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In this article, we give a survey of the theory of surface braid groups and the lower algebraic Ktheory of their group rings. We recall several definitions and describe various properties of surface braid groups, such as the existence of torsion, orderability, linearity, and their relation both with mapping class groups and with the homotopy groups of the 2-sphere. The braid groups of the 2-sphere and the real projective plane are of particular interest because they possess elements of finite order, and we discuss in detail their torsion and the classification of their finite and virtually cyclic subgroups. Finally, we outline the methods used to study the lower algebraic K-theory of the group rings of surface braid groups, highlighting recent results concerning the braid groups of the 2-sphere and the real projective plane.

Introduction

The braid groups B n were introduced by E. Artin in 1925 [START_REF] Artin | Theorie der Zöpfe[END_REF], in a geometric and intuitive manner, and further studied in 1947 from a more rigourous and algebraic standpoint [START_REF] Artin | Theory of braids[END_REF][START_REF] Artin | Braids and permutations[END_REF]. These groups may be considered as a geometric representation of the standard everyday notion of braiding strings or strands of hair. As well as being fascinating in their own right, braid groups play an important rôle in many branches of mathematics, for example in topology, geometry, algebra, dynamical systems and theoretical physics, and notably in the study of knots and links [START_REF] Burde | Knots[END_REF], in the definition of topological invariants (Jones polynomial, Vassiliev invariants) [START_REF] Jones | Braid groups, Hecke algebras and type II 1 factors[END_REF][START_REF] Jones | Hecke algebra representation of braid groups and link polynomials[END_REF], of the mapping class groups [START_REF] Birman | Braids, links and mapping class groups[END_REF][START_REF] Birman | Mapping class groups of surfaces[END_REF][START_REF] Farb | A primer on mapping class groups[END_REF], and of configuration spaces [START_REF] Cohen | On loop spaces of configuration spaces[END_REF][START_REF] Fadell | Geometry and topology of configuration spaces[END_REF]. They also have potential applications to biology, robotics and cryptography, for example [START_REF] Berrick | Braids: Introductory Lectures on Braids, Configurations and Their Applications[END_REF].

The Artin braid groups have been generalised in many different directions, such as Artin-Tits groups [START_REF] Brieskorn | Sur les groupes de tresses (d'après V. I. Arnol'd)[END_REF][START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF][START_REF] Deligne | Les immeubles des groupes de tresses généralisés[END_REF], surface braid groups, singular braid monoids and groups, and virtual and welded braid groups. One recent exciting topological development is the discovery of a connection between braid groups and the homotopy groups of the 2-sphere via the notion of Brunnian braids [START_REF] Berrick | Braids: Introductory Lectures on Braids, Configurations and Their Applications[END_REF][START_REF] Berrick | Configurations, braids, and homotopy groups[END_REF]. Although there are many surveys on braid groups [START_REF] Birman | Braids: a survey[END_REF][START_REF] González-Meneses | Basic results on braid groups[END_REF][START_REF] Magnus | Braid groups: a survey[END_REF][START_REF] Murasugi | A study of braids[END_REF][START_REF] Paris | Braid groups and Artin groups[END_REF][START_REF] Rolfsen | Tutorial on the braid groups[END_REF][START_REF] Vershinin | Braids, their properties and generalizations[END_REF] as well as some books and monographs [START_REF] Birman | Braids, links and mapping class groups[END_REF][START_REF] Hansen | Braids and Coverings: selected topics[END_REF][START_REF] Kassel | Braid groups[END_REF][START_REF] Murasugi | A study of braids[END_REF], for the most part, the theory of surface braid groups is discussed in little detail in these works. The aim of this article is two-fold, the first being to survey various aspects of this theory and some recent results, highlighting the cases of the 2-sphere and the real projective plane, and the second being to discuss current developments in the study of the lower algebraic K-theory of the group rings of surface braid groups. In Section 2, we give various definitions of surface braid groups, and recall their relationship with mapping class groups. In Section 3, we describe a number of properties of these groups, including the existence of Fadell-Neuwirth short exact sequences of their pure and mixed braid groups, which play a fundamental rôle in the theory. In Section 3.2, we recall some presentations of surface braid groups, and in Sections 3.3 and 3.4, we survey known results about their centre and their embeddings in other braid groups. Within the theory of surface braid groups, those of the sphere S 2 and the real projective plane RP 2 are interesting and important, one reason being that their configuration spaces are not Eilenberg-Mac Lane spaces. In Section 3.6, we study the homotopy type of these configuration spaces and the cohomological periodicity of the braid groups of S 2 and RP 2 , and we describe some of the results mentioned above concerning Brunnian braids and the homotopy groups of S 2 . In Sections 3.7 and 3.8, we discuss orderability and linearity of surface braid groups.

Section 4 is devoted to the study of the structure of the braid groups of S 2 and RP 2 , notably their torsion, their finite subgroups and their virtually cyclic subgroups. Finally, in Section 5, we discuss recent work concerning the K-theory of the group rings of surface braid groups. The existence of torsion in the braid groups of S 2 and RP 2 leads to new and interesting behaviour in the lower algebraic K-theory of their group rings. Recent techniques provided by the Fibred Isomorphism Conjecture (FIC) of Farrell and Jones have brought to light examples of of intricate group rings whose lower algebraic K-groups are trivial, see Theorem 70 for example, as well as highly-complicated algebraic K-theory groups. A fairly complete example of the latter is that of the 4-string braid group B 4 pS 2 q of the sphere, for which we show that K i pZrB 4 pS 2 qsq is infinitely generated for i " 0, 1 (see Theorem 74). We conjecture that a similar result is probably true for all i ą 1. On the other hand, it is known that rankpK i pZrB 4 pS 2 qsqq ă 8 for all i P Z [START_REF] Juan-Pineda | The K-theoretic Farrell-Jones Isomorphism conjecture for braid groups[END_REF]. It is interesting to observe that the geometrical aspects of a group largely determine the structure of the algebraic K-groups of its group ring. We include up-to-date results on the algebraic K-groups of surface braid groups, and mention possible extensions of these computations. The main obstructions to extending our results from B 4 pS 2 q to the general case are the lack of appropriate models for their classifying spaces, as well the complicated structure of the Nil groups.

Basic definitions of surface braid groups

One of the interesting aspects about surface braid groups is that they may be defined from various viewpoints, each giving a different insight into their nature [START_REF] Rolfsen | Tutorial on the braid groups[END_REF]. The notion of surface braid group was first introduced by Zariski, and generalises naturally Artin's geometric definition [START_REF] Zariski | On the Poincaré group of rational plane curves[END_REF][START_REF] Zariski | The topological discriminant group of a Riemann surface of genus p[END_REF]. Surface braid groups were rediscovered during the 1960's by Fox who proposed a powerful (and equivalent) topological definition in terms of the fundamental group of configuration spaces. We recall these and other definitions below. Unless stated otherwise, in the whole of this manuscript, we shall use the word surface to denote a connected surface, orientable or non orientable, with or without boundary, and of the form M " NzY, where N is a compact, connected surface, and Y is a finite (possibly empty) subset lying in the interior IntpNq of N.

Surface braids as a collection of strings

Let M be a surface, and let n P N. We fix once and for all a finite n-point subset X " tx 1 , . . . , x n u of IntpMq whose elements shall be the base points of our braids.

Definition.

A geometric n-braid in M is a collection β " tβ 1 , . . . , β n u consisting of n arcs β i : r0, 1s ÝÑ M ˆr0, 1s, i " 1, . . . , n, called strings (or strands) such that: (a) for i " 1, . . . , n, β i p0q " px i , 0q and β i p1q P X ˆt1u (the strings join the elements of X belonging to the copies of M corresponding to t P t0, 1u). (b) for all t P r0, 1s and for all i, j P t1, . . . , nu, i ‰ j, β i ptq ‰ β j ptq (the strings are pairwise disjoint). (c) for all t P r0, 1s, each string meets the subset M ˆttu in exactly one point (the strings are strictly monotone with respect to the t-coordinate). See Figure 1 for an example of a geometric 3-braid in the 2-torus, and Figure 2 for an example of a geometric 3-braid that illustrates condition (c).

M ˆt0u M ˆt1u x 1 x 2 x 3 β 1 β 2 β 3
Figure 1: A geometric 3-braid with M equal to the 2-torus.

In the case where M is the plane, a braid is often depicted by a projection (taken to be in general position) onto the plane xz such as that depicted in Figure 2, so that there are only a finite number of points where the strings cross, and such that the crossings occur at distinct values of t. We distinguish between under-and over-crossings. Our convention is that such a braid is to be read from top to bottom, the top of the braid corresponding to t " 0, and the bottom to t " 1. Similar pictures may be drawn for other surfaces of small genus (see [START_REF] Murasugi | Seifert fibre spaces and braid groups[END_REF][START_REF] Murasugi | A study of braids[END_REF] for example).

Two geometric n-braids of M are said to be equivalent if there exists an isotopy (keeping the endpoints of the strings fixed) from one to the other through n-braids. In particular, under the isotopy, the strings remain pairwise disjoint. This defines an equivalence relation, and the equivalence classes are termed n-braids. The set of n-braids of M is denoted by B n pMq. By a slight abuse of terminology, we shall not distinguish between a braid and its geometric representatives.

The product of two n-braids α and β, denoted αβ, is their concatenation, defined by glueing the endpoints of α to the respective initial points of β (formally, α should be 'squashed' into the slab 0 ď t ď 1 2 , and β into the slab 1 2 ď t ď 1). One may check that this operation does not depend on the choice of geometric representatives of α and β, and that it is associative. The identity element Id of B n pMq is the braid all of whose strings are vertical. The inverse of an n-braid β " tpβ 1 ptq, . . . , β n ptqqu tPr0,1s is given by β ´1 " tpβ 1 p1 ´tq, . . . , β n p1 ´tqqu tPr0,1s

(its mirror image with respect to M ˆ! 1 2

)

). Equipped with this operation, B n pMq is thus a group, which we call the n-string braid group of M.

To each n-braid β " pβ 1 , . . . , β n q, one may associate a permutation τ n pβq P S n defined by β i p1q " px τ n pβqpiq , 1q, and the following correspondence:

τ n : B n pMq ÝÑ S n β Þ ÝÑ τ n pβq (1) 
is seen to be a surjective group homomorphism. The kernel P n pMq of τ n is known as the n-string pure braid group of M, and so β P P n pMq if and only if β i p1q " i for all i " 1, . . . , n.

Clearly P n pMq is a normal subgroup of B n pMq of index n!, and we have the following short exact sequence:

1 ÝÑ P n pMq ÝÑ B n pMq τ n ÝÑ S n ÝÑ 1. (2) 
It is well known that if M is equal to R 2 or to the 2-disc D 

Surface braids as trajectories of non-colliding particles

Definition. Consider n particles which move on the surface M, whose initial points are γ i p0q " x i for i " 1, . . . , n, and whose trajectories are γ i ptq for t P r0, 1s. A braid is thus the collection γ " pγ 1 ptq, . . . , γ n ptqq tPr0,1s of trajectories satisfying the following two conditions:

(a) the particles do not collide, i.e. for all t P r0, 1s and for all i, j P t1, . . . , nu, i ‰ j, γ i ptq ‰ γ j ptq.

(b) they return to their initial points, but possibly undergoing a permutation: γ i p1q P X for all i P t1, . . . , nu.

There is a clear bijective correspondence between this definition of braid and the definition of geometric n-braid in Section 2.1. Indeed, if γ " pγ 1 ptq, . . . , γ n ptqq tPr0,1s is such a braid then β " pβ 1 , . . . , β n q is a geometric n-braid, where for all i " 1, . . . , n and t P r0, 1s, β i ptq " pγ i ptq, tq. Conversely, we may obtain the 'particle' notion of braid by reparametrising each string β " pβ 1 , . . . , β n q of a geometric n-braid so that β i ptq is of the form pγ i ptq, tq for i " 1, . . . , n and t P r0, 1s, where γ " pγ 1 ptq, . . . , γ n ptqq tPr0,1s satisfies conditions (a) and (b). The transition from a geometric n-braid to the 'particle notion' may thus be realised geometrically by projecting the strings lying in M ˆr0, 1s onto the surface M.

It is easy to check that two geometric braids are homotopic (in the sense of Section 2.1) if and only if the braids defined in terms of trajectories are homotopic. It thus follows that the set of homotopy classes of the latter class of braids may be equipped with a group structure, and that the group thus obtained is isomorphic to B n pMq. In this setting, the identity braid is represented by the configuration where all particles are stationary, and the inverse of a braid is given by running through the trajectories in reverse. This point of view proves to be useful when working with braid groups of surface of higher genus, notably in determining presentations [START_REF] Bellingeri | On presentation of surface braid groups[END_REF][START_REF] Birman | On braid groups[END_REF][START_REF] Gonçalves | On the structure of surface pure braid groups[END_REF][START_REF] González-Meneses | New presentations of surface braid groups[END_REF][START_REF] Scott | Braid groups and the group of homeomorphisms of a surface[END_REF].

Surface braid groups as the fundamental group of configuration spaces

Configuration spaces are important and interesting in their own right [START_REF] Cohen | Introduction to configuration spaces and their applications[END_REF][START_REF] Fadell | Geometry and topology of configuration spaces[END_REF], and have many applications, for example to the study of polynomials in CrXs [START_REF] Hansen | Braids and Coverings: selected topics[END_REF]. The following definition is due to Fox [START_REF] Fox | The braid groups[END_REF] (according to Magnus [START_REF] Magnus | Braid groups: a survey[END_REF], the idea first appeared in the work of Hurwitz), and has very important consequences. The motivation for the definition emanates from condition (c) of the definition of geometric n-braid given in Section 2.1, and is illustrated by Figure 2.

Definition. Let F n pMq denote the n th configuration space of M defined by: F n pMq " pp 1 , . . . , p n q P M n ˇˇp i ‰ p j for all i, j P t1, . . . , nu, i ‰ j ( .

We equip F n pMq with the topology induced by the product topology on M n . A transversality argument shows that F n pMq is a connected 2n-dimensional open manifold. There is a natural free action of the symmetric group S n on F n pMq by permutation of coordinates. The resulting orbit space F n pMq{S n shall be denoted by D n pMq, the n th permuted configuration space of M, and may be thought of as the configuration space of n unordered points. The associated canonical projection p ρ n : F n pMq ÝÑ D n pMq is thus a regular n!-fold covering map.

We may thus describe F n pMq as M n z∆, where ∆ denotes the 'fat diagonal' of M n :

∆ " pp 1 , . . . , p n q P M n ˇˇp i " p j for some 1 ď i ă j ď n ( .

If M " R 2 then ∆ " ď 1ďiăjďn H i,j
, where H i,j is the hyperplane defined by: H i,j " ! pp 1 , . . . , p n q P pR 2 q n ˇˇp i " p j

) .

The following theorem is fundamental, and brings in to play a topological definition of the braid groups that will be very important in what follows. The proof is a good illustration of the use of the short exact sequence (2).

Theorem 2 (Fox and Neuwirth [66]). Let n P N. Then P n pMqπ 1 pF n pMqq and B n pMqπ 1 pD n pMqq.

Remarks 3.

(a) Since F 1 pMq " M, we have that B 1 pMq -P 1 pMqπ 1 pMq. The braid groups of M may thus be seen as generalisations of its fundamental group. (b) The fact that F n pMq (resp. D n pMq) is connected implies that the isomorphism class of π 1 pF n pMqq (resp. π 1 pD n pMqq) does not depend on the choice of basepoint. We thus have two finite-dimensional topological spaces F n pMq (resp. D n pMq) whose fundamental groups are P n pMq (resp. B n pMq). As we shall see in Section 3.1, the relations between configuration spaces and braid groups play a fundamental rôle in the study of the latter, notably via the fact that we may form certain natural fibre spaces of the former. (c) The definitions of surface braid groups given in Sections 2.1-2.3 generalise to any topological space. It was shown in [START_REF] Fadell | Configuration spaces[END_REF]Theorem 9] that for connected manifolds of dimension r ě 3, there is no braid theory, as it is formulated here.

The natural inclusion ι : F n pMq ã ÝÑ M n induces a homomorphism of the corresponding fundamental groups: ι # : P n pMq ÝÑ pπ 1 pMqq n , and the inclusion j : D 2 ã ÝÑ IntpMq of a topological disc D 2 in the interior of M induces a homomorphism j # : P n ÝÑ P n pMq that is an embedding for most surfaces: [START_REF] Birman | On braid groups[END_REF]). Let M be a compact, orientable surface different from S 2 . Then the inclusion j : D 2 ã ÝÑ M induces an embedding P n ã ÝÑ P n pMq.

Proposition 4 ([
Proposition 4 extends first to the non-orientable case [START_REF] Goldberg | An exact sequence of braid groups[END_REF], with the exception of M " RP 2 , and secondly, to the full braid groups by applying equation ( 2). If M is different from S 2 and RP 2 then Goldberg showed that the following sequence is short exact [START_REF] Goldberg | An exact sequence of braid groups[END_REF]:

1 ÝÑ xxImpj # qyy P n pMq ã ÝÑ P n pMq ι # ÝÑ pπ 1 pMqq n ÝÑ 1, (3) 
where xxHyy G denotes the normal closure of a subgroup H in a group G. This sequence was analysed in [START_REF] González-Meneses | Vassiliev invariants for braids on surfaces[END_REF] in order to study Vassiliev invariants of braid groups of orientable surfaces.

In the case of RP 2 , Ker pι # q was computed and the homotopy fibre of ι was determined in [START_REF] Gonçalves | Some homotopy properties of the inclusion F n pSq ã ÝÑ S n for S either S 2 or RP 2 and the virtual cohomological dimension of B n pSq and P n pSq[END_REF].

