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dξt = θf(t)ξt dt+ dBt,

where f : R → R is a continuous function with period, say P > 0. Here the periodic function
f(·) is assumed known. We establish the consistency of the MLE and we point out its minimax
optimality. These results comply with the well-established case of an Ornstein Uhlenbek process
when the function f(·) is constant. However the case when

∫ P
0 f(t)dt = 0 and f(·) is not

identically null presents some special features. For instance in this case whatever is the value of
θ, the rate of convergence of the MLE is T as in the case when θ = 0 and

∫ P
0 f(t)dt 6= 0.
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1 Introduction

The non-stationary and seasonal behaviour is quite common for many random phenomena
observed in time. This can be due to the influence of external oscillation forces acting on the
system under study, or to some internal forces that exist within the system (rotating machinery,
waves, cyclical phenomenae, seasonality, time-periodic modulation, etc.). The periodicity may
be hidden in the structure of the process, for instance in the covariance structure for a non-
stationary periodically correlated process called also cyclostationary signal in signal theory
(Gardner et al. 2006), or as in the present paper, in the coefficients of a time-inhomogeneous
diffusion process (see also Höpfner and Kutoyants 2010). Many applications of such models
can be found in mechanics, communication theory, climatology, econometrics, biology to name
but a few (see e.g. Antoni 2009 ; Chaari et al. 2014 ; Collet and Martinez 2008 ; Gardner et al.
2006 ; Serpedin et al. 2005). A large amount of publications have been devoted to discrete time
linear models with coefficients which are periodically time-dependent (see e.g. Hurd and Miamee
2007, and references therein). In the present work we consider the continuous-time counterpart
of the periodically autoregressive time series model of order 1 (PAR(1) model), introducing a
time-periodic modulation in the drift of the Ornstein Uhlenbeck model.

The main purpose of the paper is the maximum likelihood estimation problem for the
unknown parameter θ ∈ R in the so called P -periodic Langevin SDE (stochastic differential
equation)

dξt = θf(t)ξt dt+ dBt, ξ0, t ≥ 0, (1)

from the observation of a continuous sample path of the P -OU-process {ξt, t ≥ 0}. Here
{Bt, t ≥ 0} is a Brownian motion which is independent with respect to the initial random
variable ξ0. The time-dependent modulation f : R → R is some known, no identically null, P -
periodic and continuous function. Thus the period P > 0 is known. For simplicity of exposure
we have assumed that the diffusion coefficient is equal to 1. The non-parametric problem of
estimation of the modulation function f(·) is out of the scope of the paper and will be subject
to another work. Parameter estimation problem for models of SDE with time-dependent drift
have been considered by many authors (for instance see Mishra and Prakasa Rao 1985 ; Liptser
and Shiryaev 2001 ; and recently, Barczy and Pap 2010 ; Höpfner and Kutoyants 2010 ; Dehling
et al. 2010). None considers the case of SDE (1) which cannot be reduced to known models.

Such SDE (1) admits a unique solution for which we exhibit a completely explicit expres-
sion (6). This permits us to develop the forthcoming analysis exploiting the periodic structure
of the model. In this paper a solution of SDE (1) is called P -periodic Ornstein Uhlenbeck type
process and for brevity noted P -OU-process.

In Section 2 we present the main features about this model (Dehay 2014). These proper-
ties help us to understand the structure of the model under consideration, and are used in
the following sections. The diversity of the statements corresponds to the different recurrence
properties of the solution {ξt, t ≥ 0} of SDE (1). More precisely the model possesses a periodic
Markov structure which can be described with the help of the associated P -segments chain
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{Xn := {ξnP+t, t ∈ [0, P ]}, n ∈ N} as defined by Höpfner and Kutoyants (2010). According
to the signum of F (P ) :=

∫ P
0 f(t) dt, the model has a recurrent or transient behaviour. The

case where F (P ) = 0 is of particular interest, it corresponds to a null recurrent Markov model.
We refer to (Meyn and Tweedie 2009 ; Revuz 1984) for the notions of recurrent, transient and
Harris recurrent Markov chains. For recurrent or transient continuous-time processes we refer
to (Has’minskǐı 1980 ; Revuz and Yor 1994).

Next in Section 3 we takle with the problem of estimation of the parameter θ in SDE (1) by
the maximum likelihood method, from the observation of a sample path of the process along
the finite interval [0, T ], as T → ∞. Liptser and Shiryaev (2001, Theorem 17.2) have given
conditions for evaluating the bias and the quadratic error of the maximum likelihood estimator
(MLE) of the parameter θ for a large class of models including the P -periodic Langevin SDE (1).
Although this result can be applied successfully to model (1) with f(·) ≡ 1 (Liptser and Shiryaev
2001, Theorem 17.3), to carry out any checks when f(·) is not constant requires untractable
computations. In a recent paper Barczy and Pap (2010) have investigated the MLE for a time-
inhomogeneous diffusion process given by the SDE

dξt = θf(t)ξt dt+ σ(t)dBt, ξ0, t ≥ 0,

where f(·) and σ(·) are known continuous functions. However due to the periodicity of the
function f(·) and so the periodic structure of the process in the present work, their results do
not apply to our context except to the Harris recurrent case where θF (P ) < 0. In Section 3,
thanks to the asymptotic behaviour of the P -OU-processes, we establish the strong consistency
of the MLE θ̂T whatever is the value of θF (P ) (Theorem 1). We also study the limit law of the
scaled deviation δT (θ)

(
θ̂T − θ

)
. The normalizing factor δT (θ) as well as the limit law are quite

different according to the signum of θF (P ) (Section 3.3). When θF (P ) < 0 or θF (P ) > 0 the
results are plain generalizations of the classical case where f(·) ≡ 1 (Theorems 2 and 5). When
F (P ) = 0, the limit law of the scaled deviation T

(
θ̂T − θ

)
coincides with the mixed Gaussian

law of ∫ 1
0 Bu dB′u∫ 1
0 B2

u du

up to a factor c(θ) > 0 whatever is the value of θ ∈ R, {Bt, t ∈ [0, 1]} and {B′t, t ∈ [0, 1]} being
two independent Brownian motions (Theorem 3), while when θ = 0 and f(·) ≡ 1, the limit law
of T θ̂T coincides with the law of ∫ 1

0 Bu dBu∫ 1
0 B2

u du
=

B2
1 − 1

2
∫ 1

0 B2
u du

.

Furthermore we investigate the case when θ = 0 and f(·) is not identically null, establishing a
link between the results for the two cases F (P ) = 0 versus θ = 0 and f(·) ≡ 1 (Theorem 4).

Finally Section 4 is devoted to the optimality of the MLE in the sense of local asymptotic
minimax property (see Ibragimov and Has’minskǐı, 1981 ; Jeganathan 1995 ; Le Cam and Yang
1990 ; see also Hájek 1972 ; Le Cam 1969 and 1986). When θF (P ) < 0, the recurrence property
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of the P -OU-process entails that the model is locally asymptotically normal (LAN), the scale
being

√
T , and the MLE is locally asymptotically minimax for a large class of loss functions

(Theorem 6). In the case θF (P ) ≥ 0, we establish that the model is locally asymptotically
mixed normal (LAMN), and the MLE θ̂T has also some local asymptotic optimality (Theorems 7
and 9). Here δT (θ) = T when θF (P ) = 0, and δT (θ) = enθF (P ) when θF (P ) > 0, T = nP + t,
n ∈ N, t ∈ [0, P ). Moreover the size of the small neighbourhood Uθ of θ in the local asymptotic
minimax risk (14) is proportional to δT (θ)−1 so tends to 0 as T → ∞ in contrast to the LAN
case θF (P ) < 0 where in relation (16) the size of Uθ does not depend on T . For the specific
quadratic loss function, when θF (P ) = 0 we deal with van Trees inequality to establish a
Bayesian version of the Cramér-Rao lower bound (Gill and Levit 1995) and to state that the
MLE is locally asymptotically minimax with the size of the small neighbourhood Uθ that does
not depend on T as in the LAN case θF (P ) < 0 (Theorem 8).

For an easier reading and understanding of the statements of the paper, the proofs are
collected in Section 5.

2 Background : Time periodic Ornstein Uhlenbeck process

Here we present some useful properties of the solution of the following P-periodic Langevin
SDE

dξt = f(t)ξt dt+ dBt, ξ0, t ≥ 0.

As the modulation function f : R → R is periodic and continuous, the usual conditions for
the existence and the unicity of the strong solution of SDE when the initial value is fixed, are
satisfied (Liptser and Shiryaev 2001). Moreover the strong solution can be expressed easily

ξt = eF (t)

(
ξ0 +

∫ t

0
e−F (u) dBu

)
,

where F (t) :=
∫ t

0 f(u)du. Remark that as the modulation function f(·) is P -periodic, F (nP +

t) = nF (P ) + F (t) for any t > 0 and any integer n.
The process {ξt, t ≥ 0} is inhomogeneous Markovian whose transition probability density

ps,t(x, ·) coincides with the density of the normal lawN
(
xeF (t)−F (s),

∫ t
s e

2(F (t)−F (u)) du
)
. Notice

that the transition probability density is periodic in time : ps+P,t+P (x, y) = ps,t(x, y), for all
s, t, x and y. Furthermore for each t ∈ [0, P ] the chain {ξnP+t}n∈N is homogeneous Markovian,
and can be decomposed as

ξnP+t = eF (P )ξ(n−1)P+t + eF (P )+F (t)

∫ P

t
e−F (u) dB((n−1)P )

u + eF (t)

∫ t

0
e−F (u) dB(nP )

u

where the processes B(nP ) := {BnP+u − BnP , u ∈ [0, P ]}, n ∈ N, are independent Brownian
motions on [0, P ]. Following Höpfner and Kutoyants (2010, Section 2) we define the P -segments
sequence {Xn}n∈N,Xn := {ξnP+t, t ∈ [0, P ]}. Then the previous decomposition can be rewritten
as

Xn(t) = eF (P )Xn−1(t) + eF (P )+F (t)(Zn−1(P )− Zn−1(t)) + eF (t)Zn(t),

3



where

Zn(t) :=

∫ t

0
e−F (u) dB(nP )

u . (2)

The sequence (Xn)n∈N is a homogeneous Markov chain with state space C[0, P ], the space of
real-valued continuous functions defined in [0, P ] endowed with the uniform distance. Moreover
L [Zn(t)] = N (0, G(t)), where G(t) :=

∫ t
0 e
−2F (u) du for any t.

For F (P ) ≤ 0, that is eF (P ) ≤ 1, the P -segments Markov chain (Xn)n∈N is Harris recurrent,
more precisely there is a positive measure λ on (C[0, P ],CP ) such that the sets of positive λ-
measure are visited infinitely often whatever is the initial state X0 ∈ C[0, P ]. Here CP denotes
the Borel σ-field of the separable metric space C[0, P ].

