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Finite Time Stabilization of a Double Integrator -Part I: Continuous Sliding Mode-based Position Feedback Synthesis

The twisting and supertwisting algorithms, generating important classes of second order sliding modes (SOSM's), are well-recognized for their finite time stability and robustness properties. In the present paper, a continuous modification of the twisting algorithm and an inhomogeneous perturbation of the supertwisting algorithm are introduced to extend the class of SOSM's that present the aforementioned attractive features. Thus modified, the twisting and supertwisting algorithms are utilized in the state feedback synthesis and, respectively, velocity observer design, made for the finite time stabilization of a double integrator if only position measurements are available. Performance and robustness issues of the resulting output feedback synthesis are illustrated by means of numerical simulations.

I. INTRODUCTION

Motivated by modern applications, particularly, to electromechanical systems (see, e.g., [START_REF] Bhat | Continuous finite-time stabilization of the translational and rotationnal double integrator[END_REF], [START_REF] Orlov | Discontinuous systems -Lyapunov analysis and robust synthesis under uncertainty conditions[END_REF] and references therein), the systematic nonsmooth feedback design methodology is continuing to be developed. Since this methodology is capable of imposing the finite time stability as well as desired robustness properties on the closed-loop system, it has been widely used in practice.

An example of such an application is orbital synthesis of hybrid systems, e.g., cyclic bipedal locomotion [START_REF] Grizzle | On observer-based feedback stabilization of periodic orbits in bipedal locomotion[END_REF]), where the controlled plant is operating under uncertainties and it is to be driven Y. Orlov is with CICESE Research Center, Electronics and Telecommunication Department, P.O. BOX 434944, San Diego, CA 92143-4944, (email: yorlov@cicese.mx), Yannick Aoustin and Christine Chevallereau are with IRCCyN, UMR 6597, École Centrale de Nantes, Université de Nantes, France, (email: Yannick.Aoustin@irccyn.ec-nantes.fr, Christine.Chevallereau@irccyn.ecnantes.fr). February 5, 2010 DRAFT to an operational periodic mode in finite time during its continuous phase between successive discrete dynamics.

In the present paper, a modification of the twisting controller from [START_REF] Orlov | Finite-time stability and robust control synthesis of uncertain switched systems[END_REF] and that of the supertwisting observer from [START_REF] Davila | Second-order sliding mode observer for mechanical systems[END_REF] are coupled together to present a unified framework for the finite time position feedback stabilization of a double integrator. The afore-mentioned twisting and supertwisting algorithms generate an important class of the so-called second order sliding modes (SOSM's), which are well-recognized for their finite time stability and robustness properties [START_REF] Fridman | Higher order sliding modes as a natural phenomenon in control theory[END_REF], [START_REF]Higher order sliding modes[END_REF].

The former modification represents a parameterized family of homogeneous continuous controllers and it is made for avoiding the undesired chattering phenomenon that appears in the closed-loop if driven by a switching input of high frequency [START_REF] Bartolini | Chattering phenomena in discontinuous control systems[END_REF], [START_REF] Bartolini | Chattering avoidance by second-order sliding mode control[END_REF]. In turn, observer switching is not as serious as controller switching because it does not drive an actuator and hence it does not come at the expense of controller switching. Therefore, the latter modification represents a parameterized family of inhomogeneous switched observers, and the motivation behind this modification is in extending the class of finite time stable SOSM's towards their inhomogeneous perturbations.

Being coupled together, the modification of the twisting controller and that of the supertwisting observer yield the position feedback stabilization of the double integrator in finite time in accordance with the separation principle which proves to be in force in the present case. The resulting position feedback synthesis constitutes the main theoretical contribution of the paper.

Finite time convergence and robustness properties of the proposed synthesis are illustrated by simulations.

The rest of the paper is outlined as follows. The twisting controller and supertwisting observer are modified step by step in Sections II and III, respectively, to be subsequently, in Section IV, coupled together in a unified practical framework of the position feedback stabilization of a double integrator. Section V collects some conclusions.
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II. FINITE TIME STABILIZING STATE FEEDBACK SYNTHESIS

To begin with, we present a class of static feedback controllers that globally stabilize the double integrator

ẋ = y, ẏ = u. (1) 
A feedback law u(x, y) is further referred to as finite time stabilizing if it renders the origin of the closed-loop system (1) a finite time stable equilibrium as defined in [START_REF] Bhat | Continuous finite-time stabilization of the translational and rotationnal double integrator[END_REF], [START_REF] Orlov | Finite-time stability and robust control synthesis of uncertain switched systems[END_REF].