Relationship between braid and mapping class groups

Let M be a compact, connected, orientable (resp. non-orientable) surface, possibly with boundary BM, and for n ě 0, let Q n be a finite subset of IntpMq consisting of n distinct points (so Q 0 " ∅). Let HpM, Q n q denote the group Homeo `pM, Q n q (resp. HomeopM, Q n q) of orientation-preserving homeomorphisms (resp. of homeomorphisms) of M under composition that leave Q n invariant (so we allow the points of Q n to be permuted), and that fix BM pointwise. We equip HpM, Q n q with the compact-open topology. Let H 0 pM, Q n q denote the path component of Id M in HpM, Q n q. The n th mapping class group of M, denoted by MCGpM, nq, is defined to be the set of isotopy classes of the elements of Homeo `pM, Q n q (resp. HomeopM, Q n q), in other words,

MCGpM, nq " HpM, Q n q{H 0 pM, Q n q " π 0 pHpM, Q n qq.
It is straightforward to check that MCGpM, nq is indeed a group whose isomorphism class does not depend on the choice of Q n . If n " 0 then we write simply HpMq and MCGpMq for the corresponding groups. The mapping class groups have been widely studied and play an important rôle in low-dimensional topology. Some good general references are [START_REF] Birman | Braids, links and mapping class groups[END_REF][START_REF] Farb | A primer on mapping class groups[END_REF][START_REF] Ivanov | Mapping class groups[END_REF].

The mapping class groups are closely related to braid groups. If M " D 2 then it is well known that they coincide: 99, 113]). B n -MCGpD 2 , nq.

Theorem 5 ([26,
The proof of Theorem 5 makes use of Artin's representation of B n as a subgroup of the automorphism group of the free group F n of rank n, the free group in question being identified with π 1 pD 2 zQ n q. In the general case, the relationship between MCGpM, nq and B n pMq arises in a topological setting as follows [START_REF] Birman | Mapping class groups and their relationship to braid groups[END_REF][START_REF] Birman | Braids, links and mapping class groups[END_REF][START_REF] Scott | Braid groups and the group of homeomorphisms of a surface[END_REF]. Let n ě 1, and fix a basepoint Q n P D n pMq. Then the map Ψ : HpMq ÝÑ D n pMq defined by Ψp f q " f pQ n q is a locallytrivial fibre bundle [START_REF] Birman | Mapping class groups and their relationship to braid groups[END_REF][START_REF] Mccarty | Homeotopy groups[END_REF], whose fibre over Q n is equal to HpM, Q n q. Taking the long exact sequence in homotopy of this fibration yields:

¨¨¨ÝÑ π 1 pHpM, Q n qq ÝÑ π 1 pHpMqq ÝÑ π 1 pD n pMqq ÝÑ π 0 pHpM, Q n qq ÝÑ π 0 pHpMqq ÝÑ 1. ( 4 
)
If M is different from S 2 , RP 2 , the torus or the Klein bottle then π 1 pHpMqq " 1 [START_REF] Hamstrom | Homotopy groups of the space of homeomorphisms on a 2-manifold[END_REF], from which we deduce a short exact sequence of the form:

1 ÝÑ B n pMq ÝÑ MCGpM, nq ÝÑ MCGpMq ÝÑ 1. (5) 
The braid group B n pMq is thus isomorphic to the kernel of the homomorphism that corresponds geometrically to forgetting the marked points. We recover Theorem 5 by noting that MCGpD 2 q " t1u using the Alexander trick. If M " S 2 (resp. RP 2 ) and n ě 3 (resp. n ě 2) then π 1 pHpM, Q n qq " 1 [START_REF] Hamstrom | Homotopy groups of the space of homeomorphisms on a 2-manifold[END_REF][START_REF] Mccarty | Homeotopy groups[END_REF], but π 1 pHpMqq -Z 2 [START_REF] Hamstrom | Homotopy properties of the space of homeomorphisms on P 2 and the Klein bottle[END_REF][START_REF] Hamstrom | Homotopy groups of the space of homeomorphisms on a 2-manifold[END_REF], which is a manifestation of the fact that the fundamental group of SOp3q is isomorphic to Z 2 [START_REF] Fadell | Homotopy groups of configuration spaces and the string problem of Dirac[END_REF][START_REF] Hansen | Braids and Coverings: selected topics[END_REF][START_REF] Newman | On a string problem of Dirac[END_REF]. In this case, we obtain the following short exact sequence:

1 ÝÑ Z 2 ÝÑ B n pMq ÝÑ MCGpM, nq ÝÑ 1. ( 6 
)
As we shall see in Section 4.1, viewed as an element of B n pMq, the generator of the kernel is the full twist braid ∆ 2 n [START_REF] Fadell | The braid groups of E 2 and S 2[END_REF][START_REF] Van Buskirk | Braid groups of compact 2-manifolds with elements of finite order[END_REF]. In particular, B n pMq{

@ ∆ 2 n D -MCGpM, nq.
In the case of S 2 , the short exact sequence (6) may be obtained by combining the presentation of MCGpS 2 , nq due to Magnus [START_REF] Magnus | Über Automorphismen von Fundamentalgruppen berandeter Flächen[END_REF][START_REF] Magnus | Combinatorial group theory[END_REF] with Fadell and Van Buskirk's presentation of B n pS 2 q (see Theorem 32). It plays an important part, notably in the study of the centralisers and conjugacy classes of the finite order elements, and of the finite subgroups of B n pMq (see Section 4.2). Finally, if M is the torus T 2 or the Klein bottle then (4) yields a six-term exact sequence start- ing and ending with 1. In the case of T 2 , this exact sequence involves MCGpT 2 q, which is isomorphic to SLp2, Zq.

Some properties of surface braid groups

In this section, we describe various properties of surface braid groups. We start with one of the most important, that makes use of the definition of Section 2.3 in terms of configuration spaces.

Exact sequences of braid groups

Let M be a connected surface. For n P N, we equip F n pMq with the topology induced by the product topology on the n-fold Cartesian product M n . For m ě 0, let Q m be as in Section 2.4, and set F m,n pMq " F n pMzQ m q and D m,n pMq to be the quotient space of F m,n pMq by the free action of S n , so that the projection F m,n pMq ÝÑ D m,n pMq is a covering map. Note that the topological type of F m,n pMq does not depend on the choice of Q m , and that as special cases, we obtain F 0,n pMq " F n pMq and F m,1 pMq " MzQ m . We have the following important result concerning the topological structure of the spaces F m,n pMq.

Theorem 6 (Fadell and Neuwirth [53,[START_REF] Hansen | Braids and Coverings: selected topics[END_REF][START_REF] Kassel | Braid groups[END_REF]). Let 1 ď r ă n and m ě 0. Suppose that M is a surface with empty boundary. Then the map # p n,r : F m,n pMq ÝÑ F m,r pMq px 1 , . . . , x n q Þ ÝÑ px 1 , . . . , x r q (7)

is a locally-trivial fibration with fibre F m`r,n´r pMq.

One may then take the long exact sequence in homotopy of the fibration [START_REF] Artin | Braids and permutations[END_REF]: Since F m`n`i´1,1 pMq has the homotopy type of a bouquet of circles for all 0 ď i ď n ´2, it follows that:

¨¨¨ÝÑ π k pF m`
π k pF m,n pMqq -π k pF m,n´1 pMqq -¨¨¨-π k pF m,1 pMqq " π k pMzQ m q for all k ě 3,
and that the homomorphism π 2 pF m,n´i pMqq ÝÑ π 2 pF m,n´i´1 pMqq is injective for all such i. Thus π 2 pF m,n pMqq is isomorphic to a subgroup of π 2 pF m,1 pMqq, which is in turn isomorphic to π 2 pMzQ m q. Since π 1 pF m,n pMqq -P n pMzQ m q by Theorem 2, we recover the following result:

Theorem 7 ([51, 53, 54, 151]).

(a) Let n P N and m ě 0. We suppose additionally that M is different from S 2 and RP 2 if m " 0.

Then the spaces F m,n pMq and D m,n pMq are Eilenberg-Mac Lane spaces of type KpP n pMzQ m q, 1q and KpB n pMzQ m q, 1q respectively. (b) If n ě 3 (resp. n ě 2) then π 2 pF n pS 2 qq " 0 and π 2 pF n pRP 2 qq " 0.

(c) Let 1 ď r ă n and m ě 0. If m " 0 then we suppose that r ě 3 if M " S 2 , and that r ě 2 if M " RP 2 . Then the Fadell-Neuwirth fibration (8) induces a short exact sequence:

1 ÝÑ P n´r pMzQ m`r q ÝÑ P n pMzQ m q pp n,r q #1 ÝÝÝÝÑ P r pMzQ m q ÝÑ 1.

Remarks 8.

(a) The short exact sequence ( 9) is known as the Fadell-Neuwirth short exact sequence of surface braid groups. It plays a central rôle in the study of surface (pure) braid groups. It was used to study mapping class groups in [START_REF] Paris | Geometric subgroups of surface braid groups Ann[END_REF], and in work on Vassiliev invariants for braid groups [START_REF] González-Meneses | Vassiliev invariants for braids on surfaces[END_REF].

(b) Theorem 7(b) was proved in [START_REF] Fadell | Homotopy groups of configuration spaces and the string problem of Dirac[END_REF][START_REF] Fadell | The braid groups of E 2 and S 2[END_REF][START_REF] Van Buskirk | Braid groups of compact 2-manifolds with elements of finite order[END_REF] by showing that π 2 pF 3 pS 2 qq " π 2 pF 2 pRP 2 qq " 0 and using induction.

(c) The projection P n pMzQ m q ÝÑ P r pMzQ m q may be interpreted geometrically as the epimorphism that 'forgets' the last n ´r strings.

(d) In order to prove that ( 7) is a locally-trivial fibration, one needs to suppose that M is without boundary. However, the long exact sequence [START_REF] Bardakov | Linear representations of the group of conjugating automorphisms and the braid groups of some manifolds[END_REF] exists even if M has boundary, and thus Theorem 7 holds for any connected surface. To see this, let M be a surface with boundary, and let M 1 " MzBM. Then M 1 is a surface with empty boundary, and so Theorems 6 and 7 hold for M 1 . The inclusion of M 1 in M is not only a homotopy equivalence between M 1 and M, but it also induces a homotopy equivalence between their n th configuration spaces.

In particular, (8) and Theorem 7 are valid also for M, and the n th (pure) braid groups of M 1 and M are isomorphic.

(e) Let n ě 4 if M " S 2 , n ě 3 if M " RP 2 , and n ě 2 otherwise. Two special cases to which we will refer frequently are: (i) m " 0, in which case the short exact sequence (9) becomes:

1 ÝÑ P n´r pMzQ r q ÝÑ P n pMq

pp n,r q #1 ÝÝÝÝÑ P r pMq ÝÑ 1. (10) 
(ii) m " 0 and r " n ´1, in which case the short exact sequence (9) becomes:

1 ÝÑ π 1 pMzQ n´1 q ÝÑ P n pMq

pp n,n´1 q #1 Ý ÝÝÝÝÝ Ñ P n´1 pMq ÝÑ 1. (11) 
In particular, each element of Ker ppp n,n´1 q #1 q may be interpreted as an n-string braid whose first n ´1 strings are vertical. This short exact sequence lends itself naturally to induction, and may be used for example to solve the word problem in surface braid groups [START_REF] Artin | Theory of braids[END_REF][START_REF] Gillette | The word problem and consequences for the braid groups and mapping class groups of the 2-sphere[END_REF][START_REF] Scott | Braid groups and the group of homeomorphisms of a surface[END_REF], and to obtain presentations (see Section 3.2).

By a theorem of P. A. Smith (see [100, page 149] or [102, page 287]), the fundamental groups of finite-dimensional Eilenberg-Mac Lane spaces of type Kpπ, 1q are torsion free. This implies immediately the sufficiency of the following assertions: Corollary 9 ([53, 54, 151]). Let M be a surface. Then the braid groups P n pMzQ m q and B n pMzQ m q are torsion free if and only if either: (a) m ě 1, or (b) m " 0 and M is a surface different from S 2 and RP 2 .

As for the necessity of the conditions, we already mentioned in Section 2.4 that the full twist ∆ 2 n is an element of P n pMq of order 2 if M " S 2 or RP 2 . The existence of torsion in the braid groups of S 2 and RP 2 is a fascinating phenomenon to which we shall return in Sections 4.1 and 4.2, and makes for interesting and intricate K-theoretical structure (see Section 5.5). More will be said about the homotopy groups of the configuration spaces of the exceptional surfaces, S 2 and RP 2 , in Section 3. 6. We remark that a purely algebraic proof of the fact that the Artin braid groups are torsion free was given later by Dyer [START_REF] Dyer | The algebraic braid groups are torsion-free: an algebraic proof[END_REF]. We shall see another proof in Section 3.7.

The short exact sequences ( 9)- [START_REF] Bartels | The K-theoretic Farrell-Jones conjecture for hyperbolic groups[END_REF] do not extend directly to the full braid groups, but may be generalised as follows to certain subgroups that lie between P n pMq and B n pMq. Once more, let 1 ď r ă n, and suppose that r ě 3 if M " S 2 and r ě 2 if M " RP 2 . We consider the space obtained by taking the quotient of F n pMq by the subgroup S r ˆSn´r of S n . If M is without boundary then as in Theorem 6 we obtain a locally-trivial fibration q n,r : F n pMq{pS r ˆSn´r q ÝÑ D r pMq, defined by forgetting the last n ´r coordinates. We set B r,n´r pMq " π 1 `Fn pMq{pS r ˆSn´r q ˘, which is often termed a 'mixed' braid group, and is defined whether or not M has boundary. As in the pure braid group case, we obtain the following generalisation of (10) [START_REF] Gonçalves | The roots of the full twist for surface braid groups[END_REF]:

1 ÝÑ B n´r pMzQ r q ÝÑ B r,n´r pMq

pq n,r q #1 Ý ÝÝÝ Ñ B r pMq ÝÑ 1, (12) 
known as a generalised Fadell-Neuwirth short exact sequence of mixed braid groups. Such braid groups are very useful, and have been studied in [START_REF] Bellingeri | Exact sequences, lower central series and representations of surface braid groups[END_REF][START_REF] Gonçalves | The roots of the full twist for surface braid groups[END_REF][START_REF] Gonçalves | The braid group B n,m pS 2 q and the generalised Fadell-Neuwirth short exact sequence[END_REF][START_REF] Gonçalves | Surface braid groups and coverings[END_REF][START_REF] Lambropoulou | Braid structures in knot complements, handlebodies and 3-manifolds[END_REF][START_REF] Manfredini | Some subgroups of Artin's braid group[END_REF][START_REF] Paris | Geometric subgroups of surface braid groups Ann[END_REF] for example. Further generalisations are possible by taking quotients by direct products of the form S i 1 Ŝi r , where

r ÿ j"1 i j " n.

Presentations of surface braid groups

We recall the classical presentation of the Artin braid groups:

Theorem 10 (Artin, 1925 [START_REF] Artin | Theorie der Zöpfe[END_REF]). For all n ě 1, the braid group B n admits the following presentation generators: σ 1 , . . . , σ n´1 (known as the Artin generators). relations: (known as the Artin relations)

σ i σ j " σ j σ i if |i ´j| ě 2 and 1 ď i, j ď n ´1 (13) 
σ i σ i`1 σ i " σ i`1 σ i σ i`1 for all 1 ď i ď n ´2. (14) 
The generator σ i may be regarded geometrically as the braid with a single positive crossing of the i th string with the pi `1q st string, while all other strings remain vertical (see Figure 3). It follows from this presentation that B 1 " t1u and B 2 " xσ 1 y -Z. Adding the

¨¨¨¨¨¨¨¨¨¨¨1 i ´1 i i `1 i `2 n 1 i ´1 i i `1 i `2 n σ i σ ´1 i Figure 3:
The braid σ i and its inverse.

relations σ 2 i " 1, i " 1, . . . , n ´1, to those of Theorem 10 yields the Coxeter presentation of S n . If 1 ď i ă j ď n, the pure braid defined by:

A i,j " σ j´1 ¨¨¨σ i`1 σ 2 i σ ´1 i`1 ¨¨¨σ ´1 j´1 , (15) 
may be represented geometrically by the braid all of whose strings are vertical, with the exception of the j th string, that wraps around the i th string (see Figure 4). Such elements generate P n :

¨¨¨¨¨¨¨¨1 i ´1 i j j `1 n Figure 4: The element A i,j of B n .
Proposition 11 ([99]). For all n ě 1, P n is generated by A i,j 1 ď i ă j ď n ( whose elements are subject to the following relations:

A ´1 r,s A i,j A r,s " $ ' ' ' ' & ' ' ' ' % A i,j if i ă r ă s ă j or r ă s ă i ă j A r,j A i,j A ´1 r,j if r ă i " s ă j A r,j A s,j A i,j A ´1 s,j A ´1 r,j if i " r ă s ă j A r,j A s,j A ´1 r,j A ´1 s,j A i,j A s,j A r,j A ´1 s,j A ´1 r,j if r ă i ă s ă j.
One interesting fact that may be deduced immediately from the presentation of Proposition 11 is that the action by conjugation of P n on itself induces the identity on the Abelianisation of P n , and via the short exact sequence [START_REF] Bartels | The K-theoretic Farrell-Jones conjecture for hyperbolic groups[END_REF] in the case where M " R 2 , implies that P n is an almost-direct product of F n´1 and P n´1 . This plays an important rôle in various aspects of the theory, for example in the proof of the fact that P n is residually nilpotent [START_REF] Falk | The lower central series of a fiber-type arrangement[END_REF][START_REF] Falk | Pure braid groups and products of free groups[END_REF].