When F (P ) < 0, this positive measure λ can be chosen as the limit probability law given
in limit (3) below and it is invariant for the Markov chain (Xn)n∈N. Thus this Harris recur-
rent Markov chain is positive, that is for any A ∈ CP such that λ[A] > 0, the expectation
of the amount of steps between two visits in A is finite (Meyn and Tweedie 1993, Theorem
10.4.9). Furthermore the Markov chain (Xn)n∈N fulfils some ergodicity properties (Höpfner and
Kutoyants 2010, Theorem 2.1) and

lim
n→∞

L [Xn] = lim
n→∞

L
[
ξnP+ ·

]
= L

[
eF (·)(ζ1 + Z)

]
in C[0, P ]. (3)

where ζ1 is a real-valued Gaussian variable N
(

0, G(P )

e−2F (P )−1

)
, Z := {Z(t), t ∈ [0, P ]} is a Gauss-

sian process with representation Z(t) =
∫ t

0 e
−F (u) dB′u, {B′u, u ∈ [0, P ]} is a Brownian motion

on [0, P ], independent with respect to the random variable ζ1.
When F (P ) = 0, then the Harris recurrent chain (Xn)n∈N admits a σ-finite (unbounded)

invariant measure, so it is null Harris recurrent and for any A ∈ CP such that 0 < λ[A] < ∞,
the expectation of the amount of steps between two visits in A is infinite. Notice that in this
case for each t ∈ [0, P ], the Markov chain {ξnP+t, n ∈ N} is a random walk on R. Furthermore

lim
n→∞

L
[
Xn√
n

]
= lim

n→∞
L
[
ξnP+ ·√

n

]
= L

[
eF (·)ζ2

]
in C[0, P ] (4)

where ζ2 is a real-valued Gaussian variable N (0, G(P )). Then ξT /
√
T converges in law to the

Gaussian law N (0, G(P )/P ).
If F (P ) > 0, the P -segments chain X and the P -OU process {ξt, t ≥ 0} are transient (Meyn

and Tweedie 1993, Theorem 8.0.1 ; Has’minskǐı 1980, Chap.IV.2 pp.113). Moreover

lim
n→∞

e−nF (P )Xn = lim
n→∞

e−nF (P )ξnP+ · = eF (·)(ξ0 + ζ3) a.e. in C[0, P ] (5)

where ζ3 is a real-valued Gaussian variable N
(

0 , G(P )

1−e−2F (P )

)
, ζ3 and ξ0 being independent.

Thus e−F (T )ξT converges a.e. to ξ0 + ζ3 as T →∞.

3 Parameter estimation

Henceforth we deal with the parameter estimation problem for model (1). Consider a dif-
fusion process observed on the interval [0, T ] following the P -periodic Langevin SDE (1) with
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parameter θ ∈ R and with initial variable ξ0 independent with respect to {Bt, t ≥ 0} and on the
parameter θ for simplicity of exposure. Then we turn to the problem of estimating the unknown
parameter θ ∈ R on the basis of the observation {ξt, t ∈ [0, T ]}. More precisely we study the
asymptotic behaviour of the maximum likelihood estimator (MLE) of θ as the observation time
T goes to infinity.

Throughout the following we assume that the modulation function f(·) is any periodic
continuous function with period P > 0, except for specified cases. Then the strong solution of
the P -periodic SDE (1) exists, is unique and admits an explicit expression

ξt := ξ(θ)
t

= eθF (t)ξ0 +

∫ t

0
eθ(F (t)−F (u)) dBu, (6)

for t ∈ [0,∞). Notice that ξ(0)
t

= ξ0 + Bt. For simplication we write ξt for ξ
(θ)
t

when there is
no possibility of confusion. Next in the notations Pθ, Eθ and Lθ, the index indicates that we
consider that the true value of the parameter is θ. We need also the following functions

Gθ(t) :=

∫ t

0
e−2θF (u) du and Hθ(t) :=

∫ t

0
f(u)2e2θF (u) du

for t ∈ [0,∞) and θ ∈ R.

3.1 MLE for Ornstein Uhlenbeck processes

First we recall some well-established results on the maximum likelihood parameter estima-
tion for Ornstein Uhlenbeck processes. Assume that the modulation function f(·) is identically
equal to 1, f(·) ≡ 1. The problem of estimation of the parameter θ for this model have been
subject to a very large amount of contributions. In this classical case the MLE of θ is equal to

θ̂T =

∫ T
0 ξudξu∫ T
0 ξ2

u
du

= θ +

∫ T
0 ξudBu∫ T
0 ξ2

u
du

and its behaviour as T → ∞ is well-known (see e.g. Basawa and Scott 1983 ; Bishwal 2008 ;
Brown and Hewitt 1975 ; Feigin 1979 ; Kutoyants 2004 ; Liptser and Shiryaev 1977).
(i) For θ < 0, the process {ξt, t ≥ 0} is positive recurrent, ergodic with invariant measure
N
(
0, 1/(2|θ|)

)
, and

lim
T→∞

Lθ
[√

T
(
θ̂T − θ

)]
= N (0, 2|θ|) .

(ii) For θ = 0, the process {ξt, t ≥ 0} is null recurrent

lim
T→∞

L0

[
T θ̂T

]
= L

[∫ 1
0 BtdBt∫ 1
0 B2

t dt

]
= L

[
B2

1 − 1

2
∫ 1

0 B2
t dt

]
. (7)

(iii) For θ > 0, the process is transient : |ξt| → ∞ with probability 1

lim
T→∞

Lθ
[
eθT√

2θ

(
θ̂T − θ

)]
= L

[
ν

ξ0 + ζ(θ)

]
on {ξ0 + ζ(θ) 6= 0}, where L[ν] = N (0, 1) and L

[
ζ(θ)
]

= N
(
0, 1/(2θ)

)
. The random variables

ξ0, ν and ζ(θ) are independent.
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3.2 MLE for P -OU processes

Now we consider the general P -periodic model (1). As the function f(·) is continuous and
almost every sample path of the process {ξt, t ≥ 0}={ξ(θ)

t
, t ≥ 0} is also continuous we have∫ T

0
f(u)2ξ2

u
du <∞ Pθ-a.e.

for any θ ∈ R and any T > 0. Thus

Pθ

[∫ T

0
f(u)2ξ2

u
du <∞

]
= P0

[∫ T

0
f(u)2(ξ0 + Bu)2 du <∞

]
= 1.

Thanks to (Liptser and Shiryaev 2001, Theorem 7.7 and formula (17.24)) the law PTθ of {ξt =

ξ(θ)
t
, t ∈ [0, T ]} is absolutely continuous with respect to the law PT0 of {ξ(0)

t
= ξ0 +Bt, t ∈ [0, T ]},

and the log-likelihood ratio of PTθ to PT0 verifies

Λ
(θ)
T = θ

∫ T

0
f(u)ξu dξu −

θ2

2

∫ T

0
f(u)2ξ2

u
du = θ

∫ T

0
f(u)ξu dBu +

θ2

2

∫ T

0
f(u)2ξ2

u
du. (8)

Since ∫ T

0
f(u)2ξ2

u
du > 0 Pθ-a.e.,

the maximum likelihood estimator θ̂T of θ is well defined and equal to

θ̂T =

∫ T
0 f(u)ξu dξu∫ T
0 f(u)2ξ2

u
du

= θ +

∫ T
0 f(u)ξu dBu∫ T
0 f(u)2ξ2

u
du
. (9)

3.3 Consistency of the MLE

Assume θ ∈ R be fixed. Let

Ut :=

∫ t

0
f(u)ξu dBu (10)

and let {Ft, t ≥ 0} be the filtration generated by ξ0 and the Brownian motion {Bt, t ≥ 0}. Then
{Ut, t ≥ 0} is a zero-mean continuous martingale with respect to {Ft, t ≥ 0}. Its quadratic
variation is equal to

Jt :=

∫ t

0
f(u)2ξ2

u
du

and

Eθ
[
U2
t

]
= Eθ [Jt] =

∫ t

0
f(u)2Eθ

[
ξ2
u

]
du <∞.

The strong law of large numbers for martingales (see Liptser and Shiryaev 2001, Lemma 17.4)
entails that

lim
T→∞

J−1
T UT = 0 Pθ-a.e. on {J∞ =∞}

where J∞ := limT→∞ JT . Hence to prove the strong consistency of the MLE θ̂T it suffices to
show that Pθ [J∞ <∞] = 0. This is done thanks to the asymptotic results in Section 2.
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Theorem 1 For any θ ∈ R, the MLE θ̂T is strongly consistent

lim
T→∞

θ̂T = θ P-a.e.

Hence the MLE θ̂T is a consistent estimator of θ

lim
T→∞

Pθ

[∣∣∣θ̂T − θ∣∣∣ > ε
]

= 0

for any ε > 0, whatever is the value of F (P ). Actually, in the following we will see that this
consistency is uniform with respect to θ varying in any compact set contained in {θ′ ∈ R :

θ′F (P ) < 0} or in {θ′ ∈ R : θ′F (P ) > 0} if F (P ) 6= 0, and in any compact subset of R if
F (P ) = 0, the function f(·) being not identically null.

Next we deal with the asymptotic behaviour of the deviation θ̂T −θ according to the signum
of θF (P ).

3.3.1 Case θF (P ) < 0

When θF (P ) < 0, the ergodicity and recurrent properties of the P -OU process {ξt, t ≥ 0}
imply that the maximum likelihood estimator θ̂T has a standard asymptotic behaviour. Thus
the result complies with the well-known case of the stationary Ornstein Uhlenbeck processes.

Theorem 2 Let K− be any compact subset of R contained in {θ : θF (P ) < 0}. Then

lim
T→∞

Lθ
[√

JT
(
θ̂T − θ

)]
= N (0, 1)

and
lim
T→∞

Lθ
[√

T
(
θ̂T − θ

)]
= N

(
0, I(θ)−1

)
(11)

uniformly with respect to θ varying in K−. The Fisher information I(θ) is equal to

I(θ) :=
Gθ(P )Hθ(P )

P
(
e−2θF (P ) − 1

) +
1

P

∫ P

0
f(u)2e2θF (u)Gθ(u) du > 0. (12)

3.3.2 Case θF (P ) = 0

When θF (P ) = 0, the Markov P -OU process {ξt, t ≥ 0} has a null recurrent behaviour. The
maximum likelihood estimator θ̂T is consistent. In the following theorem, we see that the rate
of convergence is T and the asymptotic law of the scaled deviation T

(
θ̂T − θ

)
is not standard.

However using the random scale
√
JT instead of T , the limit law is parameter free : it does not

depend on the model.