The following state feedback

u = -µ|y| α sign y -ν|x| α 2-α sign x (2)
with parameters ν > µ > 0 and α ∈ [0, 1) is proposed to globally stabilize the double integrator [START_REF] Bhat | Continuous finite-time stabilization of the translational and rotationnal double integrator[END_REF]. If specified with α = 0, the above controller is inspired from the twisting algorithm [START_REF] Fridman | Higher order sliding modes as a natural phenomenon in control theory[END_REF],

[7] and it coincides with the discontinuous finite time stabilizing controller of [START_REF] Orlov | Finite-time stability and robust control synthesis of uncertain switched systems[END_REF], whereas for α ∈ (0, 1), it simplifies the continuous controller of [START_REF] Bhat | Continuous finite-time stabilization of the translational and rotationnal double integrator[END_REF], while also presenting the finite time stability. The proposed simplification is essential both for the stability analysis of the closed-loop system and for improving its performance. The qualitative behavior of system (1), ( 2) is depicted in Figure 1.

Theorem 1: Consider the closed-loop system (1), (2). The system is globally finite time stable if the controller parameters are such that ν > µ > 0 and α ∈ [0, 1).

Proof: We first note that the validity of the assertion of the theorem for the discontinuous system (1), (2), corresponding to α = 0, follows from [START_REF] Orlov | Finite-time stability and robust control synthesis of uncertain switched systems[END_REF]Theorem 4.1]. Thus, it remains to prove the validity of the theorem for its continuous counterpart with α ∈ (0, 1).

Given α ∈ (0, 1), let us consider the continuously differentiable Lyapunov candidate function

V (x, y) = ν 2 -α 2 |x| 2 2-α + 1 2 y 2 . ( 3 
)
By computing the time derivative of this function along the trajectories of (1), (2), we arrive at

V = -µ|y| α+1 . ( 4 
)
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It follows from the invariance principle that system (1), ( 2) is globally asymptotically stable if α ∈ (0, 1). Moreover, according to [4, Theorem 3.2], this system is globally finite time stable as it is homogeneous of the negative degree q = -1 and dilation r = ( 2-α 1-α , 1 1-α ). The present homogeneity property of (1), ( 2) is straightforwardly verified by inspection [4, Definition 2.10].

The theorem is thus proved.

To this end, we consider the perturbed version ẋ = y, ẏ = u + w [START_REF] Davila | Second-order sliding mode observer for mechanical systems[END_REF] of the double integrator and investigate robustness properties of the closed-loop system (2), [START_REF] Davila | Second-order sliding mode observer for mechanical systems[END_REF] against an external disturbance w(x, y, t), being a locally integrable function on all potential trajectories x(t), y(t). If α = 0, then according to [4, Theorem 4.2], the disturbed system (2),

(5) renders the finite time stability, regardless of whichever disturbance w with a uniform upper bound

ess sup t≥0 |w(t)| ≤ M (6)
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0 < M < µ < ν -M. ( 7 
)
This robustness property is achieved due to the high frequency controller switching in the sliding mode of the second order that occurs in the origin. In turn, only external disturbances, vanishing in the origin and satisfying the growth condition

|w(x, y, t)| ≤ µ 0 |y| α (8)
for some α ∈ (0, 1), some upper bound µ 0 < µ, and for all x, y ∈ R, t ≥ 0, can be rejected by the continuous controller ( 2) with the same α as that in [START_REF] Bartolini | Chattering phenomena in discontinuous control systems[END_REF]. The following result is in order.

Theorem 2: Given α ∈ (0, 1) and µ, ν > 0, the continuous closed-loop system (2), ( 5) is globally asymptotically stable for any disturbance w, satisfying the growth condition ( 8) with some µ 0 < µ.

Proof: Under conditions of the theorem, the time derivative of the Lyapunov function (3), computed along the trajectories of ( 2), ( 5), is estimated as follows:

V = -µ|y| α+1 + |y|w ≤ -(µ -µ 0 )|y| α+1 . ( 9 
)
Since µ > µ 0 by a condition of the theorem, the global asymptotic stability of (2), ( 5) is then established by applying the invariance principle.

