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Finite Time Stabilization of a Double Integrator –

Part I: Continuous Sliding Mode-based Position

Feedback Synthesis

Yury Orlov∗(Corresponding author) Yannick Aoustin and Christine Chevallereau

Abstract

The twisting and supertwisting algorithms, generating important classes of second order sliding

modes (SOSM’s), are well-recognized for their finite time stability and robustness properties. In the

present paper, a continuous modification of the twisting algorithm and an inhomogeneous perturbation

of the supertwisting algorithm are introduced to extend the class of SOSM’s that present the afore-

mentioned attractive features. Thus modified, the twisting and supertwisting algorithms are utilized in the

state feedback synthesis and, respectively, velocity observer design, made for the finite time stabilization

of a double integrator if only position measurements are available. Performance and robustness issues

of the resulting output feedback synthesis are illustrated by means of numerical simulations.

I. INTRODUCTION

Motivated by modern applications, particularly, to electromechanical systems (see, e.g., [1], [2]

and references therein), the systematic nonsmooth feedback design methodology is continuing

to be developed. Since this methodology is capable of imposing the finite time stability as well

as desired robustness properties on the closed-loop system, it has been widely used in practice.

An example of such an application is orbital synthesis of hybrid systems, e.g., cyclic bipedal

locomotion [3]), where the controlled plant is operating under uncertainties and it is to be driven
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to an operational periodic mode in finite time during its continuous phase between successive

discrete dynamics.

In the present paper, a modification of the twisting controller from [4] and that of the

supertwisting observer from [5] are coupled together to present a unified framework for the finite

time position feedback stabilization of a double integrator. The afore-mentioned twisting and

supertwisting algorithms generate an important class of the so-called second order sliding modes

(SOSM’s), which are well-recognized for their finite time stability and robustness properties [6],

[7].

The former modification represents a parameterized family of homogeneous continuous con-

trollers and it is made for avoiding the undesired chattering phenomenon that appears in the

closed-loop if driven by a switching input of high frequency [8], [9]. In turn, observer switching

is not as serious as controller switching because it does not drive an actuator and hence it does

not come at the expense of controller switching. Therefore, the latter modification represents

a parameterized family of inhomogeneous switched observers, and the motivation behind this

modification is in extending the class of finite time stable SOSM’s towards their inhomogeneous

perturbations.

Being coupled together, the modification of the twisting controller and that of the supertwisting

observer yield the position feedback stabilization of the double integrator in finite time in

accordance with the separation principle which proves to be in force in the present case. The

resulting position feedback synthesis constitutes the main theoretical contribution of the paper.

Finite time convergence and robustness properties of the proposed synthesis are illustrated by

simulations.

The rest of the paper is outlined as follows. The twisting controller and supertwisting observer

are modified step by step in Sections II and III, respectively, to be subsequently, in Section IV,

coupled together in a unified practical framework of the position feedback stabilization of a

double integrator. Section V collects some conclusions.

February 5, 2010 DRAFT



3

II. FINITE TIME STABILIZING STATE FEEDBACK SYNTHESIS

To begin with, we present a class of static feedback controllers that globally stabilize the

double integrator

ẋ = y, ẏ = u. (1)

A feedback law u(x, y) is further referred to as finite time stabilizing if it renders the origin of

the closed-loop system (1) a finite time stable equilibrium as defined in [1], [4].

The following state feedback

u = −µ|y|αsign y − ν|x| α
2−α sign x (2)

with parameters ν > µ > 0 and α ∈ [0, 1) is proposed to globally stabilize the double integrator

(1). If specified with α = 0, the above controller is inspired from the twisting algorithm [6],

[7] and it coincides with the discontinuous finite time stabilizing controller of [4], whereas for

α ∈ (0, 1), it simplifies the continuous controller of [1], while also presenting the finite time

stability. The proposed simplification is essential both for the stability analysis of the closed-loop

system and for improving its performance. The qualitative behavior of system (1), (2) is depicted

in Figure 1.

Theorem 1: Consider the closed-loop system (1), (2). The system is globally finite time stable

if the controller parameters are such that ν > µ > 0 and α ∈ [0, 1).