A number of presentations are known for surface (pure) braid groups [START_REF] Bellingeri | On presentation of surface braid groups[END_REF][START_REF] Birman | On braid groups[END_REF][START_REF] Gonçalves | On the structure of surface pure braid groups[END_REF][START_REF] Gonçalves | Braid groups of non-orientable surfaces and the Fadell-Neuwirth short exact sequence[END_REF][START_REF] González-Meneses | New presentations of surface braid groups[END_REF][START_REF] Ladegaillerie | Groupes de tresses et problème des mots dans les groupes de tresses[END_REF][START_REF] Lambropoulou | Braid structures in knot complements, handlebodies and 3-manifolds[END_REF][START_REF] Scott | Braid groups and the group of homeomorphisms of a surface[END_REF][START_REF] Zariski | On the Poincaré group of rational plane curves[END_REF][START_REF] Zariski | The topological discriminant group of a Riemann surface of genus p[END_REF], the first being due to Birman and Scott. We recall those due to Bellingeri for B n pNq, where N is a connected surface of the form MzQ m , M being compact and without boundary, and orientable in the first case, and non-orientable in the second. One way to find such presentations is to apply standard techniques to obtain presentations of group extensions [START_REF] Johnson | Presentation of groups[END_REF]. One first uses induction and the short exact sequence [START_REF] Bartels | The K-theoretic Farrell-Jones conjecture for hyperbolic groups[END_REF] to obtain presentations of the pure braid groups, and then (2) yields presentations of the full braid groups.

Theorem 12 ([16]). Let M be a compact, connected, orientable surface without boundary of genus g, where g ě 1, and let m ě 0. Then B n pMzQ m q admits the following presentation: Generators: σ 1 , . . . , σ n´1 , a 1 , . . . , a g , b 1 , . . . , b g , z 1 , . . . , z m´1 . Relations: (a) the Artin relations ( 13) and ( 14). (b) a r σ i " σ i a r , b r σ i " σ i b r and z j σ i " σ i z j for all 1 ď r ď g, 2 ď i ď n ´1 and 1 ď j ď m ´1. (c) pσ ´1 1 a r q 2 " pa r σ ´1 1 q 2 , pσ ´1 1 b r q 2 " pb r σ ´1 1 q 2 and pσ ´1 1 z j q 2 " pz j σ ´1 1 q 2 for all 1 ď r ď g and

1 ď j ď m ´1. (d) σ ´1 1 a s σ 1 a r " a r σ ´1 1 a s σ 1 , σ ´1 1 b s σ 1 b r " b r σ ´1 1 b s σ 1 , σ ´1 1 a s σ 1 b r " b r σ ´1 1 a s σ 1 and σ ´1 1 b s σ 1 a r " a r σ ´1 1 b s σ 1 for all 1 ď s ă r ď g. (e) if n ě 2, σ ´1 1 z j σ 1 a r " a r σ ´1 1 z j σ 1 and σ ´1 1 z j σ 1 b r " b r σ ´1 1 z j σ 1 for all 1 ď r ď g and 1 ď j ď m ´1. (f) σ ´1 1 z j σ 1 z l " z l σ ´1 1 z j σ 1 for all 1 ď j ă l ď m ´1. (g) σ ´1 1 a r σ ´1 1 b r " b r σ ´1 1 a r σ 1 for all 1 ď r ď g. (h) if m " 0 then ra 1 , b ´1 1 s ¨¨¨ra g , b ´1 g s " σ 1 ¨¨¨σ n´2 σ 2 n´1 σ n´2 ¨¨¨σ 1 , where ra, bs " aba ´1 b ´1.
Theorem 13 ([16]). Let M be a compact, connected, non-orientable surface without boundary of genus g, where g ě 2, and let m ě 0. Then B n pMzQ m q admits the following presentation: Generators: σ 1 , . . . , σ n´1 , a 1 , . . . , a g , z 1 , . . . , z m´1 . Relations: (a) the Artin relations ( 13) and ( 14). (b) a r σ i " σ i a r for all 1 ď r ď g and 2 ď i ď n ´1.

(c) pσ ´1 1 a r q 2 " a r σ ´1 1 a r σ 1 and pσ ´1 1 z j q 2 " pz j σ ´1 1 q 2 for all 1 ď r ď g and

1 ď j ď m ´1. (d) σ ´1 1 a s σ 1 a r " a r σ ´1 1 a s σ 1 for all 1 ď s ă r ď g. (e) z j σ i " σ i z j for all 2 ď i ď n ´1 and 1 ď j ď m ´1. (f) if n ě 2, σ ´1 1 z j σ 1 a r " a r σ ´1 1 z j σ 1 for all 1 ď r ď g and 1 ď j ď m ´1. (g) σ ´1 1 z j σ 1 z l " z l σ ´1 1 z j σ 1 for all 1 ď j ă l ď m ´1. (h) if m " 0 then a 2 1 ¨¨¨a 2 g " σ 1 ¨¨¨σ n´2 σ 2 n´1 σ n´2 ¨¨¨σ 1 .
Remarks 14.

(a) Geometrically, the generators a 1 , . . . , a g , b 1 , . . . , b g (resp. a 1 , . . . , a g ) of B n pMq given in Theorem 12 (resp. Theorem 13) correspond to a standard set of generators of π 1 pMq based at the first basepoint of the braid, and in both cases, the generator z i , i P t1, . . . , m ´1u, corresponds to the braid all of whose strings are vertical, with the exception of the first string that wraps around the i th puncture.

(b) By Remarks 8(d), it follows that we may also take some or all of the punctures to be boundary components. In other words, Theorems 12 and 13 yield presentations of the braid groups of any surface as defined at the beginning of Section 2.

Presentations for B n pS 2 q and B n pRP 2 q will be given in Section 4.1. Results on the minimal cardinality of different types of generating sets of B n pMq, where M " D 2 , S 2 or RP 2 , are given in [START_REF] Gonçalves | Minimal generating and normally generating sets for the braid and mapping class groups of the disc, the sphere and the projective plane[END_REF]. Positive presentations of braid groups of orientable surfaces were obtained in [START_REF] Bellingeri | Positive presentations of surface braid groups[END_REF]. Braid groups of the annulus, which are Artin-Tits groups of type B n , were studied in [START_REF] Crisp | Injective maps between Artin groups[END_REF][START_REF] Gonçalves | The lower central and derived series of the braid groups of the finitely-punctured sphere[END_REF][START_REF] Kent Iv | A geometric and algebraic description of annular braid groups[END_REF][START_REF] Lambropoulou | Braid structures in knot complements, handlebodies and 3-manifolds[END_REF][START_REF] Manfredini | Some subgroups of Artin's braid group[END_REF][START_REF] Paris | Geometric subgroups of surface braid groups Ann[END_REF].

The centre of surface braid groups

In terms of the presentation of Theorem 10, the 'full twist' braid ∆ 2 n of B n is defined by:

∆ 2 n " pσ 1 ¨¨¨σ n´1 q n P B n . ( 16 
)
It has a special rôle in the theory of Artin braid groups. Since τ n pσ 1 ¨¨¨σ n´1 q " p1, n, n 1, . . . , 2q, we see that ∆ 2 n belongs to P n , and in terms of the generators of P n of equation ( 15), one may check that:

∆ 2 n " pA 1,2 qpA 1,3 A 2,3 q ¨¨¨pA 1,n A 2,n ¨¨¨A n´1,n q.
The parenthesised terms in this expression commute pairwise -geometrically, this is obvious. This braid is the square of the well-known Garside element (or 'half-twist') ∆ n of B n (see Figure 5), defined by:

∆ n " pσ 1 σ 2 ¨¨¨σ n´1 qpσ 1 σ 2 ¨¨¨σ n´2 q ¨¨¨pσ 1 σ 2 qpσ 1 q.
The notion of Garside element is important in the study of braid groups, notably in the resolution of the conjugacy problem in B n [START_REF] Birman | Braids, links and mapping class groups[END_REF][START_REF] Garside | The braid group and other groups[END_REF], and in a more general setting, in the theory of Garside groups and monoids [START_REF] Dehornoy | Garside Theory[END_REF][START_REF] Kassel | Braid groups[END_REF]. By [26, Lemma 2.5.1], we have:

∆ n σ i ∆ ´1 n " σ n´i for all 1 ď i ď n ´1, (17) 
and the n th root σ 1 ¨¨¨σ n´1 of ∆ 2 n that appears in equation ( 16) satisfies [START_REF] Artin | Theorie der Zöpfe[END_REF][START_REF] Gonçalves | The classification of the virtually cyclic subgroups of the sphere braid groups[END_REF][START_REF] Moran | The mathematical theory of knots and braids, an introduction[END_REF]:

pσ 1 ¨¨¨σ n´1 qσ i pσ 1 ¨¨¨σ n´1 q ´1 " σ i`1 for all 1 ď i ď n ´2, and (18) 
pσ 1 ¨¨¨σ n´1 q 2 σ n´1 pσ 1 ¨¨¨σ n´1 q ´2. ( 19 
)
From equations ( 18)-( 19), it follows that ∆ 2 n commutes with all of the generators of Theorem 10, and so belongs to the centre of B n and of P n . A straightforward argument using the short exact sequences ( 2) and ( 11) with M " R 2 enables one to show that ∆ 2 n generates the centre of the Artin braid groups.

Theorem 15 (Chow [37]). Let n ě 3. Then ZpB n q " ZpP n q " @ ∆ 2 n D .

Remark 16. From Section 3.2, we know that B 1 " P 1 " t1u, and B 2 and P 2 are infinite cyclic: ZpB 2 q " xσ 1 y, and ZpP 2 q " xA 1,2 y " @ ∆ 2 2 D .

A small number of surface braid groups possess non-trivial centre: (a) If M " S 2 (resp. M " RP 2 ) and n ě 2 then ZpB n pMqq is cyclic of order 2 [START_REF] Gillette | The word problem and consequences for the braid groups and mapping class groups of the 2-sphere[END_REF][START_REF] Murasugi | Seifert fibre spaces and braid groups[END_REF][START_REF] Van Buskirk | Braid groups of compact 2-manifolds with elements of finite order[END_REF] (see Section 4.1). (b) Let T 2 denote the 2-torus. Then ZpB n pT 2 qq is free Abelian of rank 2 [START_REF] Birman | Braids, links and mapping class groups[END_REF][START_REF] Paris | Geometric subgroups of surface braid groups Ann[END_REF].

Apart from these cases and a few other exceptions, most surface braid groups have trivial centre. With the aid of Corollary 9, one may once more use the short exact sequences ( 2) and [START_REF] Bartels | The K-theoretic Farrell-Jones conjecture for hyperbolic groups[END_REF] to prove the following: Proposition 17 ([71, 136]). Let M be a compact surface different from the disc and the sphere whose fundamental group has trivial centre. Then for all n ě 1, ZpB n pMqq is trivial.

Remark 18. The only compact surfaces whose fundamental group does not have trivial centre are the real projective plane, the annulus, the torus, the Möbius band and the Klein bottle.

Embeddings of surface braid groups

One possible approach in the study of surface braid groups is to determine relationships between braid groups of different surfaces. The first result in this direction is the embedding of P n in P n pMq given by Proposition 4 and its extensions to non-orientable surfaces and to the full braid groups. The proof of Proposition 4 uses induction and the Fadell-Neuwirth short exact sequences ( 9) and [START_REF] Bartels | The K-theoretic Farrell-Jones conjecture for hyperbolic groups[END_REF].

Let N be a subsurface of M, and let m ě 0. Paris and Rolfsen studied the homomorphism B n pNq ÝÑ B n`m pMq of braid groups induced by inclusion of N in M, and gave necessary and sufficient conditions for it to be injective [START_REF] Paris | Geometric subgroups of surface braid groups Ann[END_REF]. In another direction, it is reasonable to ask whether it is possible to obtain embeddings of braid groups of surfaces that are not induced by inclusions (see [26, page 216, Problem 1] for example). The answer is affirmative in the case of covering spaces: Theorem 19 ([83]). Let M be a compact, connected surface, possibly with a finite set of points removed from its interior. Let d, n P N, and let Ă M be a d-fold covering space of M. Then the covering map induces an embedding of the n th braid group B n pMq of M in the dn th braid group B dn p Ă Mq of Ă M.

To prove Theorem 19, note that the inverse image of the covering map induces a map between the permuted configuration spaces of M and Ă M. By restricting first to F n pMq, one shows that this map induces the embedding mentioned in the statement of Theorem 19. Note however that the embedding does not restrict to the corresponding pure braid groups: the image of P n pMq is a subgroup of the 'mixed' subgroup π 1 `Fdn p Ă Mq{pS 2 ˆ¨¨¨ˆS 2 q ˘that is not contained in P dn p Ă Mq. Although the map in question appears at first sight to be very natural, to our knowledge, it does not seem to have been studied previously in the literature. Theorem 19 should prove to be useful in the analysis of the structure of surface braid groups. As examples of this, one may deduce the linearity of the braid and mapping class groups of RP 2 (see Section 3.8), and one may classify their finite subgroups (see Section 4.2). The following is an immediate consequence of Theorem 19: Corollary 20. Let n P N. The n th braid group of a non-orientable surface embeds in the 2n th braid group of its orientable double covering. In particular, B n pRP 2 q embeds in B 2n pS 2 q.

Using the covering map, one may write down explicitly the images in B 2n pS 2 q of elements of B n pRP 2 q. In this case, we see once more that such an embedding does not restrict to an embedding of the corresponding pure braid subgroups since if n ě 2, P n pRP 2 q has torsion 4 (see Proposition 38(b)), while P 2n pS 2 q has torsion 2 (see Proposition 34). Corollary 20 (and Theorem 19 in a more general context) would seem to be a significant step towards the resolution of the problem of Birman mentioned above concerning the relationship between the braid groups of a non-orientable surface and those of its orientable double covering.

Braid combing and the splitting problem

Let n ě 2 and M " R 2 , and consider the short exact sequence [START_REF] Bartels | The K-theoretic Farrell-Jones conjecture for hyperbolic groups[END_REF]:

1 ÝÑ F n´1 ÝÑ P n p n# ÝÑ P n´1 ÝÑ 1, (20) 
where we set p n# " pp n,n´1 q #1 and we identify F n´1 naturally with the free group Ker pp n# qπ 1 pR 2 zQ n´1 , x n q, where tx n u " Q n zQ n´1 . Recall that geometrically, p n# 'forgets' the n th string of a braid in P n , and using Proposition 11, it may be seen easily that p n# admits a section s n# : P n´1 ÝÑ P n given geometrically by adding a vertical string (in terms of the generators of Proposition 11, s n# maps A i,j , 1 ď i ă j ď n ´1, considered as an element of P n´1 to A i,j , considered as an element of P n ). It follows that P n is isomorphic to the semidirect product F n´1 ¸ϕ P n´1 , where the action ϕ is given by conjugation via s n# . By induction on n, P n may be written as an iterated semi-direct product of free groups, known as the Artin normal form:

P n -F n´1 ¸Fn´2 ¸¨¨¨¸F 2 ¸F1 . ( 21 
)
The procedure for obtaining the Artin normal form of a pure braid β is known as Artin combing, and involves writing β in the form β " β n´1 ¨¨¨β 1 , where β i P F i . Since this expansion is unique and the word problem in free groups is soluble, this yields a (finite) algorithm to solve the word problem in P n . Furthermore, P n is of finite index in B n , and it is then an easy matter to solve the word problem in B n also. The decomposition ( 21) is one of the fundamental results in classical braid theory, and is frequently used to prove assertions about P n by induction, such as the study of the lower central series and the residual nilpotence of P n [START_REF] Farrell | The Whitehead groups of braid groups vanish, Internat[END_REF], the bi-orderability of P n (see Theorem 30) and the fact that P n is poly-free (see Section 5.2). Another application is obtained by taking M " R 2 and r " 2 in the short exact sequence [START_REF] Bardakov | Brunnian braids on surfaces[END_REF], and using Theorem 15 and the fact that the projection pp n,2 q # : P n ÝÑ P 2 sends ∆ 2 n to the generator ∆ 2 2 of P 2 :

Proposition 21 ([71]). Let n ě 3. Then P n -P n´2 pR 2 zQ 2 q ˆZ.

The problem of deciding whether a decomposition of the form ( 21) exists for surface braid groups is thus fundamental. This was indeed a recurrent and central question during the foundation of the theory and its subsequent development during the 1960's [START_REF] Birman | On braid groups[END_REF][START_REF] Fadell | Homotopy groups of configuration spaces and the string problem of Dirac[END_REF][START_REF] Fadell | Configuration spaces[END_REF][START_REF] Fadell | The braid groups of E 2 and S 2[END_REF][START_REF] Van Buskirk | Braid groups of compact 2-manifolds with elements of finite order[END_REF]]. An interesting and natural question, to which we shall refer henceforth as the splitting problem, is that of whether the short exact sequences ( 9)-( 12) split. Clearly, the existence of a geometric cross-section on the level of configuration spaces implies that of a section on the algebraic level, and in most cases the converse is true. Indeed, if M is aspherical, this follows from [START_REF] Baues | Obstruction theory on homotopy classification of maps[END_REF][START_REF] Whitehead | Elements of homotopy theory[END_REF], while if M " S 2 or RP 2 , one may consult [START_REF] Gonçalves | The braid groups of the projective plane[END_REF][START_REF] Gonçalves | The braid group B n,m pS 2 q and the generalised Fadell-Neuwirth short exact sequence[END_REF]. We sum up the situation as follows.

Proposition 22. Let M be a compact, connected surface (so m " 0 in equation ( 9)). Let 1 ď r ă n, and suppose that r ě 3 if M " S 2 and r ě 2 if M " RP 2 . Then the Fadell-Neuwirth fibration p n,r : F n pMq ÝÑ F r pMq (resp. q n,r : F n pMq{pS r ˆSn´r q ÝÑ D r pMq) admits a cross-section if and only if the short exact sequence (9) (resp. ( 12)) splits.