Theorem 3 Assume that F (P ) = 0 and the function f(·) is not identically null. Then

lim
T→∞

Lθ
[√

JT
(
θ̂T − θ

)]
= N (0, 1)
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and

lim
T→∞

Lθ
[
T
(
θ̂T − θ

)]
= L

 P√
Gθ(P )Hθ(P )

ζ√∫ 1
0 B2

u du


where the real-valued random variable ζ is Gaussian N (0, 1) and is independent with respect to
the Brownian motion {Bt, t ∈ [0, 1]}. The limits being uniform with respect to θ varying in any
compact subset of R.

It is worth to notice that in Theorem 3 when F (P ) = 0 and f(·) not identically null we
introduce a Gaussian variable ζ independent with respect to the Brownian motion in order to
define the limit law, whatever is the value of θ ∈ R. While for θ = 0 and f(·) ≡ 1, so F (P ) 6= 0,
we have the well-established limit (7) expressed with only one Brownian motion. With the
following theorem, we point out that this limit (7) for θ = 0 can be seen as a particular case of
the more general case where f(·) is any periodic continuous non identically null function. We
recall that here the basic model is the P -periodic Langevin SDE (1) and the MLE θ̂T is defined
by relation (9).

Theorem 4 Assume that θ = 0 and the function f(·) is not identically null. Then

lim
T→∞

L0

[
T θ̂T

]
= L

√PH0(P )− F (P )2

H0(P )

ζ√∫ 1
0 B2

u du
+

F (P )

2H0(P )

(B2
1 − 1)∫ 1

0 B2
u du


where the random variable ζ is Gaussian N (0, 1), and is independent with respect to the Brow-
nian motion {Bt, t ∈ [0, 1]}. Recall that F (P ) =

∫ P
0 f(u) du and H0(P ) =

∫ P
0 f(u)2 du.

Thus, when F (P ) = 0 and the function f(·) is not identically null, we obtain the limit law stated
in Theorem 3 with θ = 0. When the function f(·) is constant non null, Theorem 4 reduces to
the classical usual limit (7).

3.3.3 Transient case : θF (P ) > 0

The following result generalizes the well-known case when f(·) ≡ 1 and θ > 0. The random
local scale

√
JT gives a parameter free limit law.

Theorem 5 Let K+ be any compact subset of R contained in {θ : θF (P ) > 0}. Then

lim
T→∞

Lθ
[√

JT
(
θ̂T − θ

)]
= N (0, 1)

and

lim
n→∞

Lθ
[
Kθ( · )enθF (P )

(
θ̂nP+ · − θ

)]
= L

[
ζ

ξ0 + ζ
(θ)
3

]
in C[0, P ] (13)

uniformly with respect to θ varying in the compact set K+. The real-valued random variable ζ
is Gaussian N (0, 1) and ζ(θ)

3 is Gaussian N
(

0, Gθ(P )

1−e−2θF (P )

)
. Moreover ξ0, ζ and ζ(θ)

3 are inde-
pendent. Here

Kθ(t) :=

√
Hθ(P )

e2θF (P ) − 1
+Hθ(t).
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Notice that the function (θ, t) 7→ Kθ(t) is positive, continuous and Kθ(P ) = eθF (P )Kθ(0),
and recall that F (nP + t) = nF (P ) + F (t). Thus, denoting TP := T modulo P , Theorem 5
implies that Kθ

(
TP
)
eθF (T )

(
θ̂T − θ

)
converges in law to ζ/

(
ξ0 + ζ

(θ)
3

)
uniformly with respect to

θ varying in the compact set K+ as T →∞.
Whenever ξ0 = 0, limit law (13) is the Cauchy law with density function x 7→ cθ

π(c2
θ
+x2)

where

cθ =
√

1−e−2θF (P )

Gθ(P ) .

4 Optimality

Now we takle the problem of optimality for the maximum likelihood estimator θ̂T . When
the size of the sample path observation T is large, we would like to know how good or optimal
is the maximum likelihood procedure for the estimation of the parameter θ. In the following we
denote by PTθ , the law of the observed process {ξt, t ∈ [0, T ]} when the value of the parameter is
θ. Recall that for simplicity we assume that the law of the random variable ξ0 does not depend
on the parameter θ.

We consider here the asymptotic optimality in the sense of local asymptotic minimax lower
bound of the risk of {θ̄T } := {θ̄T , T > 0} for the estimation of θ, that is

Rθ({θ̄T }) := lim
Uθ

lim inf
T→∞

sup
θ′∈Uθ

Eθ′
[
L
(
δT (θ′)−1(θ̄T − θ

′)
)]

(14)

where θ̄T is any statistic function of the observation {ξt, t ∈ [0, T ]}. Here Uθ is some neighbou-
rhood of θ which decreases to {θ} in some way depending on the model, δT (θ) is some positive
coefficient called local scale, and L(·) is a loss function in R, L(·) ∈ L, L being the set of Borel
functions L : R → [0,∞) symmetric, continuous at 0 with L(0) = 0, and non-decreasing on
[0,∞) (see Hájek 1972 ; Ibragimov and Has’minskǐı 1981, pp.18–19 ; Le Cam and Yang 1990 ; see
also Jeganathan 1995, pp.838). Notice that the set of discontinuity of any bounded loss function
L ∈ L is at most countable. Clearly all functions L(x) = |x|p, p > 0, as well as L(x) = 1(x > a),
a > 0, belong to L. (Here 1(x > a) denotes the indicator function.)

Let θ ∈ R be fixed, and let δT (θ) → 0 as T → ∞. Considering local optimality, denote

by Λ
(θ,u)
T the log-likelihood ratio function of the law PTθ+uδT (θ) of

{
ξ

(θ+uδT (θ))
t , t ∈ [0, T ]

}
with

respect to the law PTθ of
{
ξ(θ)
t
, t ∈ [0, T ]

}
, these laws being equivalent. Thanks to relation (8),

we have

Λ
(θ,u)
T := ln

(
dPTθ+uδT (θ)

dPTθ

)(
ξ(θ)
)

= uδT (θ)UT −
1

2
u2δT (θ)2JT . (15)

In the light of the previous results, it is not surprising to see in the following that the log-
likelihood ratio Λ

(θ,u)
T has a quite different behaviour according to the signum of θF (P ).

9



4.1 Case θF (P ) < 0

When θF (P ) < 0, thanks to Theorem 2 we take the local scale δT (θ) := T−1/2. Then the
log-likelihood ratio Λ

(θ,u)
T can be decomposed as

Λ
(θ,u)
T = u∆

(θ)
T −

1

2
u2I(θ) + rT (θ, u)

where ∆
(θ)
T := T−1/2UT is asymptotically normal

lim
T→∞

Lθ
[
∆

(θ)
T

]
= I(θ)1/2N (0, 1),

the Fisher information I(θ) is defined by relation (12) and

Pθ − lim
T→∞

rT (θ, u) = 0

uniformly with respect to θ varying in any compact subset of {θ : θF (P ) < 0}. Thus the family
of laws {PTθ : θF (P ) < 0}, T > 0, is LAN (locally asymptotically normal) at each point θ ∈ R
such that θF (P ) < 0 (see e.g. Hájek 1972 ; Ibragimov and Has’minskǐı 1981 ; Le Cam and Yang
1990). Then the local asymptotic lower bound result (Hájek 1972, Theorem 4.1 ; Ibragimov and
Has’minskǐı (1981), Theorem II.12.1) entails that

lim
ε→0

lim inf
T→∞

sup
|θ−θ′|<ε

Eθ′
[
L
(√

T (θ̄T − θ
′)
)]
≥ 1√

2π

∫
R
L
(
y I(θ)−1/2

)
e−y

2/2 dy (16)

for any loss function L(·) ∈ L, and for any family {θ̄T , T > 0} of estimators of θ, that is
θ̄T is measurable with respect to the observation {ξt, t ∈ [0, T ]} (see also Le Cam and Yang
1990, Section 5.6 Theorem 1). Notice that in this case the small neighbourhood Uθ of θ in the
expression (14) of the local asymptotic minimax risk, is {θ′ : |θ′ − θ| ≤ ε} and its size 2ε > 0

does not depend on T . Besides Theorem 2 gives

lim
T→∞

Lθ
[√

T
(
θ̂T − θ

)]
= I(θ)−1/2N (0, 1)

uniformly with respect to θ varying in any compact subset of {θ : θF (P ) < 0}. So thanks to
the convergence result from Ibragimov and Has’minskǐı (1981, Appendix I Theorem 8) the next
statement follows immediately.

Theorem 6 Assume that F (P ) 6= 0. Then the MLE θ̂T is locally asymptotically minimax with
local scale T−1/2 at any θ such that θF (P ) < 0 and for any bounded loss function L(·) ∈ L, in
the sense that its local asymptotic minimax risk Rθ(θ̂) is equal to the lower bound right hand
side of inequality (16)

lim
ε→0

lim
T→∞

sup
|θ−θ′|<ε

Eθ′
[
L
(√

T (θ̂T − θ
′)
)]

=
1√
2π

∫
R
L
(
y I(θ)−1/2

)
e−y

2/2 dy.
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Then for a loss function L(·) ∈ L whose growth as |u| → ∞ is lower than any one of the
functions eε|u|, ε > 0, we readily deduce that

lim
b→∞

lim
ε→0

lim
T→∞

sup
|θ−θ′|<ε

Eθ′
[
b ∧ L

(√
T (θ̂T − θ

′)
)]

=
1√
2π

∫
R
L
(
y I(θ)−1/2

)
e−y

2/2 dy.

Thus for the quadratic risk with L(u) = u2, we obtain

lim
b→∞

lim
ε→0

lim
T→∞

sup
|θ−θ′|<ε

Eθ′
[
b ∧
(
T (θ̂T − θ

′)2
)]

= I(θ)−1.