Remark 1: Analyzing the proof of Theorem 2, one can note that under non-vanishing disturbances ( 6), the closed-loop system (2), ( 5) is practically stabilized in finite time to the vicinity of the radius (M/µ 0 ) 1/α rather than to the point of interest. Indeed, to conclude this, it suffices to observe that in this case, the time derivative (9) of the Lyapunov function (3) remains negative semidefinite beyond the afore-mentioned vicinity. Thus, the higher µ 0 , specified in the growth condition [START_REF] Bartolini | Chattering phenomena in discontinuous control systems[END_REF], the better the stabilization precision which is attained for the perturbed system

(5), affected by a non-vanishing disturbance [START_REF] Fridman | Higher order sliding modes as a natural phenomenon in control theory[END_REF]. Meanwhile, the higher µ 0 employed, the higher control magnitude µ to be applied in the control law (2).
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III. FINITE TIME VELOCITY OBSERVER DESIGN

In the present section, we focus our study on the stability analysis of the velocity observer

ẋ = ŷ + k 1 |x -x| ε sign (x -x) + k 2 (x -x) ẏ = u + k 3 sign (x -x) + k 4 (x -x) (10) 
of the double integrator (1), which is parameterized with k 1 , k 3 > 0, ε ≥ 0 and which is obtained through a certain perturbation of the supertwisting observer

ẋ = ŷ + k 1 |x -x| 1 2 sign (x -x) + k 2 (x -x) ẏ = u + k 3 sign (x -x) + k 4 (x -x) (11) 
that was first proposed in [START_REF] Davila | Second-order sliding mode observer for mechanical systems[END_REF] with k 2 , k 4 = 0 and then augmented in [START_REF] Moreno | A lyapunov approach to second-order sliding mode controllers and observers[END_REF] with nontrivial linear gains k 2 , k 4 > 0. As the above equations ( 10), ( 11) possess discontinuous right-hand sides, the dynamics of such equations are throughout defined in the sense of Filippov [START_REF] Filippov | Differential equations with discontinuous right-hand sides[END_REF].

Clearly, the observation error e = (e 1 , e 2 ) T , e 1 = x -x, e 2 = y -ŷ between the state of the double integrator (1) and that of the velocity observer [START_REF] Moreno | A lyapunov approach to second-order sliding mode controllers and observers[END_REF] is governed by the following second-order system

ė1 = e 2 -k 1 |e 1 | ε sign e 1 -k 2 e 1 , ė2 = -k 3 sign e 1 -k 4 e 1 . ( 12 
)
The qualitative behavior of the observation error dynamics is depicted in Figure 2.

We are in a position to establish the global asymptotic stability of the error system within the framework of methods of nonsmooth Lyapunov functions with negative semidefinite time derivative along the dynamics of the system.

Theorem 3: Let the parameters of system (12) be such that k 1 , k 3 > 0, k 2 , k 4 ≥ 0, and ε ≥ 0.

Then system ( 12) is globally asymptotically stable.

Proof: First of all, let us note that the discontinuous system [START_REF] Utkin | Sliding modes in control optimization[END_REF], being viewed in the sense of Filippov, possesses an equilibrium point in the origin. Next let us observe that for [START_REF] Utkin | Sliding modes in control optimization[END_REF], the 

k 1 = 0.1, k 2 = 0.2, k 3 = 0.1, k 4 = 1, and ε = 1 2 .
condition

e 1 ė1 = e 1 (e 2 -k 1 |e 1 | ε sign e 1 -k 2 e 1 ) < 0
for sliding modes to exist holds for all infinitesimal e 1 = 0 if and only if ε = 0 and |e 2 | < k 1 .

Thus, the sliding modes appear in system [START_REF] Utkin | Sliding modes in control optimization[END_REF] just in the case of ε = 0. Now, let us consider the Lyapunov candidate function

V 0 (e 1 , e 2 ) = k 3 |e 1 | + 1 2 k 4 e 2 1 + 1 2 e 2 2 . ( 13 
)
By computing the time derivative of this function along the trajectories of system [START_REF] Utkin | Sliding modes in control optimization[END_REF], we arrive at

V0 = (k 3 sign e 1 + k 4 e 1 )(e 2 -k 1 |e 1 | ε sign e 1 -k 2 e 1 ) -e 2 (k 3 sign e 1 + k 4 e 1 ) = -k 1 k 3 |e 1 | ε -k 1 k 4 |e 1 | ε+1 -k 2 k 3 |e 1 | -k 2 k 4 e 2 1 < 0 (14)
everywhere but on the vertical axis e 1 = 0 where the function V is not differentiable. 