Proof: We first note that the validity of the assertion of the theorem for the discontinuous

system (1), (2), corresponding to α = 0, follows from [4, Theorem 4.1]. Thus, it remains to

prove the validity of the theorem for its continuous counterpart with α ∈ (0, 1).

Given α ∈ (0, 1), let us consider the continuously differentiable Lyapunov candidate function

V (x, y) = ν
2− α

2
|x| 2

2−α +
1

2
y2. (3)

By computing the time derivative of this function along the trajectories of (1), (2), we arrive at

V̇ = −µ|y|α+1. (4)
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Fig. 1. Phase trajectory of the closed-loop system (1), (2), initialized with x(0) = −2, y(0) = 0 and specified with µ = 1, ν = 2,

and α = 1
2

.

y

x

It follows from the invariance principle that system (1), (2) is globally asymptotically stable if

α ∈ (0, 1). Moreover, according to [4, Theorem 3.2], this system is globally finite time stable

as it is homogeneous of the negative degree q = −1 and dilation r = (2−α
1−α

, 1
1−α

). The present

homogeneity property of (1), (2) is straightforwardly verified by inspection [4, Definition 2.10].

The theorem is thus proved.

To this end, we consider the perturbed version

ẋ = y, ẏ = u + w (5)

of the double integrator and investigate robustness properties of the closed-loop system (2), (5)

against an external disturbance w(x, y, t), being a locally integrable function on all potential

trajectories x(t), y(t). If α = 0, then according to [4, Theorem 4.2], the disturbed system (2),

(5) renders the finite time stability, regardless of whichever disturbance w with a uniform upper

bound

ess sup
t≥0

|w(t)| ≤ M (6)
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affects the system provided that

0 < M < µ < ν −M. (7)

This robustness property is achieved due to the high frequency controller switching in the sliding

mode of the second order that occurs in the origin. In turn, only external disturbances, vanishing

in the origin and satisfying the growth condition

|w(x, y, t)| ≤ µ0|y|α (8)

for some α ∈ (0, 1), some upper bound µ0 < µ, and for all x, y ∈ R, t ≥ 0, can be rejected by

the continuous controller (2) with the same α as that in (8). The following result is in order.

Theorem 2: Given α ∈ (0, 1) and µ, ν > 0, the continuous closed-loop system (2), (5) is

globally asymptotically stable for any disturbance w, satisfying the growth condition (8) with

some µ0 < µ.

Proof: Under conditions of the theorem, the time derivative of the Lyapunov function (3),

computed along the trajectories of (2), (5), is estimated as follows:

V̇ = −µ|y|α+1 + |y|w ≤ −(µ− µ0)|y|α+1. (9)

Since µ > µ0 by a condition of the theorem, the global asymptotic stability of (2), (5) is then

established by applying the invariance principle.

Remark 1: Analyzing the proof of Theorem 2, one can note that under non-vanishing distur-

bances (6), the closed-loop system (2), (5) is practically stabilized in finite time to the vicinity of

the radius (M/µ0)
1/α rather than to the point of interest. Indeed, to conclude this, it suffices to

observe that in this case, the time derivative (9) of the Lyapunov function (3) remains negative

semidefinite beyond the afore-mentioned vicinity. Thus, the higher µ0, specified in the growth

condition (8), the better the stabilization precision which is attained for the perturbed system

(5), affected by a non-vanishing disturbance (6). Meanwhile, the higher µ0 employed, the higher

control magnitude µ to be applied in the control law (2).
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III. FINITE TIME VELOCITY OBSERVER DESIGN

In the present section, we focus our study on the stability analysis of the velocity observer

˙̂x = ŷ + k1|x− x̂|εsign (x− x̂) + k2(x− x̂)

˙̂y = u + k3sign (x− x̂) + k4(x− x̂) (10)

of the double integrator (1), which is parameterized with k1, k3 > 0, ε ≥ 0 and which is obtained

through a certain perturbation of the supertwisting observer

˙̂x = ŷ + k1|x− x̂| 12 sign (x− x̂) + k2(x− x̂)

˙̂y = u + k3sign (x− x̂) + k4(x− x̂) (11)

that was first proposed in [5] with k2, k4 = 0 and then augmented in [10] with nontrivial linear

gains k2, k4 > 0. As the above equations (10), (11) possess discontinuous right-hand sides, the

dynamics of such equations are throughout defined in the sense of Filippov [11].

