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SELECTIVE ACOUSTIC FOCUSING USING TIME-HARMONIC
REVERSAL MIRRORS

CHRISTOPHE HAZARD∗ AND KARIM RAMDANI†

Abstract. A mathematical study of the focusing properties of acoustic fields obtained by a
time-reversal process is presented. The case of time-harmonic waves propagating in a nondissipative
medium containing sound-soft obstacles is considered. In this context, the so-called D.O.R.T. method
(decomposition of the time-reversal operator in French) was recently proposed to achieve selective
focusing by computing the eigenelements of the time-reversal operator. The present paper describes
a justification of this technique in the framework of the far field model, i.e., for an ideal time-reversal
mirror able to reverse the far field of a scattered wave. Both cases of closed and open mirrors, that
is, surrounding completely or partially the scatterers, are dealt with. Selective focusing properties
are established by an asymptotic analysis for small and distant obstacles.

Key words. acoustic scattering, time-reversal, far field operator, small obstacles

AMS subject classifications. 35B40, 35P25, 45A05, 74J20

1. Introduction. Acoustic time-reversal has known in the last few years a sig-
nificant growth of interest, covering a large number of applications (medical imaging,
nondestructive testing, etc.). The main idea of this phenomenon is to take advantage
of the reversibility of the wave equation in a nondissipative unknown medium to back-
propagate signals to the sources that emitted them. Today, the physical literature (cf.
[9] for more details) on this topic is quite rich. Meanwhile, some mathematical works
started to deal with different aspects of time-reversal phenomena: see, for instance,
[2, 4] for time-reversal in the time domain, [14] for time-reversal in the frequency
domain, and [15] for time-reversal in random media.

In this work, we present a mathematical analysis of the so-called D.O.R.T. method
(decomposition of the time-reversal operator in French), detailed in [16] to achieve
selective focusing on diffracting obstacles using time-reversal mirrors (TRM) which
are able to emit and receive acoustic waves. In the frequency domain, this method
can be described as follows: the TRM first emits an acoustic wave in a homogeneous
and nondissipative medium containing some unknown obstacles, and then measures
the diffracted field. The measured field is then conjugated (reversing time amounts
to a conjugation when the time dependence is of the form eiωt), and re-emitted. The
time-reversal operator T is the operator obtained by iterating this procedure twice.
The experimental results obtained in [16] show that the number of nonzero (or signifi-
cant) eigenvalues of T is exactly the number of obstacles contained in the propagation
medium. Furthermore, the corresponding eigenvectors generate incident waves that
focus selectively on the obstacles. Our aim here is to present a mathematical justi-
fication of these results related to selective focusing using TRMs; we will show that
these results are not true in general, but do hold for small and distant obstacles with
distinct reflectivities.

Let us point out that the inverse problem which consists of recovering the location
of the obstacles from the scattering data is not dealt with in this paper. We are
mainly concerned with qualitative properties of the eigenvectors of the time-reversal
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operator. The eigenvectors corresponding to significant eigenvalues span some kind
of relevant subspace in the sense that they contain nearly all the information about
the obstacles which can be extracted from the time-reversal operator. The others
span the so-called noise subspace, which represents some kind of quasi-null space.
This point of view meets the basics of the so-called MUSIC algorithm used in signal
processing and imaging, and its generalization, the linear sampling method (LSM),
used in inverse scattering (for a short presentation of these methods, see, for instance,
[3], and for more details, cf. [12]). These methods answer the inverse problem by using
a convenient characterization of the relevant subspace. In the context of scattering,
the link between the scattering data and the unknown locations of the obstacles is
made by means of point sources: if the radiated field produced by a given point
source has a nonzero component in the relevant subspace, the point belongs to one
scatterer, otherwise it is outside. But as mentioned in [3], both MUSIC and LSM
use the noise subspace: the question of recovering the geometric information directly
from the relevant subspace remains open.