4.2 Case F (P ) = 0, f(·) non identically null

When F (P ) = 0, in Lemma 2 we state that

lim
T→∞

Lθ
[(

JT
T 2

,
UT
T

)]
= L

[(
I(θ) , I(θ)1/2ζ

)]
in R2 uniformly with respect to θ varying in any compact subset of R. Here the random Fisher
information is defined by I(θ) := Gθ(P )Hθ(P )

P 2

∫ 1
0 B2

u du, and the real-valued random ζ is Gaussian
N (0, 1) independent with respect to the Brownian motion {Bt : t ∈ [0, 1]}, so independent with
respect to I(θ). Then the log-likelihood ratio Λ

(θ,u)
T can be expressed as

Λ
(θ,u)
T = u∆θ

T −
1

2
u2I(θ) + rT (θ, u)

where ∆θ
T := T−1UT converges in law to the mixed Gaussian law of I(θ)1/2ζ, and rT (θ, u)

converges in probability to 0 as T goes to infinity. We deduce that the family of laws {PTθ :

θF (P ) > 0}, T > 0, has a likelihood ratio which is LAMN (locally asymptotically mixing
normal) (see e.g. Davies 1985 ; Jeganathan 1982, Definition 3). Following (Jeganathan 1995,
Theorem 8 ; Le Cam and Yang 1990, Section 5.6), for each family {θ̄T } of estimators of θ the
local minimax risk Rθ(θ̄) can be bounded asymptotically as follows

lim
M→∞

lim inf
T→∞

sup
|θ−θ′|<MT−1

Eθ′
[
L
(
T
(
θ̄T − θ

′))] ≥ E

L
 P√

Gθ(P )Hθ(P )

ζ√∫ 1
0 B2

u du

 (17)

for any L ∈ L. Thanks to Theorem 3 and to (Ibragimov and Has’minskǐı 1981, Appendix I
Theorem 8), we can assert that

Theorem 7 Assume that F (P ) = 0, and f(·) is not identically null. Then the MLE θ̂T is
locally asymptotically minimax with local scale T−1 at any θ and for any bounded loss function
L(·) ∈ L, in the sense that

lim
M→∞

lim
T→∞

sup
|θ−θ′|<MT−1

Eθ′
[
L
(
T
(
θ̂T − θ

′
))]

= E

L
 P√

Gθ(P )Hθ(P )

ζ√∫ 1
0 B2

u du

 .
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Notice that in relation (17) and in Theorem 7, the small neighbourhood Uθ of θ in the
expression (14) of the local asymptotic minimax risk, is {θ′ : |θ′ − θ| ≤ MT−1}. Its size is
proportional to T−1 and tends to 0 as T → ∞. However when the loss function is quadratic
(L(x) = x2), thanks to van Trees inequality (Gill and Levit 1995) we state the following local
asymptotic optimality of the MLE θ̂T with small neighbourhood Uθ with size ε > 0 as in the
LAN case.

Theorem 8 Assume that F (P ) = 0, f(·) is not identically null. Then for each θ ∈ R

lim
ε→0

lim inf
T→∞

sup
|θ′−θ|<ε

Eθ′
[
T 2
(
θ̄T − θ

′)2] ≥ 2P 2

Gθ(P )Hθ(P )
(18)

where
{
θ̄T
}
is any family of estimators of θ. Furthermore the MLE θ̂T is asymptotically minimax

for the quadratic loss function in the sense that

lim
b→∞

lim
ε→0

lim
T→∞

sup
|θ′−θ|<ε

Eθ′
[
b ∧ T 2

(
θ̂T − θ

′)2] =
2P 2

Gθ(P )Hθ(P )
.

4.3 Case θF (P ) > 0

From Lemma 3 and the proof of Theorem 5, we know that

I(θ)(t) := lim
n→∞

e−2nθF (P )JnP+t = Kθ(t)
2
(
ξ0 + ζ(θ)

3

)2
in L1(Pθ) and

lim
n→∞

Lθ
[(
e−2nθF (P )JnP+t , e

−nθF (P )UnP+t

)]
= L

[
I(θ)(t) , I(θ)(t)1/2 ζ

]
in R2

the limits being uniform with respect to t ∈ [0, P ] and to θ varying in any compact subset of
{θ : θF (P ) > 0}. The random variable ζ is Gaussian N (0, 1) and independent with respect to
{I(θ)(t) : t ∈ [0, P ]}. Thus taking the local scale δnP+t(θ) := e−nθF (P ), from equality (15) we
obtain that

Λ
(θ,u)
nP+t = u∆

(θ)
nP+t −

1

2
u2I(θ)(t) + rnP+t(θ, u)

where for any t ∈ [0, P ], the law of ∆
(θ)
nP+t := e−nθF (P )UnP+t converges to the mixed law of

I(θ)(t)1/2ζ, and rnP+t(θ, u) converges in probability to 0 as n goes to infinity. Notice that the
local scale depends on θ.

We deduce that for each t ∈ [0, P ], the sequence of families of laws {PnP+t
θ : θF (P ) > 0},

n ≥ 1, has a likelihood ratio which is LAMN. Then for each sequence {θ̄nP+t} of estimators of
θ, the local asymptotic minimax risk (14) can be bounded as follows.

lim
M→∞

lim inf
n→∞

sup
|θ−θ′|<Me−nθF (P )

Eθ′
[
L
(
enθ
′F (P )

(
θ̄nP+t − θ′

))]
≥ E

[
L

(
ζ

Kθ(t)
(
ξ0 + ζ

(θ)
3

))] (19)

for any t ∈ [0, P ] and any L ∈ L, each estimator θ̄nP+t being measurable with respect the
observation {ξs : s ∈ [0, nP + t]}. Thanks to Theorem 5 we can assert the following optimality
of the MLE.

12



Theorem 9 Assume that F (P ) 6= 0. Then for each t ∈ [0, P ], the MLE θ̂nP+t is locally asymp-
totically minimax with local scale e−nθF (P ) at any θ such θF (P ) > 0, and for any bounded loss
function L(·) ∈ L, in the sense that

lim
M→∞

lim
n→∞

sup
|θ−θ′|<Me−nθF (P )

Eθ′
[
L
(
enθ
′F (P )

(
θ̂nP+t − θ′

))]
= E

L
 ζ

Kθ(t)
(
ξ0 + ζ

(θ)
3

)
 .

The previous minimax result in the case θF (P ) > 0 concerns the subsequences {θ̂nP+t}n,
t ∈ [0, P ], of the family of MLE {θ̂T , T > 0} of θ. We can deduce the local asymptotic minimax
optimality for the whole family {θ̂T , T > 0} as follows.

Let δT (θ) :=
(
Kθ(t)e

nθF (P )
)−1 where T = nP + t with n ∈ N and t ∈ [0, P ). From the lower

bound inequality (19) as well as the fact that the function (θ, t) 7→ Kθ(t) is positive continuous
on {θ : θF (P ) > 0} × [0, P ), we obtain that

lim
M→∞

lim inf
T→∞

sup
|θ−θ′|<MδT (θ)

Eθ′
[
L
(
δT (θ′)−1

(
θ̄T − θ

′))] ≥ E

[
L

(
ζ

ξ0 + ζ
(θ)
3

)]

for any θ ∈ R such θF (P ) > 0, any bounded loss function L(·) ∈ L and any family {θ̄T } of
estimators of θ. Then Theorem 9 implies that the MLE θ̂T is optimal in the sense that

lim
M→∞

lim
T→∞

sup
|θ−θ′|<MδT (θ)

Eθ′
[
L
(
δT (θ′)−1

(
θ̂T − θ

′
))]

= E

[
L

(
ζ

ξ0 + ζ
(θ)
3

)]
.

Remark that the limit law in relation (13) is not square-integrable. Hence when θF (P ) > 0,
we cannot get a finite local asymptotic minimax lower bound for the quadratic risk with small
neighbourhood Uθ of type {θ′ : |θ′ − θ| ≤Me−nθF (P )}.

5 Proofs

5.1 Proofs of results in Section 3

5.1.1 Proof of Theorem 1

From the remarks before the statement of Theorem 1 it is only sufficient to prove that
J∞ =∞ a.e.. Recall that the function f(·) is not identically null and notice that the quadratic
variation JT increases to J∞ a.e. as T →∞.

(i) First assume that θF (P ) < 0. From Section 2 we know that in this case the P -segments
Markov sequence {Xk} is positive Harris recurrent. Then the ergodic theorem (Höpfner and
Kutoyants 2010, Theorem 2.1) and limit (3) entail that

lim
T→∞

JT
T

= lim
T→∞

1

T

∫ T

0
f(u)2 ξ2

u
du = I(θ) > 0 Pθ-a.e.

where I(θ) is defined in relation (12). This implies that J∞ =∞ a.e.
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(ii) Assume now that θF (P ) = 0. For any n > 0 we have

JnP ≥
∫ P

0
f(u)2ξ2

nP+u
du.

In another hand limit (4) implies that

lim
n→∞

Pθ

[
1

n

∫ P

0
f(u)2ξ2

nP+u
du ≥ a

]
= P

[
Hθ(P )

(
ζ(θ)

2

)2
≥ a

]
for any a > 0, and where L

(
ζ

(θ)
2

)
= N (0, Gθ(P )). As the function f(·) is not identically null, we

have Gθ(P )Hθ(P ) > 0 so the random variable ζ(θ)
2 is non-degenerate Gaussian and we readily

obtain that JnP converges in Pθ-probability to infinity as n → ∞. As JnP increases to J∞,
Pθ-a.e. as T →∞, we deduce that Pθ[J∞ <∞] = 0.

(iii) Finally assume that θF (P ) > 0. According to limit (5)

lim
n→∞

e−2nθF (P )

∫ ·
0
f(u)2ξ2

nP+u
du = Hθ(·)

(
ξ0 + ζ(θ)

3

)2
Pθ-a.e. in C[0, P ]

where ζ
(θ)
3 is the sum of the P-a.e. convergent series

∑
k e
−kθF (P )Zk(P ). Thus L

(
ζ

(θ)
3

)
=

N
(

0, Gθ(P

1−e−2θF (P )

)
and the real-valued random variables ξ0 and ζ

(θ)
3 are independent. Besides

JnP can be expressed as

JnP =
n−1∑
k=0

∫ P

0
f(u)2ξ2

kP+u
du =

n−1∑
k=0

e2kθF (P )e−2kθF (P )

∫ P

0
f(u)2ξ2

kP+u
du

for any positive integer n. Applying Toeplitz lemma on series convergence we obtain

lim
n→∞

e−2nθF (P )JnP =
Hθ(P )

e2θF (P ) − 1

(
ξ0 + ζ(θ)

3

)2
Pθ-a.e. in R.