Clearly, the observation error e = (e1, e2)
T , e1 = x − x̂, e2 = y − ŷ between the state of

the double integrator (1) and that of the velocity observer (10) is governed by the following

second-order system

ė1 = e2 − k1|e1|εsign e1 − k2e1,

ė2 = −k3sign e1 − k4e1. (12)

The qualitative behavior of the observation error dynamics is depicted in Figure 2.

We are in a position to establish the global asymptotic stability of the error system within

the framework of methods of nonsmooth Lyapunov functions with negative semidefinite time

derivative along the dynamics of the system.

Theorem 3: Let the parameters of system (12) be such that k1, k3 > 0, k2, k4 ≥ 0, and ε ≥ 0.

Then system (12) is globally asymptotically stable.

Proof: First of all, let us note that the discontinuous system (12), being viewed in the sense

of Filippov, possesses an equilibrium point in the origin. Next let us observe that for (12), the

February 5, 2010 DRAFT
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Fig. 2. Phase trajectory of the observation error system (12), initialized with e1(0) = −0.1, e2(0) = 0 and specified with

k1 = 0.1, k2 = 0.2, k3 = 0.1, k4 = 1, and ε = 1
2
.

condition

e1ė1 = e1(e2 − k1|e1|εsign e1 − k2e1) < 0

for sliding modes to exist holds for all infinitesimal e1 6= 0 if and only if ε = 0 and |e2| < k1.

Thus, the sliding modes appear in system (12) just in the case of ε = 0.

Now, let us consider the Lyapunov candidate function

V0(e1, e2) = k3|e1|+ 1

2
k4e

2
1 +

1

2
e2
2. (13)

By computing the time derivative of this function along the trajectories of system (12), we arrive

at

V̇0 = (k3sign e1 + k4e1)(e2 − k1|e1|εsign e1 − k2e1)

−e2(k3sign e1 + k4e1) = −k1k3|e1|ε

−k1k4|e1|ε+1 − k2k3|e1| − k2k4e
2
1 < 0 (14)

everywhere but on the vertical axis e1 = 0 where the function V is not differentiable.

February 5, 2010 DRAFT
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Inequality (14) subject to ε = 0 ensures that for ε = 0, the trajectories of (12) hit the sliding

mode interval Ik1 = {(e1, e2)] ∈ R2 : e1 = 0, |e2| < k1} in finite time because otherwise they

steer to the origin in finite time. Since the sliding modes on the interval Ik1 are governed by the

asymptotically stable equation

ė2 = −k3

k1

e2, (15)

system (12), corresponding to ε = 0, is globally asymptotically stable.

For the convenience of the reader, recall that the sliding mode equation (15) is derived

according to the equivalent control method [12] by substituting the equivalent value signeqe1

of the commuting function sign e1 (that ensures the identity ė1 = 0 along the sliding modes)

into the second equation of the disturbance-free system (12) for sign e1. As a matter of fact, the

equivalent value represents a solution of the algebraic equation e2 − k1sign e1 = 0 with respect

to sign e1 and hence, signeqe1 = k−1
1 e2.

Finally, confining our demonstration to the case ε > 0 yields no sliding modes on the

discontinuity manifold e1 = 0. Thus, by virtue of ε > 0, inequality (14) holds almost everywhere,

and the global asymptotic stability in this case is concluded by applying the extension of the

invariance principle, made in [2, Theorem 3.2], to the discontinuous system (12). Theorem 3 is

completely proved.

It should be pointed out that by straightforward inspection [2, Definition 4.6], system (12),

specified with ε = 1
2
, is homogeneous of degree q = −1 with respect to dilation r = (2, 1) so

that by the homogeneity principle [2, Theorem 4.2], the global finite time stability of this system

is additionally guaranteed by its global asymptotic stability. Our next aim is to demonstrate that

the finite time stability of system (12) persists in spite of certain perturbations of the parameter

ε around its homogeneity value ε = 1
2
. For this purpose, we introduce the modified Lyapunov

function

V1(e1, e2) = 2k3|e1|+ k4e
2
1 +

1

2
e2
2 +

1

2
s2(e1, e2) (16)

which is obtained by doubling the first two terms of (13) and by augmenting (13) with a half
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square of the right hand-side

s(e1, e2) = e2 − k1|e1|εsign e1 − k2e1, (17)

of the first equation of (12). The proposed modification is inspired from [10] where the same

Lyapunov function, being specified with ε = 1
2
, has been used to prove the system finite time

stability in this particular case.