ė2 = - k 3 k 1 e 2 , ( 15 
)
system [START_REF] Utkin | Sliding modes in control optimization[END_REF], corresponding to ε = 0, is globally asymptotically stable.

For the convenience of the reader, recall that the sliding mode equation ( 15) is derived according to the equivalent control method [START_REF] Utkin | Sliding modes in control optimization[END_REF] by substituting the equivalent value sign eq e 1 of the commuting function sign e 1 (that ensures the identity ė1 = 0 along the sliding modes)

into the second equation of the disturbance-free system [START_REF] Utkin | Sliding modes in control optimization[END_REF] for sign e 1 . As a matter of fact, the equivalent value represents a solution of the algebraic equation e 2 -k 1 sign e 1 = 0 with respect to sign e 1 and hence, sign eq e 1 = k -1 1 e 2 . Finally, confining our demonstration to the case ε > 0 yields no sliding modes on the discontinuity manifold e 1 = 0. Thus, by virtue of ε > 0, inequality (14) holds almost everywhere, and the global asymptotic stability in this case is concluded by applying the extension of the invariance principle, made in [2, Theorem 3.2], to the discontinuous system [START_REF] Utkin | Sliding modes in control optimization[END_REF]. Theorem 3 is completely proved.

It should be pointed out that by straightforward inspection [2, Definition 4.6], system [START_REF] Utkin | Sliding modes in control optimization[END_REF], specified with ε = 1 2 , is homogeneous of degree q = -1 with respect to dilation r = (2, 1) so that by the homogeneity principle [2, Theorem 4.2], the global finite time stability of this system is additionally guaranteed by its global asymptotic stability. Our next aim is to demonstrate that the finite time stability of system [START_REF] Utkin | Sliding modes in control optimization[END_REF] persists in spite of certain perturbations of the parameter ε around its homogeneity value ε = 1 2 . For this purpose, we introduce the modified Lyapunov function

V 1 (e 1 , e 2 ) = 2k 3 |e 1 | + k 4 e 2 1 + 1 2 e 2 2 + 1 2 s 2 (e 1 , e 2 ) (16) 
which is obtained by doubling the first two terms of [START_REF] Khalil | Nonlinear systems[END_REF] and by augmenting (13) with a half February 5, 2010 DRAFT square of the right hand-side

s(e 1 , e 2 ) = e 2 -k 1 |e 1 | ε sign e 1 -k 2 e 1 , (17) 
of the first equation of [START_REF] Utkin | Sliding modes in control optimization[END_REF]. The proposed modification is inspired from [START_REF] Moreno | A lyapunov approach to second-order sliding mode controllers and observers[END_REF] where the same Lyapunov function, being specified with ε = 1 2 , has been used to prove the system finite time stability in this particular case.

As the Lyapunov function ( 16) is shown to admit the estimate

V1 (t) ≤ -κV ε 1 (t) (18) 
along the trajectories of system ( 12), specified with ε ∈ [ 1 2 , 1), for some κ > 0 and for almost all t ≥ 0, it plays a crucial role in establishing the finite time stability of such a system and in determining an upper bound of the settling-time function T (e 0 1 , e 0 2 ) in terms of the initial value v 0 = V 1 (e 1 (0), e 2 (0)) of the Lyapunov function ( 16) and the function

γ = min 2k 1 k 3 4k 3 + 3k 2 1 , εk 1 2 , 2k 1 k 4 2k 4 + 3(k 2 1 + k 2 2 ) (19) 
of the system parameters. Recall that the settling-time function

T (e 0 1 , e 0 2 ) = inf {T ≥ 0 : e 1 (t, e 0 1 ) = e 2 (t, e 0 2 ) = 0 for all t ≥ T } (20) is defined for a solution e 1 (t, e 0 1 ), e 2 (t, e 0 2 ) of ( 12), initialized with e 1 (0) = e 0 1 , e 2 (0) = e 0 2 . The following result is in order. 12) is globally finite time stable, and an upper estimate

Theorem 4: Given positive k 1 , k 2 , k 3 , k 4 , and ε ∈ [ 1 2 , 1), system (
T (e 0 1 , e 0 2 ) ≤ v 1-ε 0 (1 -ε) -1 κ -1 (21)
of the settling-time function holds for the initial value v 0 of the Lyapunov function (16), for κ = γ(2k 3 ) 1-ε , and for γ given by (19).