The paper is organized as follows. We first deal with a TRM which entirely
surrounds the obstacles. In section 2, we describe the mathematical model used to
analyze time-reversal phenomena in the framework of time harmonic waves in the far
field model, i.e., for an ideal TRM able to reverse the asymptotic behavior at large
distance of a scattered wave. This will in particular lead us to express the time-
reversal operator by means of the far field operator, well known in scattering theory.
Section 3 recalls some results obtained in [14], concerning the global focusing proper-
ties of the eigenvectors of the time-reversal operator. The main result of the paper,
which concerns selective focusing, is given in section 4. It provides a mathematical
justification of the D.O.R.T. method for the problem of scattering by several small
and distant obstacles. In section 5, we generalize the results obtained in the previous
sections to the case of open mirrors (i.e., mirrors which do not completely surround
the scatterers). The main ingredient for the proof of our main result is formula (4.2),
which provides the asymptotic behavior of the scattering amplitude for the diffraction
by many small obstacles. This formula, which is of independent interest, is proved in
the appendix.

2. Mathematical setting of the problem and definition of the time-
reversal operator. Consider a TRM completely surrounding a collection of sound-
soft obstacles, located in a homogeneous medium of celerity c. During the emission
step, the TRM illuminates the obstacles with an incident wave uI which is supposed to
be a Herglotz wave. Such waves are superpositions of planes waves uαI (x) = exp(ikα·x)
of direction α ∈ S2 (S2 denotes the unit sphere in R3, k = ω/c is the wavenumber,
and ω is the frequency). More precisely, given a directional distribution f ∈ L2(S2),
we suppose that the incident field emitted by the TRM has the form

(2.1) uI(x) =

∫
S2

f(α)uαI (x) dα =

∫
S2

f(α) eikα·x dα.

We assume that the TRM is located far enough from the obstacles, so that its influence
on the diffracted field can be neglected. Moreover, the TRM is supposed to measure
the far field corresponding to the diffracted field.
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Let Ω denote the propagation domain located outside the obstacles and let ν be
the outgoing normal to Ω on its boundary Γ = ∂Ω. When illuminated by the incident
plane wave uαI (x) = eikα·x of direction α ∈ S2, the obstacles generate the diffracted
field uαD that solves the classical Dirichlet exterior problem:

∆uαD + k2uαD = 0, (Ω)
uαD = −uαI , (Γ)

lim
R−→+∞

∫
SR

∣∣∣∣∂uαD∂ν − ikuαD
∣∣∣∣2 dx = 0,

where SR is the sphere {x ∈ R3; ‖x‖ = R} and where ∂uαD/∂ν denotes the radial
derivative of uαD on SR.

It is well known (cf. [7]) that the far field asymptotics of the diffracted field in a
given direction β ∈ S2 is given by the formula

uαD(β‖x‖) =
eik‖x‖

‖x‖
A(α, β) +O(‖x‖−2),

where the bound O(‖x‖−2) is uniform for all β ∈ S2, and where A(α, β) is known as
the scattering amplitude. This function satisfies some remarkable properties (cf. [7]),
which are summarized in the following.

Proposition 2.1. The scattering amplitude A(·, ·) is given by the formula

(2.2) A(α, β) =
1

4π

∫
Γ

∂uαT
∂ν

(y)uβI (y) dΓy,

where uαT = uαI + uαD denotes the total field associated with the incident field uαI .
Furthermore, A(·, ·) defines an analytic function on S2×S2 and satisfies the reciprocity
relation

(2.3) A(α, β) = A(−β,−α).

Remark 1. This reciprocity relation simply states that the behavior of the
diffracted field observed in the direction β when the scatterers are illuminated by
a plane wave of direction α, is identical to its behavior in the direction −α under an
incident plane wave with direction −β. This property is a direct consequence of the
symmetry of the Green function of the diffraction problem (which follows itself from
the self-adjointness of the Dirichlet Laplacian).

Note that in (2.2), the integral actually represents the duality product between
H1/2(Γ) and H−1/2(Γ) since ∂uαT /∂ν belongs to the latter in general. We keep this
simplified notation in what follows.

By linearity, it follows from the results above that when illuminated by the Her-
glotz wave (2.1) associated with a given directional distribution f ∈ L2(S2), the
scattering obstacles generate the diffracted field uD

uD(x) =

∫
S2

f(α)uαD(x) dα.

Furthermore, the asymptotic behavior of uD is given by the formula

uD(β‖x‖) =
eik‖x‖

‖x‖
Ff(β) +O(‖x‖−2),
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where the far field Ff(β) in the direction β ∈ S2 is simply given by the relation

(2.4) Ff(β) =

∫
S2

A(α, β) f(α) dα.

