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1. Introduction

The walking of a bipedal robot is composed of different phases such as sin-

gle support (SS) with flat foot, SS with foot rotation around the metatarsal

axis and double support. During every walking phase there is a dynamic model

and a contact with the ground. Thus, an appropriated control law has to be

implemented for each phase. Generally, the type of contact with the ground

is imposed but it is obtained only if the conditions on ground reaction forces,

friction cone and zero moment point (ZMP) are satisfied. The ZMP, firstly in-

troduced by Vukobratovic [1], is the most important factor in achieving stable

walking of an humanoid robot. The ZMP is defined as a point where the result-

ing horizontal reaction moment generated by the ground reaction forces equals

to zero. If this point is inside of the support polygon, the robot will not rotate

around the edges of its stance foot so it remains flat on the ground. The ZMP

can be used to measure instantaneous balance at each time step but it does not

contain notion of stability in the future [2].

In earlier studies many bipedal robots adopted a control strategy in which

the desired trajectories of joint angles are firstly designed based on the ZMP

condition and after that a feedback control tracks the desired trajectories [1].

However, contact conditions could not be satisfied in presence of perturbations.
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Most of the recent research on ZMP control can be divided into two general

approaches. One method is the periodical replaying of trajectories for the joint

motions recorded in advance, like [1], which are then applied to the real robot

with a little computed on-line modification [3], [4], [5]. This strategy explicitly

divides the problem into subproblems of planning and control. Another method

generates a joint-motion in real time, feeding back the present state of the system

to be in accordance with the pre-provided goal of the motion, where planning

and control are managed in a unified way [6], [7], [8], [9], [10], [11]. Two of the

more famous users of these methods are Honda Robot Asimo [3] and Kawada’s

humanoid HRP-2 [12], [13].

Almost all of the computed on-line walking controllers are applied to com-

pensate the ZMP error. However, the general weakness of the previous methods

is that they require considerable experimental hand tuning and the proposed

methods are poorly documented. As a preliminary study of our robot, the con-

trol law proposed in this paper belongs to the first family of methods. The

reference trajectory of the joint angles and ZMP have been computed off-line

in [14]. Our first objective is to propose a new control law to satisfy the con-

straint of contact and to study the stability of walking, that is, the convergence

towards a periodical walking. The computed on-line control modification is not

based on experimental tests but on a rigorous stability study.

The proposed control law consists of ZMP controller, swing ankle rotation

controller and partial joint angles controller. In the first one, the positions of

ZMP in the horizontal plane are regulated to the desired ZMP. This controller

creates 2 constraints on joint accelerations and by consequence not all of the

joints can track the desired motion. If the obtained joint motion differs from

the desired one, a flat-foot impact for the swing foot cannot be assured. In such

a case, the stance foot will not be in ”flat-foot-contact” with the sole at the

beginning of the next single-support phase. In order to avoid this problem a

swing ankle rotation controller is used. In this one, the pitch and roll angle of

the swing foot are controlled in order to be equal to their desired values. Like

the ZMP controller, the swing ankle rotation controller creates 2 constraints on
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joint accelerations. Consequently, for a 3D robot with n actuated joints, n− 4

controlled outputs can be chosen. For simplicity, these n−4 controlled outputs,

which are noted as u, are defined as a linear combination of the n actuated joints.

The partial joint angles controller is applied to make u track its desired value

ud. As a result, the three controllers can offer n dynamic equations to resolve

the acceleration of n actuated joints, then the input torque can be obtained by

the inverse dynamics.

It is important to note that in the partial joint angles controller the choice of

controlled outputs u depends on the stability analysis of the walking gait under

closed-loop control, which is evaluated with the linearisation of the restricted

Poincaré map of the hybrid zero dynamics [15]. In our previous studies [16] and

[17], it has been showed through examples, that the choice of controlled outputs

will influence the walking stability and with an appropriate selection of these

variables a stable walking cycle can be obtained.

In short, the ZMP and swing ankle controllers are used to ensure the stable

condition of supported foot and transfered foot respectively. The partial joint

angles controller is used to track the reference trajectory and satisfy the stable

condition of the overall control law. This control strategy is original for the

bipedal robot with feet. Compared to the general control law in recent studies,

our control law has some advantages as follows. The proposed method can be

viewed as a computed on-line modification of the reference trajectory in order to

ensure the satisfaction of the contact constraint. The effect of this modification

on walking stability is based on a rigorous stability analysis, and not by testing

on the robot which requires considerable experimental hand tuning.

With the proposed control law, the robot can achieve an asymptotically

stable and periodic walking along a straight line. The second objective of this

paper is adjusting the net yaw rotation of the robot over a step in order to steer

the robot along paths with mild curvature. An event-based (or stride-to-stride)

feedback controller is appended to distribute set point commands to all the

actuated joints in order to achieve a desired amount of turning, as opposed to the

continuous corrections used in [18]. This work is an extention from the previous
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study for a 3D underactuated bipedal robot [19] and an interesting feature is

the ability to control the robot’s motion along paths with mild curvature using

only a single predefined periodic motion.

This paper is organized as follows. Section 2 is a description of the biped

robot and its dynamic models during different walking phases. Section 3 presents

the reference trajectory of the joint angles and ZMP. Section 4 introduces the

principle of control law including ZMP controller, swing ankle rotation controller

and partial joints controller, and it also introduces the modification of the ref-

erence motion after the impact phase to create a continuous and cyclic desired

trajectory. In Section 5, the hybrid zero dynamic is explained and stability

analysis based on Poincaré method is proposed. Section 6 gives the comparison

of our method with a classical control law for the same robot walking on the

rigid ground model and the soft ground model respectively. In Section 7, a

supplemental event-based control law used to regulate the walking direction of

the robot is presented. Some examples of walking direction control are given.

Concluding remarks are made in Section 8.