Proof: While proving Theorem 3, we have established that no sliding modes occur in system February 5, 2010 DRAFT [START_REF] Utkin | Sliding modes in control optimization[END_REF] provided that the conditions of Theorem 4 hold. Thus, the Lyapunov function ( 16) is almost always differentiable along the trajectories of the system in question, namely, for all t ≥ 0 such that e 1 (t) = 0. For those t, the time derivative of the Lyapunov function, computed according to [START_REF] Utkin | Sliding modes in control optimization[END_REF], proves to be negative definite. Indeed, since

|e 1 | ε-1 ≥ V 1 2k 3 ε-1 (22)
one arrives at

V1 = 2sk 3 sign e 1 + 2sk 4 e 1 -e 2 (k 3 sign e 1 + k 4 e 1 ) -s[εk 1 s|e 1 | ε-1 + k 3 sign e 1 + k 4 e 1 + k 2 s] = -k 2 s 2 -k 1 εs 2 |e 1 | ε-1 -k 1 k 4 |e 1 | ε+1 -k 2 k 3 |e 1 | -k 2 k 4 e 2 1 -k 1 k 3 |e 1 | ε = -|e 1 | ε-1 [k 2 s 2 |e 1 | 1-ε +k 1 εs 2 + k 1 k 4 e 2 1 + k 2 k 3 |e 1 | 2-ε + k 2 k 4 |e 1 | 3-ε +k 1 k 3 |e 1 |] ≤ - V 1 2k 3 ε-1 W ε (e 1 , s) (23) 
where

W ε (e 1 , s) = [k 2 s 2 |e 1 | 1-ε + k 1 εs 2 + k 1 k 4 e 2 1 + k 2 k 3 |e 1 | 2-ε + k 2 k 4 |e 1 | 3-ε + k 1 k 3 |e 1 |]. ( 24 
)
Employing the well-known inequality 2ab ≤ a 2 + b 2 , a, b ∈ R and taking into account that under 23) -( 26) with κ = γ(2k 3 ) 1-ε .

the condition ε ∈ [ 1 2 , 1) of the theorem, |e 1 | 2ε ≤ |e 1 | 2 for |e 1 | ≥ 1 and |e 1 | 2ε ≤ |e 1 | otherwise, the validity of the estimate V 1 (e 1 , e 2 ) ≤ 2k 3 |e 1 | + (k 4 + 3 2 k 2 2 )e 2 1 + 2s 2 + 3 2 k 2 1 e 2ε 1 ≤ (2k 3 + 3 2 k 2 1 )|e 1 | + (k 4 + 3 2 k 2 2 + 3 2 k 2 1 )e
To complete the proof it remains to demonstrate that system (12) reaches the origin in finite time and the settling-time function (20) admits estimate (21). For this purpose, let us note that for an admissible ε ∈ [ 1 2 , 1), the solution of the Cauchy problem

v(t) = -κv ε (t), v(0) = v 0 (27) is given by v(t) = [v 1-ε 0 -(1 -ε)κt] 1 1-ε and it vanishes at T = v 1-ε 0 (1 -ε) -1 κ -1
. By applying comparison principle [START_REF] Khalil | Nonlinear systems[END_REF], the solutions V 1 (t) of the differential inequality (18), initialized with V 1 (0) = v 0 , are upper estimated by the solution v(t) of the Cauchy problem (27), thereby ensuring that the Lyapunov function ( 16), computed on the solutions of the system in question, is nullified after the same time instant T . The validity of Theorem 4 is thus concluded.

In the rest of this section, we carry out relations between the observer gains k i , i = 1, 2, 3, 4 that could ensure the robustness of the perturbed dynamics

ė1 = e 2 -k 1 |e 1 | ε sign e 1 -k 2 e 1 , ė2 = w -k 3 sign e 1 -k 4 e 1 . ( 28 
)
As a matter of fact, these dynamics correspond to the observation errors e = (e 1 , e 2 ) T , e 1 =

x -x, e 1 = y -ŷ between the state of the double integrator (5), affected by an admissible external disturbance [START_REF] Bartolini | Chattering phenomena in discontinuous control systems[END_REF], and that of the velocity observer [START_REF] Moreno | A lyapunov approach to second-order sliding mode controllers and observers[END_REF].