As the Lyapunov function (16) is shown to admit the estimate

V̇1(t) ≤ −κV ε
1 (t) (18)

along the trajectories of system (12), specified with ε ∈ [1
2
, 1), for some κ > 0 and for almost

all t ≥ 0, it plays a crucial role in establishing the finite time stability of such a system and in

determining an upper bound of the settling-time function T (e0
1, e

0
2) in terms of the initial value

v0 = V1(e1(0), e2(0)) of the Lyapunov function (16) and the function

γ = min

{
2k1k3

4k3 + 3k2
1

,
εk1

2
,

2k1k4

2k4 + 3(k2
1 + k2

2)

}
(19)

of the system parameters. Recall that the settling-time function

T (e0
1, e

0
2) = inf{T ≥ 0 : e1(t, e

0
1) = e2(t, e

0
2) = 0 for all t ≥ T} (20)

is defined for a solution e1(t, e
0
1), e2(t, e

0
2) of (12), initialized with e1(0) = e0

1, e2(0) = e0
2. The

following result is in order.

Theorem 4: Given positive k1, k2, k3, k4, and ε ∈ [1
2
, 1), system (12) is globally finite time

stable, and an upper estimate

T (e0
1, e

0
2) ≤ v1−ε

0 (1− ε)−1κ−1 (21)

of the settling-time function holds for the initial value v0 of the Lyapunov function (16), for

κ = γ(2k3)
1−ε, and for γ given by (19).

Proof: While proving Theorem 3, we have established that no sliding modes occur in system

February 5, 2010 DRAFT
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(12) provided that the conditions of Theorem 4 hold. Thus, the Lyapunov function (16) is almost

always differentiable along the trajectories of the system in question, namely, for all t ≥ 0 such

that e1(t) 6= 0. For those t, the time derivative of the Lyapunov function, computed according

to (12), proves to be negative definite. Indeed, since

|e1|ε−1 ≥
(

V1

2k3

)ε−1

(22)

one arrives at

V̇1 = 2sk3sign e1 + 2sk4e1 − e2(k3sign e1 + k4e1)

−s[εk1s|e1|ε−1 + k3sign e1 + k4e1 + k2s]

= −k2s
2 − k1εs

2|e1|ε−1 − k1k4|e1|ε+1 − k2k3|e1|

−k2k4e
2
1 − k1k3|e1|ε = −|e1|ε−1[k2s

2|e1|1−ε

+k1εs
2 + k1k4e

2
1 + k2k3|e1|2−ε + k2k4|e1|3−ε

+k1k3|e1|] ≤ −
(

V1

2k3

)ε−1

Wε(e1, s) (23)

where

Wε(e1, s) = [k2s
2|e1|1−ε + k1εs

2 + k1k4e
2
1 + k2k3|e1|2−ε + k2k4|e1|3−ε + k1k3|e1|]. (24)

Employing the well-known inequality 2ab ≤ a2 +b2, a, b ∈ R and taking into account that under

the condition ε ∈ [1
2
, 1) of the theorem, |e1|2ε ≤ |e1|2 for |e1| ≥ 1 and |e1|2ε ≤ |e1| otherwise,

the validity of the estimate

V1(e1, e2) ≤ 2k3|e1|+ (k4 +
3

2
k2

2)e
2
1 + 2s2 +

3

2
k2

1e
2ε
1

≤ (2k3 +
3

2
k2

1)|e1|+ (k4 +
3

2
k2

2 +
3

2
k2

1)e
2
1 + 2s2 (25)

is then verified for all e1, e2 ∈ R and s, governed by (17). It is therefore clear that

Wε(e1, s) ≥ γV1(e1, e2) (26)

February 5, 2010 DRAFT
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for γ, governed by (19), and for all e1, e2, s ∈ R such that (17) holds. Thus, inequality (18) is

derived from (19), (23) – (26) with κ = γ(2k3)
1−ε.