2. Model

2.1. Biped Model

As shown in Fig. 1, the 3D robot is comprised of a torso and two identical

legs that are independently actuated and terminated with flat-feet. Each hip

and ankle consists of a revolute joint with 3 DOF and the knee is a 1 DOF

revolute joint, and each DOF is independently actuated. As a result, it has 14

DOF in the single support phase and 14 actuators. The vector q = [q1, . . . , q14]
T

contains the relative joint positions of the biped, and the torques are grouped

into a torque vector, Γ = [Γ1, . . . ,Γ14]
T , where qj , j ∈ (1, . . . , 14) corresponds

to the rotation about zj. It’s worth noting that the coordinate system x0y0z0

is fixed on the support foot while the coordinate system xsyszs is fixed on the

ground and it is called the absolute coordinate system. The origins of them are

the same only during the first walking step.

4



Figure 1: Biped Model

The length and mass of each body are given in Table 1 and Table 2. All

links are assumed to be massive and rigid. The inertia of the links is also taken

into account, and other parameters of the robot in detail are shown in [14].

Table 1: length parameters(m)

d1, d15 d4, d12 d5, d11 d8 l1, l15 lp Lp

0.185 0.392 0.392 0.190 0.05925 0.08 0.207

Table 2: mass parameters

body foot shin thigh torso
kg 0.678 2.188 5.025 24.97
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2.2. Dynamic model

The walking gait consists of single support phases where the stance foot is

flat on the ground separated by impacts, that is, instantaneous double support

phases where leg exchange takes place. The dynamic models for every walking

phase are derived here by assuming support on right leg, which is noted as leg

1. They are described as follows, and the models for support on leg 2 can be

written in a similar way.

2.2.1. Dynamic model of single support phase

The Newton Euler algorithm presented in [20] is used to calculate the dy-

namic model of 3D biped robot during the single support phase [14]. The ac-

tuator torques and the ground reaction (forces and torques) to the stance foot

can be computed as soon as the joint position, velocity and acceleration q, q̇, q̈

are known, and they are linear functions of the acceleration q̈. Consequently,

the dynamic model is represented as:











F

M

Γ











= NE(q, q̇, q̈) = NE1(q)q̈ +NE2(q, q̇) (1)

NE1(q) being the positive definite inertia matrix of the robot and NE2(q, q̇) a

vector containing the gravitational, Coriolis and centrifugal forces. F and M

compose the wrench vector exerted by the ground on the stance foot. Both

quantities are expressed in the reference frame x0y0z0 and they will be used to

calculate the position of ZMP. The calculation of the torque vector Γ will be

used in the control law.

2.2.2. ZMP dynamics

When leg-1 is on the ground, a ground reaction force and moment can be

expressed about any point in the support plane. If a point P is in the plane of

the foot-1 (see Fig. 2), the ground reaction moment Mp of P can be calculated

by:

Mp = M−
→

OP ×F (2)
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Figure 2: The support foot

where
→

OP is the distance vector of the point P in the reference frame x0y0z0.

Considering F,M are functions of q, q̇, q̈ and linear functions of the acceleration

q̈ (see (1)), the components of Mp along the axes x0 and y0 can be written as:





Mpx

Mpy



 = f(q, q̇, q̈,
→

OP ) = Wq̈ +H (3)

where the function f() in (3) depends on (1) and (2), and W , H can be obtained

by:

H = f(q, q̇, q̈ = 014×1,
→

OP ), (4)

and

W (:, i) = f (q, q̇, q̈ = ei, → OP )−H (5)

ei being the column i of an identity matrix of dimension 14. According to the

definition of zero moment point (ZMP), if P is ZMP, the horizontal ground

reaction moment of the ground reaction force about this point equals to zero.

Thus (3) can be used to constrain the ZMP which is such that:

Mpx = Mpy = 0 (6)

to be a desired point P which is time-varying and depends on the precomputed

reference trajectory [1].
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2.2.3. Dynamic model of impact phase

An impact exists at the end of the single support phase. After that, the legs

swap their roles from one step to the next. Considering the robot is symmetric,

we only study a single step to deduce the complete behavior of the robot over

a sequence of steps on alternating legs. During the impact, the biped’s config-

uration variables do not change, but the generalized velocities undergo a jump.

As shown in [15], this jump is linear with respect to the joint velocity before

the impact. The moments just before and after impact are denoted by − and

+ respectively, the impact model can be written as (see [14]):







q+ = E · q−

q̇+ = E · I(q−) · q̇−
(7)

where E is the permutation matrix describing leg’s exchange and I(q−) repre-

sents the linear jump of the joint velocity after impact.

3. The reference trajectory

Starting from a reference trajectory of joint angles described as function of

time qd(t) which has been calculated off-line through the minimization of the

energy consumption in [14], a new parametrization is proposed. Here and in

the following subsections the superscript d denotes the desired value. Function

qd(t) is parametrized by a quantity depending on the state of the robot that is

strictly monotonic like time t during a complete walking phase of one step. By

using this method, only the kinematic evolution of the robot’s state is regulated

but not its temporal evolution. This means the control law is defined to follow

a joint path but not a joint motion. It was used successfully for the walking

of bipeds with point feet [21], [22], [23], [16] and the walking of planar biped

with foot rotation [24]. Especially in [24], this method allows the simultaneous

control of the joint path and the ZMP. Therefore, it is still used for the 3D biped

robot with flat feet. The parametrized reference trajectory is given as follows.

In a forward walking motion, the x-coordinate of the hip increases monoton-

ically. Hence, if the virtual stance leg is defined by the line that connects the
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xs

zs

q3

q4

θ

Figure 3: The definition of θ.

stance foot to the stance hip, the angle of this leg in the sagittal plane, denoted

by θ, is monotonic and it can replace the time t to parametrize qd and ZMP d.

As shown in Fig. 3, the shin and the thigh have the same length, thus θ can be

computed by:

θ = q3 + q4/2. (8)

Then the reference path written as hd(θ) is such that:



















qd(t) = hd(θ)

q̇d(t) = ∂hd(θ)
∂θ

θ̇

q̈d(t) = ∂2hd(θ)
∂θ2 θ̇2 + ∂hd(θ)

∂θ
θ̈

(9)

where hd(θ) is designed in order to be compatible with a periodic solution of

the biped model. According to a known reference trajectory qd(t), q̇d(t), q̈d(t),

in (9) hd(θ), ∂hd(θ)
∂θ

and ∂2hd(θ)
∂θ2 can be deduced and they are assumed to be

known in the following contents. Similarly, for every qd(t), there is a correspond

θ and ZMP d(t), then the desired ZMP can be described by θ and it is written

as: ZMP d(θ).

