = | Ao =" A0 Pr 123 | V. (23)

W12 Osx3 Ao 12

ThusD3; has the following structure
A t
12 12p 0

Dir— | Ao —Ap P12 24
12 s 127, 12, (24)

2.4.3 Calculation of the inertia matri®

Following-the-same-way, as the wrenBj is applied on the stance leg, in equation (14),
Do = [l6x6 | O12x6]' € R'®6. The matrixDr defines the actuated joint thus we ha@-:=

[Opx12 | l12412]' € R¥<12,
When no force is applied on the swing leg, the dynamic mod®| lfcomes:

D(X)V +C(V,q) +G(X) = ﬁo] (25)

Since the stance foot is assumed to remain in flat contactethdtant ground reaction
force/momentRy and the torque§ can be computed using the Newton-Euler algorithm
(see section 2.3). According to the method of Walker [3@3,riatrixD is calculated by the

algorithm of Newton-Euler, by noting from (14), that th&column ofD is equal to{ Rro]
if

V =011, =0, V=€, Riz=0g.1

g € R s the unit vector, whose elements are zero excepitthrement which is equal
to 1. The vector€(V,q) andG(X) can be obtained in the same way tbgthowever, for
the impact model the knowledge of these vectors are not sages
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3 Definition of the walking cycle

Because a walking biped gait is a periodical phenomenonlgectve is to design a cyclic
biped gait. A complete walking cycle is composed of two pBasesingle support phase
and a double support phase which is modeled through passperct equations. The single
support phase begins with one foot which stays on the grouhilé whe other foot swings
from the rear to the front. We assume that the double supphadeis instantaneous. This
means that when the swing leg touches the ground the stamd¢akies off. There are two
facets to be considered for this problem. The definition éérence trajectories and the
method to determine a particular solution of it. This setti® devoted to the definition
of reference trajectories. The optimal process to choose#ist solution of parameters,
allowing-a symmetric stgp, from the point of view of a givestiunctional will be described
in the next section.

3.1 Cyclic walking trajectory

Since the initial configuration is a double support configjora both feet are on the ground,
the twelve joint coordinates are not independent. Becahwesatisolute frame is attached to
the right foot we define the situation of the left foot by, z:) and the situation of the
middle of the hips(xx, Yh,zn,6r), both expressed iRy frame. (yi¢,7) are the Cartesian
coordinates, in the horizontal plane, of the left foot posit(x,yn,zn) is the hip position
and6y, defines the hip pitching angle. The two others parameteientation for the-middle
efithe hips in frontal and transverse planes, are chosendqum to zero. The orientation of
left foot is also chosen to be equal to zero. The values ofiinéyariables are solution of the
inverse kinematics problem for a leg, which may also be aw@red as a 6-link manipulator.
The problem is solved with a symbolic software, (SYMORO+€ [5]).

Let us consider, for the cyclic walking gait, the currenfpsite the time interval0, T].
In order to deduce the final configuration of the bipedal radiotimet = T, we impose
a symmetric role of the two legs, therefore from the initiahfigurationqe = q(t = 0) in
double support, the final configuration = q(t = T) in double support is deduced as:

ar =Edo (26)

whereE € R'?*1?is an inverted diagonal matrix which describes the exchamtggs.

Taking into account the impulsive impadi6)-(18), we can compute the velocity vector
of the biped after the impact. Therefore, the joint ratesraftpact,q™, can be calculated
when the joint velocities before the impagqt;, is known. The use of the defined matkx
allows us to calculate the initial joint ratgs = q(t = 0) for the current step as:

Go=Eq". (27)

By this way the conditions of cyclic motion are satisfied anel initial and final velocities
and the configuration are completly defineddgyandq.