To complete the proof it remains to demonstrate that system (12) reaches the origin in finite

time and the settling-time function (20) admits estimate (21). For this purpose, let us note that

for an admissible ε ∈ [1
2
, 1), the solution of the Cauchy problem

v̇(t) = −κvε(t), v(0) = v0 (27)

is given by v(t) = [v1−ε
0 − (1− ε)κt]

1
1−ε and it vanishes at T = v1−ε

0 (1− ε)−1κ−1. By applying

comparison principle [13], the solutions V1(t) of the differential inequality (18), initialized with

V1(0) = v0, are upper estimated by the solution v(t) of the Cauchy problem (27), thereby

ensuring that the Lyapunov function (16), computed on the solutions of the system in question,

is nullified after the same time instant T . The validity of Theorem 4 is thus concluded.

In the rest of this section, we carry out relations between the observer gains ki, i = 1, 2, 3, 4

that could ensure the robustness of the perturbed dynamics

ė1 = e2 − k1|e1|εsign e1 − k2e1,

ė2 = w − k3sign e1 − k4e1. (28)

As a matter of fact, these dynamics correspond to the observation errors e = (e1, e2)
T , e1 =

x − x̂, e1 = y − ŷ between the state of the double integrator (5), affected by an admissible

external disturbance (8), and that of the velocity observer (10).

The desired relations, which are found for the admissible disturbances (8) with α = 1− ε and

ε ∈ [1
2
, 2

3
], depend on the disturbance upper bound µ0 in the growth condition (8) and they are

as follows:

k1 > 0, k2 > 1, k3 > max

{
µ0k1

k2

,
µ0(µ0 + k2)

k1

}
,

k4 >
µ0(µ0 + k2)

k2

. (29)

Theorem 5: Consider system (28) under the growth condition (8) on the external disturbance

February 5, 2010 DRAFT
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w(t). Let

ε ∈ [
1

2
,
2

3
] and α = 1− ε, (30)

and let the system parameters meet condition (29). Then system (28) is globally finite time stable

for any admissible disturbance (8), and the corresponding settling-time function is estimated by

(21) with κ = γ1(2k3)
1−ε and γ1 given by

γ1 = min

{
2(k1k3 − µ2

0 − µ0k2

4k3 + 3k2
1

,
εk1

2
,

2k1k4

2k4 + 3(k2
1 + k2

2)

}
. (31)

Proof: Differentiation (23) of the Lyapunov function (16) along the perturbed system (28)

beyond the discontinuity line e1 = 0 is readily modified to

V̇1 = −|e1|ε−1Wε(e1, s)

+2sw + k1w|e1|εsign e1 + k2we1. (32)

By taking into account (26) and employing (8), (30), this yields

V̇1 ≤ −|e1|ε−1Wε(e1, s)

+s2 + w2 + k1w|e1|εsign e1 + k2we1

≤ −|e1|ε−1[Wε(e1, s) + s2|e1|1−ε + w2|e1|1−ε

+k1we1 + k2w|e1|2−ε] ≤ −|e1|ε−1[Wε(e1, s)

+s2|e1|1−ε + µ2
0|e1|3−3ε + µ0k1|e1|2−ε

+µ0k2|e1|3−2ε] (33)

for all t ≥ 0 when e1(t) 6= 0. As established in the proof of Theorem 3, no sliding modes

occur on the discontinuity line e1(t) = 0. Thus, (30) holds almost for all positive t. Since

|e1|3−iε ≤ |e1|3−ε, i = 2, 3 for |e1| ≥ 1 and |e1|3−iε ≤ |e1|, i = 2, 3, otherwise, it follows that

the inequality

V̇1 ≤ −|e1|ε−1W1(e1, s) (34)

February 5, 2010 DRAFT
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is in force almost for all t ≥ 0 where

W1(e1, s) = [(k2 − 1)s2|e1|1−ε + k1εs
2 + k1k4e

2
1

+(k2k3 − µ0k1)|e1|2−ε

+(k1k3 − µ2
0 − µ0k2)|e1|

+(k2k4 − µ2
0 − µ0k2)|e1|3−ε]. (35)

Furthermore, the estimate

W1(e1, s) ≥ γ1V1(e1, e2) (36)

similar to (26), is derived for γ1, given by (31), and for all e1, e2, s ∈ R such that (17), (29),

(30) hold. Relations (22), (33) – (36), coupled together, result in (18) with κ = γ1(2k3)
1−ε. The

finite time stability of the perturbed system (28) and the corresponding settling-time function

estimate are then concluded from inequality (18) by applying the same line of reasoning as that

used in the proof of Theorem 4.