4. The proposed control law

As shown in Fig. 4, the overall control law consists of ZMP controller, swing

ankle rotation controller and partial joint angles controller. The former two
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controllers are used to achieve ZMP = ZMP d(θ) and make the swing foot

keep flat at impacts respectively, which are helpful to insure the stable contact.

The third controller implements the joint path control and it is partial since

some contraints on torques are imposed by the former two controllers.

4.1. ZMP controller

The objective of this controller is to have:

ZMP = ZMP d(θ). (10)

ZMP tracking can be quite conservative but insure to avoid unexpected rotation

of the stance foot. Another posibility is to limit the minimal and maximal values

of ZMP [25]. According to the definition of ZMP, if P in Fig. 2 is ZMP, (3) can

be rewritten as:

W (q, q̇)q̈ +H(q, q̇) = 02×1 (11)

where W and H are recalculated by (4) and (5) with
→

OP= ZMP d(θ). This

equation clearly shows that the acceleration q̈ must satisfy two constraints to

produce ZMP = ZMP d(θ).

4.2. Swing ankle rotation controller

With the reference trajectory qd, q̇d, q̈d, the sole of the transfered foot par-

allels to the ground at each impact phase. As stated in the Introduction, this

controller is necessary because not all of the joint angles q are controlled. We

propose to control the orientation of the swing foot in the frontal and sagittal

plane such that the robot will touch the ground with flat foot and to insure that

the next impact will occur in a good way.

As shown in Fig. 1, the angle q14 is the rotation angle of the 14th joint

around the axes z14. It only affects the yaw motion of the swing foot, so only

the previous 13 joints are constrained. Define sR13, the 3×3 orientation matrix

from the coordinate system xsyszs to x13y13z13 :

sR13 =
[

s n a
]

, (12)
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Figure 4: Block diagram of the control system.
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where s3×1, n3×1 and a3×1 are unitary vectors defining x13y13z13 in frame sR

respectively, and they only depend on the first thirteen joint angles of q, exactly,

q1, q2, . . . , q13. Using the reference trajectory qd, we define sRd
13 = [sd, nd, ad]

to denote the desired orientation of transformation matrix sR13. If there exists

tracking error between q and qd, there will be small error in the orientation of

the swing ankle which can be defined as ξ [26]:

ξ =
1

2
(s× sd + n× nd + a× ad). (13)

The derivatives of the orientation error are :






ξ̇ = sω13
d − sω13

ξ̈ = sω̇13
d − sω̇13

(14)

where sω13 and sω̇13 are the angular acceleration and velocity of the joint 13 in

the absolute coordinate system xsyszs.
sR13,

sω13 and sω̇13 in (12) can be effi-

ciently computed by the forward recursive equations of the general serial robot

with q1, . . . , q13, their velocity and acceleration [20] (see Appendix Appendix

A).

Because the orientation in the frontal and sagittal plane of the swing foot

doesn’t depend on the rotation components around zs axis (see Fig. 1), only the

first two components of ξ have to be regulated to zero:

ξxy = 02×1 (15)

Here and in the following subsections the subscript xy denotes the first two

lines of the vector, which correspond to the rotation around xs direction and ys

direction respectively. (15) can be achieved by the PD controller:

ξ̈xy +
K1

ε
ξ̇xy +

K2

ε2
ξxy = 02×1. (16)

with K1 > 0, K2 > 0, and ε > 0. The above equation imposes two constraints

on q, q̇ and q̈. Such constraints read as:

Ws(q, q̇)q̈ +Hs(q, q̇) = 02×1. (17)

where Ws(q, q̇) denotes all the coefficient terms of q̈ and Hs(q, q̇) denotes all the

terms without q̈ in (16). The detail is presented in Appendix Appendix B.
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4.3. Partial joint angles controller

Besides of the former two controllers, the control law is also designed to

track the joint reference path qd = hd(θ). However, (11) and (17) have offered 4

restrictions about the states of robot q, q̇, q̈, so we can’t control q = qd directly

and we can only choose 10 targets to track with. Thus, how to choose 10

controlled outputs from 14 actuated joints is presented at first.

From the principle of swing ankle rotation controller, we know that the pitch

and roll angle of the swing foot are constrained to be their desired values. It

means that 2 joint angles can be determined by the other 11 joint angles in

q1, q2, . . . , q13 according to the definition of ξxy in (12) and (13).

Because the swing ankle is actuated by the 12th and 13th joint (see Fig. 1),

so we can suppose that q12 and q13 have been defined according to q1, q2, . . . , q11.

Thus there is no need to consider them again in the partial joint angles con-

troller. In addition, section 3 has presented that all the reference trajectory are

parametrized by θ and θ = q3 +0.5q4, so q3 and q4 are not independent of each

other and q3 is excluded here. Therefore, the independent joint angles are:

Qr = [q1, q2, q4, . . . , q11, q14]
T
11×1 (18)

Qr has 11 elements but only 10 controlled outputs can be defined. Since the

second joint influences the position of ZMP in the frontal plane directly, in order

to distinguish q2 from other joints in Qr and avoid singularity, the controlled

joint angles are chosen as:

u = Q+M1q2 (19)

with

Q = [q1, q4, . . . , q11, q14]
T . (20)

Where M1 is a 10×1 constant matrix to be determined by the stability analysis.

The next section will show that the choice ofM1 affects the stability of the robot,

in the sense of the convergence toward cyclic motion. The stability condition

will be a criteria used to select M1.
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Next, the objective of this controller is to regulate u to track its desired value

ud(θ). It is achieved by a PD control:

ü− üd +
Kd

ε
(u̇ − u̇d) +

Kp

ε2
(u− ud) = 010×1, (21)

where ud, u̇d, üd can be calculated using the definition of u in (19) and the

referenced trajectory qd, q̇d, q̈d in (9). Because the controlled partial joint

angles u is a linear function of the joint angles q (see (19)), obviously, ü in (21)

is a linear function of q̈, so (21) can be written as the same format as (11) and

(17):

Wj(q, q̇)10×14q̈ +Hj(q, q̇)10×1 = 010×1, (22)

where Wj(q, q̇) denotes all the coefficient terms of q̈ and Hj(q, q̇) denotes all the

terms without q̈ in (21).