The integral operator F : L2(S2) −→ L2(S2) with kernel A(·, ·) is known in the
literature as the far field operator. Its properties are given in the following.

Proposition 2.2. The far field operator F : L2(S2) −→ L2(S2) defined by
equation (2.4) is a compact and normal operator. Its adjoint is the operator F ∗ :
L2(S2) −→ L2(S2) defined by

(2.5) F ∗f = RFRf ∀f ∈ L2(S2),

where R is the symmetry operator defined by Rf(α) = f(−α) ∀α ∈ S2.
Proof. The compactness of the integral operator F follows immediately from the

analyticity of its kernel A(·, ·). The fact that F is a normal operator is a well-known
result, which is proved, for instance, in [5] (see Corollary 2.5). The adjoint F ∗ of F
is the integral operator with kernel

A∗(α, β) = A(β, α) = A(−α,−β),

where we have used the reciprocity relation (2.3). Formula (2.5) follows.
Remark 2. In fact, in [5], it is proved more precisely that

(2.6) FF ∗ = F ∗F =
2π

ik
(F − F ∗).

Since the far field operator F is related to the scattering matrix by the relation
S = I + (ik/2π)F , formula (2.6) can be seen as an equivalent formulation of the
fact that the scattering operator S is unitary, which is a classical result in scattering
theory (cf. [13]).

We are now able to give a rigorous definition of the time-reversal operator. During
the time-reversal process, when a Herglotz wave associated with a density f ∈ L2(S2)
is emitted by the TRM, the far field corresponding to the diffracted field is measured,
conjugated, and then re-emitted by the TRM. The new emission is characterized by
the Herglotz wave associated with the density g ∈ L2(S2) defined by

g = RFf.

In this relation, the presence of the symmetry operator R is due to the fact that
during the time-reversal process, the far field measured in a given direction β ∈ S2

is used to define the new incident plane wave in the direction −β. The time-reversal
operator T is then obtained by iterating this scheme once again, and thus, we have

Tf = RFg = RFRFf.

Thanks to (2.5) and using the fact that F is a normal operator, we finally get the
following.

Proposition 2.3. The time-reversal operator T : L2(S2) −→ L2(S2) is given by

(2.7) T = F ∗F = FF ∗.

It is the integral operator with kernel

(2.8) t(α, β) =
1

4π

∫
Γ×Γ

j0(k‖y − z‖) ∂u
α
T

∂ν
(y)

∂uβT
∂ν

(z) dΓy dΓz,
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where uαT = uαI + uαD denotes the total field associated with the incident field uαI , and
j0(ξ) = sin(ξ)/ξ is the spherical Bessel function of order 0.

Proof. Since (2.7) has been already proved, we only have to show the second part
of the proposition. From (2.7), it follows that T is the integral operator with kernel

(2.9) t(α, β) =

∫
S2

A(α, γ)A(β, γ) dγ.

Substituting expression (2.2) of the scattering amplitude in the above relations and
inverting the integrals over S2 with the integrals over Γ, we find that

t(α, β) =
1

(4π)2

∫
Γ×Γ

(∫
S2

uγI (y)uγI (z) dγ

)
∂uαT
∂ν

(y)
∂uβT
∂ν

(z) dΓy dΓz.

Equation (2.8) follows then from the identity (cf. [1, p. 155])

(2.10)

∫
S2

uγI (y)uγI (z) dγ =

∫
S2

eikγ·(z−y) dγ = 4πj0(k‖y − z‖).

3. Global focusing. The time-reversal operator T = F ∗F : L2(S2) −→ L2(S2)
is clearly a positive and self-adjoint operator. Moreover, by Proposition 2.2, it is
also a compact operator. Besides the value 0, its spectrum is thus constituted of a
finite or countable sequence of positive eigenvalues admitting 0 as the only possible
accumulation point. In this section, we see how these eigenvectors can be used to
generate incident waves that focus acoustic on the diffracting obstacles. These global
focusing results (namely Propositions 3.2 and 3.3) actually are a reformulation of
results obtained in [14]. First, we recall a classical result from linear operators theory
(see, for instance, [20, p. 442]).

