
HAL Id: hal-00794641
https://hal.science/hal-00794641

Preprint submitted on 26 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convergence to the equilibrium state for Bose-Einstein
1-D Kac grazing limit model

Radjesvarane Alexandre, Jie Liao, Chunjin Lin

To cite this version:
Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Convergence to the equilibrium state for Bose-Einstein
1-D Kac grazing limit model. 2013. �hal-00794641�

https://hal.science/hal-00794641
https://hal.archives-ouvertes.fr


Convergence to the equilibrium state for

Bose-Einstein 1-D Kac grazing limit model

Radjesvarane ALEXANDRE ∗† Jie LIAO‡ Chunjin LIN §¶

February 26, 2013

Abstract

The convergence to the equilibrium of the solution of the quantum Kac model for

Bose-Einstein identical particles is studied in this paper. Using the relative entropy

method and a detailed analysis of the entropy production, the exponential decay

rate is obtained under suitable assumptions. The theoretical results are further

illustrated by numerical simulations.

1 Introduction

In this paper we study the equation governing the time evolution of a gas composed of
Bose-Einstein identical particles. Let f(t, v) be the velocity distribution function at time
t > 0 with the velocity v ∈ R. According to quantum physics, the presence of a particle
in the velocity range dv increases the probability that a particle will enter that range:
the presence of f(v) dv particles per unit volume increases this probability in the radio
1 + f(v). Following Chapman and Cowling [5], this fundamental assumption yields the
so-called Boltzmann-Bose-Einstein equation, that is the quantum Boltzmann equation for
Bose-Einstein particles. This equation has been extensively studied in physical literatures
and numerical simulations. However, there are not many rigorous mathematical results.
We mention here for spatial homogeneous isotropic case, a theory of weak solutions devel-
oped by Lu in [17, 18], and another class of locally defined in time classical solutions by
Escobedo et al. in [12, 13, 14]. See [2, 19] for more reviews of currently available math-
ematical results. On the other hand, Allemand and Toscani in [1] derived the following
nonlinear Fokker-Planck equation (Kac model)

∂tf = Af(t)∂vvf +Bf (t)∂v(vf(1 + f)) (1)

with

Af(t) =

∫

v2f(1 + f) dv, Bf (t) =

∫

f dv.
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This model is obtained as the grazing collision limit of one-dimensional Boltzmann equa-
tion for Bose-Einstein particles in the spirit of Kac caricature of a Maxwell gas with a
singular kernel [1]. However, the existence of good solutions for this integro partial differ-
ential equation is still unknown, and is currently under investigation. We will furthermore
specialize to this Kac model, and study the convergence of the solution for the Kac model
to the Bose distribution by using entropy method.

The rigorous study of the convergence to equilibrium is by now classical in kinetic
theory. For example, using the classical logarithmic-Sobolev inequality of Gross [15],
and the Csiszar-Kullback-Pinsker inequality [6, 16], the convergence to the equilibrium
with exponential decay rate can be derived by the relative entropy method for linear
Fokker-Plank equation. For the nonlinear Fokker-Plank-Landau equation, the trend to
equilibrium has been obtained by Desvillettes and Villani in [8]. Toscani and Villani in
[22] studied the convergence to the equilibrium for the Boltzmann equation. Except for
the spacial homogeneous kinetic models, Desvillettes and Villani [10] studied the trend
to equilibrium for the spacial inhomogeneous linear Fokker-Planck equation. For more
about the trend to equilibrium for classical kinetic equations, we refer to [11, 9, 7] and
references therein.

In [4], Carrillo, Rosado and Salvarani studied a 1-D quantum Fokker-planck equation

∂tf = ∂vvf + ∂v(vf(1 + f).

Note that the factor 1 + f comes from the quantum effects. It is easy to see that, the
mass,

∫

f(t, v) dv, is conserved along the time evolution. By using the relative entropy
method, they proved that the solutions converge to the Bose equilibrium with exponential
decay rate. The above model, a simplified model of (1) with Af(t) and Bf(t) replaced by
constant 1, does not conserve the kinetic energy.