3.2 Constraints

In order to insure that the trajectory is possible, many traitgs have to be considered.
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3.2.1 Magnitude constraints on position, velocities andjter

— Each actuator has physical limits such that
IFil —Timax<0, fori=1,..,12 (28)
whererl | max denotes the maximum value for each actuator.

|Gi| —Gimax <0, fori=1,..12 (29)

whereq max denotes the maximum joint rate for each actuator.
— The upper and lower bounds of joints for the configuratioméndrthe motion are:

Oimin <O < Qimax, fori=1,...,12 (30)

0 min andg; max respectively stands for the minimum and maximum joint lanit
3.2.2 Geometric constraints in double support phase

— The distancel(hip, foot) between the foot in contact with the ground and the hip must
remain within a maximal valué,e.,

d(hip, foot) < Ipp. (31)

This condition must hold for final configurations of the daiblpport phase.
— In order to avoid the internal collision of both feet throutle lateral axis the heel and
the toe of the left foot must satisfy

Yheel < —a andyoe < —a (32)

with a > %" andl, is the width of right foot.

3.2.3 Walking constraints

— During the single support phase to avoid collisions of thangieg with the stance leg
or with the ground, constraints on the positions of the farners of the swing foot are
defined.

— We must take into account the constraints on the groundioeeRg = [Rox, Roy, Roz]* for
the stance foot in single support phase as well as impulsige$l 13 = [113, l13, l12]"
on the foot touching the ground in instantaneous double atigghase. The ground
reaction forces in single support and the impulsive for¢élseaimpact must be directed
upward, then the conditions of no take off are deduced:

Rix > 0 (33)
l1ax > 0. (34)

The ground reaction in single support and the impulsivedsrat the impact must be
inside a friction cone defined by the friction coefficignfThis is equivalent to write

\/R3,+RE, < R (35)
/ey + 122 < Hhax (36)
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— In order to maintain the balance in dynamic walking, the Z2dament Point which is
equivalent to the Center of Pressuop), (see [31], [32], [33]), must be within the
interior of the support polygon of the biped stance foot.Mfa a rectangular foot the
CoPmust satisfy

_|p

|
—" <CoR < 5” (37)

—Lp<CoR <0 (38)

wherel, is the width and_, is the length of the feet.
— An average walking rate is imposed. Thus

VIT—d=0 (39)

whered is the step lengthT is the step duration and® is a desired speed of walking.

4 Parametric optimization
4.1 The cubic spline

The biped is driven by 12 torques, and its configuration iggiv single support phase by
12 coordinates grouped in vectprTo define the joint evolution, cubic spline functions [34]
are used for constructing the joint trajectories. For eautt j, (j =1,...,12) a cubic spline
function has the form:

bja(t) if ti<t<ty
bj2(t) if t2<t<ts

aj(t) = (40)

¢j,n—1(t) if tn—l St < tn

wheren is the number of selected knotsjs (t), ..., ¢jn_1(t) are polynomials of third-order @

such that: .

djk(t) = an‘j,k(t —ty)!, fort e [ty, tpa], k=1,..,n—1 (41)

=
Wherea‘j?k are calculated such that the position, velocity and acatiter are always con-
tinuous inty, ...,t,. The cubic spline functions are uniquely defined by speeifian initial
configurationgg, an initial velocity(o (both att =t; = 0), a final configuratiowt, and a fi-
nal velocitygr (both att =t, =T) in double support, witin— 2 intermediate configurations
in single support and the duration of this single support. Consequently, the gonditions
will be defined by a small number of optimization parameters.

4.2 Optimization parameters

A parametric optimization problem has to be solved to desigryclic bipedal gait with
successive single supports and passive impacts (no imputsigues are applied at impact).
For a step defined on the time inter{@l T this problem depends on parameters to prescribe
then— 2 intermediate configurations, the final velodify in the single support phase and,
using the geometric model, the configuration of the bipethatict. Taking into account the
conditions(26) and (27) the minimal number of parameters necessary to define the join
motion are:
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1. (n—

2) x 12 parameters are needed to definerthe2 intermediate configurations in

single support phase.

2. The joint rates of the biped before the impact are alsacpitesd by twelve parameters,
g (i=1,..,12).

3. The position of the left foot denoted yi¢,z+) in the horizontal plane as well as the
situation of the middle of the hips defined b, yn, z,,6r) in double support phase are
chosen as parameters.

Fig. 2: The-geometric-configuration of six parameters that defie initial configuration of the robot.