The desired relations, which are found for the admissible disturbances (8) with α = 1 -ε and

ε ∈ [ 1 2 , 2 3 
], depend on the disturbance upper bound µ 0 in the growth condition [START_REF] Bartolini | Chattering phenomena in discontinuous control systems[END_REF] and they are as follows:

k 1 > 0, k 2 > 1, k 3 > max µ 0 k 1 k 2 , µ 0 (µ 0 + k 2 ) k 1 , k 4 > µ 0 (µ 0 + k 2 ) k 2 . ( 29 
)
Theorem 5: Consider system (28) under the growth condition (8) on the external disturbance February 5, 2010 DRAFT

w(t). Let ε ∈ [ 1 2 , 2 3 
] and α = 1 -ε, (30) and let the system parameters meet condition (29). Then system (28) is globally finite time stable for any admissible disturbance [START_REF] Bartolini | Chattering phenomena in discontinuous control systems[END_REF], and the corresponding settling-time function is estimated by (21) with κ = γ 1 (2k 3 ) 1-ε and γ 1 given by

γ 1 = min 2(k 1 k 3 -µ 2 0 -µ 0 k 2 4k 3 + 3k 2 1 , εk 1 2 , 2k 1 k 4 2k 4 + 3(k 2 1 + k 2 2 ) . ( 31 
)
Proof: Differentiation (23) of the Lyapunov function ( 16) along the perturbed system (28) beyond the discontinuity line e 1 = 0 is readily modified to

V1 = -|e 1 | ε-1 W ε (e 1 , s) +2sw + k 1 w|e 1 | ε sign e 1 + k 2 we 1 . (32) 
By taking into account (26) and employing ( 8), (30), this yields

V1 ≤ -|e 1 | ε-1 W ε (e 1 , s)
+s 2 + w 2 + k 1 w|e 1 | ε sign e 1 + k 2 we 1 ≤ -|e 1 | ε-1 [W ε (e 1 , s) + s 2 |e 1 | 1-ε + w 2 |e 1 | 1-ε +k 1 we 1 + k 2 w|e 1 | 2-ε ] ≤ -|e 1 | ε-1 [W ε (e 1 , s) +s 2 |e 1 | 1-ε + µ 2 0 |e 1 | 3-3ε + µ 0 k 1 |e 1 | 2-ε +µ 0 k 2 |e 1 | 3-2ε ] (33) 
for all t ≥ 0 when e 1 (t) = 0. As established in the proof of Theorem 3, no sliding modes occur on the discontinuity line e 1 (t) = 0. Thus, (30) holds almost for all positive t. Since

|e 1 | 3-iε ≤ |e 1 | 3-ε , i = 2, 3 for |e 1 | ≥ 1 and |e 1 | 3-iε ≤ |e 1 |, i = 2, 3, otherwise, it follows that the inequality V1 ≤ -|e 1 | ε-1 W 1 (e 1 , s) (34) 
February 5, 2010 DRAFT is in force almost for all t ≥ 0 where

W 1 (e 1 , s) = [(k 2 -1)s 2 |e 1 | 1-ε + k 1 εs 2 + k 1 k 4 e 2 1 +(k 2 k 3 -µ 0 k 1 )|e 1 | 2-ε +(k 1 k 3 -µ 2 0 -µ 0 k 2 )|e 1 | +(k 2 k 4 -µ 2 0 -µ 0 k 2 )|e 1 | 3-ε ]. (35) 
Furthermore, the estimate

W 1 (e 1 , s) ≥ γ 1 V 1 (e 1 , e 2 ) (36) 
similar to (26), is derived for γ 1 , given by (31), and for all e 1 , e 2 , s ∈ R such that (17), ( 29), (30) hold. Relations ( 22), ( 33) -(36), coupled together, result in (18) with κ = γ 1 (2k 3 ) 1-ε . The finite time stability of the perturbed system (28) and the corresponding settling-time function estimate are then concluded from inequality (18) by applying the same line of reasoning as that used in the proof of Theorem 4.