For the Kac grazing limit model (1), in comparing with the model studied in [4], there
is an additional conservation law: conservation of kinetic energy, i.e

∫

|v|2f dv. However,
the nonlinearity in the Kac model is stronger. For later use, let m and e be the mass and
the energy defined by the initial data f0(v),

m =

∫

f0(v) dv, e =

∫

v2f0(v) dv,

by supposing that f0 > 0, f0 ∈ L1(R), and v2f0 ∈ L1(R). The entropy H(f) is defined as

H(f)(t) =

∫

γ(f)(t, v) dv, with γ(x) = x log x− (1 + x) log(1 + x).

We further remark that the entropy used in [4] is the sum of the entropy defined above
and the kinetic energy which is conserved for the Kac grazing limit model (1).

We shall work with smooth enough solutions: we show in the next section that one
can get a priori weighted L2 bounds on solutions, and similar estimates hold also true for
higher derivatives.

The main result in this paper is stated as the following Theorem.

Theorem 1. Let f(t, v) be the solution of the Kac grazing limit model (1) with initial

data f0 which is positive and satisfies
∫

f0(v) dv = m,

∫

v2f0(v) dv = e
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for some positive constants m, e. Assume ‖f0‖2L2 < m/2 and m3/e be suitably small.

Then there exists a positive constant α depending on f0, such that

‖f(t)− f∞‖L1 ≤ C(f0)e
−αt/2,

with constant C(f0) > 0. Here f∞ is the Bose distribution with mass m and energy e
defined by (8).

In comparing the results obtained in [4] for quantum Fokker-Planck equation, some
additional assumptions on the initial data are needed in Theorem 1. In fact, a generalized
logarithmic-Sobolev inequality developed in [3] for nonlinear diffusion equation was used
directly in [4] to control the entropy production from below by the relative entropy. In
their proof, an auxiliary nonlinear diffusion equation which has the same entropy and the
equilibrium was introduced. While for the Kac model (1), it is impossible to introduce
such auxiliary equation with the same relative entropy or the equilibrium state, and a
compatible entropy production term. Without using the generalized logarithmic-Sobolev
inequality, we follow some ideas used in [3], we get the decay rate of entropy production,
then the convergence of the solution of the Kac grazing limit model to its equilibrium.
The constraints on the initial data stated in Theorem 1 will be used to get the decay rate
of the entropy production. We believe that these constrains are only needed to simplify
the proof. While in the numerical simulation part, we don’t take into account these
constraints.

The rest of the paper is organised as following. In Section 2, we will give some
preliminary estimates. Then the entropy and the entropy equality will be introduced
in Section 3. The Bose distribution f∞ will be given from the equivalent form of the
entropy production. Then based on a detailed study on the entropy production, we get
the exponential decay rate. Finally the theoretical results will be illustrated by numerical
simulations in Section 4.

2 Preliminaries

In this section we will show some a priori weighted L2 estimates on the solution, together
with some control on a specific quantity Af (t). These estimates will be used in next
section in order to get the decay rate of the entropy production.

Before starting our estimates, we note first that it is not difficult to assert the positivity
of the solution f as in [4]. Let us repeat their arguments quickly here: let ρε be the
Friedrich mollifier, and define the smoothed sign and absolute functions

φε = ρε ∗ sign, Φε(x) =

∫ x

0

φε(y) dy.

Multiplying Kac equation by φε(f), and integrating it over R, we get

d

dt

∫

(Φε(f)− f) dv =
d

dt

∫

Φε(f)

= −Af (t)

∫

φ′
ε(f)|∂vf |2 dv − Bf(t)

∫

vf(1 + f)φ′
ε(f)∂vf dv. (2)
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Note that

−
∫

vfφ′
ε(f)∂vf dv = −

∫

v∂v(fφε(f)− Φε(f)) dv,

and

−
∫

vf 2φ′
ε(f)∂vf dv = −

∫

v∂v(f
2φε(f)− fΦε(f)) dv −

∫

v∂v

(
∫ f

ξ2φ′
ε(ξ) dξ

)

dv.