Then the total number of parameters is 1 — 2) x 12. Let us remark that to define
the initial and final configurations for the step, when botl fieet touch the ground, nine
parameters are required. However, we define these configusatith six parameters only.
These six parameters, see figure 2, are defined by the yeeter{py p2 ps P4 Ps Pst With
the following geometric configuration data:

ok wNE

P1:
p2:
P3:
Psg:
ps :
Ps :

height of pelvis.

position of the trunk followingyg in the frameRy.
position of the trunk followingg in the frameRy.
orientation of the trunk in the sagittal plane.
distance between the feet in the frontal plane.
distance between the feet in the sagittal plane.

The twq others parameters, orientation of the middle of fpe I frontal and transverse
planes, are fixed to zero.
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To summarize, the components of the joint evolutipare equal to the basis functions
gi (40) and we can write the joint motion with respect to the $g@avameter® as

CEIGAY (42)
q=9(P1t) (43)
4=0(P1) (44)

where¢ is the vector of component (t) (40) defining the cubic splines for the joint
i =1,...,12/4The chosen vector of optimization paramefecsan be written:

P1 int1
P> int2

P= = . 45
P3 ar (45)
Pa Pc

Four our numerical tests= 4 and then two intermediate configuratiang; anddinc.2
of the 3D biped in single support are considered.

4.3 Criterion

In the optimization process we consider, as cost functidnde integral of the norm of the
torque divided by the step length. In other words we are miiiilg a quantity proportional
to the energy lost in the actuators for a motion of one meteis general form of minimal
energy performance represents the losses by Joule effedteefelectrical motors

1 T
J:f/ rrdp (46)
dJo

To impose an average motion velocity, we take into accownetuality constraint (39)
in (46) as a penalty function, the cost functiodalan be write as

17, d 2
J:a/ rrdyu+ p (VOT —d) (47)
0

wherep > 0 is a penalty factor.

4.4 Statement of the optimization problem to design a cyetitking gait for the 3D biped

Many values of parameters can give a periodic bipedal gsfgmg constraint$28)-(34) .

A parametric optimization process, that objective is toimire J under nonlinear con-
straints, is used to find a particular nominal motion with $pénes (40) as basis functions.
This optimization problem can be formally stated as

Minimize J(P) } (48)

subject tog;(P) <0 j=1,2,...,1

whereJ(P) is the cost functional to minimize withconstraintg; (P) < 0 to satisfy. These
constraints are given in section 3.2. The nonlinear coms&daproblem is solved by using
the Matlab functiorfmincon This optimization function provides an optimization aligam

based on the Sequential Quadratic Programming (SQP). &nhefferty-two parameters for
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this nonlinear optimization problem: twenty-four for theat intermediate configurations
in single support, twelve for the joint rates before the iotpand six to solve the inverse
kinematics problem, subject to the constraints giver{28)-(34). The optimization prob-

lem (48) is numerically solved by using the exact analytiadignt of the cost functional
with respect to the forty-two parameters. The calculatibthis gradient is detailed in the
following section.

5 Gradient of the cost functional

The optimization process uses the dynamic model (1) to Ekethe torque vectdr for
sampling timeg0, ..., 1, ..., T} and to evaluate the cost functional (46) on the current step.
ThenT is function ofq, g andq of which the components equal basis functign&0) and
their associated time derivativgsanddg, i = 1,...,12:

r=r(a,9,9) (49)

The general formula of the gradient of the cost functionahwespect to the vectd?
(45) is

(01 [T 10 ([T, d . ,

_{aJt 93" a3 aa‘}t

P, 0P, 0Ps 0P, (50)

The calculation of each components%‘% will be detailed now.

aJ aJ 0J 0J
— Calculation of — = and— = : The covered distanaggy for a step does
P10z 0Pz OCine2 x® . P
not depend on the intermediate configuratigRg anddin:2. Then the calculation of the

gradient of the cost functional with respectRg the way being similar foP,, leads to

0J 2 (T . or
o N 51
0P, pe/o Oz D)