Since ξ0 and ζ
(θ)
3 are independent and ζ(θ)

3 is non-degenerate Gaussian, we have Pθ

[
ξ0 + ζ

(θ)
3 = 0

]
=

0. Hence J∞ =∞ Pθ-a.e. This completes the proof of the theorem.

5.1.2 Proof of Theorem 2

Recall that JT (θ̂T − θ) = UT where {Jt, t ≥ 0} is the quadratic variation process of the
martingale {Ut, t ≥ 0} defined by relation (10). The recurrence property of the process {ξt, t >
0}, implies that JT converges almost surely to I(θ) as T →∞. Then the central limit theorem
for integrales with respect to Brownian motion (see e.g. Feigin 1976 ; see also Kutoyants 2004,
Theorem 1.19 ; Barzcy and Pap 2010) entails the convergence in law

lim
T→∞

Lθ
[√

JT

(
θ̂T − θ

)]
= N (0, 1)

for any θ such that θF (P ) < 0. To establish the uniform convergence with respect to θ, requires
a little more computations concerning the asymptotic behaviour of JT /T .
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Let n ∈ N and t ∈ [0, P ]. Then

JnP+t =

∫ nP+t

0
f(u)2ξ2

u
du =

n−1∑
k=0

∫ P

0
f(u)2ξ2

kP+u
du+

∫ t

0
f(u)2ξ2

nP+u
du

Owing to expression (6) we readily obtain by induction the following decomposition of ξnP+u

ξkP+u = eθF (u)
(
ekθF (P )

(
ξ0 + Sk−1

)
+ Zk(u)

)
(20)

where

S−1 := 0 and Sk−1 :=
k−1∑
j=0

e−jθF (P )Zj =

∫ kP

0
e−θF (v) dBv

for any k ≥ 1, and Zj := Zj(P ) for j ∈ N. Thus we can write JnP+t as

JnP+t = Hθ(P )
n−1∑
k=0

e2kθF (P )
(
ξ0 + Sk−1

)2
+

∫ P

0
f(u)2e2θF (u)

n−1∑
k=0

Zk(u)2 du

+ 2
n−1∑
k=0

ekθF (P )
(
ξ0 + Sk−1

) ∫ P

0
f(u)2e2θF (u)Zk(u) du+ Hθ(t)e

2nθF (P )
(
ξ0 + Sn−1

)2
+

∫ t

0
f(u)2e2θF (u)Zn(u)2 du+ 2enθF (P )

(
ξ0 + Sn−1

) ∫ t

0
f(u)2e2θF (u)Zn(u) du

:= A1 +A2 +A3 +A4 +A5 +A6. (21)

Using the facts that the processes Zns are independent, and each of them is zero-mean Gaussian
with independent increments, varθ[Zk(u)] = Gθ(u) for u ∈ [0, P ], we will establish in the
following Lemma 1 that (A1 + A2)/n converges in Pθ-quadratic mean to PI(θ), and A3/n,
converges to 0. With the same argument we can prove that A4/n, A5/n and A6/n converge to
0. Each convergence being uniform with respect to t ∈ [0, P ] and to θ in any compact subset of
{θ ∈ R : θF (P ) < 0}.

For each interger n, the P -segments process Zn = {Zn(t), t ∈ [0, P ]} is a continuous martin-
gale with respect to the filtration generated by the Brownian motion B(nP ) = {BnP+t−BnP , t ∈
[0, P ]}, and Doob maximal equality for matingales entails that

Eθ

[
max
t∈[0,P ]

Zn(t)2

]
≤ 2

∫ P

0
e−2θF (u) du = 2Gθ(u). (22)

Thus we obtain that
lim
T→∞

JT
T

= I(θ)

in Pθ-quadratic mean uniformly with respect to θ varying in any compact subset of {θ : θF (P ) <

0}. Thanks to the uniform central limit theorem for integrales with respect to Brownian motion
(Kutoyants 2004, Theorem 1.20) we deduce the assertions of the theorem.

To complete the proof of Theorem 2 we state the convergence of A1/n, A2/n and A3/n.
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Lemma 1 Uniformly with respect to t ∈ [0, P ] and to θ in any compact subset of {θ ∈ R :

θF (P ) < 0}, we have

lim
n→∞

Eθ

[(
A1

n
− Gθ(P )Hθ(P )

e−2θF (P ) − 1

)2
]

= 0, (23)

lim
n→∞

Eθ

[(
A2

n
−
∫ P

0
f(u)2e2θF (u)Gθ(u)du

)2
]

= 0. (24)

and

lim
n→∞

Eθ
[
A2

3

]
n2

= 0. (25)

Proof Let K−be any compact subset contained in {θ : θF (P ) < 0}.
(i) Term A1. First express A1 as

A1 = Hθ(P )
n−1∑
k=0

e2kθF (P )ξ2
0

+Hθ(P )
n−1∑
k=0

e2kθF (P )S2
k−1 + 2Hθ(P )

n−1∑
k=0

e2kθF (P )ξ0Sk−1. (26)

Since θF (P ) < 0, the first term of expression (26) converges toHθ(P )ξ2
0

/
(1−e2θF (P )) uniformly

with respect to θ ∈ K−.
Next we have

n−1∑
k=0

e2kθF (P )S2
k−1 =

n−2∑
j=0

ajZ
2
j + 2

n−3∑
j=0

n−2∑
j′=j+1

bjj′ZjZj′

where

aj =
e2θF (P ) − e2(n−j)θF (P )

1− e2θF (P )
and bjj′ =

e−jθF (P )
(
e(2+j′)θF (P ) − e(2n−j′)θF (P )

)
1− e2θF (P )

.

Thanks to their definition, the random variables Zjs are independent and have the same Gaus-
sian law N (0, Gθ(P )). Thus we obtain that

Eθ

[
n−1∑
k=0

e2kθF (P )S2
k−1

]
=

n−2∑
j=0

ajGθ(P ) =
1

1− e2θF (P )

(
(n− 1)e2θF (P ) − e2nθF (p) − 1

1− e−2θF (P )

)
Gθ(P )

and, owing to the expression of the fouth moment of a Gaussian vector in terms of its second
moments and first moments (Isserli’s formula),

varθ

[
n−1∑
k=0

e2kθF (P )S2
k−1

]
≤ 2

n−2∑
j=0

a2
jGθ(P )2 + 4

n−3∑
j=0

n−2∑
j′=j+1

b2jj′Gθ(P )2


≤ 4nGθ(P )2

(1− e2θF (P ))2
+

32nGθ(P )2(
1− e2θF (P )

)2 ( 1

1− e2θF (P )
+

1

e−2θF (P ) − 1

)
.

We deduce that

lim
n→∞

Eθ

( 1

n

n−1∑
k=0

e2kθF (P )S2
k−1 −

Gθ(P )

e−2θF (P ) − 1

)2
 = 0
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uniformly with respect to θ in the compact subset K−.
As for the third term of A1 we have

n−1∑
k=0

e2kθF (P )Sk−1 =
n−2∑
j=0

(
e2(j+1)θF (P ) − e2nθF (P )

1− e2θF (P )

)
e−jθF (P )Zj

which converges to
e2θF (P )

1− e2θF (P )

∞∑
j=0

ejθF (P )Zj

in quadratic mean uniformly with respect to θ in the compact subsetK−. Hence convergence (23)
is proved.

(ii) Term A2. From the definition of A2 and relation (2), we readily have

Eθ[A2] = n

∫ P

0
f(u)2e2θF (u)Gθ(u)du.

The independence of the Gaussian processes Zk and Zk′ for k 6= k′ entails that

varθ[A2] =

n−1∑
k=0

∫ P

0

∫ P

0
f(u)2f(u′)2e2θ(F (u)+F (u′))covθ

[
Zk(u)2,Zk(u

′)2
]
dudu′.

By Isserli’s formula, covθ
[
Zk(u)2,Zk(u

′)2
]

= 2Gθ(u)2 for u ≤ u′, we deduce that

varθ[A2] = 4n

∫ P

0

∫ P

u
f(u)2f(u′)2e2θ(F (u)+F (u′))Gθ(u)2 dudu′.

Consequently convergence (24) is proved.

(iii) Term A3. The independence between the processes Zk and Zk′ for k 6= k′ implies
that Eθ[A3] = 0. Furthermore, since ξ0 is independent with respect to the process Zk, and
covθ

[
Zk(u)2,Zk(u

′)2
]

= 2Gθ(u)2 for u ≤ u′, we have

varθ

[
n−1∑
k=0

ekθF (P )ξ0

∫ P

0
f(u)2e2θF (u)Zk(u)du

]

= 2Eθ

[
ξ2

0

] 1− e2nθF (P )

1− e2θF (P )

∫ P

0

∫ P

u
f(u)2f(u′)2e2θ(F (u)+F (u′))Gθ(u) dudu′

and

varθ

[
n−1∑
k=0

ekθF (P )Sk−1

∫ P

0
f(u)2e2θF (u)Zk(u)du

]

=
n−1∑
k=1

k−1∑
j=0

e2(k−j)θF (P )

∫ P

0

∫ P

0
f(u)2f(u′)2e2θ(F (u)+F (u′))Eθ[Z

2
j ]Eθ[Zk(u)Zk(u

′)] dudu′

=
2Gθ(P )

e−2θF (P ) − 1

(
n− 1− e2nθF (P )

1− e2θF (P )

)∫ P

0

∫ P

u
f(u)2f(u′)2e2θ(F (u)+F (u′))Gθ(u) dudu′,
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the first equality being due to the independence between the Gaussian processes Zk, k ∈ N
and Isserli’s formula. The second equality is a direct consequence of the definition of Zk. Thus
convergence (25) is proved.

5.1.3 Proof of Theorem 3

As we do not prove the convergence of JT /T 2 in probability, the results in (Barczy and
Pap 2010) cannot be applied here to establish Theorem 3. Actually this theorem is a direct
consequence of the following result.

Lemma 2 Assume that F (P ) = 0 and f(·) not identically null. Then

lim
T→∞

Lθ
[(

JT
T 2

,
UT
T

)]
= L

[(
Gθ(P )Hθ(P )

P 2

∫ 1

0
B2
u du ,

√
Gθ(P )Hθ(P )

P

∫ 1

0
Bu dB′u

)]
(27)

uniformly with respect to θ varying in any compact subset of R, where {Bt, t ∈ [0, 1]} and
{B′t, t ∈ [0, 1]} are two independent Brownian motions.

Notice that the random variable

ζ :=

∫ 1
0 Bu dB′u√∫ 1

0 B2
u du

(28)

is Gaussian N (0, 1), and is independent with respect to the Brownian motion {Bt, t ∈ [0, 1]}.

Proof The proof of relation (27) is based on the method presented by Phillips (1987) who
studied the asymptotic approach of an autoregressive time series with a root near the unit by an
Ornstein Uhlenbeck time-continuous process. First we establish that the asymptotic behaviours
of JnP+t and of UnP+t coincide with those of sums of time series (formulae (29) and (31)). Next
we apply Phillips’method to conclude.

(i) JnP+t . Let n ∈ N and t ∈ [0, P ] and consider decomposition (21) with F (P ) = 0. The
random variables Zj , j = 0, . . . , n, are independent with the same law N (0, Gθ(P )), so thanks
to inequality (22), the first term is equal to

A1 = Hθ(P )

n−1∑
k=0

S2
k−1 + oPθ(n

2)

as n→∞, and A4 is oPθ(n
2). Furthermore inequality (22) also entails that A2 is OPθ(n), and

A5 is OPθ(1). With the previous arguments we easily obtain that A3 and A6 are oPθ(n). Hence
we deduce that

JnP+t = Hθ(P )

n−1∑
k=0

S2
k−1 + oPθ(n

2) (29)

18



as n→∞. Here the OPθ(·)s and oPθ(·)s are uniform with respect to t ∈ [0, P ] and with respect
to θ varying in any compact subset of R.