The first term on the right hand side of (2) is non positive since φ′
ε ≥ 0. And the sec-

ond term on the right hand side of (2) vanishes as ε → 0 from Lebesgure’s dominated
convergence theorem. Then we have by letting ε → 0 on both side of (2),

‖|f(t)| − f(t)‖L1 ≤ ‖|f0| − f0‖L1.

If the initial data f0 ∈ L1 is non negative a.e on R, then the solution f (if exists) belongs
to L1 and is always non negative a.e on R.

In conclusion, we have shown that if f , the smooth solution of Kac’s model with
initial data f0 ∈ L1(R), is sufficiently decaying, there holds that the L1 norm of f is
non-increasing for t > 0. Furthermore if f0 is non-negative a.e. in R, the solution f(t, v)
is also non-negative in R for any t > 0.

2.1 Weighted L2 estimates of the solution

In this paragraph, we are going to show the following uniform L2 estimates in time.

Proposition 1. The L2 norm of the solution f verifies

‖f(t)‖2L2 ≤ max

{

‖f0‖2L2 ,
mΛ

3CN

√

m6

e2
+

9

Λ2

m3

e

}

, for t > 0.

Further, assume that m3/e is sufficient small and ‖f0‖2L2 < m/2, then there exists a

positive constant α depending on f0, m and e, such that

2‖f(t)‖2L2 −m ≤ −α, for t > 0. (3)

Similarly, let < v >= (1 + |v|2)1/2, we have the weighted estimate

‖ < v > f(t)‖2L2 ≤ max{‖ < v > f0‖2L2 , Y∗(m, e)},

for t > 0, with constant Y∗(m, e) depending on m and e.

Proof. Firstly we multiply the equation by f and then integrate the resulting equality
with respect to v to get

1

2

d

dt
‖f(t)‖2L2 + Af (t)‖∂vf(t)‖2L2 = m

(

1

2
‖f(t)‖2L2 +

1

3
‖f(t)‖3L3

)

. (4)

Then we use the interpolation inequality and the Gagliardo-Nirenberg inequality (cf.
(3.27) in [20]) to estimate the L3 norm of f as

‖f(t)‖3L3 ≤ ‖f(t)‖L1‖f(t)‖2L∞ ≤ Λ‖f(t)‖L1‖f(t)‖L2‖∂vf(t)‖L2

≤ ε‖∂vf(t)‖2L2 +
Λ2m2

4ε
‖f(t)‖2L2,
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where Λ denotes the constant arising in the Gagliardo-Nirenberg inequality. Recall that
Af (t) = e+ ‖vf‖2L2. Choose ε = 3e

2m
and finally we have

d

dt
‖f(t)‖2L2 + e‖∂vf(t)‖2L2 ≤

(

m+
Λ2m4

9e

)

‖f(t)‖2L2. (5)

The Nash inequality (cf. (6) in [21]) in one dimensional case reads

‖∂vf‖L2 ≥ CN

‖f‖3L2

‖f‖2L1

,

where CN is a numerical constant. Using the Nash inequality in (5) gives

d

dt
‖f(t)‖2L2 ≤ −C2(m, e)‖f(t)‖6L2 + C1(m, e)‖f(t)‖2L2,

with C1(m, e) = m + Λ2m4/(9e), C2(m, e) = C2
Ne/m

4. The above differential inequality
can be solved explicitly in a standard way. For simplicity let us feel free to omit the
dependence of the constants on the mass m and the energy e and denote X(t) = ‖f(t)‖2L2,
then we have

X ′(t) ≤ −C2X
3(t) + C1X(t),

which can be reduced to
(

e2C1t

X(t)2

)′

≥ 2C2e
2C1t.

Integrating the above inequality over [0, t] gives the upper bound of X2 as

X2(t) ≤ e2C1t

1
X(0)2

+ C2

C1

(

e2C1t − 1

) ≤ max

{

X(0)2,
C1

C2

}

.