Tacking into account the relations (42), (43) and (44) anth whe partial derivative
formulas for composed functions, the partial derivativé afith respect tajin;; can be
written,
or _or oq oar aq or oq
Ot~ 09 00tz 09 OCfint1 04 OQine1

(52)

— Calculation ofaa?J = % For the optimization problem the covered distadde not
3 T
defined with the velocity vectayr. Furthermore via the algebraic matrix equation (16)
and (17) and the cyclic walking conditions (26) and (27), itigal velocity vectorqo
after impact is function of the final velocity vector beforegact and the configuration

of the 3D biped in double support such that:

do = do(Ps3,P4) = Qo(q1,Ps) (53)



In consequence using (42), (43), (44) and (53) the gradiktiteocost functional with
respect tdP; is:

a2 [T_.or
where,
or _oroq  ofog  or og (55)
qr 0qadqr 0qaqr 944 aqr
with,

99 _ 06 04 , 06

oGt 040 0qr  odr’

o _ohow o
0qr  0Qo0qr 9qr’
04 _ 09 090 99

oar  0Godqr  oar
. 0J J A . . .
Calculation ofﬁ = ﬁ: The initial and final configurationge andqr are found us-
4 G
ing the inverse geometric model thanks to the parametetsngs = [py, P2, P3, P4, Ps, Pt
and to the relation (26). The covered distance is directigfion ofqo andqr. The cal-
culation of the gradient of the cost functional with respged®, is given by

a1 ape/T t 2 /T or .
90 _ 29 [Trirg +—/F—d +20 (ps—VOT 56
oPs  p§ope Jo M e Jo  dpe P(pe ) (50) @

or _orog orag orog

dpc  0q0dpc 09 0pc 04 dpc
Since the vectopg is function of the initial and final configuratiomp andqgr and using
the relation (53) the partial derivative qfwith respect ofpg can be written

o9 _ 20 g 06 dar 06 2k
0pc  0qodpe 0qr dpc 9o 0P’

ac 0d 0 0 0 0d ac
a _ 0p 0go , 09 dar 39 oo

where,
(57)

dps 000 0pc  9qr Opc 9o PG

and ) ‘ . o
06 _ 0§ dao , 0B dar , 0B 0o
dpc  0qodpe 07 Opc 9o OPG |
The partial derivativegg—o, using the equation (27) with the constant mafixcan be
G
rewritten such as
ot _ ot
dpc opc

The algebraic impact equations (16) and (17) can be coretaigisuch as:

ARSI

t
Di, Osxs | | 113 Osx1
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The partial derivative of the matrix equation (58) verpdss:

ov+ obv~

— =TVt D Dip] | ——
5DptG opc + glpe _ | 9pc (59)
12 (g, | D, Opys | | =
apG 6% 6 13 12 Y6x6 apG 06><1
The matrix equation (59) can be rewritten
v+ 0D D12 4 oDV~
e | —w | _1| 9% 9Pc dpc
A1 =W D, o | + (60)
dpc ope L O6x1
with
-1
D D1
W=
|:D12 Osx6
and

W11 =D *(l1g418— D12(D},D1D1,) 'D{,D?)
W31 = (D,D'D1p) 'D,D ™ = Wi,
Wy = —(DtlzD_lDlz)_l

Finally we have:

v+ aD D1, oDt aD

_ _ ——\/*+ oL 12\ /+ _

apG _ W11 %pDGV + gg l13 ngglg Vv +W11%pDGV (61)
Ol1s W [ Ly 49212 ), P2y 4wy V-

s 2\ 3ps’ T Ope Zape - Popg

With the knowledge ofyr, the solutionsV™ and |3 of the impact equation (58) and
using (18) which stipulates that before impact the stance i® motionless such as
og*
opc

6q+ ( ( oD _ 6D12 ) 6D12 )
— =Wy —NVT=V)+——l13)|-W A 62
T 11 Ope( ) s B 2500 (71921 (62)

To summarize, in this section 5 we—pregent the main necessayections to calculate
the gradient of the cost functional. Of course the compuotatif this gradient is heavy.
However, we can remark that only the terr%g, g—r and g—; have to be included in the
recursive dynamics computation defined by the Newton-Eedeations. Their calculations
are detailed in [35].
In conclusion the algorithm to obtain an optimal cyclic watk gait for the biped can
be summarized by:
Step 1: Give initial values for each components of the patameectorP (45).
Step 2: With the parametePy = pc compute the initial configuration and from the equa-
tion (26) the final configuration.
Step 3: With the final configurations, the paramefeys= gr and the equations (16), (17)
and (27) compute the initial velocity.