It is of interest to note that system (28), specified with ε = 1 2 , remains finite time stable even if affected by a non-vanishing external disturbance. For later use, we denote

γ 2 =    min{ 2(k 1 k 3 -M -M k 1 ) 4k 3 +3k 2 1 , k 1 -2M 4 } if x 2 = x 4 = 0 min{ 2(k 1 k 3 -M -M k 1 ) 4k 3 +3k 2 1 , k 1 -2M 4 , 2k 1 k 4 2k 4 +3k 2 2
} otherwise (37)

Theorem 6: Let system (28) be specified with ε = 1 2 and let it be affected by a uniformly bounded disturbance [START_REF] Fridman | Higher order sliding modes as a natural phenomenon in control theory[END_REF]. Furthermore, let the system gains be such that

k 1 , k 3 > 0, k 2 , k 4 ≥ 0, if k 4 = 0 then k 2 = 0. ( 38 
)
Then system (28) is globally finite time stable whenever the upper bound M on the magnitude February 5, 2010 DRAFT of the external disturbance w meets the condition

M < min{ k 1 2 , k 1 k 3 1 + k 1 }. ( 39 
)
In addition, the corresponding settling-time function is estimated by ( 21) with κ = γ 2 (2k 3 ) 1-ε and γ 2 given by (37).

Proof: Under the conditions of Theorem 6, differentiation (32) of the Lyapunov function (16) along system (28) beyond the discontinuity line e 1 = 0 is specified to

V1 ≤ -|e 1 | -1 2 W ε= 1 2 (e 1 , s) + 2M |s| + M k 1 |e 1 | 1 2 +M k 2 |e 1 | = -|e 1 | -1 2 {W ε= 1 2 -M [2|s||e 1 | 1 2 -k 1 |e 1 | -k 2 |e 1 | 3 2 ]} ≤ -|e 1 | -1 2 W 2 (e 1 , s) (40)
where the well-known inequality 2|s||e 1 |

1 2 ≤ s 2 + |e 1 | is taken into account and W 2 (e 1 , s) = [k 2 s 2 |e 1 | 1 2 + ( k 1 2 -M )s 2 + k 1 k 4 e 2 1 +(k 2 k 3 -M k 2 )|e 1 | 3 2 + (k 1 k 3 -M -M k 1 )|e 1 |k 2 k 4 |e 1 | 5 2 ]. (41) 
Since the first inequality of (25) reduces now to

V 1 (e 1 , e 2 ) ≤ (2k 3 + 3 2 k 2 1 )|e 1 | + (k 4 + 3 2 k 2 2 )e 2 1 + 2s 2 , ( 42 
) it follows that W 2 (e 1 , s) ≥ γ 2 V 1 (e 1 , e 2 ) (43) 
for γ 2 , given by (37), and for all e 1 , e 2 , s ∈ R such that relations (17), (38), (39) hold. Similar to that of the proof of Theorem 5, relation (18) with ε = 1 2 and κ = γ 2 (2k 3 ) 1-ε is then derived from ( 22), (40) -(43), coupled together. This completes the proof of Theorem 6 because as shown in the proof of Theorem 4, inequality (18) ensures that the Lyapunov function ( 16) is nullified after the finite time instant T = v 1-ε 0 (1 -ε) -1 κ -1 , thereby yielding the global finite time stability of the system in question and the corresponding settling-time function estimate. with positive controller gains µ, ν subject to [START_REF]Higher order sliding modes[END_REF], and with observer parameters k i , i = 1, 2, 3, 4, satisfying conditions (38), (39). Then the closed-loop system (5), [START_REF] Moreno | A lyapunov approach to second-order sliding mode controllers and observers[END_REF] 10), (44), provided that for t ≥ T , the position feedback equals the state feedback, yields the global finite time stability of the closed-loop system (5), [START_REF] Moreno | A lyapunov approach to second-order sliding mode controllers and observers[END_REF], (44). The proof is thus completed. In turn, observer switching is not as serious as controller switching because it does not drive an actuator and hence it does not come at the expense of controller switching.

Therefore, the latter modification represents a parameterized family of inhomogeneous switched observers, and the motivation behind this modification is in extending the class of finite time stable SOSM's towards their inhomogeneous perturbations.