It is worth mentioning that if u = ud(θ), according to (19), Q is such that:

Q = Qd −M1(q2 − qd2). (23)

(23) implies that this controller can also be regarded as an on-line modification

of the joint reference motion, which is like many existent methods. However,

the advantage of our controller is that the effect of this on-line modification (or

the choice of M1 in (23)) on stability will be studied.

4.4. Modification of the tracked errors caused by impact

Based on the proposed three controllers, the desired properties respectively

are:


















y1 = ZMP − ZMP d(θ) = 0

y2 = ξxy = 0

y3 = u− ud(θ) = 0

(24)

These controllers act only in the single support phases. The original reference

trajectory is defined by taking into account the impact phase. The impact con-

dition is a geometric condition. Thus, it can occur with some errors, especially

with some errors on θ and q2 because they are not controlled directly as other

states in u. As a result, large errors on the joint position and velocity will be

created after impact, that means discontinuity of errors will exist.
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In order to avoid the discontinuity, the reference trajectory in (24) are mod-

ified stride to stride so that they are compatible with the initial state of the

robot at the beginning of each step [16]. It is not necessary to modify ZMP d(θ)

because the position of ZMP acts directly at the acceleration level where the

discontinuities are acceptable. The new output for the feedback control design

is:


















y1 = ZMP − ZMP d(θ) = 0

y2c = ξxy − ξxyc = 0

y3c = u− ud(θ)− uc = 0

(25)

Here ξxyc and uc are modification terms of the original reference motions. The

calculation of them is presented as follows.

The function uc is taken to be a four-order continuously differentiable poly-

nomial function of θ:

uc = a0 + a1θ + a2θ
2 + a3θ

3 + a4θ
4, (26)

where the coefficients a0, . . . , a4 are defined such that 1



















uc(θi) = y3i
∂uc

∂θ
(θi) = ẏ3i

θ̇i

uc(θ) ≡ 0, θ ≥
θi+θf

2 .

(27)

where y3i and ẏ3i denote the initial values of y3 and ẏ3, and they are updated

at the beginning and held constant throughout the step. Specifically, y3i =

ui − ud(θi) and ẏ3i = u̇i − u̇d(θi). Here θi and θf are the initial and final value

of θ from qi to qf respectively, and they can be calculated by (8).

As shown in Fig. 19, by using uc defined in this way the new reference

trajectory starting from the current state just after the impact are smoothly

joined to the original reference trajectory at the middle of the step. In particular,

for any initial error, the initial reference trajectory ud is not modified in the

second part of the step : θ ≥
θi+θf

2 .

1The four order polynomial is used for θi ≤ θ ≤
θi+θf

2
; Continuity of position, velocity

and acceleration is ensured at θ =
θi+θf

2
.
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Similarly, the function of ξxyc in (25) is defined as the same format as (26)

and all the coefficients are determined using the value of y2 in (24) and its

derivative at the beginning of each step. As a result, these modification terms

are supplemented in the PD control expressions (16) and (21):

ξ̈xy − ξ̈xyc +
K1

ε
(ξ̇xy − ξ̇xyc) +

K2

ε2
(ξxy − ξxyc) = 02×1 (28)

ü− üd − üc +
Kd

ε
(u̇− u̇d − u̇c) +

Kp

ε2
(u − ud − uc) = 010×1 (29)

4.5. Torque calculation

With the proposed three controllers, 14 equations about q, q̇, q̈ are obtained

by (11), (17) and (22), and they are affine functions of q̈. Considering the impact

modifications, the latter two controllers (17) and (22) are recreated using (28)

and (29) to satisfy (25), and they are also affine functions of q̈. Thus, 14 new

equations about q, q̇, q̈ can be combined as:

A(q, q̇)q̈ +B(q, q̇) = 014×1, (30)

Next, the q̈ is resolved directly:

q̈ = −A−1B (31)

Then, the desired torques Γ can be calculated with q̈, q̇ and q by the inverse

dynamics via Newton Euler algorithm (1).

5. Stability analysis

The stability of the control law is defined in the sense of the convergence

toward a periodic motion. As proposed in [21], [22], [23], [16] and [15, Chap. 4],

the stability of the closed-loop system can be studied in a reduced-dimensional

state space based on Hybrid Zero Dynamics (HZD). For a system modeled by

ordinary differential equations (in particular, without impact dynamics), the

maximal internal dynamics of the system that is compatible with the output

being identically zero is called the zero dynamics [27], [28]. HZD is a zero

dynamics of the full hybrid model, i.e., the dynamics at impact is included.
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Next we will present how to study the stability of the closed-loop system in a

reduced-dimensional state space.

5.1. Using HZD to obtain reduced-dimensional states

According to the definitions of HZD, the controller with impact modifications

(11), (28) and (29) creates the HZD, with which the behavior of the robot is

completely defined by the impact map and the swing phase zero dynamic model

(25). The stability analysis of walking can be obtained by using the Poincaré

method. Different Poincaré section can be considered. Here it is chosen at θ =

0.4θi+0.6θf . At this instant the swing foot has not yet touched the ground, and

since θ ≥
θi+θf

2 the values of the controlled variables u and ξxy are not affected

by uc and ξxyc (see Fig. 19). A restricted Poincaré map is defined from Sθ∩Z to

Sθ ∩ Z, where Z = {(θ, q, q̇)|y1 = 0, y2c = 0, ẏ2c = 0, y3c = 0, ẏ3c = 0} describes

the zero dynamics manifold (see (25)) and Sθ = {(θ, q, q̇)|θ = 0.4θi + 0.6θf}

is the Poincaré section. The key point is that the state of the robot can be

parametrized by three independents variables x = [q2, q̇2, θ̇]
T in Sθ ∩ Z. The

reduction of the states dimension is explained as follows.

In Sθ ∩ Z, from the third line of (25), the definition of u in (19) and uc in

(27), we have:

Q = ud(θ)−M1q2. (32)

It showsQ is determined by θ, q2 andM1. The second line of (25) and the defini-

tion of ξxy in (12), (13) show that q12 and q13 can be calculated by q1, q2, . . . , q11.