Inserting the expressions of C1 and C2 in the above inequality, we get the uniform bound
for the L2 norm as stated in Proposition 1.

Next, it is easy to check that when m3/e is small enough such that C1

C2

< m/2, we get
the existence of the positive constant α stated in Proposition 1 thus the inequality (3)
holds.

The L2 estimation of < v > f is similar. Let g =< v > f with < v >= (1 + v2)1/2.
We multiply the Kac model (1) by < v > g, then integrate it with respect to v over R to
get

1

2

d

dt
‖g(t)‖2L2 = Af (t)

∫

< v > g∂vvf dv +Bf (t)

∫

< v > g∂v(vf(1 + f)) dv

= Af (t)

(
∫

v2

< v >4
g2 dv − ‖∂vg‖2L2

)

dv

+
Bf (t)

2

∫

g2

< v >2
(1− v2) dv +

Bf(t)

3

∫

g3

< v >3
(1− 3v2) dv.

Since 1/ < v >≤ 1, |v|/ < v >≤ 1, we have

1

2

d

dt
‖g(t)‖2L2 + Af (t)‖∂vg(t)‖2L2 ≤

(

Af (t) +
Bf(t)

2

)

‖g(t)‖2L2 +
Bf (t)

3
‖g(t)‖3L3.
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Similarly we use the interpolation inequality and the Gagliardo-Nirenberg inequality to
estimate the L3 norm as

‖g(t)‖3L3 ≤ Λ‖g(t)‖L1‖g(t)‖L2‖∂vg(t)‖L2

≤ ε‖∂vg(t)‖2L2 +
Λ2‖g(t)‖2L1

4ε
‖g(t)‖L2.

We take ε = 3e/(2m) and use Nash inequality to get

d

dt
‖g(t)‖2L2 ≤

(

2Af (t) +Bf(t) +
m2Λ2‖g(t)‖2L1

9e

)

‖g(t)‖2L2 −
eC2

N

‖g(t)‖4L1

‖g(t)‖6L2.

As < v >≤ 1 + v2/2, we have ‖g(t)‖L1 ≤ m + e
2
. Note that Af (t) ≤ e + ‖g(t)‖2L2. Then

we have
d

dt
‖g(t)‖2L2 ≤ C̃1(m, e)‖g(t)‖2L2 + 2‖g(t)‖4L2 − C̃2(m, e)‖g(t)‖6L2,

with

C̃1(m, e) = 2e+m+
m2Λ2(m+ e

2
)2

9e
,

C̃2(m, e) =
eC2

N

(m+ e
2
)4
.

Let Y (t) = ‖g(t)‖2L2 and the differential inequality can be written as

Y ′(t) ≤ G(Y (t)) = C̃1(m, e)Y (t) + 2Y (t)2 − C̃2(m, e)Y 3(t).

As G(Y ) has a unique positive zero point

Y∗(m, e) =
1 +

√

1 + C̃1(m, e)C̃2(m, e)

C̃2(m, e)
> 0,

andG(Y ) is positive over ]0, Y∗[ and negative on ]Y∗,+∞[.Then we get the global existence
of Y (t) which will take values between the initial value Y (0) and the equilibrium point
Y∗. In conclusion, we have

‖g(t)‖2L2 ≤ max{‖g0‖2L2 , Y∗},
with g0 =< v > f0.

Remark 1. 1. Note that we have the following interpolation inequality

‖f(t)‖2L2 ≥ m

27/2

(

m3

e

)1/2

,

which follows classically by optimizing w.r.t. R > 0 the following inequality

m =

∫

|v|≤R

f dv +

∫

|v|≥R

f dv ≤ ‖f‖L2

√
2R+

e

R2
.

Therefore an L2 control on f implies a control of
m5/2

e1/2
.