In the case of the pure braid groups, the splitting problem for (9) has been studied for other surfaces besides the plane. Fadell and Neuwirth gave various sufficient conditions for the existence of a geometric section for p n,r [START_REF] Fadell | Configuration spaces[END_REF]. If m ě 1 (or if BM ‰ ∅) then p n,r always admits a cross-section, and hence pp n,r q #1 does too [START_REF] Gonçalves | On the structure of surface pure braid groups[END_REF][START_REF] Gonçalves | Braid groups of non-orientable surfaces and the Fadell-Neuwirth short exact sequence[END_REF]. So suppose that m " 0. If M " S 2 and r ě 3, p n,r admits a cross-section [START_REF] Fadell | The braid groups of E 2 and S 2[END_REF], and thus the short exact sequence (10) splits. In the case M " RP 2 , Van Buskirk showed that the fibration p 3,2 admits a cross-section [START_REF] Van Buskirk | Braid groups of compact 2-manifolds with elements of finite order[END_REF] (and hence so does the corresponding homomorphism pp 3,2 q #1 ), but that for n ě 2, neither the fibration p n,1 nor the homomorphism pp n,1 q #1 admit a section (this is one of the cases not covered by Proposition 22), this being a consequence of the fact that RP 2 has the fixed point property. If M is the 2-torus then Birman exhibited an explicit cross-section for p n,n´1 if n ě 2 [START_REF] Birman | On braid groups[END_REF], which implies that the short exact sequence [START_REF] Bartels | The K-theoretic Farrell-Jones conjecture for hyperbolic groups[END_REF] splits for all n. This implies that [START_REF] Bardakov | Brunnian braids on surfaces[END_REF] splits for all 1 ď r ă n. In the case of orientable surfaces without boundary of genus at least two, the question of the splitting of [START_REF] Bartels | The K-theoretic Farrell-Jones conjecture for hyperbolic groups[END_REF] was posed explicitly by Birman in 1969 [START_REF] Birman | On braid groups[END_REF], and was finally answered in [START_REF] Gonçalves | On the structure of surface pure braid groups[END_REF]: Theorem 23 ([70]). If M is a compact orientable surface without boundary of genus g ě 2, the short exact sequence [START_REF] Bardakov | Brunnian braids on surfaces[END_REF] splits if and only if r " 1.

For the remaining cases, the problem was studied in a series of papers [START_REF] Gonçalves | The braid groups of the projective plane[END_REF][START_REF] Gonçalves | The braid group B n,m pS 2 q and the generalised Fadell-Neuwirth short exact sequence[END_REF][START_REF] Gonçalves | The braid groups of the projective plane and the Fadell-Neuwirth short exact sequence[END_REF], and a complete solution to the splitting problem for [START_REF] Bardakov | Brunnian braids on surfaces[END_REF] was given in [START_REF] Gonçalves | Braid groups of non-orientable surfaces and the Fadell-Neuwirth short exact sequence[END_REF]: Theorem 24 ([79]). Let 1 ď r ă n and m ě 0, and let M be a connected surface. (a) If m ą 0 or if M has non-empty boundary then pp n,r q #1 admits a section. (b) Suppose that m " 0 and that BM " ∅. Then pp n,r q #1 admits a section if and only if one of the following conditions holds: (i) M " S 2 , the 2-torus T 2 or the Klein bottle K 2 . (ii) M " RP 2 , n " 3 and r " 2.

(iii) M ‰ RP 2 , S 2 , T 2 , K 2 and r " 1.

To obtain a positive answer to the splitting problem, it suffices of course to exhibit an explicit section. However, in general it is very difficult to prove directly that the (generalised) Fadell-Neuwirth short exact sequences do not split. One of the principal methods that was used in the proof of Theorem 24 is based on the following observation: let G be a group, and let K, H be normal subgroups of G such that H is contained in K. If the extension 1 ÝÑ K ÝÑ G ÝÑ Q ÝÑ 1 splits then so does the extension 1 ÝÑ K{H ÝÑ G{H ÝÑ Q ÝÑ 1. The condition on H is satisfied for example if H is an element of either the lower central series pΓ i pKqq iPN or of the derived series of K. In many parts of the proof of Theorem 24, it suffices to take H " Γ 2 pKq, in which case K{H is the Abelianisation of K, to show that this second extension does not split, which then implies that the first extension does not split.

From the point of view of the splitting problem, it is thus helpful to know the lower central and derived series of the braid groups occurring in these group extensions. These series have been calculated in many cases [START_REF] Bellingeri | Lower central series of Artin-Tits and surface braid groups[END_REF][START_REF] Bellingeri | Exact sequences, lower central series and representations of surface braid groups[END_REF][START_REF] Gonçalves | The lower central and derived series of the braid groups of the sphere[END_REF][START_REF] Gonçalves | The lower central and derived series of the braid groups of the finitely-punctured sphere[END_REF][START_REF] Gonçalves | The lower central and derived series of the braid groups of the projective plane[END_REF][START_REF] Gorin | Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids[END_REF]. The splitting problem for the generalised Fadell-Neuwirth short exact sequence [START_REF] Bartels | On the Farrell-Jones conjecture and its applications[END_REF] has been studied in the case M " S 2 [START_REF] Gonçalves | The braid group B n,m pS 2 q and the generalised Fadell-Neuwirth short exact sequence[END_REF].

Homotopy type of the configuration spaces of S 2 and RP 2 and periodicity

As we saw in Theorem 7(a), the configuration spaces of surfaces different from S 2 and RP 2 are Eilenberg-Mac Lane spaces of type Kpπ, 1q. For the two exceptional cases of S 2 and RP 2 , the situation is very different, and in view of the relation with the homotopy groups of S 2 (and S 3 ), motivates the study of their configuration spaces. In the case of S 2 , the following proposition may be found in [START_REF] Bödigheimer | Mapping class groups and function spaces, Homotopy methods in algebraic topology[END_REF][START_REF] Feichtner | The integral cohomology algebras of ordered configuration spaces of spheres[END_REF]. An alternative proof was given in [START_REF] Gonçalves | The classification of the virtually cyclic subgroups of the sphere braid groups[END_REF].

Proposition 25 ([29, 64]).

(a) The space F 2 pS 2 q (resp. D 2 pS 2 q) has the homotopy type of S 2 (resp. of RP 2 ). Hence the universal covering space of D 2 pS 2 q is F 2 pS 2 q. (b) If n ě 3, the universal covering space of F n pS 2 q or of D n pS 2 q has the homotopy type of the 3-sphere S 3 .

A similar result holds for the configuration spaces of RP 2 :

Proposition 26 ([72]).

(a) The universal covering of F 1 pRP 2 q is S 2 . (b) For n ě 2, the universal covering space of F n pRP 2 q or of D n pRP 2 q has the homotopy type of S 3 .

Suppose that n ě 3 if M " S 2 and that n ě 2 if M " RP 2 . From Propositions 25 and 26, the universal covering space X of F n pMq is a finite-dimensional complex that has the homotopy type of S 3 . Thus any finite subgroup of B n pMq acts freely on X, and so has period 2 or 4 by [33, Proposition 10.2, Section 10, Chapter VII]. It thus follows that such a subgroup must be one of the subgroups that appear in the Suzuki-Zassenhaus classification of periodic groups [START_REF] Adem | Cohomology of finite groups[END_REF]. We shall come back to the finite subgroups of B n pMq in Section 4.2. Using results of [2, Section 2] allows one to obtain a periodicity result for any subgroup of B n pMq: Proposition 27 ([85]). Let M " S 2 or RP 2 , let n ě 3 if M " S 2 and n ě 2 if M " RP 2 , and let G be a group abstractly isomorphic to a subgroup of B n pMq. Then there exists r 0 ě 1 such that H r pG; Zq -H r`4 pG; Zq for all r ě r 0 .

The connections between surface braid groups and the homotopy groups of S 2 do not end there. If M is a surface, recall that an element of P n pMq is said to be Brunnian if it becomes trivial after removing any one of its n strings. The subgroup Brun n pMq of Brunnian braids may thus be seen to be the intersection Ş n i"1 Ker pd i : P n pMq ÝÑ P n´1 pMqq, where d i corresponds geometrically to removing the i th string. The study of the homomorphisms d i allows one to introduce a simplicial structure on the pure braid groups of M. In this way, the following result was proved in [START_REF] Berrick | Configurations, braids, and homotopy groups[END_REF]: Theorem 28 ([21]). Let n ě 4. Then there is an exact sequence of the form:

1 ÝÑ Brun n`2 pS 2 q ÝÑ Brun n`1 pD 2 q ÝÑ Brun n`1 pS 2 q ÝÑ π n pS 2 q ÝÑ 1.

Theorem 28 has been generalised in some sense to RP 2 in [START_REF] Bardakov | Brunnian braids on surfaces[END_REF], and to other surfaces in [START_REF] Uribe | Grupos de tranças brunnianas[END_REF]. The hope is that one might understand better the homotopy groups of S 2 using the structure of Brunnian braid groups.

Orderability

A group G is said to be left orderable (resp. right orderable) if it admits a total ordering ă that is invariant under left (resp. right) multiplication in G. In other words, @x, y, z P G, x ă y ùñ zx ă zy (resp. x ă y ùñ xz ă yz).

Any left ordering may be converted into a right ordering by considering inverses of elements, but the two orderings will in general be different. A group is said to be biorderable if there exists a total ordering ă for which G is both right and left orderable. The classes of left orderable and biorderable groups are closed under subgroups, direct products and free products (so free groups are biorderable), and that the class of left orderable groups is also closed under extensions. It is an easy exercise to show that a left orderable group is torsion free. Further, a biorderable group has no generalised torsion (a group G is said to have generalised torsion if there exist g, h 1 , . . . , h k P G, g ‰ 1, such that h 1 gh ´1 1 ¨¨¨h k gh ´1 k " 1).

One of the most exciting developments over the past twenty years in the theory of braid groups is the discovery of Dehornoy [START_REF] Dehornoy | Braid groups and left distributive operations[END_REF], using some deep results in set theory, that B n is left orderable: Theorem 29 (Dehornoy [45,[START_REF] Dehornoy | Ordering braids[END_REF]112,[START_REF] Kassel | Braid groups[END_REF]). B n is left orderable.

Theorem 29 thus yields an alternative proof of Corollary 9, that is, B n is torsion free. In the wake of Dehornoy's paper, a group of topologists came up with a different way of interpreting his ordering of B n in terms of MCGpD 2 , nq [START_REF] Fenn | Ordering the braid groups[END_REF]. Short and Wiest described another approach due to Thurston using the action of the mapping class group on the hyperbolic plane which in fact defines uncountably many different orderings on B n [START_REF] Short | Orderings of mapping class groups after Thurston[END_REF]. The reader is referred to the monograph [START_REF] Dehornoy | Ordering braids[END_REF] for a full description of these different points of view, as well as to [START_REF] Kassel | Braid groups[END_REF]Chapter 7]. These results have led to renewed interest in orderable groups, notably in the case of 3-manifold groups [START_REF] Boyer | Orderable 3-manifold groups[END_REF].

If n ě 3 then B n is not biorderable since it has generalised torsion. Indeed, by equation [START_REF] Bellingeri | Lower central series of Artin-Tits and surface braid groups[END_REF], we have ∆ n pσ ´1 n´1 σ 1 q∆ ´1 n " pσ ´1 n´1 σ 1 q ´1. However:

Theorem 30 (Falk and Randell, Kim and Rolfsen [START_REF] Dehornoy | Ordering braids[END_REF][START_REF] Falk | The lower central series of a fiber-type arrangement[END_REF][START_REF] Kassel | Braid groups[END_REF][START_REF] Kim | An ordering for groups of pure braids and fibre-type hyperplane arrangements[END_REF][START_REF] Rolfsen | Braids, orderings and zero divisors[END_REF]). P n is biorderable.

Falk and Randell's result is a consequence of the residual nilpotence of P n , and the fact that its lower central series quotients are torsion free. Kim and Rolfsen's proof gives an explicit biordering, and makes use of equation ( 20) and an ordering emanating from the Magnus expansion of free groups.

Theorems 29 and 30 motivated the study of the (bi)orderability of surface braid groups. We summarise the known results as follows.

(a) Since the braid groups of the S 2 and RP 2 have torsion (see Remark 16 and Section 4.1), they are not left orderable. (b) As was pointed out in [START_REF] Rolfsen | Free group automorphisms, invariant orderings and topological applications[END_REF], the short exact sequence [START_REF] Bartels | The K-theoretic Farrell-Jones conjecture for hyperbolic groups[END_REF] implies that the braid groups of any compact surface different from S 2 and RP 2 are left orderable. Pure braid groups of compact, orientable surfaces without boundary of genus g ě 1 are biorderable [START_REF] González-Meneses | Ordering pure braid groups on closed surfaces[END_REF]: the proof makes use of the short exact sequence (3). Pure braid groups of compact, non-orientable surfaces without boundary of genus g ě 2 have generalised torsion, and so are not biorderable, but are left orderable [START_REF] González-Meneses | Ordering pure braid groups on closed surfaces[END_REF]. (c) If n ě 3 and M is a compact surface different from S 2 and RP 2 then the generalisation of Proposition 4 to B n pMq and the fact that B n is not biorderable imply that B n pMq is not biorderable. Using equation ( 5) and the fact that mapping class groups of surfaces with non-empty boundary are left orderable [START_REF] Rourke | Order automatic mapping class groups[END_REF], it follows that the braid groups of any surface with boundary are left orderable. If M is without boundary and n ě 2 then it seems to be an open question as to whether B n pMq is left orderable.

Linearity

A group is said to be linear if it admits a faithful representation in a multiplicative group of matrices over some field. The linearity of the braid groups is a classical problem (see [24, page 220, Problem 30] and [9, Question 1] for example). Krammer [START_REF] Krammer | The braid group B 4 is linear[END_REF][START_REF] Krammer | Braid groups are linear[END_REF] and Bigelow [START_REF] Bigelow | Braid groups are linear[END_REF] showed that B n is linear. The question of the linearity of surface braid groups has been the subject of various papers during the last few years [START_REF] Bardakov | Linear representations of the group of conjugating automorphisms and the braid groups of some manifolds[END_REF][START_REF] Bardakov | Linear representations of the braid groups of some manifolds[END_REF][START_REF] Bigelow | Braid groups are linear[END_REF][START_REF] Birman | Braids: a survey[END_REF][START_REF] Korkmaz | On the linearity of certain mapping class groups[END_REF]. The linearity of MCGpS 2 , nq was proved in [START_REF] Bardakov | Linear representations of the group of conjugating automorphisms and the braid groups of some manifolds[END_REF][START_REF] Bardakov | Linear representations of the braid groups of some manifolds[END_REF][START_REF] Birman | Braids: a survey[END_REF][START_REF] Korkmaz | On the linearity of certain mapping class groups[END_REF], and that of B n pS 2 q was obtained in [START_REF] Bardakov | Linear representations of the group of conjugating automorphisms and the braid groups of some manifolds[END_REF][START_REF] Bardakov | Linear representations of the braid groups of some manifolds[END_REF][START_REF] Birman | Braids: a survey[END_REF]. If n " 1 then we are in the case of surface groups, which are known to be linear for any surface M. If n ď 2 then B n pRP 2 q is linear because it is finite, while B 3 pRP 2 q is known to be isomorphic to a subgroup of GLp96, Zq [START_REF] Bardakov | Linear representations of the braid groups of some manifolds[END_REF]. With the help of Corollary 20 and the short exact sequence (6), we have the following results.

Theorem 31 ([83]). Let n P N. (a) Let M be a compact, connected surface, possibly with boundary, of genus zero if M is orientable, and of genus one if M is non-orientable. Then B n pMq is linear. (b) The mapping class groups MCGpRP 2 , nq are linear. (c) Let T 2 denote the 2-torus, and let x P T 2 . Then B n`1 pT 2 q is linear if and only if B n pT 2 z txuq is linear. Consequently, B 2 pT 2 q is linear.

In particular, the braid groups of RP 2 and the Möbius band are linear. To our knowledge, very little is known about the linearity of braid groups of other surfaces.

Braid groups of the sphere and the projective plane

Together with the braid groups of RP 2 , the braid groups of S 2 are of particular interest, notably because they have non-trivial centre (see Proposition 33), and torsion (see Theorem 35). In Section 4.1, we begin by recalling some of their basic properties, including the characterisation of their torsion elements. In Section 4.2, we give the classification of the isomorphism classes of their finite subgroups, and in Section 4.3, this is extended to the isomorphism classes of the virtually cyclic subgroups of their pure braid groups and of B n pS 2 q. As well as being interesting in their own right, these results play an important rôle in the determination of the lower algebraic K-theory of the group rings of the braid groups of these two surfaces (see Section 5). From this point of view, it is also necessary to have a good understanding of the conjugacy classes of the finite order elements and the finite subgroups.

Basic properties

In this section, we recall briefly some of the basic properties of the braid groups of S 2 and RP 2 . We first consider B n pS 2 q. The reader may consult [51, 54, 68, 71, 151] for more details. Consider the group homomorphism j # : B n ÝÑ B n pS 2 q of Section 2.3 induced by an inclusion j : D 2 ÝÑ S 2 . If β P B n then we shall denote its image j # pβq simply by β. A presentation of B n pS 2 q is as follows: Theorem 32 ([54]). The following constitutes a presentation of the group B n pS 2 q: generators: σ 1 , . . . , σ n´1 . relations: (i) relations ( 13) and ( 14). (ii) the 'surface relation' of B n pS 2 q:

σ 1 ¨¨¨σ n´2 σ 2 n´1 σ n´2 ¨¨¨σ 1 " 1. ( 22 
)
The surface relation may be seen geometrically to indeed represent the trivial element of B n pS 2 q (see [131, page 194] for example). It follows from Theorem 32 that B n pS 2 q is a quotient of B n , and that its Abelianisation is isomorphic to Z 2pn´1q . The first three sphere braid groups are finite: B 1 pS 2 q is trivial, B 2 pS 2 q is cyclic of order 2, and B 3 pS 2 q is isomorphic to Z 3 ¸Z4 , the action being the non-trivial one. For n ě 4, B n pS 2 q is infinite. Just as for the Artin braid groups, the full twist braid of B n pS 2 q plays an important part, and has some interesting additional properties.