Proposition 3.1. Let N be a compact and normal on a Hilbert space H. If
λ1, λ2, . . . is the sequence of all nonzero eigenvalues of N , arranged such that |λ1| ≥
|λ2| ≥ · · · , and if ϕ1, ϕ2, . . . is a corresponding orthonormal sequence of eigenvectors,
then |λ1|2 ≥ |λ2|2 ≥ · · · is the sequence of all nonzero eigenvalues of N∗N = NN∗,
and ϕ1, ϕ2, . . . is a corresponding orthonormal sequence of eigenvectors.

This proposition shows that the nonzero eigenvalues of the time reversal operator
T = F ∗F = FF ∗ are exactly the positive numbers |λ1|2 ≥ |λ2|2 ≥ · · · , where
the complex numbers (λp)p≥1 denote the nonzero eigenvalues of the normal compact
far field operator F . Furthermore, the corresponding eigenvectors (fp)p≥1 of F are
exactly the eigenvectors of T = F ∗F . Consequently, it suffices to analyze the focusing
properties of the eigenvectors of the far field F to obtain the same results for the time
reversal operator T .

Let us first deal with the largest eigenvalue of the far field operator. Then, we
have the following.

Proposition 3.2. Let λ1 be the largest eigenvalue (in modulus) of F , and let
f1 ∈ L2(S2) be an eigenvector of F associated with λ1. Then,

sup
f∈L2(S2) , f 6=0

‖Ff‖2L2(S2)

‖f‖2L2(S2)

=
‖Ff1‖2L2(S2)

‖f1‖2L2(S2)

= |λ1|2.

In other words, the incident Herglotz wave u1
I(x) =

∫
S2 f1(α) eikα·x dα is, among

all the possible Herglotz waves, the one that maximizes the energy scattered by the
obstacles.
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Proof. The proposition is a straightforward consequence of the Min-Max principle.
Indeed, applying this principle to the positive self-adjoint and bounded operator T =
F ∗F , we can write that the largest eigenvalue |λ1|2 of T satisfies

|λ1|2 = sup
f∈L2(S2) , f 6=0

(Tf, f)L2(S2)

‖f‖2L2(S2)

= sup
f∈L2(S2) , f 6=0

‖Ff‖2L2(S2)

‖f‖2L2(S2)

.

Roughly speaking, this result says that the “best” way to illuminate a family
of obstacles with Herglotz waves is to use a Herglotz wave u1

I corresponding to an
eigenvector f1 of F (or T ) associated with its largest eigenvalue λ1. The physical
reason explaining this property is that the incident field generated by an eigenvector
fp associated with any eigenvalue λp 6= 0 of F , focuses on the obstacles. More
precisely, the following result holds true (see [14]).

Proposition 3.3. Let λp 6= 0 be an eigenvalue of F and fp ∈ L2(S2), fp 6= 0, an
eigenvector of F associated with λp. Then, the Herglotz wave uI,p associated with fp
and defined by uI,p(x) =

∫
S2 fp(α)uαI (x) dα =

∫
S2 fp(α) eikα·x dα, has the following

form:

(3.1) uI,p(x) =
1

λp

∫
Γ

j0(k‖x− y‖) ∂uT,p
∂ν

(y) dΓy,

where uT,p = uI,p+uD,p denotes the total field associated with the incident field uI,p.
Proof. Since fp(β) = λ−1

p Ffp(β) = λ−1
p

∫
S2 A(α, β) fp(α) dα, we obtain by using

expression (2.2) of A(α, β) that

fp(β) = (4πλp)
−1

∫
S2

∫
Γ

∂uαT
∂ν

uβI dΓ fp(α) dα

= (4πλp)
−1

∫
Γ

∫
S2

∂uαT
∂ν

fp(α) dα uβI dΓ.

But by superposition, the integral
∫
S2 ∂u

α
T /∂ν fp(α) dα is nothing but the normal

derivative of the total field uT,p associated with the incident field uI,p, and thus

(3.2) fp(β) = (4πλp)
−1

∫
Γ

∂uT,p
∂ν

uβI dΓ.