It is of interest to note that system (28), specified with ε = 1
2
, remains finite time stable even

if affected by a non-vanishing external disturbance. For later use, we denote

γ2 =





min{2(k1k3−M−Mk1)

4k3+3k2
1

, k1−2M
4

} if x2 = x4 = 0

min{2(k1k3−M−Mk1)

4k3+3k2
1

, k1−2M
4

, 2k1k4

2k4+3k2
2
} otherwise

(37)

Theorem 6: Let system (28) be specified with ε = 1
2

and let it be affected by a uniformly

bounded disturbance (6). Furthermore, let the system gains be such that

k1, k3 > 0, k2, k4 ≥ 0,

if k4 = 0 then k2 = 0. (38)

Then system (28) is globally finite time stable whenever the upper bound M on the magnitude

February 5, 2010 DRAFT
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of the external disturbance w meets the condition

M < min{k1

2
,

k1k3

1 + k1

}. (39)

In addition, the corresponding settling-time function is estimated by (21) with κ = γ2(2k3)
1−ε

and γ2 given by (37).

Proof: Under the conditions of Theorem 6, differentiation (32) of the Lyapunov function

(16) along system (28) beyond the discontinuity line e1 = 0 is specified to

V̇1 ≤ −|e1|− 1
2 Wε= 1

2
(e1, s) + 2M |s|+ Mk1|e1| 12

+Mk2|e1| = −|e1|− 1
2{Wε= 1

2
−M [2|s||e1| 12

−k1|e1| − k2|e1| 32 ]} ≤ −|e1|− 1
2 W2(e1, s) (40)

where the well-known inequality 2|s||e1| 12 ≤ s2 + |e1| is taken into account and

W2(e1, s) = [k2s
2|e1| 12 + (

k1

2
−M)s2 + k1k4e

2
1

+(k2k3 −Mk2)|e1| 32 + (k1k3 −M −Mk1)|e1|k2k4|e1| 52 ]. (41)

Since the first inequality of (25) reduces now to

V1(e1, e2) ≤ (2k3 +
3

2
k2

1)|e1|+ (k4 +
3

2
k2

2)e
2
1 + 2s2, (42)

it follows that

W2(e1, s) ≥ γ2V1(e1, e2) (43)

for γ2, given by (37), and for all e1, e2, s ∈ R such that relations (17), (38), (39) hold. Similar

to that of the proof of Theorem 5, relation (18) with ε = 1
2

and κ = γ2(2k3)
1−ε is then derived

from (22), (40) – (43), coupled together. This completes the proof of Theorem 6 because as

shown in the proof of Theorem 4, inequality (18) ensures that the Lyapunov function (16) is

nullified after the finite time instant T = v1−ε
0 (1 − ε)−1κ−1, thereby yielding the global finite

time stability of the system in question and the corresponding settling-time function estimate.
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IV. FINITE TIME STABILIZING POSITION FEEDBACK SYNTHESIS

In this section, we proceed with the design of the position feedback, stabilizing the double

integrator in finite time. For this purpose, we substitute the velocity y in the state feedback (2)

by its estimate ŷ to arrive at the finite time stabilizing position feedback

u = −µ|ŷ|αsign ŷ − ν|x| α
2−α sign x, (44)

so that the resulting closed-loop system proves to be globally finite time stable regardless of

whichever admissible disturbance affects the system.

Theorem 7: Consider system (5) under the growth condition (8) on the external disturbance

w. Let (5) be driven by the observer-based dynamic feedback (10), (44) with parameters α, ε

subject to (30), with positive controller gains µ, ν such that µ > µ0, and with observer parameters

ki, i = 1, 2, 3, 4, satisfying condition (29). Then the closed-loop system (5), (10), (44) is globally

asymptotically stable, regardless of whichever external disturbance (8) affects the system.