In fact, according to the definition of Q and θ (see (20), (8) and (32)), we can

deduce that q12 and q13 depends on q2, θ and M1. Thus the calculation of q12

and q13 can be denoted as a function fq():

[q12, q13] = fq(q2, θ,M1). (33)

(20) and (8) show that there exists a linear relation between q and Q, q12, q13,

θ, q2:

q = Mh[Q, q12, q13, θ, q2]
T
14×1 (34)

where Mh is a 14× 14 constant matrix.
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Therefore, (34) shows the full state of the robot q is determined by q2, θ and

M1. Consequently, a simplified expressions of q, q̇ is defined as:

[q, q̇] = fHZD(q2, θ, q̇2, θ̇,M1, Cqd) (35)

where Cqd denotes all the known terms such as the reference trajectory qd and

its derivatives.

In consequence the acceleration q̈ can be expressed as function of q2, θ, q̇2,

θ̇, q̈2, θ̈ and it depends on M1 and Cqd . Thus (25) corresponds to:



















WHZD(q, q̇)





q̈2

θ̈



+HHZD(q, q̇) = 02×1

[q, q̇] = fHZD(q2, θ, q̇2, θ̇,M1, Cqd)

(36)

where the first line of (36) is deduced by the ZMP controller (11). WHZD(q, q̇)

denotes all the coefficient terms of q̈2 and θ̈, and HHZD(q, q̇) denotes all the

terms without these terms.

Obviously, with definition of HZD, the first line of (36) can replace the

original resulted dynamic equation (30) to describe the behavior of the robot

from the Poincaré section until the impact. Just before the impact the complete

states of the robot are calculated by using the second line of (36). Then the

model of impact is used and uc, ξxyc can be calculated. The behaviour of the

robot from the beginning of the next step to the Poincaré section is then calcu-

lated by equation of HZD that is similar to (36) but includes the modification

terms of the reference trajectory uc, ξxyc.

5.2. Stability analysis at a fixed-point

The known cyclic motion qd(θ) gives a fixed-point xz∗ = (q2
d(θ∗), q̇d2(θ

∗), θ̇∗)

for the proposed control law for any value of M1, where θ∗ = 0.4θi + 0.6θf .

The restricted Poincaré map P z : Sθ ∩ Z → Sθ ∩ Z induces a discrete-time

system xk+1 = P z(xk). [29] states that, for ε sufficiently small in (28) and (29),

the linearization of P z about a fixed-point determines exponential stability of

the full order closed-loop robot model. Define δxk = xk − x∗, the Poincaré map
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linearized about the fixed-point x∗ gives rise to a linearized system,

δxk+1 = Azδxk, (37)

where the (3 × 3) square matrix Az is the Jacobian matrix of the Poincaré

map, and it can be calculated as shown in [16]. A fixed-point of the restricted

Poincaré map is locally exponentially stable, if, and only if, the eigenvalues of

Az have magnitude strictly less than one [15, Chap. 4].

6. Examples

(36) shows that the dynamic property of the system is influenced by the

choice of M1, exactly, the choice of joint angles to be controlled or the modifi-

cation of reference motion (see (23)). One objective of this part is to study the

influence of choice of M1 on the stability and to obtain some M1 to stabilize the

walking. The other objective is to compare the robustness of our control law

with that of a classical method.

6.1. The effect of different controlled partial joints on the walking stability

An exploration technique is used to illustrate the effect of the choice of M1.

First, arbitrary 9 components ofM1 are fixed to zero, then the largest magnitude

of the eigenvalues of Az are drawn as function of the 10th component of M1.

If they are less than 1, the resulted walking is stable. The analysis results

of M1(j, 1), j = 6, 7 are shown in Fig. 5, where the red circles denote the

largest magnitude of eigenvalues of Az is less than one, that means the stable

cases exist. It also shows that the eigenvalues of Az are large than 1 when

M1 = 010×1, that means the walking is not stable. In fact, in this case the

controlled joint angles are u = [q1, q4, . . . , q11, q14]
T
(see (19)) and the reference

motion Qd is not modified by the tracking error of q2 (see (23)).

6.2. The robustness of the control law with M1(6, 1) = 5 for the rigid ground

model

According to Fig. 5, when we choose M1(6, 1) = 5, the walking should be

stable. In order to prove the validity and superiority of our control law, an
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Figure 5: max |λ1,2,3| versus M1(j, 1), j = 6, 7, when the other 9 components of
M1 are zero.

example of this stable walking case is compared with a classical control law, in

which all the joint angles are controlled and the desired properties of the closed

loop system is:

q̈ = q̈d −Kd(q̇ − q̇d)−Kp(q − qd), (38)

where Kd > 0 and Kp > 0. The joint torques can be obtained by (1) using q,

q̇ and q̈. Next, the same reference trajectory, the same simulator of the robot

and the same simulation parameters are used for the two control laws. For the

control law (38), in order to limit the influence of errors at the beginning of the

step, the reference trajectory in (38) is also modified as presented in section 4.4.

Computation of impact and contact forces between foot and ground is an es-

sential task for the simulation of a bipedal robot walking cycle. In our simulator,

foot is supposed rigid and composed of four contact points P1, P2, P3 and P4

(see Fig. 2). If one of these points is in contact with the ground the correspond-

ing reaction force is computed by solving a linear complementarity problem

(LCP) [30]. Since the punctual contact at each corner of the foot P1, . . . , P4

is considered, the slipping, rolling or take-off of the foot can be modeled. An

initial error of 0.01rad is introduced on q2 and a velocity error of 0.01rad/s is

introduced on q̇2 and θ̇, the errors on the other joints are introduced to have a

double support configuration.

The flat rigid ground model is used at first. For the proposed control law

since the ZMP is controlled, the position of ZMP can track its desired value

ZMP d as shown in Fig. 6, thus the stance foot can remain flat on the ground
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during single support phases. Moreover, it has been presented that the trans-

fered foot is flat at each impact phases with the reference trajectory, that means

the height of four points P1, P2, P3 and P4 of the swing foot are the same.