2. We have only shown weighted L2 estimations of f but similar estimates on higher

derivatives also hold true. It is important to note that smoothness is not required

for estimating convergence to equilibrium.
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2.2 Estimate for the quantity Af(t)

In this paragraph we study the time derivative of the quantity Af (t) = e+ ‖vf‖2L2.

Proposition 2. There holds
A′

f(t)

Af(t)
≤ 2‖f(t)‖2L2.

Proof. Let g(t, v) = vf(t, v), which verifies

∂tg = Af (t)∂vvg − 2Af(t)∂vf +Bf(t)∂v(vg + g2)−Bf (t)g(1 + f).

Then multiply the equality by g and integrate it with respect to v. Finally we get the L2

equality as

1

2

d

dt
‖g(t)‖2L2 + Af(t)‖∂vg‖2L2 +

Bf (t)

2
‖g(t)‖2L2

= Af(t)‖f(t)‖2L2 −Bt(f)

∫

f(t, v)g2(t, v) dv.

As Af (t) = e+ ‖g(t)‖2L2, we have

A′
f (t) + Af(t)(Bf (t)− 2‖f(t)‖2L2) ≤ Bf(t)e ≤ Bf (t) · Af(t).

Using the definition of Af(t) we complete the proof of Proposition 2.

3 Relative entropy method and decay to equilibrium

In this section, we will prove Theorem 1 by the relative entropy method. Firstly we will
introduce the entropy, the entropy production and the equilibrium to the Kac model (1).
Secondly we will show the decay rate of the entropy production. Finally the decay rate
of the solution for the Kac model to the equilibrium can be derived.

3.1 Entropy and equilibrium

Let γ(f) = f log f − (1 + f) log(1 + f). Note that γ′(f) = log f
1+f

. The entropy H(f)

H(f) =

∫

γ(f) dv

verifies the entropy equality

d

dt
H(f) = −

∫
(

Af (t)
|∂vf |2

f(1 + f)
+Bf (t)v∂vf

)

:= −D(f). (6)

The entropy production D(f) can be written in some other forms. For example since
Bf(t) =

∫

v
f = −

∫

v
v∂vf, D(f) can be written as

D(f) =

∫
(

Af (t)
|∂vf |2

f(1 + f)
+ 2Bf (t)v∂vf +B(t)2

)

dv

=
1

Af(t)

∫

f(1 + f) |Af(t)∂vγ
′(f) +Bf(t)v|2 dv. (7)
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From (7) we get that D(f)(t) ≥ 0.
Furthermore, we can use the expression of Af(t) into the entropy production D(f)

and write it in a symmetric form as

D(f) =

∫

v

∫

v∗

(

v2∗f∗(1 + f∗)
|∂vf |2

f(1 + f)
− v∂vfv∗∂v∗f∗

)

dv dv∗

=
1

2

∫

v

∫

v∗

f(1 + f)f∗(1 + f∗) |v∂v∗γ′(f∗)− v∗∂vγ
′(f)|2 dv dv∗,

with f∗ = f(v∗). From the equality

v∗∂vγ
′(f) = v∂v∗γ

′(f∗),

the equilibrium f∞ is

f∞(v) =
1

exp(λ1v2 − λ2)− 1
, (8)

where the constants λ1 > 0 and λ2 will be determined by the initial data. Note that the
equilibrium f∞ defined above is the so-called Bose distribution function.

Remark 2. We can show that

λ1 =
Bf∞

2Af∞

. (9)

In fact, we have

Bf∞ =
1√
λ1

∫

eλ2

ev2 − eλ2

dv

Af∞ =

∫

v2eλ1v2eλ2

(eλ1v2 − eλ2)2
dv = −∂λ1

∫

eλ2

eλ1v2 − eλ2

dv.

Using the expressions of Bf∞ , we have

Af∞ = −∂λ1
Bf∞ =

1

2λ
3/2
1

∫

eλ2

ev2 − eλ2

dv =
1

2λ1
Bf∞ .

Note that (9) can also be obtained from the entropy production in the form (7).