Proof: Clearly, the closed-loop system (5), (10), (44), rewritten in terms of the observation

error (28), meet the conditions of Theorem 5. By applying Theorem 5 to the observation error

system (28), it is concluded that starting from a finite time instant T , the closed-loop system

evolves on the manifold e1 = e2 = 0 where ŷ = y, thereby ensuring that the position control

signal (44) coincides with the state feedback signal (2). Due to this, the linear growth conditions

|w(x, y, t)| ≤ µ0(1 + |y|) and |u(x, ŷ)| ≤ µ(1 + |ŷ|) + ν(1 + |x|) turn out to hold for all

x, y ∈ R, t ≥ 0 and for the external disturbance (8) and the control input (44), respectively,

so that the closed-loop state cannot escape to infinity in finite time. To complete the proof it

remains to apply Theorem 2 to (5), (10), (44) for t ≥ T when the position feedback equals the

state feedback. The global asymptotic stability of the closed-loop system (5), (10), (44) is thus

established.

To this end, we present the position feedback controller that additionally imposes on the closed-

loop system global finite time stability and robustness against uniformly bounded disturbances.

Theorem 8: Let system (5) be affected by a uniformly bounded disturbance (6) and let it be

driven by the observer-based dynamic feedback (10), (44) specified with α = 0 and ε = 1
2
,

February 5, 2010 DRAFT



16

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

Time [sec]

e
1

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

Time [sec]

x

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time [sec]

e
2

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

3

Time [sec]

y

Fig. 3. Position feedback stabilization (10), (44) of the double integrator (5), initialized with x(0) = −2, y(0) = 0 and specified

with µ = 1, ν = 2, α = 1
2

, and ε = 1
2 .

with positive controller gains µ, ν subject to (7), and with observer parameters ki, i = 1, 2, 3, 4,

satisfying conditions (38), (39). Then the closed-loop system (5), (10), (44) is globally finite

time stable.

Proof: By applying Theorem 6 to the observation error system (28), it is concluded that

starting from a finite time instant T , the closed-loop system evolves on the manifold e1 = e2 = 0

where ŷ = y, thereby ensuring that the position control signal (44) coincides with the state

feedback signal (2). Since the linear growth conditions |w(x, y, t)| ≤ M and |u(x, ŷ)| ≤ µ(1 +

|ŷ|)+ ν(1+ |x|) turn out to hold for all x, y ∈ R, t ≥ 0 and for the external disturbance (6) and

the control input (44), respectively, the closed-loop state cannot escape to infinity in finite time.

Now applying [4, Theorem 4.2] to (5), (10), (44), provided that for t ≥ T , the position feedback

equals the state feedback, yields the global finite time stability of the closed-loop system (5),

(10), (44). The proof is thus completed.
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Numerical simulations, made for the double integrator (5), driven by the observer-based

dynamic feedback (10), (44), are presented in Figure 3.

V. CONCLUSIONS

A modification of the twisting controller and that of the supertwisting observer are coupled

together to present a unified framework for the finite time position feedback stabilization of

a double integrator. The proposed modifications are shown to inherit, from their originators,

desired finite time stability and robustness properties. The former modification represents a

parameterized family of homogeneous continuous controllers and it is made for avoiding the

undesired chattering phenomenon that appears in the closed loop if driven by a switching input

of high frequency. In turn, observer switching is not as serious as controller switching because

it does not drive an actuator and hence it does not come at the expense of controller switching.

Therefore, the latter modification represents a parameterized family of inhomogeneous switched

observers, and the motivation behind this modification is in extending the class of finite time

stable SOSM’s towards their inhomogeneous perturbations.

Being coupled together, the modification of the twisting controller and that of the supertwisting

observer yield the position feedback stabilization of the double integrator in finite time in

accordance with the separation principle which is shown to be in force in the present case. The

finite time convergence and robustness properties of the proposed synthesis make it attractive

for further extension to electromechanical applications with hard-to-model nonlinear phenomena

such as friction and impacts. Finite time orbital stabilization of a biped robot is among open

problems to be tackled through the developed approach. This work is in progress and it will be

published elsewhere.
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