V™ = [0143,0:+3,q7 "' whereq~ = ¢, variable—— is equal to:
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Step 4: Fortimé¢; = 0 tot, = T, compute the spline functions (40) for the initial and final
configurations and the parametéts = gincz and P2 = Qinrz. Compute their first and
second derives with respect to time.

Step 5: For sampling timg0, ..., ..., T}, solve recursively the inverse dynamics (2)-(11)
to compute the torques, the position of the Center of Pre€3olP, the constraints and
the partial derivative or or anda—r.

I

Step 6: Using the Euler method approximate the integral®ttjuare vector of torques to
compute the cost functional and its gradient respect to ainerpeter vectap.

Step 7: If the condition to stop the optimization are satisfe&op, in other case go to step

1 with a new parameter vector given by the optimization pssce

6 Simulations results

To validate our proposed method, we present the results optimal motion for the biped
shown in figure 1. The desired trajectory was obtained by fitienization process presented
in Section 1V with a desired average velocity afls. The case of optimisation with both
finite difference and analytical gradients of the cost fior@l are considered. In the case of
finite difference gradient, the algorithm was terminatedrab13 iterations (22858 function
evaluations). The final value of the objective function w854792 and the total elapsed
time was 3355.92 s. For the analytical gradient, the algaritvas terminated after 407 iter-
ations (18236 function evaluations), with a total compotatime of 6822.48 s and the final
value of the objective function 6295.95. The introductiéthe analytical gradient, showed
a better stability in the optimization process and a goodvemence to find a minimum
local.
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Fig. 3: Comparison of optimization processes: curves cooradipg to the convergence behavior of the algo-
rithm with the analytical and finite difference gradients aolid and dash-dotted, respectively.

The convergence speed and the number of iterations are cedfza the optimization
process with the analytical gradient and finite differencadgents of the cost functional.
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Figure 3 shows the number of iterations for both optimizafioocesses, while table 3 shows
a summary of the results for several walking rates.

Physical Parameters ~ Mags)) Length(m)
Torso 40.55 d7; =0.120
Hip joints 2.04 linked to torso
Thigh 2.08 ds=0.3
Shin 1.75 d3=0.3
Ankle joints 0.65 d; =0.105
Foot 1.64 Lp=0.2141,=0.136

Table 2: Parameters of the 3D biped, see figure 1

Figure 4 shows the evolution of the optimal motion for onestéth duration, of a
single support, equal@s. For the simulation, we use the physical parameters giveabie
2. The bipedal robot has the height 08@mand the weight of 586 kg. The inertia of each
link are also taken into account in the dynamic model.

The results shown have been obtained Wigh= 0.4 s. The optimal motion is such that
the step length is.@ m and the walking rate is imposed tond/s. The simulation of the
optimal motion for one step is illustrated in figure 4 and fav&@king steps in figure 9.

X-axis [m]

Z-axis [m] ’ 06 02

Y-axis [m]

Fig. 4: Stick animation of a simulation of walking biped takioige step.

The normal components of the ground reaction forces of tecstfoot during one step
are presented in figure 5. The average vertical reactior isr64781 N, which is coherent
with the weight of the robot which the mass equals866<g. In the optimisation process,
the chosen friction coefficient is 0.7., the condition of rediding is satisfied as it can be
seen in figure 5.