Thanks to the swing ankle rotation controller, this condition is satisfied al-

though not all the joint angles q are controlled to track qd in the design of the

overall control law, see Fig. 7. It describes the height of four points P1, . . . , P4

for two feet respectively and it shows that the traces of P1, . . . , P4 are almost the

same, that means the supported foot remains flat on the ground and the swing

feet is also flat before impact as prescribed for the reference motion, which can

validate the swing ankle rotation controller. The walking motion of first three

steps is shown in Fig. 11, it also displays the stable walking is achieved. The

evolution of the error on q2 (the joint not directly controlled) is shown in Fig. 10.

At the beginning the error increases to satisfy the condition on the ZMP but

after that and step by step this error decreases and the cyclic desired motion is

reached.

On the contrary, for the classical control law, since all the joint angles are

controlled, the tracking error of the joint is close to zero at the end of the step

(see Fig. 10, for the joint angle q2). However, the initial error is so high that

the ZMP reaches the limits along the axis y as shown in Fig. 9. As a result, the

stance foot rotates about its edges as displayed in Fig. 8. Fig. 12 also shows

that the height of hips changes irregularly and the robot will fall down.

The comparison reconfirms that the control of ZMP is much more important

than the tracking of predefined joints trajectory. It also indicates that the swing

ankle rotation controller is helpful to the stable contact with the ground. In

addition, the obtained stable walking shows that the choice of controlled partial

joints using the stability analysis is effective.

6.3. The robustness of the control law with M1(6, 1) = 5 for the soft ground

model

In order to further test the proposed control law, now a soft ground model

is used in the simulator [31]. Obviously, it will propose higher requirements for

the control law.
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Figure 6: Position of ZMP in the foot sole with the proposed control law using
the rigid ground model: it tracks its desired value and moves periodically.
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Figure 7: Height of feet with the proposed control law using the rigid ground
model.
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Figure 8: Height of feet with the classical control law, for the right foot a zoom
is done along the vertical axis to show the unexpected rotation of the stance
foot.
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Figure 9: ZMP in the feet sole for the classical control law.
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Figure 12: The walking motion of first two steps with the classical control law.

The same initial errors are introduced to every joint position and velocity

as presented in the previous subsection. Since the soft ground model is used,

the ground reaction force (GRF) changes acutely at the impact moment (see

Fig. 13). As a result, ZMP is out of the polygon of support foot, but it is

controlled quickly after the impact, as shown in Fig. 14. Consequently, the

height of stance foot and the tracking error of q2 shake a little in the beginning

of swing phase but at once recovers to zero (see Fig. 15 and Fig. 16). On the

contrary, the walking is not stable with the classical control law. The results

are similar to that using rigid ground model in Fig. 8 and Fig. 9 so they are not

shown here.

7. Steering control

With the proposed control law, the robot can achieve an asymptotically

stable and periodic walking along a straight line. It can be observed that the

walking motion is not exactly along the x-axis with initial error. However, the

robot is expected to be able to move all over the working place when it works

in human environment. Thus we need the precise steering control not only the
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Figure 13: Ground reaction force (GRF) of the soft ground model.
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Figure 14: Position of ZMP in the feet sole with the proposed control law using
the soft ground model: it moves periodically and returns to the limits fast after
impact.

26



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

 

 

time (s)

time (s)

H
ei
g
h
t
o
f
ri
g
h
t
fo
o
t
(m

)
H
ei
g
h
t
o
f
le
ft

fo
o
t
(m

)

Figure 15: Height of feet with the proposed control law using the soft ground
model.
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Figure 16: The tracking errors of q2 with the proposed control law using the
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walking straight simply. Therefore, the objective of this section is adjusting the

net yaw rotation of the robot over a step in order to steer the robot to walk

along paths with mild curvature.

There are few studies about direction control. [32] and [33] studied the

turning motions for biped with ZMP-based footstep planning. [34] proposed

the robust direction control system that used gyro sensor feedback under envi-

ronment with disturbance. In [35], motion stability during turning is ensured by

adjusting the swing leg center of mass (COM) and hip position trajectories in

a trial and error fashion. In this paper, an event-based feedback controller [36]

is integrated with the proposed control law in Section 4 to regulate the walking

direction through the net yaw motion about the stance foot over a step. Differ-

ent from the previous studies, in our approach, the stability during steering is

maintained. In addition, an interesting feature of this work is that one is able

to control the robot’s motion along a path with limited curvature using only a

single predefined periodic motion.

7.1. Stability analysis of the yaw motion

In order to describe the yaw motion of the robot, the walking direction

angle q0 is supplemented to the configuration variables of the robot, that is:

qe = [qT , q0]
T . As shown in Fig. 17, ql and qr are respectively defined as the

direction angle relative to xs-axis of left foot and right foot respectively, the

walking direction angle of the whole body q0 is given by:

q0 =
ql + qr

2
. (39)

Where ql and qr can be obtained using the position of two feet in the xsys plane

of the absolute frame.

Next, the stability of the extended system can be studied as shown in sub-

section 5.2. With the proposed control law, the behavior of the robot can be

studied in the HZD. The extended states xe = [q2, q̇2, θ̇, q0]
T is used and the

corresponding linearized extended restricted Poincaré map at the fixed-point

based on (37) is written as:

δxe
k+1 = Aeδxe

k, (40)
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Figure 17: Description of walking direction

where Ae is a 4× 4 matrix and δxe
k = xe

k − xe∗. According to the linearization

method of the Poincaré map about the fixed-point [16], Ae can be described as:

Ae =





Ae
δxk,xk+1

Ae
δq0k,xk+1

Ae
δxk,q0k+1

Ae
δq0k,q0k+1



 (41)

where the four components of Ae denote the effect of introduced errors δxk

or δq0k on the states of the next step xk+1 or q0k+1 respectively. Obviously,

Ae
δxk,xk+1

= Az, which has been obtained in subsection 5.2. Moreover, the

impact surfaces and the dynamic model are invariant under the rotation around

the zs-axis of the absolute frame [37]. Therefore, during the complete walking

phase, a perturbation on q0 is conserved after one step and it doesn’t affect the

configuration of the biped. As a consequence the resulted Ae is rewritten as:

Ae =





Az 03×1

Ae
δxk,q0k+1

1



 (42)

Since the stability of the extended system is determined by the eigenvalues of

Ae, in which the first three eigenvalues are the eigenvalues of Az and the fourth

eigenvalue is 1, that means the extended system is not stable, exactly, the yaw

motion is not stable so the walking direction angle q0 can not be controlled by

the control law proposed in Section 4.