Proposition 33 ([68, 71]). Let n ě 3. Then: (a) ∆ 2 n is the unique element in P n pS 2 q of finite order, and is the unique element of B n pS 2 q of order 2. (b) ∆ 2 n generates the centre ZpB n pS 2 qq of B n pS 2 q.

Taking M " S 2 , m " 0 and r " 3 in the short exact sequence (9) and applying an argu- ment similar to that used in the proof of Proposition 21 yields: Proposition 34 ([71]). Let n ě 4. Then P n pS 2 q -P n´3 pS 2 zQ 3 q ˆZ2 . From this and Proposition 17, it follows that ZpP n pS 2 qq " @ ∆ 2 n D for all n ě 4.

Let n ě 3. Fadell and Van Buskirk showed that the element α 0 " σ 1 ¨¨¨σ n´2 σ n´1 is of order 2n in B n pS 2 q [54]. Gillette and Van Buskirk later proved that if k P N then B n pS 2 q has an element of order k if and only if k divides one of 2n, 2pn ´1q or 2pn ´2q [START_REF] Gillette | The word problem and consequences for the braid groups and mapping class groups of the 2-sphere[END_REF]. Using Seifert fibre space theory, Murasugi characterised the finite order elements of B n pS 2 q and B n pRP 2 q. In the case of the sphere, B n pS 2 q, up to conjugacy and powers, there are precisely three torsion elements: Theorem 35 ([130]). Let n ě 3. Then the torsion elements of B n pS 2 q are precisely the conjugates of powers of the three elements α 0 , α 1 " σ 1 ¨¨¨σ n´2 σ 2 n´1 and α 2 " σ 1 ¨¨¨σ n´3 σ 2 n´2 , which are of order 2n, 2pn ´1q and 2pn ´2q respectively.

Theorem 35 implies Gillette and Van Buskirk's result, and in conjunction with Proposition 33(a), yields the useful relation:

∆ 2 n " α n´i i for all i P t0, 1, 2u, (23) 
which implies that α i is an pn ´iq th root of ∆ 2 n . Since the permutation τ n pα i q consists of an pn ´iq-cycle and i fixed elements, we see that the α i are pairwise non conjugate. One interesting fact about the group B n pS 2 q is that it is generated by α 0 and α 1 [START_REF] Gonçalves | The braid group B n,m pS 2 q and the generalised Fadell-Neuwirth short exact sequence[END_REF], and so is torsion generated in the sense of [START_REF] Gonçalves | Minimal generating and normally generating sets for the braid and mapping class groups of the disc, the sphere and the projective plane[END_REF]. Equations ( 18)-( 19) also hold in B n pS 2 q, and more generally, for i P t0, 1, 2u we have [START_REF] Gonçalves | The classification of the virtually cyclic subgroups of the sphere braid groups[END_REF]: α l i σ j α ´l i " σ j`l for all j, l P N satisfying j `l ď n ´i ´1,

σ 1 " α 2 i σ n´i´1 α ´2 i (24) 
in B n and so also in B n pS 2 q, in other words, conjugation by α i permutes the n ´i elements σ 1 , . . . , σ n´i´1 , α i σ n´i´1 α ´1 i cyclically. These relations prove to be very useful in the study of the finite and virtually cyclic subgroups of B n pS 2 q. We now turn to the braid groups of the projective plane. Some basic references are [START_REF] Gonçalves | The roots of the full twist for surface braid groups[END_REF][START_REF] Gonçalves | The braid group B n,m pS 2 q and the generalised Fadell-Neuwirth short exact sequence[END_REF][START_REF] Gonçalves | The Borsuk-Ulam theorem for maps into a surface[END_REF][START_REF] Gonçalves | The lower central and derived series of the braid groups of the projective plane[END_REF][START_REF] Van Buskirk | Braid groups of compact 2-manifolds with elements of finite order[END_REF]. We first recall a presentation of B n pRP 2 q due to Van Buskirk [START_REF] Van Buskirk | Braid groups of compact 2-manifolds with elements of finite order[END_REF]: Theorem 36 ([151]). The following constitutes a presentation of the group B n pRP 2 q: generators: σ 1 , . . . , σ n´1 , ρ 1 , . . . , ρ n . relations: (i) relations ( 13) and ( 14). (ii) σ i ρ j " ρ j σ i for j ‰ i, i `1.

(iii) ρ i`1 " σ ´1 i ρ i σ ´1 i for 1 ď i ď n ´1. (iv) ρ ´1 i`1 ρ ´1 i ρ i`1 ρ i " σ 2 i for 1 ď i ď n ´1. (v) ρ 2 1 " σ 1 σ 2 ¨¨¨σ n´2 σ 2 n´1 σ n´2 . . . σ 2 σ 1 .
Each of the generators ρ i corresponds geometrically to an element of the fundamental group of RP 2 based at the i th basepoint. A presentation of P n pRP 2 q was given in [START_REF] Gonçalves | The braid group B n,m pS 2 q and the generalised Fadell-Neuwirth short exact sequence[END_REF]. From these presentations, we see that the first two braid groups of RP 2 are finite: B 1 pRP 2 q " P 1 pRP 2 q -Z 2 , P 2 pRP 2 q is isomorphic to the quaternion group Q 8 of order 8, and B 2 pRP 2 q is isomorphic to the generalised quaternion group of order 16 [START_REF] Van Buskirk | Braid groups of compact 2-manifolds with elements of finite order[END_REF]. For n ě 3, B n pRP 2 q is infinite. If n ě 2, the Abelianisation of B n pRP 2 q is Z 2 2 , while that of P n pRP 2 q is Z n 2 . If M " RP 2 and m " 0, the map p 3,2 of equation ( 7) admits a geometric section given by taking the vector product of two directions, and so by equation ( 10), P 3 pRP 2 q is isomorphic to a semi-direct product of a free group of rank 2 by Q 8 [START_REF] Van Buskirk | Braid groups of compact 2-manifolds with elements of finite order[END_REF]; an explicit action was given in [START_REF] Gonçalves | The roots of the full twist for surface braid groups[END_REF][START_REF] Gonçalves | The lower central and derived series of the braid groups of the projective plane[END_REF].

We recall that the virtual cohomological dimension of a group is equal to the (common) cohomological dimension of its torsion-free subgroups of finite index [33, page 226]. As an application of the Fadell-Neuwirth short exact sequence [START_REF] Bardakov | Brunnian braids on surfaces[END_REF], Proposition 34 and the fact that P 2 pRP 2 q -Q 8 , one may compute the virtual cohomological dimension of the braid groups of S 2 and RP 2 : Proposition 37 ([86]). Let M be equal to S 2 (resp. RP 2 ), and let n ě 3 (resp. n ě 2). Then the virtual cohomological dimension of B n pMq and of P n pMq is equal to n ´3 (resp. n ´2).

For n ě 2, Murasugi showed that ∆ 2 n generates the centre of B n pRP 2 q [130]. The following proposition summarises some other basic results concerning the torsion of the braid groups of RP 2 .

Proposition 38 ([71, 81]). Let n ě 2. Then: (a) B n pRP 2 q has an element of order k if and only if k divides either 4n or 4pn ´1q. (b) the (non-trivial) torsion of P n pRP 2 q is precisely 2 and 4. (c) the full twist ∆ 2 n is the unique element of B n pRP 2 q of order 2. If M " S 2 or RP 2 , it follows from Propositions 33 and 38 that the kernel of the short exact sequence ( 6) is generated by ∆ 2 n . In [71, Proposition 26], it was proved that the following elements of B n pRP 2 q:

a " σ ´1 n´1 ¨¨¨σ ´1 1 ρ 1 b " σ ´1 n´2 ¨¨¨σ ´1
1 ρ 1 are of order 4n and 4pn ´1q respectively. By [71, Remark 27], we have

# α " a n " ρ n ¨¨¨ρ 1 β " b n´1 " ρ n´1 ¨¨¨ρ 1 . ( 26 
)
It is clear that α and β are pure braids of order 4. The finite order elements of B n pRP 2 q had previously been characterised in [START_REF] Murasugi | Seifert fibre spaces and braid groups[END_REF], but the results are less transparent than in the case of S 2 given by Theorem 35. For example, it is not clear what the orders of the given torsion elements are, even for elements of P n pRP 2 q. In [80], Murasugi's characterisation was simplified somewhat as follows.

Theorem 39 ([80]). Let n ě 2, and let x P B n pRP 2 q. Then x is of finite order if and only if there exist i P t1, 2u and 0 ď r ď n `1 ´i such that x is a power of a conjugate of the following element:

pρ r σ r´1 ¨¨¨σ 1 q 2r{l pσ r`1 ¨¨¨σ n´1 σ i´1 r`1 q p{l ( 27 
)
where p " pn `1 ´iq ´r and l " gcdpp, 2rq. Further, this element is of order 2l.

Using Theorem 36, one may check that the element a (resp. b) is one of the above elements by taking r " n and i " 1 (resp. r " n ´1 and i " 2). The permutation and the Abelianisation may be used to distinguish the conjugacy classes of the elements given by equation [START_REF] Birman | Mapping class groups of surfaces[END_REF]. The following result gives information about the conjugacy classes and the centralisers of elements of P n pRP 2 q of order 4: Proposition 40 ([80]). Let n ě 2, and let x P P n pRP 2 q be an element of order 4. (a) In B n pRP 2 q, x is conjugate to an element of α, β, α ´1, β ´1( . (b) The centraliser Z P n pRP 2 q pxq of x in P n pRP 2 q is equal to xxy.

It was shown in [START_REF] Gonçalves | Minimal generating and normally generating sets for the braid and mapping class groups of the disc, the sphere and the projective plane[END_REF] that if n ě 2, there are pn ´2q! p2n ´1q conjugacy classes of elements of order 4 in P n pRP 2 q (there is a misprint in the statement of [START_REF] Gonçalves | Minimal generating and normally generating sets for the braid and mapping class groups of the disc, the sphere and the projective plane[END_REF]Proposition 11], B n pRP 2 q should read P n pRP 2 q). The analysis of the conjugacy classes of finite order elements of B n pRP 2 q is the subject of work in progress [START_REF] Gonçalves | Conjugacy classes of finite subgroups of the braid groups of the projective plane[END_REF].

The elements a and b have some interesting properties that mirror those of equations ( 24)-( 25) that may be used to study the structure of B n pRP 2 q. From [71, pages 777-778], conjugation by a ´1 permutes cyclically the elements of the following sets:

! σ 1 , . . . , σ n´1 , a ´1σ n´1 a, σ ´1 1 , . . . , σ ´1 n´1 , a ´1σ ´1 n´1 a
) and

! ρ 1 , . . . ρ n , ρ ´1 1 , . . . , ρ ´1 n ) ,
and conjugation by b ´1 permutes cyclically the following elements:

σ 1 , . . . , σ n´2 , b ´1σ n´2 b, σ ´1 1 , . . . , σ ´1 n´2 , b ´1σ ´1 n´1 b.
Note that there is a typographical error in line 16 of [71, page 778]: it should read '. . . shows that b ´2σ n´2 b 2 " σ ´1 1 . . . ', and not '. . . shows that b ´2σ n´1 b 2 " σ ´1 1 . . . '. By [83, pages 865-866], we also have that:

∆ n a∆ ´1 n " a ´1 and p∆ n a ´1qbpa∆ ´1 n q " b ´1 for all i " 1, . . . , n ´1.

(
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As for S 2 , such relations are very useful in the study of the finite and virtually cyclic subgroups of B n pRP 2 q.

Finite subgroups of the braid groups of S 2 and RP 2

We start by considering the pure braid groups of S 2 and RP 2 . In the case of P n pS 2 q, there are only two finite subgroups for n ě 3 by Proposition 34, the trivial group teu and that generated by the full twist ∆ 2 n . In the case of P n pRP 2 q, there are more possibilities:

Proposition 41 ([80]). Up to isomorphism, the maximal finite subgroups of P n pRP 2 q are:

(a) Z 2 if n " 1. (b) Q 8 if n " 2, 3. (c) Z 4 if n ě 4.
As we mentioned above, in Proposition 40, we know the numebr of conjugacy classes of the elements of P n pRP 2 q of order 4, both in P n pRP 2 q and in B n pRP 2 q.

We now turn to B n pS 2 q and B n pRP 2 q. The results of Theorem 35 and Proposition 38 imply that we know the isomorphism classes of their finite cyclic subgroups. This leads naturally to the question as to which isomorphism classes of finite groups are realised as subgroups of these two groups. From [START_REF] Gonçalves | The braid group B n,m pS 2 q and the generalised Fadell-Neuwirth short exact sequence[END_REF], if n ě 3 then B n pS 2 q contains an isomorphic copy of the finite group B 3 pS 2 q of order 12 if and only if n ı 1 mod 3. During the study of the lower central series of B n pS 2 q, it was observed that the commutator subgroup Γ 2 `B4 pS 2 q ˘of B 4 pS 2 q is isomorphic to a semi-direct product of Q 8 by a free group of rank 2 [START_REF] Gonçalves | The lower central and derived series of the braid groups of the sphere[END_REF] (see also [START_REF] Guaschi | The lower algebraic K-theory of the braid groups of the sphere[END_REF]). The question of the realisation of Q 8 as a subgroup of B n pS 2 q was posed explicitly by R. Brown [START_REF]Algebraic topology discussion list[END_REF] in connection with the Dirac string problem and the fact that the fundamental group of SOp3q is isomorphic to Z 2 [51, 99, 132]. The existence of a subgroup of B 4 pS 2 q isomorphic to Q 8 was studied by J. G. Thompson [START_REF] Thompson | Note on Hp4q[END_REF]. It was shown in [START_REF] Gonçalves | The quaternion group as a subgroup of the sphere braid groups[END_REF] that if n ě 3, B n pS 2 q contains a subgroup isomorphic to Q 8 if and only if n is even. The construction of Q 8 given in [START_REF] Gonçalves | The quaternion group as a subgroup of the sphere braid groups[END_REF] may be generalised. If m ě 2, let Dic 4m denote the dicyclic group of order 4m. It admits a presentation of the form:

A x, y x m " y 2 , yxy ´1 " x ´1 E . ( 29 
)
If in addition m is a power of 2 then we will refer to the dicyclic group of order 4m as the generalised quaternion group of order 4m, and denote it by Q 4m . For example, if m " 2 then we obtain the usual quaternion group Q 8 . For i P t0, 2u, we have:

∆ n α 1 i ∆ ´1 n " α 1´1 i , where α 1 i " α 0 α i α ´1 0 " α i{2 0 α i α ´i{2 0 , ( 30 
)
and the group Dic 4pn´iq is realised in terms of the generators of B n pS 2 q by the subgroup I ˚) denote the binary tetrahedral group of order 24 (resp. the binary octahedral group of order 48, the binary icosahedral group of order 120). The groups T ˚, O ˚and I ˚, to which we refer collectively as the binary polyhedral groups, admit presentations of the form [START_REF] Coxeter | Regular complex polytopes[END_REF][START_REF] Coxeter | Generators and relations for discrete groups[END_REF]:

@ α 1 i , ∆ n D ,
xp, 3, 2y " A A, B A p " B 3 " pABq 2 E ,
where p " 3, 4, 5 respectively, and the element A p is central and is the unique element of order 2. The group T ˚also admits the following presentation [158, page 198]:

A P, Q, X X 3 " 1, P 2 " Q 2 , PQP ´1 " Q ´1, XPX ´1 " Q, XQX ´1 " PQ E , ( 31 
)
and thus T ˚is a semi-direct product of xP, Qy -Q 8 by xXy -Z 3 . Also, T ˚is abstractly a subgroup of O ˚and of I ˚. We refer the reader to [START_REF] Adem | Cohomology of finite groups[END_REF][START_REF] Coxeter | Regular complex polytopes[END_REF][START_REF] Coxeter | Generators and relations for discrete groups[END_REF][START_REF] Gonçalves | The classification of the virtually cyclic subgroups of the sphere braid groups[END_REF][START_REF] Wolf | Spaces of constant curvature[END_REF] for more properties of the binary polyhedral groups. One important property that they share with the family of cyclic and dicyclic groups is that they possess a unique element of order 2 (except for cyclic groups of odd order), which is a ramification of the fact that they are periodic in the sense of Section 3.6, and that in the non-cyclic case, this element generates the centre of the group. Further, the quotient by the unique subgroup of order 2 induces a correspondence between the family of even-order cyclic, dicyclic and binary polyhedral groups with the finite subgroups of SOp3q, the dicyclic group Dic 4m being associated with the dihedral group Dih 2m of order 2m, and T ˚, O ˚and I ˚being associated respectively with the polyhedral groups A 4 , S 4 and A 5 . Using Kerckhoff's solution to the Nielsen realisation problem, Stukow classified the isomorphism classes of the finite subgroups of MCGpS 2 , nq, showing that they are finite subgroups of SOp3q, with appropriate restrictions on n [START_REF] Stukow | Conjugacy classes of finite subgroups of certain mapping class groups, Seifert fibre spaces and braid groups[END_REF]. The analysis of equation ( 6) then leads to the complete classification of the isomorphism classes of the finite subgroups of B n pS 2 q.