(ii) UnP+t . From decomposition (20) we can express UnP+t as

UnP+t =
n−1∑
k=0

(
Yk
(
ξ0 + Sk−1

)
+Wk

)
+ Yn(t)

(
ξ0 + Sn−1

)
+ Wn(t) (30)

where Yk := Yk(P ), Wk := Wk(P ),

Yk(t) :=

∫ t

0
f(u)eθF (u) dB(kP )

u and

Wk(t) :=

∫ t

0
f(u)eθF (u)Zk(u) dB(kP )

u =

∫ t

0

(∫ u

0
f(u)eθ(F (u)−F (v)) dB(kP )

v

)
dB(kP )

u

for any k ∈ N and any t ∈ [0, P ]. The random variables Yks, are independent with the same law
N (0, Hθ(P )). The random variables Wks are also independent with the same law which is with
zero-mean and finite variance. Then the law of large numbers entails that UnP , the first term
of expression (30), is equal to

n−1∑
k=0

YkSk−1 + oPθ(n)

as n→∞ uniformly with respect to θ varying in any compact subset of R. For each integer n,
the processes {Yn(t), t ∈ [0, P ]} and {Wn(t), t ∈ [0, P ]} are continuous martingales with respect
to the filtration {F (nP )

t , t ∈ [0, P ]} generated by the Brownian motion {B(nP )
t , t ∈ [0, P ]}. Owing

to Doob maxima inequality for continuous martingales we have

Eθ

[
max
t∈[0,P ]

Yn(t)2

]
≤ 4Eθ

[
Yn(P )2

]
= 4Hθ(P ) <∞

Eθ

[
max
t∈[0,P ]

Wn(t)2

]
≤ 4Eθ

[
Wn(P )2

]
= 4

∫ P

0
f(u)2e2θF (u)Gθ(u) du <∞.

Since Eθ[S
2
n] is o(n2), we deduce that the second term of expression (30) is of order oPθ(n) and

the third term is OPθ(1), as n→∞. Hence

UnP+t =

n−1∑
k=0

YkSk−1 + oPθ(n). (31)

uniformly with respect to t ∈ [0, P ] and to θ varying in any compact subset of R as n→∞ .

(iii) Thanks to the previous computations, it remains to study the asymptotic behaviour of
the random vector(

1

n2

n−1∑
k=1

S2
k−1,

1

n

n−1∑
k=1

YkSk−1

)
=

 1

n2

n−1∑
k=1

k−1∑
j=0

Zj

2

,
1

n

n−1∑
k=1

k−1∑
j=0

YkZj

 .
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For that we are going to construct another random vector with the same law and which converges
in probability as n→∞ to the required limit (see e.g. Phillips 1987). Since

Yj =

∫ (j+1)P

jP
f(u)eθF (u) dBu, and Zj =

∫ (j+1)P

jP
e−θF (u) dBu

for any j ∈ N, the random vector (Y0, . . . , Yn−1, Z0, . . . , Zn−1) is Gaussian and Eθ[YjYk] =

Eθ[YjZk] = Eθ[ZjZk] = 0, for all integers j 6= k. Furthermore

Eθ[YjZj ] =

∫ (j+1)P

jP
f(u)eθF (u) × e−θF (u) du =

∫ (j+1)P

jP
f(u) du = F (P ) = 0

for any integer j. Owing to the properties of Gaussian vectors, we deduce that the random
variables Y0, . . . , Yn−1, Z0, . . . , Zn−1 are independent, Lθ(Yj) = N (0, Hθ(P )) and Lθ(Zj) =

N (0, Gθ(P )) for any integer j. Now consider {Bt, t ∈ [0, 1]} and {B′t, t ∈ [0, 1]} two independent
Brownian motions and let

Y
(θ)
j :=

√
nHθ(P )

(
B′j+1

n

− B′j
n

)
and Z

(θ)
j :=

√
nGθ(P )

(
B j+1

n
− B j

n

)
for any j = 0, . . . , n − 1. Then the random variables Y (θ)

0 , . . . , Y
(θ)
n−1, Z

(θ)
0 , . . . , Z

(θ)
n−1 are inde-

pendent and Lθ (Y0, . . . , Yn−1, Z0, . . . , Zn−1) = L
(
Y

(θ)
0 , . . . , Y

(θ)
n−1, Z

(θ)
0 , . . . , Z

(θ)
n−1

)
. As a conse-

quence,

Lθ

 1

n2

n−1∑
k=1

k−1∑
j=0

Zj

2

,
1

n

n−1∑
k=1

k−1∑
j=0

YkZj

 = L

 1

n2

n−1∑
k=1

k−1∑
j=0

Z
(θ)
j

2

,
1

n

n−1∑
k=1

k−1∑
j=0

Y
(θ)
k Z

(θ)
j

 .
Furthermore

1

n2

n−1∑
k=1

k−1∑
j=0

Z
(θ)
j

2

=
Gθ(P )

n

n−1∑
k=1

(
B k
n

)2

and
1

n

n−1∑
k=1

k−1∑
j=0

Y
(θ)
k Z

(θ)
j =

√
Gθ(P )Hθ(P )

n−1∑
k=1

(
B′k+1

n

− B′k
n

)
B k
n
.

We know that any Brownian motion admits a version such that P-almost all its sample
paths are continuous. For such a version of {Bt, t ∈ [0, 1]} the following P-almost-everywhere
limit exists and

lim
n→∞

1

n

n−1∑
k=0

(B k
n

)2 =

∫ 1

0
B2
u du P− a.e. (32)

where the right-hand side integrale has to be understood path by path and with respect to
Lebesgue measure on [0, 1]. Besides, thanks to the theory of integration with respect to Brownian
motion and since

∫ 1
0 E

[
B2
u

]
du = 1/2 <∞, the process {Bt, t ∈ [0, 1]} is integrable with respect

to the Brownian motion {B′t, t ∈ [0, 1]} and the following in-probability limit exists

P− lim
n→∞

n−1∑
k=0

B k
n

(
B′k+1

n

− B′k
n

)
=

∫ 1

0
Bu dB′u. (33)
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Hence

lim
n→∞

Lθ

[(
1

n2

n−1∑
k=1

S2
k−1,

1

n

n−1∑
k=1

YkSk−1

)]
= L

[(
Gθ(P )

∫ 1

0
B2
u du ,

√
Gθ(P )Hθ(P )

∫ 1

0
Bu dB′u

)]
and the convergence is uniform with respect to θ varying in any compact subset of R. Then
with relations (29) and (31), we deduce that

lim
n→∞

Lθ
[
JnP+ ·
n2

,
UnP+ ·
n

]
= L

[
Gθ(P )Hθ(P )

∫ 1

0
B2
u du ,

√
Gθ(P )Hθ(P )

∫ 1

0
Bu dB′u

]
in C[0, P ] × C[0, P ]. This gives convergence (27) uniformly with respect to θ varying in any
compact subset of R.

5.1.4 Proof of Theorem 4

Here the true value of the parameter θ is equal to 0 and the function f(·) is non identically
null. The observation is {ξt, t ∈ [0, T ]} = {ξ0 + Bt, t ∈ [0, T ]}. With respect to the P-periodic
Langevin model (1), the maximum likelihood estimator is still defined by relation (9). Following
the same arguments as in the proof of Lemma 2, we obtain that

JnP+t = H0(P )

n−1∑
k=1

k−1∑
j=0

Zj

2

+ oP0(n2)

and

UnP+t =

n−1∑
k=1

k−1∑
j=0

YkZj + oP0(n)

uniformly with respect to t ∈ [0, P ], where

H0(t) =

∫ t

0
f(u)2 du, Zj = B(j+1)P − BjP and Yk =

∫ (k+1)P

kP
f(u) dBu.

In contrast to the proof of Theorem 3 above, F (P ) is not here necessarily null and the random
variables Zj and Yj are not necessarily independent, indeed cov0 [Yj , Zj ] = E0 [YjZj ] = F (P ) for
any j ∈ N. Since var0[Zj ] = P , the residual part of the linear regression of Yj on Zj is equal to
Y ∗j := Yj − F (P )

P Zj . Then the random vector (Y ∗0 , . . . , Y
∗
n−1, Z0, . . . , Zn−1) is a Gaussian vector,

its components are independent and var0[Y ∗j ] = H∗ := H0(P )− F (P )2

P . Notice also that

n−1∑
k=1

k−1∑
j=0

YkZj =

n−1∑
k=1

k−1∑
j=0

Y ∗k Zj +
F (P )

P

n−1∑
k=1

k−1∑
j=0

ZkZj

Now following the arguments of the proof of Lemma 2, consider {Bt : t ∈ [0, 1]} and
{B′t : t ∈ [0, 1]} two independent Brownian motions. Let

Y
(0)
j =

√
nH∗

(
B′j+1

n

− B′j
n

)
and Z

(0)
j =

√
nP
(

B j+1
n
− B j

n

)
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for any j = 0, . . . , n−1. Then L0

[
Y ∗0 , . . . , Y

∗
n−1, Z0, . . . , Zn−1

]
= L

[
Y

(0)
0 , . . . , Y

(0)
n−1, Z

(0)
0 , . . . , Z

(0)
n−1

]
and the law of the random vectorn−1∑

k=1

k−1∑
j=0

Zj

2

,

n−1∑
k=1

k−1∑
j=0

Y ∗k Zj ,

n−1∑
k=1

k−1∑
j=0

ZkZj


coincides with the law ofn−1∑

k=1

k−1∑
j=0

Z
(0)
j

2

,
n−1∑
k=1

k−1∑
j=0

Y
(0)
k Z

(0)
j ,

n−1∑
k=1

k−1∑
j=0

Z
(0)
k Z

(0)
j


thus with the law of(

nP
n−1∑
k=1

(
B k
n

)2
, n
√
H∗P

n−1∑
k=1

(
B′k+1

n

− B′k
n

)
B k
n
, nP

n−1∑
k=1

(
B k+1

n
− B k

n

)
B k
n

)
.

Thanks to convergences (32) and (33) as well as

lim
n→∞

n−1∑
k=1

(
B k+1

n
− B k

n

)
B k
n

=

∫ 1

0
Bu dBu =

B2
1 − 1

2
in probability

we deduce that

lim
T→∞

L0

[(
JT
T 2

,
UT
T

)]
= L

[(
H0(P )

P

∫ 1

0
B2
u du ,

√
H∗

P

∫ 1

0
Bu dB′u +

F (P )

P

∫ 1

0
Bu dBu

)]
.

where H∗ = H0(P )− F (P )2/P . Thus

lim
T→∞

L0

[
T θ̂T

]
= L

[√
PH0(P )− F (P )2

∫ 1
0 Bu dB′u + F (P )

∫ 1
0 Bu dBu

H0(P )
∫ 1

0 B2
u du

]
.

Owing to independence between the random variable ζ defined by relation (28) and the Brow-
nian motion {Bu, u ∈ [0, 1]}, we readily conclude the proof of Theorem 4.

5.1.5 Proof of Theorem 5

First we study the asymptotic behaviour of the quadratic variation {Jt, t ≥ 0} of the mar-
tingale {Ut, t ≥ 0}.