7.2. Stabilization of the yaw motion

In order to stabilize the yaw motion, all the eigenvalues of Ae in (42) must

be less than 1. Here an event-based feedback control [36] is introduced to
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Figure 18: The positions of the feet at impacts with initial error of states, where
the red points denote the midpoint of two feet. The robot departs the direction
of xs axis.

modify the the eigenvalues of Ae. Because the ZMP control and the swing

ankle rotation control are always desired, so the event-based feedback control

is only supplemented to the partial joint angles controller, then the desired

property of the overall controller shown in (25) is rewritten as:



















y1 = ZMP − ZMP d(θ) = 0

y2c = ξxy − ξxyc = 0

y3cs = u− ud(θ)− uc − us = 0

(43)

where the supplemented term us is defined as uc in (26)

us = b0 + b1θ + b2θ
2 + b3θ

3 (44)

with b0, b1, b2, b3 defined such that:







us(θf ) = β

us(θ) ≡ 0, θ ≤ θs and θ∗ ≤ θs < θf .
(45)

where β is the feedback control term to be determined, and it is retained con-

stant during the swing phase and updated at each impact. θ∗ is the selected

fixed-point in subsection 5.2 (θ∗ = 0.4θi + 0.6θf). θs denotes the introduction
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Poincare Section
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Figure 19: The modification of the reference path ud.

moment of the event-based feedback control and it is limited by θ∗ ≤ θs < θf

to insure that the state of the robot is completely defined by xe in the Poincaré

section. In order to obtain sufficient time to control the walking direction before

impact, here we choose θs = θ∗. By introducing uc and us to ud, the resulted

reference trajectory can be described by Fig. 19. It should be noted that uc

modifies only the first part of the stance phase ( uc = 0 when θ ≥
θi+θf

2 ), and

us modifies only the last part of the stance phase (us = 0 when θ ≤ θs). There-

fore, the choice of us in (45) is convenient because it does not require a re-design

of the controller that created the HZD. The Poincaré map can now be viewed as

a nonlinear control system on Sθ∩Z with inputs βk, namely xe
k+1 = P z(xe

k, βk),

where βk is the value of β during the step k. Linearizing the Poincaré map about

the fixed-point xe∗ and the nominal parameter value β∗ = 010×1 leads to

δxe
k+1 = Aeδxe

k + Fδβk, (46)

where δβk = βk − β∗ and F is the Jacobian matrix of P z with respect to β.

Designing a feedback matrix

δβk = −Kδxe
k (47)

such that the eigenvalues of (Az − FK) are strictly less than one will exponen-

tially stabilize the fixed-point xe∗.

In (46), F is calculated numerically similar to the calculation of Ae. The
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(10 × 4) gain matrix K is calculated via DLQR technique so that the state-

feedback control law (47) minimizes the cost function
∑

(δxe′

k δx
e
k + rδβ′

kδβk).

For r = 5 the eigenvalues of the linearized Poincaré map in closed loop (Ae−FK)

are:






























λ1 = −0.3154

λ2 = 0.1214

λ3 = −0.0016

λ4 = 0.0074

(48)

All of them are less than 1 so the yaw motion will be stabilized and some

examples of steering control are given in the next section.

7.3. Direction control of the yaw motion

It has been shown that the proposed feedback control law (47) can stabilize

the system at the fixed-point xe∗ = [q2
∗, q̇∗2 , θ̇

∗, q0
∗]T . Moreover, as the model

is invariant with respect to q0, this control law can also stabilize the system at

any fixed point given by xe∗ + eC with e = [0, 0, 0, 1]T and C a scalar constant.

By consequence, the robot can converge to a motion with a desired direction

of travel q0
∗ + C. If C = 0, the walking direction angle converges to zero,

otherwise, the direction of the robot is steered by changing C. With different

expressions of C, different walking paths can be defined.

7.3.1. Steering control of robot to walk along a desired direction

When the robot is desired to walk with a direction angle qd0 , at the kth step,

C is defined as:

Ck = qd0 . (49)

According to δxe
k = xe

k − xe∗, there is:

δq0k = q0k − (q0
∗ + Ck). (50)

Here (q0
∗ + Ck) can be regarded as the desired walking direction angle at the

Poincaré section.
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Figure 20: The positions of the feet at impacts under even-based feedback
control, where the red points denote the midpoint of two feet. The robot walking
along the direction of xs-axis .

Considering the saturation of torques, the feedback term δq0k used in (47)

is chosen as:

δq0k−new =



















Qsat , δq0k > Qsat

−Qsat , δq0k < −Qsat

δq0k , otherwise.

(51)

where Qsat is a saturation of turning that must be chosen appropriately.

Finally, using (51) in (47), the even-based feedback control law can be cal-

culated by:

δβk = −K

















q2k − q2
∗

q̇2k − q̇∗2

θ̇ − θ̇∗

δq0k−new

















. (52)

It should be noted that (52) only describes the feedback control law used in

the case that the right leg is supported (see Fig. 1). All the work in this paper

about the exchange of legs is based on a natural symmetry of the hybrid robot

model [37]. When the supported leg is changed, the corresponding states of the

other leg should be used in (52).

Here and in the follow examples we always choose Qsat = 9◦. For C = 0, the

simulation result is shown in Fig. 20. It indicates that with the same initial error

as in Fig. 18, the walking comes back to the direction of xs-axis by introducing

the even-based feedback control law. In order to validate that the robot can
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Figure 21: The positions of the feet at impacts under even-based feedback
control, where the red points denote the midpoint of two feet. The robot walking
along the direction of −xs-axis .

turn with large extent, we choose C = 180◦ and that means the robot will turn

round and walking along the the direction of −xs-axis . The resulted trajectory

of the feet at impacts is shown in Fig. 21. Fig. 22 describes the direction angle

of two feet ql, qr and the walking direction angle q0. It shows that q0 converges

to 180◦ at last.