Theorem 42 ([76]). Let n ě 3. The isomorphism classes of the maximal finite subgroups of B n pS 2 q are as follows:

(a) Z 2pn´1q if n ě 5.

(b) Dic 4n . (c) Dic 4pn´2q if n " 5 or n ě 7.

(d) T ˚if n " 4 mod 6.

(e) O ˚if n " 0, 2 mod 6.

(f) I ˚if n " 0, 2, 12, 20 mod 30.

The geometric realisation of the finite subgroups of B n pS 2 q may be obtained by letting the corresponding finite subgroup of MCGpS 2 , nq act by homeomorphisms on S 2 (see [76, Sec- tion 3.2] for more details). Concretely, consider the geometric definition given in Section 2.1. We visualise the space S 2 ˆr0, 1s as that confined between two concentric spheres (see [99, page 41] for example). For the (maximal) subgroups Dic 4n , Z 2pn´1q and Dic 4pn´2q , we attach strings, each representing the constant path in terms of the definition of Section 2.2, to n (resp. n ´1, n ´2) equally-spaced points on the equator, and 0 (resp. 1, 2) points at the poles. For T ˚, O ˚and I ˚, the n strings are attached symmetrically with respect to the associated regular polyhedron. We now let the corresponding finite subgroup of MCGpS 2 , nq act on the inner sphere as a group of homeomorphisms, so that the set of basepoints is left invariant globally. This yields a subgroup of B n pS 2 q, and one may check that it is exactly the given finite subgroup of Theorem 42. In particular, a complete rotation of the inner sphere gives rise to the full twist braid ∆ 2 n , and is a manifestation of the famous 'Dirac string trick' (see [START_REF] Fadell | Homotopy groups of configuration spaces and the string problem of Dirac[END_REF]Section 6], [99, page 43] or [123, page 628]).

Algebraic representations of some of the binary polyhedral groups have been found: see [76, Remarks 3.2 and 3.3] for realisations of T ˚in B 4 pS 2 q and B 6 pS 2 q. Note however that in the second case there is a misprint, and the expression for δ should read

δ " σ ´1 3 σ ´1 4 σ ´1 5 σ ´1 2 σ ´1 1 σ ´1 2 σ 5 σ 4 σ 5 σ 5 σ 4 σ 3 .
By [START_REF] Gonçalves | The classification and the conjugacy classes of the finite subgroups of the sphere braid groups[END_REF]Proposition 1.5], there are at most two conjugacy classes of each isomorphism class of the finite subgroups of B n pS 2 q, and there is a single conjugacy class for each maximal finite subgroup.

As another application of Corollary 20, we obtain the classification of the finite subgroups of B n pRP 2 q. Theorem 43 ([83]). Let n ě 2. The isomorphism classes of the finite subgroups of B n pRP 2 q are the subgroups of the following groups:

(a) Dic 8n . (b) Dic 8pn´1q if n ě 4. (c) O ˚if n " 0, 1 pmod 3q. (d) I ˚if n " 0, 1, 6, 10 pmod 15q.
Although the groups involved in the statements of Theorems 42 and 43 are basically the same, there is a difference in terms of those that are maximal. The finite groups described in Theorem 43(a)-(d) are maximal in an abstract sense, while those of Theorem 42 are maximal with respect to inclusion. This is partly related to the fact that up to powers and conjugacy, B n pS 2 q has just three conjugacy classes of finite order elements, while B n pRP 2 q has many more. It could happen that a subgroup of B n pRP 2 q that is abstractly isomorphic to a proper subgroup of one of the groups given in Theorem 43 be maximal with respect to inclusion. This is the subject of work in progress [START_REF] Gonçalves | Conjugacy classes of finite subgroups of the braid groups of the projective plane[END_REF].

The proof of Theorem 43 is obtained by combining Corollary 20 with Theorem 42. In this way, we establish a list of possible finite subgroups of B n pRP 2 q. Some of these possibilities are not realised (notably T ˚is not realised if n " 2 pmod 3q, despite apparently being compatible with the embedding). The final step is to prove that the subgroups given in the statement of Theorem 43 are indeed realised for the given values of n. This is achieved in a similar manner to that of the finite subgroups of B n pS 2 q. As for S 2 , it is also possible to give explicit algebraic realisations of the dicyclic subgroups of B n pRP 2 q. For example, we obtain xa, ∆ n y -Dic 8n and @ b, ∆ n a ´1D -Dic 8pn´1q using equation ( 28) [START_REF] Gonçalves | Surface braid groups and coverings[END_REF]Proposition 15]. Explicit realisations of T ˚and O ˚have been found in B 3 pRP 2 q [87], and applying Corollary 20 to them yields isomorphic copies in B 6 pS 2 q.

As an application of Theorem 43 and the short exact sequence (6) for RP 2 , one may also obtain an alternative proof of the classification of the finite subgroups of MCGpRP 2 , nq due to Bujalance, Cirre and Gamboa [START_REF] Bujalance | Automorphism groups of the real projective plane with holes and their conjugacy classes within its mapping class group[END_REF].

Theorem 44 ([34]). Let n ě 2. The finite subgroups of MCGpRP 2 , nq are abstractly isomorphic to the subgroups of the following groups: (a) the dihedral group Dih 4n of order 4n.

(b) the dihedral group Dih 4pn´1q if n ě 3. (c) S 4 if n " 0, 1 pmod 3q. (d) A 5 if n " 0, 1, 6, 10 pmod 15q.
One useful fact that is used to classify the virtually cyclic subgroups of B n pS 2 q is the knowledge of the centraliser and normaliser of its maximal finite cyclic and dicyclic subgroups. Note that if i P t0, 1u, the centraliser of α i , considered as an element of B n , is equal to xα i y [START_REF] Bessis | Springer theory in braid groups and the Birman-Ko-Lee monoid[END_REF][START_REF] González-Meneses | On the structure of the centralizer of a braid[END_REF]. A similar equality holds in B n pS 2 q and is obtained using equation ( 6) and the corresponding result for MCGpS 2 , nq, which is due to Hodgkin [START_REF] Hodgkin | K-theory of mapping class groups: general p-adic K-theory for punctured spheres[END_REF].

Proposition 45 ([85]). Let i P t0, 1, 2u, and let n ě 3. (a) The centraliser of xα i y in B n pS 2 q is equal to xα i y, unless i " 2 and n " 3, in which case it is equal to B 3 pS 2 q. (b) The normaliser of xα i y in B n pS 2 q is equal to:

$ ' ' & ' ' % xα 0 , ∆ n y -Dic 4n if i " 0 A α 2 , α ´1 0 ∆ n α 0 E -Dic 4pn´2q if i " 2 xα 1 y -Z 2pn´1q if i " 1,
unless i " 2 and n " 3, in which case it is equal to B 3 pS 2 q. (c) If i P t0, 2u, the normaliser of the standard copy of Dic 4pn´iq in B n pS 2 q is itself, except when i " 2 and n " 4, in which case the normaliser is equal to α ´1 0 σ ´1 1 xα 0 , ∆ 4 y σ 1 α 0 , and is isomorphic to Q 16 .

A related problem is that of knowing which powers of α i are conjugate in B n pS 2 q, for each i P t0, 1, 2u. The answer is that such powers are either equal or inverse: Proposition 46 ([85]). Let n ě 3 and i P t0, 1, 2u, and suppose that there exist r, m P Z such that α m i and α r i are conjugate in B n pS 2 q. (a

) If i " 1 then α m 1 " α r 1 . (b) If i P t0, 2u then α m i " α ˘r i .
Once more, this generalises a corresponding result in MCGpS 2 , nq [START_REF] Hodgkin | K-theory of mapping class groups: general p-adic K-theory for punctured spheres[END_REF]. Using Theorem 35, Proposition 46 implies that if F is a finite cyclic subgroup of B n pS 2 q then that the only possible actions of Z on F are the trivial action and multiplication by ´1. This also has consequences for the possible actions of Z on dicyclic subgroups of B n pS 2 q.

Virtually cyclic subgroups of the braid groups of S 2 and RP 2

In view of the Farrell-Jones Fibred Isomorphism Conjecture (see Section 5.1), in order to calculate the lower algebraic K-theory of the group rings of the braid groups of S 2 and RP 2 , it is necessary to know their virtually cyclic subgroups. Recall that a group is said to be virtually cyclic if it contains a cyclic subgroup of finite index. It is clear from the definition that any finite subgroup is virtually cyclic, hence it suffices to concentrate on the infinite virtually cyclic subgroups of these braid groups, which are in some sense their 'simplest' infinite subgroups. The classification of the virtually cyclic subgroups of these braid groups is an interesting problem in its own right, and helps us to understand better the structure of these two groups. For the whole of this section, we refer the reader to [START_REF] Gonçalves | The classification of the virtually cyclic subgroups of the sphere braid groups[END_REF] for more details.

Recall that by results of Epstein and Wall [START_REF] Epstein | Ends[END_REF][START_REF] Wall | Poincaré complexes I[END_REF], any infinite virtually cyclic group G is isomorphic to F ¸Z or to G 1 ˚F G 2 , where F is finite and rG i : Fs " 2 for i P t1, 2u. We shall say that G is of Type I or Type II respectively. This enables us to establish a list of the possible infinite virtually cyclic subgroups of a given infinite group Γ, providing one knows its finite subgroups (which by Theorems 42 and 43 is the case for our braid groups). The real difficulty lies in deciding whether the groups belonging to this list are indeed realised as subgroups of Γ.

Let n ě 4. In the case of P n pS 2 q, as we saw in Section 4.2, @ ∆ 2 n D is the only non-trivial finite subgroup, and since it is equal to the centre of P n pS 2 q by Proposition 33(b), it is then easy to see that the infinite virtually cyclic subgroups of P n pS 2 q are isomorphic to Z or to Z 2 ˆZ. The classification of the virtually cyclic subgroups of P n pRP 2 q was obtained in [START_REF] Gonçalves | Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane[END_REF], using Proposition 41. Although the structure of the finite subgroups of P n pRP 2 q differs for n " 3 and n ě 4, up to isomorphism, the infinite virtually cyclic subgroups of P n pRP 2 q are the same for all n ě 3:

Theorem 47 ([80]). Let n ě 3. The isomorphism classes of the infinite virtually cyclic subgroups of P n pRP 2 q are Z, Z 2 ˆZ and Z 4 ˚Z2 Z 4 .

One obtains the classification of the virtually cyclic subgroups of P n pRP 2 q as a immediate corollary of Proposition 41 and Theorem 47 [START_REF] Gonçalves | Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane[END_REF]. One of the key results needed in the proof of Theorem 47 is that P n pRP 2 q has no subgroup isomorphic to Z 4 ˆZ, which follows in a straightforward manner from Proposition 40(b). This fact allows us to eliminate several potential Type I and Type II subgroups.

We now turn to the case of B n pS 2 q. As we observed previously in Section 4.1, if n ď 3 then B n pS 2 q is a known finite group, and so we shall suppose in what follows that n ě 4. If G is a group, let Aut pGq (resp. Out pGq) denote the group of its automorphisms (resp. outer automorphisms). We define the following two families of virtually cyclic groups.

Definition. Let n ě 4.

(1) Let V 1 pnq be the family comprised of the following Type I virtually cyclic groups: (a) Z q ˆZ, where q is a strict divisor of 2pn ´iq, i P t0, 1, 2u, and q ‰ n ´i if n ´i is odd. (b) Z q ¸ρ Z, where q ě 3 is a strict divisor of 2pn ´iq, i P t0, 2u, q ‰ n ´i if n is odd, and ρp1q P Aut `Zq ˘is multiplication by ´1.

(c) Dic 4m ˆZ, where m ě 3 is a strict divisor of n ´i and i P t0, 2u. (d) Dic 4m ¸νZ, where m ě 3 divides n ´i, i P t0, 2u, pn ´iq{m is even, and where νp1q P Aut pDic 4m q is defined by: # νp1qpxq " x νp1qpyq " xy [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF] for the presentation (29) of Dic 4m .

(e) Q 8 ¸θ Z, for n even and θ P HompZ, Aut pQ 8 qq, for the following actions: (i) θp1q " Id.

(ii) θ " α, where αp1q P Aut pQ 8 q is given by αp1qpiq " j and αp1qpjq " k, where Q 8 " t˘1, ˘i, ˘j, ˘ku.

(iii) θ " β, where βp1q P Aut pQ 8 q is given by βp1qpiq " k and βp1qpjq " j ´1.

(f) T ˚ˆZ for n even.

(g) T ˚¸ω Z for n " 0, 2 mod 6, where ωp1q P Aut pT ˚q is the automorphism defined in terms of the presentation (31) by:

$ ' & ' % P Þ ÝÑ QP Q Þ ÝÑ Q ´1 X Þ ÝÑ X ´1. (33) 
(h) O ˚ˆZ for n " 0, 2 mod 6.

(i) I ˚ˆZ for n " 0, 2, 12, 20 mod 30.

(2) Let V 2 pnq be the family comprised of the following Type II virtually cyclic groups: (a) Z 4q ˚Z2q Z 4q , where q divides pn ´iq{2 for some i P t0, 1, 2u.

(b) Z 4q ˚Z2q Dic 4q , where q ě 2 divides pn ´iq{2 for some i P t0, 2u.

(c) Dic 4q ˚Z2q Dic 4q , where q ě 2 divides n ´i strictly for some i P t0, 2u.

(d) Dic 4q ˚Dic 2q Dic 4q , where q ě 4 is even and divides n ´i for some i P t0, 2u.

(e) O ˚˚T ˚O˚, where n " 0, 2 mod 6. Finally, let Vpnq be the family comprised of the elements of V 1 pnq and V 2 pnq. In what follows, ρ, ν, α, β and ω will denote the actions defined in parts (1)(b), (1)(d), (1)(e)(ii), (1)(e)(iii) and (1)(g) respectively.

Up to a finite number of exceptions, we may then classify the infinite virtually cyclic subgroups of B n pS 2 q. Theorem 48 ([85]). Suppose that n ě 4.

(1) If G is an infinite virtually cyclic subgroup of B n pS 2 q then G is isomorphic to an element of Vpnq.

(2) Conversely, let G be an element of Vpnq. Assume that the following conditions hold: 8, 12, 14, 18, 20, 26u. 20, 30, 32, 42, 50, 62u. 8, 12, 14, 18, 20, 24, 26, 30, 32, 38u. Then there exists a subgroup of B n pS 2 q isomorphic to G.

(a) if G -Q 8 ¸α Z then n R t6, 10, 14u. (b) if G -T ˚ˆZ then n R t4, 6, 8, 10, 14u. (c) if G -O ˚ˆZ or G -T ˚¸ω Z then n R t6,
(d) if G -I ˚ˆZ then n R t12,
(e) if G -O ˚˚T ˚O˚t hen n R t6,
(3) Let G be equal to T ˚ˆZ (resp. O ˚ˆZ) if n " 4 (resp. n " 6). Then B n pS 2 q has no subgroup isomorphic to G.

Remark 49. Together with Theorem 42, Theorem 48 yields a complete classification of the virtually cyclic subgroups of B n pS 2 q with the exception of a the thirty-eight cases for which the problem of their existence is open, given by the excluded values of n in the above conditions (2)(a)-(e) but removing the two cases of part (3) which we know not to be realised.

The proof of Theorem 48 is divided into two stages. In conjunction with Theorem 42, Epstein and Wall's results give rise to a family V C of virtually cyclic groups with the property that any infinite virtually cyclic subgroup of B n pS 2 q belongs to V C. The first stage is to show that any such subgroup belongs in fact to the subfamily Vpnq of V C. This is achieved in several ways: the analysis of the centralisers and normalisers of the finite order elements of B n pS 2 q given in Propositions 45 and 46; the study of the (outer) automorphism groups of the finite subgroups of Theorem 42; and the periodicity of B n pS 2 q given by Proposition 27. Putting together these reductions allows us to prove Theorem 48 [START_REF] Adem | Cohomology of finite groups[END_REF]. The structure of the finite subgroups of B n pS 2 q imposes strong constraints on the possible Type II subgroups, and the proof in this case is more straightforward than that for the Type I subgroups. The second stage of the proof consists in proving the realisation of the elements of Vpnq as subgroups of B n pS 2 q and to proving parts ( 2) and ( 3) of Theorem 48. The construction of the elements of Vpnq involving finite cyclic and dicyclic groups as subgroups of B n pS 2 q is largely algebraic, and relies heavily on equations ( 24) and ( 25) that describe the action by conjugation of the α i on the generators of B n pS 2 q. In contrast, the realisation of the elements of Vpnq involving the binary polyhedral groups is geometric in nature, and occurs on the level of mapping class groups via the relation [START_REF] Artin | Theory of braids[END_REF] and the constructions of the finite subgroups of B n pS 2 q of Theorem 42.

Since the open cases of Remark 49 only occur for even values of n, the complete classification of the infinite virtually cyclic subgroups of B n pS 2 q for all n ě 5 odd follows directly from Theorem 48.