We can now obtain the expression of the incident field generated by the eigenvector
fp. From (3.2), we have

uI,p(x) =

∫
S2

fp(β)uβI (x) dβ

= (4πλp)
−1

∫
S2

∫
Γ

∂uT,p
∂ν

uβI dΓ uβI (x) dβ

= (4πλp)
−1

∫
Γ

(∫
S2

uβI (x)uβI (y) dβ

)
∂uT,p
∂ν

(y) dΓy.

Formula (3.1) follows then from identity (2.10).
Since j0(ξ) = sin(ξ)/ξ, formula (3.1) shows that, as expected, the incident field

uI,p(x) generated by an eigenvector fp of F (or T ) decreases like r(x)−1 if r(x) denotes
the distance of x to the obstacles. In this sense, one can say that uI,p focuses on
the obstacles located in the propagation medium. Furthermore, the quality of this
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focusing (given by the amplitude of the far field) is exactly given by the magnitude
of the eigenvalue λp, since

|λp| =
‖Ffp‖L2(S2)

‖fp‖L2(S2)
.

4. Selective focusing. The aim of this section is to propose a mathematical
justification of the so-called D.O.R.T. method presented in [16] and briefly described
in the introduction of this paper. Roughly speaking, we answer the two following
questions.

(i) Is the number of obstacles contained in a homogeneous medium equal to
the number of “significant” eigenvalues of the far field operator F (or, equivalently,
to those of the time-reversal operator T = F ∗F = FF ∗)?

(ii) If so, do the associated eigenvectors selectively focus on the obstacles?
As can be seen from the numerical experiments presented in [6], the answer to the
first question is, in general, negative (there can be several “significant” eigenvalues
even when there is just one scatterer). We will confirm this result by studying in
subsection 4.1 the special case of a single spherical obstacle. Nevertheless, we will
show that the answer becomes positive provided the obstacles considered are small
enough. Under this assumption, we show in subsection 4.2 that selective focusing can
be achieved using the eigenvectors of the far field operator.

4.1. Diffraction by a single spherical obstacle. In this subsection, we deal
with the case where the scatterer is a sphere of radius a > 0. For this particular
geometry, an explicit formula can be obtained for the eigenvalues of the far field map-
ping and thus for those of the time-reversal operator. The results of this subsection
are classical and can be found, for instance, in [7]. In particular, formula (3.30) in [7]
shows that for any given density

f =

+∞∑
n=0

n∑
m=−n

amn Y
m
n ∈ L2(S2),

we have

Ff(β) =

+∞∑
n=0

n∑
m=−n

4iπ

k

jn(ka)

h1
n(ka)

amn Y
m
n (β).

Here Y mn denotes the usual spherical harmonics, jn and h1
n are, respectively, the

spherical Bessel and Hankel functions of order n.
Since the spherical harmonics constitute an orthonormal basis of L2(S2), this

formula shows that the following result holds.
Proposition 4.1. The eigenvalues of the far field operator F in the case of a

single sound-soft spherical scatterer of radius a are given by

(4.1) λn =
4iπ

k

jn(ka)

h1
n(ka)

∀n ≥ 1.

The eigenspace associated with the eigenvalue λn is the vector space of dimension
2n+ 1 with basis Y mn , for |m| ≤ n.

Remark 3. Equation (4.1) shows that the eigenvalues λn of the far field operator
F satisfy |λn| ≤ 4π/k (recall that h1

n = jn + iyn). This property can also be obtained
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Fig. 4.1.

from the fact that the scattering operator S = I + (ik/2π)F is unitary. Indeed, this
property implies that the eigenvalues λn lie on the circle of radius 4π/k centered at
(0, 2π/k).

Proposition 4.1 shows in particular that the number of nonzero eigenvalues is not
necessarily equal to the number of obstacles. However, in the case of a point scatterer
or in the case of the low-frequency scattering (both cases which correspond to the
asymptotic limit ka −→ 0), this result becomes true. Indeed, using the asymptotic
behavior of Bessel and Hankel functions, we easily see that the eigenvalues λn given
by (4.1) satisfy

λn ∼ −
4π2

k

(ka/2)2n+1

Γ(n+ 1/2)Γ(n+ 3/2)

when ka goes to zero (and n is fixed). Thus, λn+1/λn decreases like (ka)2, and hence,
one can consider that the only significant eigenvalue in the limit case ka −→ 0 is
the largest one λ1. This observation suggests that the number of nonzero eigenvalues
can be related to the number of obstacles when the obstacles are small. The next
subsection provides a justification of this statement.