In conclusion, we have the following lemma

Lemma 1. The equilibrium f∞ minimizes
{

H(f) : f(v) is positive,

∫

f(v) dv = m,

∫

v2f(v) dv = e

}

with m and e fixed. As γ is convex, this minimizer function is unique. Moreover, given

any solution f(t, v) to the Kac model (1) with initial data f0 of mass m and energy e, we
have

H(f∞) ≤ H(f)(t) ≤ H(f0), t > 0,

and

lim
t→∞

H(f)(t) = H(f∞).

Before ending this paragraph, we introduce the relative entropy H(f |f∞) as

H(f |f∞) = H(f)−H(f∞) =

∫

[γ(f)− γ(f∞)− γ′(f∞)(f − f∞)] dv,

where we used the conservations of mass and energy for the last equality.
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3.2 Decay rate of the entropy production and the relative en-

tropy

To get the decay rate of the entropy production, we shall study the time derivative of
D(f). To simplify notations we denote ξ = Af(t)∂vγ

′(f)+Bf(t)v. Hence the Kac equation
and the entropy production D(f) can be written as

∂tf = ∂v[f(1 + f)ξ], D(f) =
1

Af (t)

∫

f(1 + f)ξ2.

Then we have

d

dt
D(f) = −

A′
f (t)

A2
f (t)

∫

f(1 + f)ξ2 +
1

Af(t)

∫

(1 + 2f)ξ2∂tf +
2

Af (t)

∫

f(1 + f)ξ∂tξ

:= I + II + III. (10)

Next we will calculate these three integrals. Firstly the integral I can be written as

I = −
A′

f (t)

Af (t)
D(f).

Then the second integral II can be calculated as

II =
1

Af (t)

∫

(1 + 2f)ξ2∂v[f(1 + f)ξ] = − 2

Af (t)

∫
(

f 3 +
3

2
f 2 + f

)

ξ2∂vξ dv.

We denote by φ(f) = f 3+ 3
2
f 2+f. Then using the expression of ξ = Af (t)∂vγ

′(f)+Bf(t)v,
we can rewrite II as

II = −Bf (t)

Af (t)

∫

φ(f)ξ2 dv + 2

∫
(

φ′(f)

f(1 + f)
− 2

φ(f)(1 + 2f)

f 2(1 + f)2

)

|ξ∂vf |2

+ 4

∫

φ(f)

f 2(1 + f)2
ξ∂vf∂v[f(1 + f)ξ]. (11)

Finally, from the conservation of mass, Bf (t) = m, we get

III = 2
A′

f(t)

Af(t)

∫

ξ∂vf+2

∫

f(1+f)ξ∂2
tvγ

′(f) = 2
A′

f(t)

Af(t)
D(f)−2

∫

1

f(1 + f)
|∂v[f(1+f)ξ]|2.

In summarize, we get the derivative of the entropy dissipation

d

dt
D(f) = −Bf (t)

Af (t)

∫

φ(f)ξ2 dv +
A′

f(t)

Af(t)
D(f)− {· · · },

where {· · · } denotes some positive terms. As φ(f) > f(1 + f), then we get

d

dt
D(f) ≤

(

A′
f (t)

Af (t)
− Bf(t)

)

D(f).

We use first Proposition 2 and then Proposition 1 to get

A′
f(t)

Af(t)
− Bf(t) ≤ 2‖f(t)‖2L2 −Bf (t) ≤ −α.
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In the last inequality we used the smallness assumptions as in Proposition 1. Immediately
we derive the following decay rate about the entropy production

D(f)(t) ≤ D(f0)e
−αt.

We use the decay rate of the entropy production D(f) in the entropy equality (6) to
get

d

dt
H(f |f∞) ≥ −D(f0)e

−αt.

Then integrating the above inequality over ]t1, t2[ gives

H(f |f∞)(t2)−H(f |f∞)(t1) ≥ D(f0)
e−αt2 − e−αt1

α
.