7.3.2. Steering control of robot to pass through a door

For some task, it can be desired that the robot pass through a point with

a given orientation, as example to pass through a door. This case is illustrated

as Path 1 in Fig. 23. The control principle of Path 1 is regulating the walking

direction to eliminate the distance between the midpoint of two feet and the goal

along ys-axis , and then controlling the walking direction angle to 0. Therefore,

at the kth step, C is defined as:

Ck = k1(y
d − yk), (53)

where yd is the position of the door along ys-axis and yk is the current position

of the midpoint of two feet at the kth step. k1 is the control gain and 0 < k1 < 1.

Substituting (53) in (50), and then using (51) and (52), the feedback control
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Figure 22: The direction angle of left foot ql, right foot qr and the walking
direction angle q0, where the straight lines in figures of ql and qr denote the
single support phases. q0 converges to 180◦.

Figure 23: The layout of the robot and the goal.
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Figure 24: The positions of the feet at impacts for passing through the door,
where the red points denote the midpoint of two feet. The walking path con-
verges to the desired one yd = −0.5.

law to let the robot pass through a door is obtained. Supposing yd = −0.5

and choosing k1 = 0.8, the simulation results of Path 1 are shown in Fig. 24

and Fig. 25. Fig. 24 indicates that the walking path converges to the desired

one yd = −0.5. Fig. 25 describes the direction angle of two feet ql, qr and the

walking direction angle q0. It shows that q0 converges to 0 at last so the robot

walks along the xs-axis , that means it can pass through the door shown in

Fig. 23.

7.4. Steering control of robot to reach a destination

As shown in Fig. 23, if the robot is desired to reach a goal at the position

[xd, yd], the second path (Path 2) is more appropriate. Its objective is regulating

the walking direction angle q0 to track the relative angle qg between the robot

and the goal in order that the walking direction of robot crosses the goal. The

position of the midpoint of two feet in xsys is [x, y], at the kth step qg can be

defined by:

qgk =







arctan( y
d
−yk

xd−xk
) , xd − xk ≥ 0

π + arctan( y
d
−yk

xd
−xk

) , otherwise.
(54)

According to the tracking objective, C is redefined to create a new fixed-point

for the feedback even-based control law:

Ck = qgk. (55)
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Figure 25: The direction angle of left foot ql, right foot qr, and the walking
direction angle q0, where the straight lines in figures of ql and qr denote the
single support phases. q0 is regulated to obtain yd = −0.5 at first, then it
converges to 0◦ so the robot walks along the xs-axis as shown in Fig. 24.
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Figure 26: The positions of the feet at impacts for reaching two destinations at
[6, 1] and [6,−1] respectively.

As soon as Ck is determined, using (50), (51) and (52), the feedback control law

for the robot to reach a destination is obtained.

Two destinations at [6,−1] and [6, 1] in xsys plane are chosen respectively

for the simulation and Fig. 26 shows that the robot can reach these two points

successfully.

8. Conclusions and perspectives

This paper proposed a walking control strategy for a 3D biped robot with

flat-feet. Its objective is to control the ZMP, the swing ankle rotation and the

partial joints angles simultaneously. By creating the hybrid zero dynamics, a

stability study with application of Poincaré method was evaluated in a reduced

space. The influence of the controlled partial joints selection on the stability of

the control law was investigated. The examples showed that stability can be

obtained by a pertinent choice of the controlled joints. Finally, a supplemental

event-based feedback controller was designed to stabilize the yaw motion. By

adjusting the set point of the event-based controller, it is possible to steer the

direction of the robot, and even to direct the walking along a given path with

mild curvature. In future, the proposed control law will be extended to the robot
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model with the motion of arms and the foot rotation around the metatarsal axis.

Appendix A. Computation of the angular acceleration and velocity

of the joint 13 in the absolute reference frame

sω13 and
sω̇13 can be efficiently computed by the forward recursive equations

of the general serial robot [20]. For the serial number of joints j = 1, . . . , 13,

there exist:


















jωj−1 = jRj−1
j−1ωj−1

jωj =
jωj−1 + q̇j

jaj

jω̇j =
jRj−1

j−1ω̇j−1 + q̈j
jaj +

jωj−1 × q̇j
jaj

(A.1)

where jaj = [0, 0, 1]T , jRj−1 denotes the orientation matrix from the coordinate

system xjyjzj to xj−1yj−1zj−1, and the initial condition are 0ω0 = 0, 0ω̇0 = 0.

If 13ω13 and 13ω̇13 have been computed by (A.1), sω13 and sω̇13 in (14) can be

obtained by:






sω13 = sR13
13ω13

sω̇13 = sR13
13ω̇13

(A.2)

Appendix B. Acceleration constraint generated by the flat-foot im-

pact condition

(16) can be rewritten as:

sω̇13
d
xy −

sω̇13xy +
K1

ε
ξ̇xy +

K2

ε2
ξxy = 02×1, (B.1)

where ξxy can be calculated by (12), (13) and ξ̇xy can be calculated by (A.1),

(A.2) with q, q̇ and qd, q̇d. According to Appendix Appendix A, sω̇13 is a linear

function of q̈. Similar to (3), it can be defined as:

sω̇13 = Faq̈ + Fv, (B.2)

where Fa and Fv can be obtained according to the functions to compute sω̇13.

Accordingly, as the same as (4) and (5), they can be calculated by:

Fv = sω̇13(q, q̇, q̈ = 014×1), (B.3)
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and


















Fa(:, i) =
sω̇13(q, q̇, q̈ = e14×1)− Fv

e(i) = 1, i ∈ {1, 2, . . . , 14}

e(j) = 0, j ∈ {1, 2, . . . , 14} and j 6= i

(B.4)

According to (B.2), we can deduce sω̇13xy and its desired value sω̇13
d
xy are linear

functions of q̈ and q̈d respectively. Since q̈d includes a term about θ̈ (see (9)),

which is also a linear function of q̈ (see (8)). Therefore, (B.1) can be rewritten

as:

Ws(q, q̇)q̈ +Hs(q, q̇) = 02×1, (B.5)

where Ws(q, q̇) denotes all the coefficient terms of q̈ and Hs(q, q̇) denotes all the

terms without q̈ in (B.1).
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