4.2. Diffraction by several small obstacles. Consider a family of obstacles
{Oεp; p = 1, N} depending on a small parameter ε, where each Oεp is the image of a
reference open set Op (which is assumed to contain the origin) by a dilation of ratio
ε centered at a given point sp ∈ R3 (see Figure 4.1):

Oεp =

{
x ∈ R3; ξ =

x− sp
ε
∈ Op

}
.

Of course the “centers” sp are chosen different so that for small enough ε, the obstacles
do not intersect.

The main ingredient to show that selective focusing can be achieved using the
eigenvectors of the far field operator when ε is small enough is given by the following
result, which provides the asymptotic behavior of the scattering amplitude Aε(α, β)
associated with the family of obstacles {Oεp}.

Proposition 4.2. There exist N positive constants C1, . . . , CN depending only
on the geometry of the reference obstacles O1, . . . ,ON (called the “capacities” of these
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obstacles) such that

(4.2)
Aε(α, β)

ε
= A(1)(α, β) +O(ε) with A(1)(α, β) =

−1

4π

∑
p=1,N

Cp u
α
I (sp)u

β
I (sp),

where the bound O(ε) is uniform for all α, β ∈ S2.
For the sake of clarity, the—rather technical—proof of this proposition is given

in the appendix.
Remark 4. The capacity of a spherical soft obstacle of radius a is C = 4πa (since

the solution to (A.7) is simply given in this case by V (x) = a/‖x‖).
Thanks to Proposition 4.2, we know that the far field operator F ε of the family

of obstacles {Oεp; p = 1, N} satisfies

∥∥∥ε−1F ε − F (1)
∥∥∥
L(L2(S2))

= sup
f∈L2(S2)\{0}

‖(ε−1F ε − F (1))f‖L2(S2)

‖f‖L2(S2)
= O(ε),

where F (1) is the integral operator on L2(S2) with kernel A(1):

F (1)f (β) =

∫
S2

A(1)(α, β) f(α) dα.

Since F ε is compact and normal, perturbation theory [11] ascertains the continuity of
any finite system of eigenvalues as well as of the associated total eigenprojection. More
precisely, assume that λ(1) is an isolated eigenvalue of F (1) with finite multiplicity m,
which implies that λ(1) 6= 0.

(i) Then for small enough ε, the spectrum of ε−1F ε can be separated into two
parts. On one hand, the so-called λ(1)-group consists of m′ ≤ m eigenvalues λεj , with
j = 1 to m′, having a constant multiplicity mj for ε 6= 0, and which are continuous
near ε = 0, namely

|λεj − λ(1)| = O(ε).

Moreover, the total multiplicity
∑
j=1,m′ mj of the λ(1)-group coincide with the mul-

tiplicity m of λ(1). On the other hand, the complementary of the λ(1)-group in the
spectrum of ε−1F ε lies outside a vicinity of λ(1).

(ii) The total projection P ε for the λ(1)-group, i.e., the sum of the orthogonal
projections on the eigenspaces associated with the λεj , is continuous at ε = 0, and∥∥∥P ε − P (1)

∥∥∥
L(L2(S2))

= O(ε),

where P (1) is the eigenprojection associated with λ(1).
Notice that in general, one cannot assert the existence of a continuous family of

eigenvectors associated respectively with the λεj . However, for our particular choice
of geometric perturbation (ε-dilation), such a result holds, since the perturbation
actually is analytic with respect to ε (which is easily deduced from the appendix).
But this result is of poor practical interest.

An eigenvalue of ε−1F ε either belongs to some λ(1)-group for a nonzero eigen-
value λ(1) of F (1), or vanishes as ε tends to 0. In the latter case, the above result does
not apply; perturbation theory only provides the continuity of nonstationary eigenele-
ments. So it remains to study the spectral properties of F (1), whose degenerate kernel



10 CHRISTOPHE HAZARD AND KARIM RAMDANI

will be rewritten in the form

(4.3) A(1)(α, β) = −
∑
p=1,N

Cp ep(α) ep(β), where ep(α) =
e−ikα·sp

2
√
π

(p = 1, N).