The figure 6 shows the evolution of the trajectory of the ceafepressureCoP con-
sidering one and two intermediate configurations. In botesathe evolution of theoPis
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average normal reaction force = 547.81 N
3001

2001

100\,1/

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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Ground reaction forces [N]

Fig. 5: The ground reaction forces during the single supploase.

always inside the rectangle determined py- 0.136mandL, = 0.214m, that is, the robot
maintains the balance during the motion. From figure 6, itm@seen that considering two
intermediate configurations, the evolution of heP presents amplitudes lower. Because
the minimal distance between 6P and the boundary of the foot is large, smaller foot
is acceptable for this cyclic motion. The criterion costnsidering only one intermediate
configuration, is 6472.512-m-s.

0.05

X-axis
o

-0.05

-0.2
-0.1 Y-axis

Z-axis

Fig. 6: The evolution ofCoP trajectory: curves corresponding @pP trajectory considering one and two
intermediate configurations are dotted and solid, respsgtiv

In figure 7, the evolution of the cost criteria is drawn as fiorcof several walking rates.
A faster walking motion than 1.2 m/s can not be obtained.

The curves in figure 8, illustrate the evolution of torquestad each joint of stance and
swing leg as function of the walking rate. The torques costvahg leg is less important
than the torques cost of stance leg. For slow motion, lessQifam/s, the torque cost of the
stance hip is less important, white-that for a walking gastéa than ® m/sthis torque cost
increases considerably.
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Fig. 7: The evolution of the cost criteria with analyticahdrent.
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Fig. 8: The cost of the joint torques: curves correspondmghe torque costs of the ankle and knee are
dash-dotted and solid, respectively. The dotted curveesponds to the torque cost of the hip.

7 Conclusion

Optimal joint reference trajectories for cyclic walkingitgeof a 3D biped have been found.
A methodology to design such optimal trajectories is dgwetb The definition of optimal

trajectories is useful to test a robot design. In order toaudlassical optimization technique,
the optimal trajectory is described by a set of parameteeschwoose to define the evolution
of the actuated relative angle as spline functions. A cystilttion is desired. The number
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Fig. 9: Cyclic motion of the bipedal robot.

Walking rate(m/s) Gradient Number of iterations ~ Function evaluations  Optimatne  Time (sec)
0.4 analytical 593 26461 7221.53 10677.15
’ finite differences 487 21235 7218.6 9071.95
05 analytical 398 17780 5807.57 6862.54
’ finite differences 401 17499 5809.45 7567.15
06 analytical 560 24964 5108.99 9488.86
’ finite differences 488 21260 4998.15 9280.12
0.7 analytical 449 20145 4794.33 7677.10
’ finite differences 772 33590 4815.49 17895.15
0.8 analytical 564 25212 5205.01 9689.82
’ finite differences 813 35356 6104.05 14738.13
0.9 analytical 438 19590 5961.33 7471.96
’ finite differences 895 39767 5984.20 5820.21
10 analytical 407 18236 6295.95 6822.48
’ finite differences 513 22858 9354.79 3355.92
11 analytical 452 20208 7130.79 7856.68
’ finite differences 429 18613 15856 8321.76

Table 3: Optimization results. For each optimal motion, theoreaf initial parameters was the same for both

optimal process. All of the simulations were performed on coepeduipped with a processafZHzCore
Duo from Intel.

of the optimization variables is reduced by taking into astoof the cyclicity condition
explicitly.

Some inequality constraints such as the limits on the tarqare the velocities, the
condition of no sliding during motion and impact, some lsnitn the motion of the free
leg are taken into account. The cost functional is calcdl&tem the integral of the torques
norm. The torques are computed for sampling times usingitherse dynamic model. This
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model is obtained with the recursive Newton-Euler algonitfThe reference frame is the
stance foot.

In the optimization process, a calculation of the gradignalfinite approximation can
generate numerical errors for the Hessian computatiom Thenprove the convergence of
the optimization algorithm, the explicit analytical gradt with respect to the optimization
parameters is calculated using the recursive equatiortgeealytnamic model. Optimal mo-
tions for a given duration of the step and for a walking ratpased have been obtained. The
numerical results obtained are realistic with respect écsibe of the walker under study.

The proposed method to define an optimal motion will be test@usidering a sub-phase
of rotation of the supporting phase about the toe, closeutodn. Another perspective is to
evaluate the gradient of constraints with respect to thiemogdtion parameters.
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