Theorem 50 ([85]). Let n ě 5 be odd. Then up to isomorphism, the following groups are the infinite virtually cyclic subgroups of B n pS 2 q. (I) (a) Z m ¸θ Z, where θp1q P tId, ´Idu, m is a strict divisor of 2pn ´iq, for i P t0, 2u, and m ‰ n ´i. (b) Z m ˆZ, where m is a strict divisor of 2pn ´1q. (c) Dic 4m ˆZ, where m ě 3 is a strict divisor of n ´i for i P t0, 2u. (II) (a) Z 4q ˚Z2q Z 4q , where q divides pn ´1q{2. (b) Dic 4q ˚Z2q Dic 4q , where q ě 2 is a strict divisor of n ´i, and i P t0, 2u

Since in Theorem 48 we are considering the realisation of the various subgroups up to isomorphism, one may ask whether each of the given elements of V 2 pnq is unique up to isomorphism. It turns out that with with the exception of Q 16 ˚Q8 Q 16 , abstractly there is only one way (up to isomorphism) to embed the amalgamating subgroup in each of the two factors, in other words for all of the other elements of V 2 pnq, the group is unique up to isomorphism [START_REF] Gonçalves | The classification of the virtually cyclic subgroups of the sphere braid groups[END_REF]. Note that this result refers to abstract isomorphism classes of the given Type II groups, and does not depend on the fact that the amalgamated products occurring as elements of V 2 pnq are realised as subgroups of B n pS 2 q. In the exceptional case of Q 16 ˚Q8 Q 16 , abstractly there are two isomorphism classes defined respectively by:

K 1 " A x, y, a, b x 4 " y 2 , a 4 " b 2 , yxy ´1 " x ´1, bab ´1 " a ´1, x 2 " a 2 , y " b E .
and

K 2 " A x, y, a, b x 4 " y 2 , a 4 " b 2 , yxy ´1 " x ´1, bab ´1 " a ´1, x 2 " b, y " a 2 b E .
If n ě 4 is even, both K 1 and K 2 are realised as subgroups of B n pS 2 q, with the possible exception of K 2 if n P t6, 14, 18, 26, 30, 38u [85].

Using equation ( 6), another consequence of Theorem 48 is the classification of the virtually cyclic subgroups of MCGpS 2 , nq, with a finite number of exceptions (see [85, Theorem 14] for more details).

A similar analysis of the isomorphism classes of the infinite virtually cyclic subgroups of B n pRP 2 q is the subject of work in progress [START_REF] Gonçalves | Conjugacy classes of finite subgroups of the braid groups of the projective plane[END_REF][START_REF] Gonçalves | The classification of the virtually cyclic subgroups of the braid groups of the projective plane[END_REF].

K-theory of surface braid groups

In this section, we indicate how the results of the previous sections may be used to compute the lower algebraic K-theory of the group rings of surface braid groups. In Section 5.1, we start by recalling two conjectures of Farrell and Jones, whose validity for a given group provides a recipe to calculate its lower K-groups. In Section 5.2, we outline the proof of the fact that surface braid groups of aspherical surfaces satisfy the Farrell-Jones conjecture, and in Section 5.3, we shall see how to extend this result to the braid groups of S 2 and RP 2 . In order to calculate the lower algebraic K-theory of a group using this approach, one needs to be able to determine the lower K-groups of its virtually cyclic subgroups, as well as certain Nil groups that are related to these subgroups. In Section 5.4, we recall some general methods that one may use to determine these lower Kand Nil groups. Finally, in Section 5.5, we state and outline the proofs of the known results, namely the lower K-groups of braid groups of aspherical surfaces, and of P n pS 2 q, P n pRP 2 q and B 4 pS 2 q.

Generalities

Let G be a discrete group and let ZrGs denote its integral group ring. The approach to the algebraic K-theoretical calculations of ZrGs, which we outline in this section, consists in using the Farrell-Jones (Fibred) Isomorphism Conjecture that proposes to compute the Kgroups of ZrGs from two sources: first, the algebraic K-theory of the class of virtually cyclic subgroups of G, and secondly, homological data.

Definition.

A collection F of subgroups of G is called a family if: (a) if H P F and A ď H then A P F , and (b) if H P F and g P G then gHg ´1 P F . The collection of finite subgroups of G, denoted F in, and that of the virtually cyclic subgroups of G, denoted V C, are examples of families of G. Given a family F of subgroups of G, a universal space for G with isotropy in F is a G-space EF that satisfies the following properties: (a) the fixed set EF H is non empty and contractible for all H P F , and (b) the fixed set EF H is empty for all H R F . Universal spaces exist and are unique up to G-homotopy [START_REF] Tom Dieck | Transformation groups and representation theory[END_REF]. If F consists of the trivial subgroup of G, the corresponding universal space is the universal space for principal Gbundles, and if F " F in, the corresponding universal space is the universal space for proper actions. If F " V C, we denote the corresponding universal space by EG. Although universal spaces exist for any family of subgroups of G, models for EV C that are suitable for making computations are still sparse, but there are some constructions for hyperbolic groups [START_REF] Juan-Pineda | On classifying spaces for the family of virtually cyclic subgroups, in Recent developments in algebraic topology[END_REF] and CATp0q groups [START_REF] Farley | Constructions of EVC and EFBC for groups acting on CATp0q spaces[END_REF][START_REF] Lück | On the classifying space of the family of virtually cyclic subgroups for CATp0qgroups[END_REF].

Let R be a ring with unit, and let Or F is the orbit category of the group G restricted to the family F . J. Davis and W. Lück constructed a functor K : Or F pGq ÝÑ Spectra [START_REF] Davis | Spaces over a category and assembly maps in isomorphism conjectures in Kand L-theory[END_REF], whose value at the orbit G{H is the non-connective algebraic K-theory spectrum of Pedersen-Weibel [START_REF] Pedersen | A non-connective delooping of algebraic K-theory[END_REF], and which satisfies the fundamental property that π i pKpG{Hqq " K i pZrHsq. The K-theoretical formulation of the Farrell-Jones isomorphism conjecture is as follows (one may consult [START_REF] Davis | Spaces over a category and assembly maps in isomorphism conjectures in Kand L-theory[END_REF][START_REF] Juan-Pineda | The K-theoretic Farrell-Jones Isomorphism conjecture for braid groups[END_REF] for more details).

Isomorphism Conjecture (IC).

Let G be a discrete group. Then the assembly map

A V C : H G n pEG; Kq ÝÑ H G n ppt; Kq -K n pZrGqs,
induced by the projection EG ÝÑ pt is an isomorphism, where H G n p´; Kq is a generalised equivariant homology theory with local coefficients in the functor K, and EG is a model for the universal space for the family V C.

A version of IC that is suitable for more general situations is the Fibred Farrell-Jones Conjecture (FIC), which we now describe. Given a group homomorphism ϕ : K ÝÑ G and a family F of subgroups of a group G that is also closed under finite intersections, the induced family on K by ϕ is defined by: ϕ ˚F " tH ď K | ϕpHq P F u .

Fibred Isomorphism Conjecture (FIC) ([11]). Let G be a discrete group and let F be a family of subgroups of G. The pair pG, F q is said to satisfy the Fibred Isomorphism Conjecture if for all group homomorphisms ϕ : K ÝÑ G, the assembly map

A ϕ ˚F : H K n pEϕ ˚F ; Kq ÝÑ H K n ppt;
Kq is an isomorphism for all n P Z.

Note that the validity of FIC implies that of IC by taking K " G and ϕ " Id. Two of the fundamental properties of FIC are as follows.

Theorem 51 ([12]). If G is a group that satisfies FIC and H is a subgroup of G then H also satisfies FIC.

Theorem 52 ([12]). Let f : G ÝÑ Q be a surjective group homomorphism. Assume that pQ, V CpQqq satisfies FIC and that IC is satisfied for all H P f ˚V CpQq. Then pG, V CpGqq satisfies FIC.

The Fibred Isomorphism Conjecture has been verified for word hyperbolic groups by A. Bartels, W. Lück and H. Reich [START_REF] Bartels | The K-theoretic Farrell-Jones conjecture for hyperbolic groups[END_REF], for CATp0q groups by C. Wegner [START_REF] Wegner | The K-theoretic Farrell-Jones conjecture for CATp0q-groups[END_REF], and for SL n pZq, n ě 3, by A. Bartels, W. Lück, H. Reich and H. Rueping [START_REF] Bartels | Kand L-theory of group rings over GL n pZq[END_REF]. We record two of these results for future reference. Theorem 53 ([11]). If G is a hyperbolic group in the sense of Gromov then G satisfies FIC.

Theorem 54 ([155]). If G is a CATp0q group then G satisfies FIC.

The validity of the Fibred Isomorphism Conjecture has recently been shown for braid groups by D. Juan-Pineda and L. Sánchez [START_REF] Juan-Pineda | The K-theoretic Farrell-Jones Isomorphism conjecture for braid groups[END_REF] (see Theorems 61,62 and 63). We will sketch the proofs in Sections 5.2 and 5.3. The original isomomorphism conjecture by T. Farrell and L. Jones was stated in [START_REF] Farrell | Isomorphism conjectures in algebraic K-theory[END_REF]. They proved several cases of the conjecture for the pseudoisotopy functor. Here we shall only treat the case of the conjecture for the algebraic K-theory functor.

The K-theoretic Farrell-Jones Conjecture for braid groups of aspherical surfaces

In this section, we outline the ingredients needed to prove that braid groups of the plane or a compact surface other than the sphere or the projective plane satisfy FIC. The main tools that we shall require are the concepts of poly-free and strongly poly-free groups, which we now recall.

Definition.

A group G is said to be poly-free if there exists a filtration 1 " G 0 Ă G 1 Ă ¨¨¨Ă G n " G of normal subgroups such that each quotient G i`1 {G i is a finitely-generated free group.

The following result is due to D. Juan-Pineda and L. Sánchez [START_REF] Juan-Pineda | The K-theoretic Farrell-Jones Isomorphism conjecture for braid groups[END_REF].

Theorem 55 ([111]). If G is a poly-free group then G satisfies FIC.

The proof uses induction on the length of the filtration and the fact that the initial induction step is applied to a hyperbolic group.

Suppose first that M is either the complex plane or a compact surface with non-empty boundary. Taking r " 1 in equation ( 7) yields the following Fadell-Neuwirth fibration: F m`1,n´1 pIntpMqq ÝÑ F m,n pIntpMqq ÝÑ F m,1 pIntpMqq, so by Theorem 7, we obtain the short exact sequence (9):

1 ÝÑ P n´1 pMzQ m`1 q ÝÑ P n pMzQ m q ÝÑ π 1 pMzQ m q ÝÑ 1.

It thus follows that for all i P 1, . . . , n, P i´1 pMzQ n´i`m`1 q is normal in P i pMzQ n`m´i q, and the corresponding quotient is isomorphic to the free group π 1 pMzQ m q that is of finite rank. Setting G i " P i pMzQ n´i q for all i P 0, 1, . . . , n gives rise to a filtration that yields a poly-free structure for P n pMq, and applying Theorem 55, we obtain the following: Theorem 56 ([111]). Assume that M " C or that M is a compact surface with non-empty boundary. Then the pure braid group P n pMq is poly-free, and thus satisfies FIC. Now suppose that M is a compact aspherical surface with empty boundary. Taking m " 0 and r " 1 in equation [START_REF] Artin | Braids and permutations[END_REF] gives rise to the Fadell-Neuwirth fibration F 0,n´1 pMzQ 1 q ÝÑ F 0,n pMq p ÝÑ F 0,1 pMq " M, and by Theorem 7 induces the following short exact sequence:

1 ÝÑ P n´1 pMzQ 1 q ÝÑ P n pMq p # ÝÑ π 1 pMq ÝÑ 1.
Since M is aspherical, the group π 1 pMq is finitely-generated Abelian or hyperbolic, and so satisfies FIC by Theorems 53 and 54. Now Ker pp # q -P n´1 pMzQ 1 q is poly-free and p ´1 # pCq -P n´1 pMzQ 1 q ¸C where C is any cyclic subgroup of π 1 pMq, which is also poly-free, hence in both cases they satisfy FIC. Theorem 52 then implies that P n pMq satisfies FIC. Putting together the two cases gives: Theorem 57 ([111]). Assume that M " C or that M is a compact surface other than the sphere or the projective plane. Then the pure braid group P n pMq satisfies FIC for all n ě 1. The next step is to go from P n pMq to B n pMq. The idea is to embed the given group in a larger group (a wreath product in fact) that satisfies FIC and then apply Theorem 51. We start by adding one more property to the definition of poly-free group.

Definition ([4]). A group G is called strongly poly-free (SPF) if it is poly-free and the following condition holds: for each g P G there exists a compact surface M and a diffeomorphism f : M ÝÑ M such that the action C g by conjugation of g on G i`1 {G i may be realised geometrically, i.e. the following diagram commutes:

π 1 pMq f # / / ϕ π 1 pMq G i`1 {G i C g / / G i`1 {G i ϕ ´1 O O
where ϕ is a suitable isomorphism.

The following result was proved in [START_REF] Aravinda | Algebraic K-theory of pure braid groups[END_REF].

Theorem 58 ([4]). Assume that M " C or that M is a compact surface with non-empty boundary. Then P n pMq is an SPF group for all n ě 1.

One of the main theorems in [START_REF] Juan-Pineda | The K-theoretic Farrell-Jones Isomorphism conjecture for braid groups[END_REF] is the following:

Theorem 59 ([111]). Let G be an SPF group, and let H be a finite group. Then the wreath product G ≀ H satisfies FIC.

We also recall the following result due to A. Bartels, W. Lück and H. Reich [START_REF] Bartels | On the Farrell-Jones conjecture and its applications[END_REF].

Lemma 60 ([12]). Let 1 ÝÑ K ÝÑ G ÝÑ Q ÝÑ 1 be a short exact sequence of groups. Assume that K is virtually cyclic and that Q satisfies FIC. Then G satisfies FIC.

Moreover, given a finite extension of a group of the form

1 ÝÑ G ÝÑ Γ ÝÑ H ÝÑ 1,
where H is a finite group, it follows that there is an injective homomorphism Γ ã ÝÑ G ≀ H [63, Algebraic Lemma]. Since P n pMq is of finite index in B n pMq by equation ( 2), it follows from Theorems 58 and 59 and the above observation that:

Theorem 61 ([111]). Assume that M " C or that M is a compact surface other than the sphere or the projective plane. Then the full braid group B n pMq satisfies FIC for all n ě 1.

The Farrell-Jones

Conjecture for the braid groups of S 2 and RP 2

The results of Section 5.2 treat the case of the braid groups of all surfaces with the exception of S 2 and RP 2 . In this section, we outline the proof of the fact that the braid groups of these two surfaces also satisfy FIC.

Let n P N. Recall from Section 4.1 that P n pS 2 q is trivial for n " 1, 2, and that P 3 pS 2 q -Z 2 , hence these groups satisfy trivially FIC. So suppose that n ą 3. Taking m " 0, r " 3 and M " S 2 in equation ( 7), we obtain the following fibre bundle: F 2,n´3 pCq « F 3,n´3 pS 2 q ÝÑ F 0,n pS 2 q ÝÑ F 0,3 pS 2 q, and by Theorem 7, its long exact sequence in homotopy yields the Fadell-Neuwirth short exact sequence:

1 ÝÑ P n´3 pCzQ 2 q ÝÑ P n pS 2 q ÝÑ P 3 pS 2 q ÝÑ 1.

Observe that G " P n´3 pCzQ 2 q is an SPF group as it is part of the filtration of P n´3 pCq, hence Theorems 51 and 59 imply that π 1 pF 0,n pS 2 qq " P n pS 2 q satisfies FIC. In [START_REF] Millán-Vossler | The lower algebraic K-theory of braid groups on S 2 and RP 2[END_REF], S. Millán-Vossler proved that B n pS 2 q fits in an extension of the form:

1 ÝÑ G ÝÑ B n pS 2 q{x∆ 2 n y ÝÑ S n ÝÑ 1 (this is a consequence of equation ( 2) and Propositions 33 and 34), so B n pS 2 q{x∆ 2 n y satisfies FIC by Theorems 51 and 59. Taking M " S 2 in equation ( 6) and applying Lemma 60, we see that B n pS 2 q satisfies FIC. Summing up these considerations, we obtain: Theorem 62 ([111]). Both P n pS 2 q and B n pS 2 q satisfy FIC for all n ě 1.

The situation for RP 2 is similar. Consider first the case of P n pRP 2 q. By Section 4.1, P 1 pRP 2 q -Z 2 , P 2 pRP 2 q -Q 8 and P 3 pRP 2 q -F 2 ¸Q8 . It follows that P 1 pRP 2 q and P 2 pRP 2 q satisfy FIC as they are finite, and that P 3 pRP 2 q also satisfies FIC by Theorem 53 since it is (virtually) hyperbolic. Now let n ą 3. Taking the short exact sequence [START_REF] Bardakov | Brunnian braids on surfaces[END_REF] with M " RP 2 and r " 2 gives rise to the following short exact sequence:

1 ÝÑ G ÝÑ P n pRP 2 q ÝÑ Q 8 ÝÑ 1, where G " P n´2 pRP 2 zQ 2 q is an SPF group. It follows once more from Theorems 59 and 51 that P n pRP 2 q satisfies FIC for all n ą 3. Passing to the case of B n pRP 2 q, note that B 1 pRP 2 q -Z 2 and B 2 pRP 2 q -Q 16 by Section 4.1. Now G is not normal in B n pRP 2 q, but the intersection H of its conjugates in B n pRP 2 q is a finite-index normal subgroup of both G and B n pRP 2 q, and for all n ě 3, B n pRP 2 q fits in a short exact sequence:

1 ÝÑ H ÝÑ B n pRP 2 q ÝÑ B n pRP 2 q{H ÝÑ 1, where B n pRP 2 q{H is finite. Since G is SPF, it follows from [START_REF] Millán-Vossler | The lower algebraic K-theory of braid groups on S 2 and RP 2[END_REF] that H is also SPF, and we conclude from Theorem 59 and [63, Algebraic Lemma] that B n pRP 2 q satisfies FIC. We record these results as follows.

Theorem 63 ([111]). Both P n pRP 2 q and B n pRP 2 q satisfy FIC for all n ě 1.