Lemma 3 If θF (P ) > 0, then

lim
n→∞

e−2nθF (P )JnP+ · = Kθ(·)2
(
ξ0 + ζ(θ)

3

)2
Pθ-a.e. in C[0, P ] (34)

where Kθ(·) is defined in Theorem 5 and ζ(θ)
3 is some real-valued Gaussian variable independent

with respect to ξ0. Furthermore

lim
n→∞

sup
θ∈K+

sup
t∈[0,P ]

Eθ

[∣∣∣∣e−2nθF (P )JnP+t −Kθ(t)
2
(
ξ0 + ζ(θ)

3

)2
∣∣∣∣] = 0

for any compact set K+ ⊂ {θ ∈ R : θF (P ) > 0}.
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Proof According to limit (5) we know that

lim
n→∞

e−2nθF (P )

∫ ·
0
f(u)2ξ2

nP+u
du = Hθ(·)

(
ξ0 + ζ(θ)

3

)2
Pθ-a.e. in C[0, P ]

where ζ(θ)
3 is some real-valued zero-mean Gaussian variable independent with respect to ξ0, and

with variance equal to Gθ(P )

1−e2θF (p) . Besides JnP can be expressed as

JnP =
n−1∑
k=0

∫ P

0
f(u)2ξ2

kP+u
du =

n−1∑
k=0

e2kθF (P )e−2kθF (P )

∫ P

0
f(u)2ξ2

kP+u
du

for any integer n > 0. Then Toeplitz lemma on series convergence implies the almost sure
convergence (34) since θF (P ) > 0.

To prove the uniform L1(Pθ)-convergence, let K+ be any compact subset of {θ ∈ R :

θF (P ) > 0} and consider decomposition (21) which is also valid for θF (P ) > 0. As the random
variables Zjs are independent with the same law N (0, Gθ(P )), the hypothesis θF (P ) > 0

entails that Sn converges in quadratic mean uniformly with respect to θ varying in K+ as
n → ∞. It is easy to see that the limit is equal to ζ

(θ)
3 defined above. So e−2nθF (P )A4 =

e−2nθF (P )Hθ(t)(ξ0 + Sn)2 converges in L1(Pθ) uniformly with respect to t ∈ [0, P ] and to θ
varying in K+ as n→∞ to Hθ(t)(ξ0 + ζ

(θ)
3 )2. Furthermore, applying Toeplitz lemma on series

convergence in L1(Pθ) we deduce that e−2nθF (P )A1 converges in L1(Pθ) to

Hθ(P )

e2θF (P ) − 1
(ξ0 + ζ(θ)

3
)2

uniformly with respect to θ ∈ K+ as n → ∞. Inequality (22) implies that e−2nθF (P )(A2 + A5)

converges to 0 in L1(Pθ) uniformly with respect to t ∈ [0, P ] and to θ ∈ K+ as n → ∞.
Cauchy-Schwarz inequality involves that(

Eθ

[ ∣∣(ξ0 + Sn)Zn(t)
∣∣ ])2

≤ Eθ

[∣∣ξ0 + Sn
∣∣2]Eθ

[
|Zn(t)|2

]
,

and thanks to inequality (22) we obtain that e−2nθF (P )(A3 +A6) converge to 0 in L1 uniformly
with θ varying in K+ as n→∞. Hence the proof of the lemma is achieved.

Remark that JT converges to infinity Pθ-a.e. in R as T → ∞ when θF (P ) > 0. Then
the central limit theorem for martingales (see e.g. Kutoyants 2004, Theorem 1.19) applies and
J

1/2
T (θ̂T − θ) = J

−1/2
T UT converges in law to the gaussian law N (0, 1) as T →∞ for any θ such

that θF (P ) > 0. However to get the uniform convergence we need to refine the analysis. In
Lemma 3 we have obtained the convergence of e−2nθF (P )JnP+ · . To prove Theorem 5, first we
go further into details for the asymptotic behaviour of e−nθF (P )UnP+t.

Lemma 4

lim
n→∞

Lθ
[
e−nθF (P )UnP+ ·

]
= L

[(
ξ0 + ζ(θ)

3

)(
ζ(θ)

4
+ Y(θ)(·)

)]
in C[0, P ]
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uniformly with respect to θ in any compact subset of {θ ∈ R : θF (P ) > 0}. Here ζ(θ)
3 and ζ(θ)

4

are two real-valued zero-mean Gaussian variables with variances

var
[
ζ(θ)

3

]
=

Gθ(P )

1− e−2θF (P )
respectively var

[
ζ(θ)

4

]
=

Hθ(P )

e2θF (P ) − 1
,

and the process Y(θ) := {Y(θ)(t), t ∈ [0, P ]} is Gaussian and admits the representation

Y(θ)(t) =

∫ t

0
f(u)eθF (u) dB′u

for some Brownian motion {B′t, t ∈ [0, P ]}. Moreover ξ0, ζ
(θ)
3 , ζ

(θ)
4 and Y(θ) are independent.

Proof The scheme of the proof we follow is inspired by the proof presented by Kutoyants (2004,
Proposition 3.46) when the modulation function f(·) is identically equal to 1 (see also Basawa
and Scott 1983). Mainly let us express UT , T > 0, as

UT = ξ0ψT +

∫ T

0
Mu dψu

where {ψt, t ≥ 0} is the Gaussian process defined by

ψt :=

∫ t

0
f(u)eθF (u) dBu

and {Mt, t ≥ 0} is the martingale process defined by Mt := eθF (t)ξt− ξ0. Thanks to Itô formula
we have

UT = (ξ0 +MT )ψT −
∫ T

0
ψu dMu −

1

2
[ψ,M ]T , (35)

the quadratic covariation [ψ,M ]T being equal to

[ψ,M ]
T

=

∫ T

0
f(u)e−θF (u)eθF (u) du =

∫ T

0
f(u) du = F (T ).

Notice that ψnP+t is zero-mean and its variance is equal to

E
[
ψ2
nP+t

]
=

∫ nP+t

0
f(u)2e2θF (u) du =

(
e2nθF (P ) − 1

)
Hθ(P )

e2θF (P ) − 1
+ e2nθF (P )Hθ(t) (36)

for any n ∈ N and any t ∈ [0, P ].

Now we are going to study the asymptotic behaviour of each term of expression (35). Let
K+ any compact subset of {θ ∈ R : θF (P ) > 0}.

(i) The periodicity of the function f(·) implies that

lim
n→∞

1

n
[ψ,M ]nP+t = F (P )
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uniformly with respect to t ∈ [0, P ] and θ ∈ K+.

(ii) The second term of the right hand side of expression (35) can be decomposed as∫ T

0
ψu dMu =

∫ nP

0
ψu dMu +

∫ nP+t

nP
e−θF (u)ψu dBu

=

∫ nP

0
ψu dMu + e−nθF (P )Vn(t), (37)

the C[0, P ]-valued random sequence (Vn)n∈N being defined by

Vn(t) :=

∫ t

0
e−θF (u)ψnP+u dB(nP )

u .

The variance of the first term of the right hand side of equality (37) is equal to

Eθ

[(∫ nP

0
ψu dMu

)2
]

= Eθ

[(∫ nP

0
e−θF (u)ψu dBu

)2
]

=

∫ nP

0
e−2θF (u)Eθ

[
ψ2
u

]
du.

In the following using again the fact that F (kP +u) = kF (P ) +F (u), and replacing Eθ[ψ
2
kP+u

]

by its expression (36), we obtain∫ nP

0
e−2θF (u)Eθ

[
ψ2
u

]
du =

n−1∑
k=0

∫ P

0
e−2θ(kF (P )+F (u))Eθ

[
ψ2
kP+u

]
du

=
Hθ(P )Gθ(P )

e2θF (P ) − 1

(
n− 1− e−2nθF (P )

1− e−2θF (P )

)
+ n

∫ P

0
Hθ(u)e−2θF (u) du.

Hence

lim
n→∞

1

n

∫ nP

0
e−2θF (u)Eθ

[
ψ2
u

]
du =

Hθ(P )Gθ(P )

e2θF (P ) − 1
+

∫ P

0
Hθ(u)e−2θF (u) du

and 1
n

∫ nP
0 ψu dMu converges to 0 in Pθ-quadratic mean uniformly with respect to θ ∈ K+ as

n→∞.
As for the second term of the right hand side of equality (37), notice that for each integer

n we have

Vn(t) = Vn(s) + ψnP+s

∫ t

s
e−θF (u) dB(nP )

u +

∫ t

s
e−θF (u)

(∫ nP+u

nP+s
f(v)eθF (v) dBv

)
dB(nP )

u

when 0 ≤ s ≤ t ≤ P , which entails that the process Vn := {Vn(t), t ∈ [0, P ]} is a continuous
martingale with respect to the filtration {F (nP )

t : 0 ≤ t ≤ P} generated by B(nP ) = {B(nP )
t , t ∈

[0, P ]}. It is zero-mean, and by equality (36) it verifies

Eθ
[
Vn(t)2

]
=

∫ t

0
e−2θF (u)Eθ

[
ψ2
nP+u

]
du

=

(
e2nθF (P ) − 1

)
Hθ(P )Gθ(t)

e2θF (P ) − 1
+ e2nθF (P )

∫ t

0
e−2θF (u)Hθ(u) du.
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Doob maxima inequality for continuous martingales implies that

Pθ

[
max
t∈[0,P ]

|Vn(t)| > ε

]
≤

Eθ
[
Vn(P )2

]
ε2

thus

Pθ

[
e−nθF (P ) max

t∈[0,P ]
|Vn(t)| > ε

]
≤ 1

ε2

(
Hθ(P )Gθ(P )

e2θF (P ) − 1
+

∫ t

0
e−2θF (u)Hθ(u) du

)
and

lim
n→∞

e−nθF (P )

n
Vn = 0 in Pθ-probability in C[0, P ]

uniformly with respect to θ ∈ K+. Hence

lim
n→∞

1

n

∫ nP+ ·

0
ψu dMu = 0 in Pθ-probability in C[0, P ]

uniformly with respect to θ ∈ K+.

(iii) By the definition of the process {ψt, t ≥ 0}, and by the periodicity of the function f(·),
we have

ψnP+t =

∫ nP

0
f(u)eθF (u) dBu + enθF (P )

∫ t

0
f(u)eθF (u) dB(nP )

u ,

the two terms being Gaussian and independent. We readily deduce that

lim
n→∞

Lθ
[
e−nθF (P )ψnP+ ·

]
= L

[
ζ(θ)

4
+ Y(θ)(·)

]
in C[0, P ]

uniformly with respect to θ ∈ K+ where ζ(θ)
4 is a real-valued Gaussian variable with zero-mean

and variance equal to Hθ(P )
(
e2θF (P ) − 1

)−1
, and the P -segment process Y(θ) := {Y(θ)(t), t ∈

[0, P ]} is Gaussian and admits the following representation

Y(θ)(t) =

∫ t

0
f(u)eθF (u) dB′u

for some Brownian motion {B′t, t ∈ [0, P ]} such that the random variable ζ(θ)
4 and the process

Y(θ) are independent.