Let t2 → +∞, and as limt→∞H(f |f∞)(t) = 0, finally we get the decay rate of the relative
entropy

H(f |f∞)(t) ≤ D(f0)
e−αt

α
.

3.3 Decay rate of the L1 norm and the proof of Theorem 1

Next, we show the L1 decay rate of the solution to the equilibrium. Observe that there
exists a function y(t, v) which takes values between f(t, v) and f∞(v) such that the relative
entropy can be written as

H(f |f∞) = H(f)−H(f∞) =

∫

(γ(f)− γ(f∞)− γ′(f∞)(f − f∞)) dv

=

∫

γ′′(y(t, v))(f − f∞)2 dv,

Remark that we used the property of mass and energy conservations and the Taylor
formula in the last two equalities.

As [4], using the Cauchy Schwartz inequality, we have

‖f(t)− f∞‖2L1(f<f∞) ≤
∫

{f<f∞}

1

γ′′(y(t, v))

∫

{f<f∞}

γ′′(y(t, v))(f − f∞)2

≤
∫

f∞(1 + f∞)

∫

γ′′(y(t, v))(f − f∞)2

≤ C H(f |f∞) ≤ C D(f0)
e−αt

α
.

Hence using the mass conservation we get the following desired result

‖f(t)− f∞‖L1(R) = 2‖f(t)− f∞‖L1(f<f∞) ≤ C(f0)e
−α t/2.

Hence the proof to Theorem 1 is completed.
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4 Convergence towards equilibria: numerical simula-

tions

Since we have shown the solution goes exponentially fast to the Bose equilibrium distri-
bution, we will do some numerical simulations in this section, to show the equilibrium
distributions for different initial states, and the exponential decay of the entropies.

We recall first the Bose distribution

f∞ =
1

exp(λ1v2 − λ2)− 1
.

The numerical simulations are carried out by different initial conditions. The first
example shows if the initial data is concentrated near the center, it will evolve to Bose
distribution, with entropy decaying exponentially to some final state.
Example 1. Consider initial data

f0 =
0.1

e(v−π/2)2+0.1 − 1
. (12)

The equilibrium distribution and evolution of entropy are shown in Figure 1.
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Figure 1: Initial data f0 in (12).

This property is true without smallness assumption on the initial data. In Example 2,
we take 10 times the initial data as in Example 1 and observe also the exponential decay
of the entropy, with different time scale used in the simulation.
Example 2. Consider initial data

f0 =
1

e(v−π/2)2+0.1 − 1
. (13)

The equilibrium distribution and evolution of entropy are shown in Figure 2.

As we know the Bose distribution behaves like Gaussian when |v| is big. The next
example shows the evolution of a Gaussian to Bose distribution.
Example 3. Consider initial data

f0 = 5 ∗ e−v2/2. (14)
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Figure 2: Initial data f0 in (13).
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Figure 3: Initial data f0 in (14).

The equilibrium distribution and evolution of entropy are shown in Figure 3.
The comparison shows the Bose distribution is more singular near |v| = 0 , but bahaves

like a Gaussian for |v| big.
Example 4. Consider initial data

f0 = 8 ∗ [e−(v+π/2)2 + e−(v−π/2)2 ]. (15)

The equilibrium distribution and evolution of entropy are shown in Figure 4.
This example shows the evolution of summation of two Gaussians. We will show a

more general case in next example.
Example 5. Consider initial data

f0 =























5

2
+

2

π
v for v ∈ [−5π

4
, 0],

5

2
− 2

π
v for v ∈ [0,

5π

4
],

0 for others.

(16)
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Figure 4: Initial data f0 in (15).

The equilibrium distribution and evolution of entropy are shown in Figure 5.
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Figure 5: Initial data f0 in (16).

Note that this initial data is not in space L logL, since f0 = 0 in some interval thus the
entropy is ∞ at first several time steps. This more general case also shows the exponential
decay of entropy.

All the above numerical results showed the quick convergence towards to equilibria,
especially, we can see the exponential evolution of entropy. The numerical results further
elaborate our main result stated in Theorem 1.
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