General remarks for computations

As we mentioned before, the validity of FIC should, in principle, furnish the necessary tools needed to compute the algebraic K-groups of the group rings for surface braid groups. We will concentrate in this section on lower K-groups, that is K i p´q for i ď 1. Recall that the domain of the assembly map in the statement of IC is

H G n pEG; Kq. ( 34 
)
This is an extraordinary equivariant homology theory whose coefficients are the functor K. The input of K consists of the orbits of the type G{V, where V varies over the virtually cyclic subgroups of G, and its values at these orbits are the spectra KpG{Vq whose homotopy groups are given by π i pKpG{Vqq -K i pZrVsq. On the other hand, there is an Atiyah-Hirzebruch-type spectral sequence that computes the equivariant homology groups of equation ( 34) whose E 2 -term is given by: E p,q 2 -H p pBG; K q ( q,

Since P 1 pRP 2 q -Z 2 and P 2 pRP 2 q -Q 8 , we thus obtain the lower K-groups of these two groups. So assume that n ě 3. With the exception of Q 8 , the reduced lower K-groups of the other finite subgroups of P n pRP 2 q, as well as those of the infinite virtually cyclic subgroups given by Theorem 47, are trivial. From this, one may show that the reduced lower algebraic K-groups of P n pRP 2 q are as follows.

Theorem 72 ([110]). Suppose that n ě 3 and i ď 1. Then: r K i pZrP n pRP 2 qsq " # Z 2 if n " 3 and i " 0. 0 otherwise.

The situation for the braid groups of both S 2 and RP 2 is currently the subject of investigation. By Theorem 48, the virtually cyclic subgroups of B n pS 2 q are known for all n ą 3, with the exception of a small number of cases. Many of the reduced lower K-groups of the finite subgroups of B n pS 2 q have been carried out. The r K 0 -groups of the binary polyhedral groups and of the dicyclic groups Dic 4m , m ď 13, were computed in [START_REF] Swan | Projective modules over binary polyhedral groups[END_REF]. The Whitehead group of all finite subgroups of B n pS 2 q and the K ´1-groups of the binary polyhedral groups and of many dicyclic groups were determined in [START_REF] Guaschi | The lower algebraic K-theory of the braid groups of the sphere[END_REF]. We remark that these K ´1-groups exhibit new structural phenomena that had not appeared previously in the study of the lower algebraic K-theory of other groups, such as the existence of torsion. These calculations are somewhat involved and require techniques from different areas.

Passing to the case of the computation of the lower algebraic K-theory of B n pS 2 q, n ě 4, the only complete result so far is that for n " 4 [START_REF] Guaschi | The lower algebraic K-theory of the braid groups of the sphere[END_REF]. We outline the steps in this case. A first important observation is that B 4 pS 2 q is isomorphic to an amalgamated product of the form Q 16 ˚Q8 T ˚ [START_REF] Guaschi | The lower algebraic K-theory of the braid groups of the sphere[END_REF]. By Theorem 42 and [76, Proposition 1.5], the maximal finite subgroups of B 4 pS 2 q are isomorphic to T ˚or Q 16 , and there is a single conjugacy class of each. Moreover, we obtain the infinite virtually cyclic subgroups of B 4 pS 2 q from Theorem 48, and from this, one may deduce the maximal virtually cyclic subgroups of B 4 pS 2 q: Theorem 73 ([95]). (a) Every infinite maximal virtually cyclic subgroup of B 4 pS 2 q is isomorphic to Q 16 ˚Q8 Q 16 or to Q 8 ¸Z for one of the three possible actions (see part (e) of the definition of the family V 1 pnq in Section 4.3). (b) If V is a finite maximal cyclic subgroup of B 4 pS 2 q then V -T ˚.

(c) Let G be a group that is isomorphic to Q 8 ¸Z for one of the three possible actions, or to Q 16 ˚Q8 Q 16 . Then B 4 pS 2 q possesses both maximal and non-maximal virtually cyclic subgroups that are abstractly isomorphic to G.

Calculations of the reduced lower algebraic K-groups of the groups given in Theorem 73 may be found in [START_REF] Guaschi | The lower algebraic K-theory of the braid groups of the sphere[END_REF]. The next step is to find a model for EB 4 pS 2 q. Since B 4 pS 2 q is an amalgam of finite groups, it follows that it is Gromov hyperbolic. If G is a hyperbolic group, D. Juan-Pineda and I. Leary found a model for EG [START_REF] Juan-Pineda | On classifying spaces for the family of virtually cyclic subgroups, in Recent developments in algebraic topology[END_REF]. In our case, this can be described as:

EB 4 pS 2 q " T ˚D, which is the join of a suitable tree T and a countable discrete set D. From this description, it also follows that the equivariant homology groups of equation ( 34) are isomorphic to: where N IL n denotes one of the Nil groups described above according to the type of infinite virtually cyclic group involved, and MaxpV CpB 4 pS 2 qqq is a set of representatives of the conjugacy classes of maximal infinite virtually cyclic subgroups of B 4 pS 2 q. We summarise the final result for B 4 pS 2 q as follows.

Theorem 74 ([95]). The reduced lower algebraic K-groups for B 4 pS 2 q are given by r K i pZrB 4 pS 2 qsq "

$ ' ' ' & ' ' ' % Z ' Nil 1 , if i " 1 Z 2 ' Nil 0 , if i " 0 Z 2 ' Z if i " ´1 0 if i ă ´1,
where for i " 0, 1, Nil i -à 8 r2pZ 2 q 8 ' Ws, 2pZ 2 q 8 denotes two infinite countable direct sums of copies of Z 2 , and W is an infinitely-generated Abelian group of exponent 2 or 4.

Since the groups Q 8 ¸Z and Q 16 ˚Q8 Q 16 that appear in the statement of Theorem 73 appear as maximal subgroups of B 4 pS 2 q, they contribute in a non-trivial manner via the Bass, Farrell-Hsiang and Waldhausen Nil groups to the reduced lower K-groups of ZrB 4 pS 2 qs.

Remarks

(a) We have concentrated on the lower algebraic K i -groups, that is, in degrees i ď 1. This is due to our lack of knowledge about K i pZrVsq if V is a virtually cyclic group if i ą 1. Little is known about the K i -groups for i ą 1, even for finite groups. One example for i " 2 may be found in [START_REF] Juan-Pineda | Algebraic K-theory of virtually free groups[END_REF]. (b) In [START_REF] Guaschi | The lower algebraic K-theory of the braid groups of the sphere[END_REF], J. Guaschi, D. Juan-Pineda and S. Millán-López developed techniques to compute reduced lower algebraic K-groups of many of the finite subgroups of B n pS 2 q, in particular for small values of n. Some other results concerning these computations will appear in [START_REF] Guaschi | The lower algebraic K-theory of the finite subgroups of the braid groups of the sphere[END_REF]. How these subgroups are assembled to build up all of the reduced lower K-groups of a specific braid group B n pS 2 q for n ą 4 is the subject of work in progress. The main missing ingredient is the construction of a suitable model for EB n pS 2 q. Note that the amalgamated product structure of B 4 pS 2 q is specific to this case, and we cannot hope for it to be carried over to braid groups with more strings. (c) The case of B n pRP 2 q is also still open if n ě 3. However, many features are currently being studied: the classification of the virtually cyclic subgroups of B n pRP 2 q [87, 88], as well as their K-groups and models for the corresponding universal spaces. (d) In work in progress, it has been proved by D. Juan-Pineda and L. Sánchez that if G is a hyperbolic group, then rankpK i pZrGsqq ă 8 for all i P Z. From this we have that rankpK i pB 4 pZrS 2 sqqq ă 8 for all i P Z.
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 2 Figure 2: A 3-braid in R 2 illustrating condition (c) of the definition of geometric braid.
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 5 Figure 5: The Garside element ∆ 6 of B 6 .
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  2 then B n pMq and P n pMq are isomorphic to the usual Artin braid groups B n and P n [99, Theorem 1.5].

Remark 1. The exact sequence (2) is frequently used to reduce the study of certain problems in B n pMq to that in P n pMq (see for example Theorems 2, 15, 61, 62 and 63, as well as Proposition 17). The group B n pMq is also sometimes known as the permuted or full braid group of M, and P n pMq as the unpermuted or coloured braid group.

  r,n´r pMqq ÝÑ π k pF m,n pMqq ÝÑ π k pF m,r pMqq ÝÑ π k´1 pF m`r,n´r pMqq ÝÑ ¨¨¨ÝÑ π 2 pF m`r,n´r pMqq ÝÑ π 2 pF m,n pMqq ÝÑ π 2 pF m,r pMqq ÝÑ π 1 pF m`r,n´r pMqq ÝÑ π 1 pF m,n pMqq ÝÑ π 1 pF m,r pMqq ÝÑ 1. (8)

  which we shall call the standard copy of Dic 4pn´iq in B n pS 2 q [77, 79]. Let T ˚(resp. O

	˚,
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where this is now an ordinary homology theory whose local coefficients are the algebraic K-groups of the virtually cyclic subgroups of G, and which appear as isotropy at different subcomplexes of BG " EG{G. In summary, in order to compute H G n pEG; Kq, we need to understand the following: (a) the algebraic K-groups K i pZrVsq for all i ď n and all virtually cyclic subgroups V of G. (b) the spaces EG and BG. (c) how these groups and spaces are assembled together. This is encoded in the spectral sequence.

Let V be a virtually cyclic group. As indicated in Section 4.3, V is either finite, of Type I (so is isomorphic to a semidirect product of the form F ¸Z, where F is finite), or of Type II (so is isomorphic to an amalgam of the form G 1 ˚F G 2 where F is of index 2 in both G 1 and G 2 .). In the Type II case, V fits in a short exact sequence of the form:

where F is a finite group and Dih 8 is the infinite dihedral group. The computation of the algebraic K-theory groups for each of these cases is currently an active area of study. In general, finite groups may be treated with induction-restriction methods, see [START_REF] Oliver | Whitehead groups of finite groups[END_REF]. We shall comment on the case of the finite subgroups of B n pS 2 q later on. In order to study the algebraic K-groups of Type I and Type II groups, we need some background.

Let R be an associative ring with unit, and let Rrts denote its polynomial ring. Let ε : Rrts ÝÑ R be the augmentation map induced by t Þ ÝÑ 1, and let ε ˚: K i pRrtsq ÝÑ K i pRq be the homomorphism induced on K-groups.

Definition. Let R be an associative ring with unit. The Bass Nil groups of R are defined by: NK i pRq " Ker pε ˚q .

The Bass Nil groups appear in the study of K-groups of virtually cyclic groups via the Bass-Heller-Swan fundamental theorem: Theorem 64 (Bass, Heller and Swan [START_REF] Bass | Algebraic K-theory[END_REF]). Let R be an associative ring with unit, and let Rrt, t ´1s be its Laurent polynomial ring. Then for all i P Z,

Observe that if a group G is of the form F ˆZ for some group F, its group ring may be described as follows:

ZrGs " ZrF ˆZs -ZrFsrt, t ´1s.

From Theorem 64, we thus obtain:

Corollary 65. The algebraic K-groups of a group V " F ˆZ are of the form:

If V is as above and virtually cyclic, so F is finite, equation [START_REF] Carter | Lower K-theory of finite groups[END_REF] tells us that we need to compute the K-groups of the group ring ZrFs as well as the Bass Nil groups. If on the other hand, V is a non-trivial semi-direct product of the form V " F ¸α Z, where α denotes the action of Z on F, the corresponding group ring is the twisted Laurent polynomial ring ZrFs α rt, t ´1s. This case has been studied by T. Farrell and W. C. Hsiang in [START_REF] Farrell | The Whitehead group of poly-(finite or cyclic) groups[END_REF]. They found a formula similar to that of equation ( 35) of Bass-Heller-Swan, but the terms NK i pZrFsq ' NK i pZrFsq should be replaced by: NK i pZrFs, αq ' NK i pZrFs, α ´1q, which are similar groups that take into account the action of Z on F. These are now known as Farrell-Hsiang twisted Nil groups. Together with the Bass Nil groups, these Nil groups are the subject of investigation, full computations are few and far between, and they are in general very large groups due to the following fact: Theorem 66 ([59, 140]). Let R be a ring. Then both the Bass Nil and Farrell-Hsiang Nil groups are either trivial or are not finitely generated.

The case of virtually cyclic groups of the form V " A ˚F B is handled by the foundational work of F. Waldhausen [START_REF] Waldhausen | Algebraic K-theory of generalized free products, Part I[END_REF]. There is a long exact sequence of the form:

where the term Nil W n denotes the Waldhausen Nil groups defined by: Nil W n " Nil W n pZrFs; ZrAzFs, ZrBzFsq.

A somewhat better description of the Waldhausen Nil groups Nil W n is given in the work of J. Davis, K. Khan and A. Ranicki [START_REF] Davis | Algebraic K-theory over the infinite dihedral group: an algebraic approach[END_REF] who identify these groups with Farrell-Hsiang Nil groups of a group of the form F ¸Z for a suitable subgroup isomorphic to Z of the infinite dihedral group Dih 8 " V{F.

Some general results for algebraic K-groups for group rings of finite groups are known. We record some of them in the following proposition. Proposition 67. Let F be a finite group. Then: (a) The groups K i pZrFsq are finitely-generated Abelian groups for all i ě ´1. (b) The groups K i pZrFsq vanish for i ă ´1. (c) The groups NK i pZrFsq vanish for i ă 0.

The first part is proved in [START_REF] Kuku | Higher algebraic K-theory[END_REF] if i ě 0 and in [START_REF] Carter | Lower K-theory of finite groups[END_REF] if i " ´1, the second part is proved in [START_REF] Carter | Lower K-theory of finite groups[END_REF], and the third part in [START_REF] Carter | Lower K-theory of finite groups[END_REF][START_REF] Farrell | The lower algebraic K-theory of virtually infinite cyclic groups[END_REF].

On the other hand, the NK i pZrFsq are non trivial for i " 0, 1 even for simple finite virtually cyclic groups, such as F " Z 2 ˆZ2 or Z 4 [START_REF] Weibel | NK 0 and NK 1 of the groups C 4 and D 4 , Comment[END_REF]. It is therefore a challenge to de- cide whether the algebraic K-groups of infinite virtually cyclic groups are finitely-generated groups. The only known case that is always finitely generated is in degree ´1: Proposition 68 ([62]). Let V be a virtually cyclic group. Then: (a) K ´1pZrVsq is a finitely-generated group that is generated by the images of the homomorphisms K ´1pZrGsq ÝÑ K ´1pZrVsq induced by the inclusions G ã ÝÑ V, where G runs over the conjugacy classes of the finite subgroups of V. (b) the groups K i pZrVsq are trivial for i ă ´1.

We finish this section by recalling the lower K-groups of the integers Z, which is fundamental for many of the calculations that follow. Proposition 69. For the ring Z, the following results hold: (a) K i pZq is a finitely-generated Abelian group for all i P Z. (b) K 1 pZq " Z 2 and K 0 pZq " Z. (c) K i pZq " 0 for all i ă 0. (d) NK i pZq " 0 for all i P Z. (e) K i pZrZsq -K i pZq for all i P Z.

The proof of (a) may be found in [START_REF] Quillen | Finite generation of the groups K i of rings of algebraic integers[END_REF], and that of (d) follows from the regularity of Z and the work of D. Quillen who showed that the Nil groups of regular rings vanish [START_REF] Quillen | Higher algebraic K-theory: I, Cohomology of groups and algebraic K-theory[END_REF]. Part (b) is a consequence of the fact that K 1 pZq is just the units of Z, and that every finitely-generated projective module over Z is free, and part (c) follows from the equality dimpZq " 0. Finally, part (e) is implied by the previous results and the Bass-Heller-Swan theorem (Theorem 64).

We are interested in the non-trivial lower K-groups. Given a group G, we define r K i pZrGsq to be the Whitehead group WhpGq if i " 1, the reduced K 0 -group r K 0 pZrGsq if i " 0, and the usual K i -groups if i ă 0. The results stated are valid for these reduced groups and for i ď 1, and some of the computational results will be given for these reduced groups. In this context, we may reinterpret Proposition 69 by saying that r K i pZq " 0 and r K i pZrZsq " 0 for all i ď 1.

Computational results

We now gather together the information obtained in the preceding sections. We start with the case of torsion-free braid groups, which by Corollary 9 are precisely the braid groups of the complex plane or compact surfaces other than S 2 or RP 2 . In this case, the only virtually cyclic subgroups of G are trivial or infinite cyclic. By Proposition 69, the reduced lower K-groups of Z and of ZrZs vanish, and the coefficients of the spectral sequence needed to compute the equivariant homology groups of equation [START_REF] Bujalance | Automorphism groups of the real projective plane with holes and their conjugacy classes within its mapping class group[END_REF], whose coefficients are the reduced K-groups, are all trivial, so this spectral sequence collapses, thus yielding the trivial group. Hence: Theorem 70 ([4, 111]). Let G be the braid group (pure or full) of the complex plane or of a compact surface without boundary different from S 2 and RP 2 . Then r K i pZrGsq " 0 for all i ď 1.

We now turn to the case of the pure braid groups of S 2 and RP 2 . From the discussion just before the statement of Theorem 47, if n ě 4, the infinite virtually cyclic subgroups V of P n pS 2 q are isomorphic to Z or Z ˆZ2 and it is well known that r K i pZrVsq " 0 for these two groups, using Proposition 69 and Corollary 65 for example. Since P 1 pS 2 q and P 2 pS 2 q are trivial and P 3 pS 2 q " Z 2 and the reduced lower K-groups of these groups also vanish, we have the following: Theorem 71 ([109]). For all i ď 1 and n ě 1, r K i pZrP n pS 2 qsq " 0.

The case of P n pRP 2 q is somewhat more involved. The reason is that by Proposition 41, Q 8 is realised as a subgroup of P n pRP 2 q if n P t2, 3u, and its reduced K-group is non trivial in degree 0. More precisely, if i ď 1, r K i pZrQ 8 sq " # Z 2 if i " 0 0 otherwise.