(iv) Following the proof of limit (5) (see Dehay 2014) we can see that MT converges in Pθ-
probability to some Gaussian variable ζ(θ)

3 as T →∞, uniformly with respect to θ ∈ K+. So it
remains to establish the joint convergence of the terms of expression (35), and the independence
between the different random limits to conclude the proof of Lemma 4.

First recall that by hypothesis the initiale value ξ0 is independent with respect to the Brow-
nian motion {Bt, t ≥ 0}. Now let n1 < n. Since

Mn1P+t =

∫ n1P+t

0
e−θF (u) dBu and ψnP+t − ψ(n1+1)P =

∫ nP+t

(n1+1)P
f(u)eθF (u) dBu
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for any t ∈ [0, P ], the random variables ξ0, ψnP − ψ(n1+1)P , and the processes {Mn1P+t, t ∈
[0, P ]}, {ψnP+t − ψnP , t ∈ [0, P ]} are independent. Consequently, thanks to the convergence
results for MT and ψT , the law

Lθ
[(
ξ0 , M·+n1P

, e−nθF (P )
(
ψnP − ψ(n1+1)P

)
, e−nθF (P )

(
ψnP+ · − ψnP

))]
converges to the law L

[(
ξ0 , ζ

(θ)
3 , ζ

(θ)
4 , Y(θ)(·)

)]
in R × C[0, P ] × R × C[0, P ], as n1 and n go

to infinity as well as n− n1. We deduce that the random variables ξ0, ζ
(θ)
3 , ζ(θ)

4 and the process
{Y(θ)(t), t ∈ [0, P ]} are independent. Furthermore from expression (36), we easily verify that
e−nθF (P )ψ(n1+1)P converges in Pθ-quadratic mean to 0 uniformly with respect to θ ∈ K+ as
n− n1 goes to infinity. Then thanks to Slutsky lemma, we readily deduce that

lim
n→∞

Lθ
[(
ξ0 , MnP+ · , e

−nθF (P )ψnP+ ·

)]
= L

[(
ξ0 , ζ

(θ)
3
, ζ(θ)

4
+ Y(θ)(·)

)]
uniformly with respect to θ ∈ K+ as n→∞. Finally, owing to Itô formula (35) and the conver-
gence results of the previous parts (i), (ii) and (iii), Lemma 4 is proved.

Proof of Theorem 5 Since

enθF (P )
(
θ̂nP+t − θ

)
=
e−nθF (P )UnP+t

e−2nθF (P )JnP+t

,

it suffices to establish the convergence of L
(
e−2nθF (P )JnP+t , e

−nθF (P )UnP+t

)
in C[0, P ]×C[0, P ]

as n→∞, to prove Theorem 5. For this purpose we follow the idea of part (iv) of the proof of
Lemma 4, and we use the same notations. Let n1 < n. By definition

Mn1P+t =

∫ n1P+t

0
e−θF (u) dBu and Jn1P+t =

∫ n1P+t

0
f(u)2ξ2

u
dBu.

The independence between the processes {ξn1P+t, t ∈ [0, P ]} and {B(n1+1)P+t−B(n1+1)P , t ≥ 0}
implies that the random variable ψnP − ψ(n1+1)P and the processes {(Mn1P+t, Jn1P+t), t ∈
[0, P ]}, {ψnP+t − ψnP , t ∈ [0, P ]} are independent. According to the convergence results for
MnP+t, JnP+t and ψnP+t, the law

Lθ
[(
ξ0 , MnP+ · , e

−2nθF (P )JnP+ · , e
−nθF (P )ψnP+ ·

)]
converges to L

[(
ξ0 , ζ

(θ)
3 , Kθ(·)2

(
ξ0 + ζ

(θ)
3

)2
, ζ

(θ)
4 + Y(θ)(·)

)]
in R×C[0, P ]×C[0, P ]×C[0, P ].

Hence

lim
n→∞

Lθ
[(
e−2nθF (P )JnP+ · , e

−nθF (P )UnP+ ·

)]
= L

[
Kθ(·)2

(
ξ0 + ζ(θ)

3

)2
,
(
ξ0 + ζ(θ)

3

)(
ζ(θ)

4
+ Y(θ)(·)

)]
in C[0, P ]× C[0, P ]. The convergences being uniform with respect to θ varying in any compact
subset of {θ ∈ R : θF (P ) > 0}. As P

[
ξ0 + ζ

(θ)
3 = 0

]
= 0, we readily deduce that

lim
n→∞

Lθ
[
enθF (P )

(
θ̂nP+ · − θ

)]
= L

 ζ
(θ)
4 + Y(θ)(·)

Kθ(·)
(
ξ0 + ζ

(θ)
3

)
 in C[0, P ]
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uniformly with respect to θ varying in the compact set K+.
For any t ∈ [0, P ] the random variables ζ(θ)

4 and Y(θ)(t) are Gaussian independent, then we

deduce that Kθ(t) =

√
var
[
ζ

(θ)
4 + Y(θ)(t)

]
and the random variable

(
ζ

(θ)
4 + Y(θ)(t)

) /
Kθ(t) is

Gaussian N (0, 1) and independent with respect to ξ0 and ζ(θ)
3 . Then the proof of the theorem

can readily be achieved.

5.2 Proofs of results in Section 4

5.2.1 Proofs of Theorems 6 and 7

The limit law in Theorem 2 (respectively Theorem 3) is absolutely continuous with respect
to Lebesgue measure, and the set of points of discontinuity of each loss function L in L is almost
countable. Hence Theorem 6 (respectively Theorem 7) is a direct consequence of Theorem 2
(respectively Theorem 3) and the convergence result from (Ibragimov and Has’minskǐı 1981,
Appendix I Theorem 8). Notice that the convergence result in (Ibragimov and Has’minskǐı
1981) is uniform with respect to θ ∈ Θ.

5.2.2 Proof of Theorem 8

In order to evaluate the local asymptotic lower bound for the quadratic risk, we first study
the asymptotic behaviour of Eθ [JT ] /T 2

Lemma 5 If F (P ) = 0 and f(·) is not identically null, then

lim
T→∞

Eθ [JT ]

T 2
=
Gθ(P )Hθ(P )

2P 2

uniformly with respect to θ varying in any compact subset of R.

Proof We know that

Eθ [JnP+t] =

∫ nP+t

0
f(u)2Eθ

[
ξ2
u

]
du = Eθ [JnP ] +

∫ t

0
f(u)2Eθ

[
ξ2
nP+u

]
du

for all n ∈ N and t ∈ [0, P ]. As F (P ) = 0, F (nP+t) = F (t) we have Eθ
[
ξ2
nP+t

]
= e2F (t)

(
Eθ
[
ξ2

0

]
+

nGθ(P ) +Gθ(t)
)
. Thus

Eθ [JnP ] =

∫ P

0
f(u)2

n−1∑
k=0

Eθ

[
ξ2
kP+u

]
du

= nEθ
[
ξ2

0

]
Hθ(P ) +

n(n− 1)

2
Hθ(P )Gθ(P ) + n

∫ P

0
f(u)2 e2θF (u)Gθ(u) du.

Consequently

lim
n→∞

Eθ [JnP ]

n2
=

1

2
Hθ(P )Gθ(P )
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and the lemma is proved.

Now we can state the asymptotic lower bound (18) for the mean square risk using van Trees
inequality.

Let ε > 0 and pε(·) be a density probability function with support in [θ − ε, θ + ε] and
which is continuously differentiable in R. We know that Eθ[UT ] = 0, Eθ[U

2
T ] = Eθ[JT ] < ∞

and that the log-likelihood ratio Λ
(θ)
T of PTθ to PT0 , satisfies

∂
∂θΛ

(θ)
T (ξ) = UT when ξ = ξ(θ).

Thus Eθ
[
∂
∂θΛ

(θ)
T (ξ)2

]
<∞ and Eθ

[
∂
∂θΛ

(θ)
T (ξ)

]
= 0. Then for any real-valued random variable θ̄T

measurable with respect to the observation {ξt, t ∈ [0, T ]}, van Trees inequality (see Gill and
Levit 1995) entails that∫ θ+ε

θ−ε
Eθ′
[(
θ̄T − θ

′)2] pε(θ′) dθ′ ≥ (∫ θ+ε

θ−ε
Eθ′ [JT ] pε(θ

′) dθ′ + I(pε)

)−1

where I(pε) is the Fisher information for a location parameter in pε(·)

I(pε) =

∫ θ+ε

θ−ε

(
d

dθ′
ln pε(θ

′)

)2

pε(θ
′) dθ′ =

∫ θ+ε

θ−ε

(
d
dθ′ pε(θ

′)
)2

pε(θ
′)

dθ′.

Thus

inf
θ̄T

sup
|θ′−θ|<ε

Eθ′
[
T 2
(
θ̄T − θ

′)2] ≥ (∫ θ+ε

θ−ε
Eθ′

[
JT
T 2

]
pε(θ

′) dθ′ +
I(pε)

T 2

)−1

.

From Lemma 5, we deduce that

lim inf
T→∞

inf
θ̄T

sup
|θ′−θ|<ε

Eθ′
[
T 2
(
θ̄T − θ

′)2] ≥ lim
T→∞

(∫ θ+ε

θ−ε
Eθ′

[
JT
T 2

]
pε(θ

′) dθ′
)−1

=

(∫ θ+ε

θ−ε

Gθ′(P )Hθ′(P )

2P 2
pε(θ

′) dθ′
)−1

With ε→ 0, we deduce the lower bound for the mean square deviation (18).

Thanks to the uniform convergence in θ of T
(
θ̂T − θ

)
in Theorem 3 and to (Ibragimov and

Has’minskǐı 1981, Appendix I Theorem 8), we readily deduce the second assertion of Theorem 8.

5.2.3 Proof of Theorem 9

Since the random variables ξ0, ζ and ζ(θ)
3 are independent and the random variables ζ and

ζ
(θ)
3 are Gaussian, the limit law in Theorem 5 is absolutely continuous with respect to Lebesgue
measure. Hence by the uniform convergence in law in Theorem 5, the convergence theorem of
Ibragimov and Has’minskǐı (1981, Appendix I Theorem 8) entails that for each θ such that
θF (P ) > 0,

lim
n→∞

sup
|θ−θ′|<Me−nθF (P )

∣∣∣∣∣Eθ′ [L(enθ′F (P )
(
θ̂nP+t − θ′

))]
− E

[
L

(
ζ

Kθ′(t)
(
ξ0 + ζ

(θ′)
3

))]
∣∣∣∣∣ = 0
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for any t ∈ [0, P ] and any M > 0. Thanks to the continuity with respect to θ of Kθ(t) and of
the law of ζ(θ)

3 we readily deduce that the MLE θ̂nP+t is locally asymptotically minimax for any
t ∈ [0, P ].
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