Being coupled together, the modification of the twisting controller and that of the supertwisting observer yield the position feedback stabilization of the double integrator in finite time in accordance with the separation principle which is shown to be in force in the present case. The finite time convergence and robustness properties of the proposed synthesis make it attractive for further extension to electromechanical applications with hard-to-model nonlinear phenomena such as friction and impacts. Finite time orbital stabilization of a biped robot is among open problems to be tackled through the developed approach. This work is in progress and it will be published elsewhere.
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 1 Fig. 1. Phase trajectory of the closed-loop system (1), (2), initialized with x(0) = -2, y(0) = 0 and specified with µ = 1, ν = 2, and α = 1 2 .
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 22 Fig. 2. Phase trajectory of the observation error system (12), initialized with e1(0) = -0.1, e2(0) = 0 and specified with
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 5 , 2010 DRAFT Inequality (14) subject to ε = 0 ensures that for ε = 0, the trajectories of (12) hit the sliding mode interval I k 1 = {(e 1 , e 2 )] ∈ R 2 : e 1 = 0, |e 2 | < k 1 } in finite time because otherwise they steer to the origin in finite time. Since the sliding modes on the interval I k 1 are governed by the asymptotically stable equation
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 322 Fig. 3. Position feedback stabilization (10), (44) of the double integrator (5), initialized with x(0) = -2, y(0) = 0 and specified with µ = 1, ν = 2, α = 1 2 , and ε = 1 2
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 5 2010 DRAFT Numerical simulations, made for the double integrator (5), driven by the observer-based dynamic feedback (10), (44), are presented in Figure 3. V. CONCLUSIONS A modification of the twisting controller and that of the supertwisting observer are coupled together to present a unified framework for the finite time position feedback stabilization of a double integrator. The proposed modifications are shown to inherit, from their originators, desired finite time stability and robustness properties. The former modification represents a parameterized family of homogeneous continuous controllers and it is made for avoiding the undesired chattering phenomenon that appears in the closed loop if driven by a switching input of high frequency.

  By applying Theorem 6 to the observation error system (28), it is concluded that starting from a finite time instant T , the closed-loop system evolves on the manifold e 1 = e 2 = 0

	, (44) is globally finite
	time stable.
	where ŷ = y, thereby ensuring that the position control signal (44) coincides with the state
	feedback signal (2). Since the linear growth conditions |w(x, y, t)| ≤ M and |u(x, ŷ)| ≤ µ(1 +
	|ŷ|) + ν(1 + |x|) turn out to hold for all x, y ∈ R, t ≥ 0 and for the external disturbance (6) and
	the control input (44), respectively, the closed-loop state cannot escape to infinity in finite time.
	Now applying [4, Theorem 4.2] to (5), (

Proof:

IV. FINITE TIME STABILIZING POSITION FEEDBACK

In this section, we proceed with the design of the position feedback, stabilizing the double integrator in finite time. For this purpose, we substitute the velocity y in the state feedback [START_REF] Orlov | Discontinuous systems -Lyapunov analysis and robust synthesis under uncertainty conditions[END_REF] by its estimate ŷ to arrive at the finite time stabilizing position feedback

so that the resulting closed-loop system proves to be globally finite time stable regardless of whichever admissible disturbance affects the system.

Theorem 7: Consider system (5) under the growth condition (8) on the external disturbance w. Let (5) be driven by the observer-based dynamic feedback ( 10), (44) with parameters α, ε subject to (30), with positive controller gains µ, ν such that µ > µ 0 , and with observer parameters

, satisfying condition (29). Then the closed-loop system ( 5), ( 10), ( 44) is globally asymptotically stable, regardless of whichever external disturbance (8) affects the system.

Proof: Clearly, the closed-loop system (5), ( 10), (44), rewritten in terms of the observation error (28), meet the conditions of Theorem 5. By applying Theorem 5 to the observation error system (28), it is concluded that starting from a finite time instant T , the closed-loop system evolves on the manifold e 1 = e 2 = 0 where ŷ = y, thereby ensuring that the position control signal (44) coincides with the state feedback signal [START_REF] Orlov | Discontinuous systems -Lyapunov analysis and robust synthesis under uncertainty conditions[END_REF]. Due to this, the linear growth conditions

x, y ∈ R, t ≥ 0 and for the external disturbance (8) and the control input (44), respectively, so that the closed-loop state cannot escape to infinity in finite time. To complete the proof it remains to apply Theorem 2 to ( 5), ( 10), (44) for t ≥ T when the position feedback equals the state feedback. The global asymptotic stability of the closed-loop system ( 5), ( 10), ( 44) is thus established.

To this end, we present the position feedback controller that additionally imposes on the closedloop system global finite time stability and robustness against uniformly bounded disturbances.

Theorem 8: Let system (5) be affected by a uniformly bounded disturbance [START_REF] Fridman | Higher order sliding modes as a natural phenomenon in control theory[END_REF] and let it be driven by the observer-based dynamic feedback [START_REF] Moreno | A lyapunov approach to second-order sliding mode controllers and observers[END_REF], (44) specified with α = 0 and ε = 1 2 , February 5, 2010 DRAFT