Remark 5. Each ep appears as a normalized function of L2(S2) corresponding to
an incident Herglotz wave uI,p which focuses on the pth obstacle, for

uI,p(x) =

∫
S2

ep(α)uαI (x) dα = 2
√
π j0(k‖x− sp‖),

by virtue of (2.10).
The above expression of A(1) then yields

(4.4) F (1)f = −
∑
p=1,N

Cp (f, ep)L2(S2) ep.

Proposition 4.3. The limit far field operator (4.4) is a negative self-adjoint
operator with finite rank N (the number of obstacles) and whose spectral radius cannot
be smaller than the greatest capacity Cp of the obstacles.

In the case where the wavelength ` = 2π/k is small compared with the minimum
distance d = min1≤p 6=q≤N ‖sp − sq‖ between the obstacles, the family {ep; p = 1, N}
defined in (4.3) provides an approximate basis of eigenvectors associated with the ap-
proximate eigenvalues {−Cp; p = 1, N} :

(4.5) F (1)ep = −Cp ep +O

(
`

d

)
.

Proof. The bilinear form associated with F (1),

(F (1)f, f ′)L2(S2) = −
∑
p=1,N

Cp (f, ep)L2(S2) (f ′, ep)L2(S2),

is clearly negative and self-adjoint, and so is F (1). The range of F (1) is spanned by
{ep; p = 1, N}. To see that this family is linearly independent, suppose that∑

p=1,N

zp ep = 0 with zp ∈ C.

It is clear that the function ep ∈ L2(S2) is nothing but the far field corresponding to
a point source located at the point sp. Consequently, the above relation simply states
that we have chosen a superposition of point sources located at the points (sp)p=1,N

whose far field vanishes. Thus, by Rellich’s lemma, the field is identically zero. Hence,
all the coefficients (zp)p=1,N of the linear combination must also vanish. The linear
independence of the family {ep; p = 1, N} is thus established.

The lower bound for the spectral radius follows from the fact that∣∣∣(F (1)eq, eq)L2(S2)

∣∣∣ =
∑
p=1,N

Cp
∣∣ (ep, eq)L2(S2)

∣∣2 ≥ Cq for q = 1, N,

since the ep are normalized in L2(S2). On the other hand, nothing can be said in
general about the gap between 0 and the other eigenvalues, which may be arbitrarily
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close to the former. This actually depends on the constructive or destructive inter-
actions between the different obstacles, which are measured by the following scalar
products (see (2.10)):

(ep, eq)L2(S2) = j0(k‖sp − sq‖) =
sin(k‖sp − sq‖)
k‖sp − sq‖

.

These relations show in particular that

(ep, eq)L2(S2) =

 1 for q = p,

O

(
`

d

)
for q 6= p,

which means that {ep; p = 1, N} is close to an orthogonal basis of the range of F (1)

when `� d. The estimate (4.5) follows: each ep is an approximate eigenvector.
What are the practical consequences of the above results as regards selective

focusing? Mainly that the eigenvectors of the time-reversal operator (or the far field
operator) will produce selective focusing acoustic waves if

(i) the obstacles are small enough, compared to the wavelength,
(ii) the smallest distance between them is large, compared again to the wave-

length,
(iii) their capacities are all distinct.

Indeed in this case all the nonzero eigenvalues of F (1) will be simple: the diagonal-
ization of the time-reversal operator will then yield approximations of the focusing
densities ep.

But if one of these assumptions is missing, the nice focusing properties will dis-
appear, at least for some groups of eigenvectors.

On one hand, if the interactions between the obstacles become significant, i.e.,
when d/` = O(1), these properties may reduce to the purely global focusing presented
in section 3. In particular, for very low frequencies, the situation ε � d � ` may
occur. In this case we have

ep = ẽ+O

(
d

`

)
with ẽ(α) =

e−ik α·s̃

2
√
π

,

where s̃ may be chosen as a convex combination of the sp. As a consequence

F (1)f = −

 ∑
p=1,N

Cp

 (f, ẽ)L2(S2) ẽ+O

(
d

`

)
,

which shows that the cluster of obstacles behaves like a unique obstacle which accumu-
lates their respective capacities; only one significant eigenvalue of the time-reversal
operator may be observed. Of course, for several distant clusters, we shall recover
selective focusing on each cluster.

On the other hand, if some of the obstacles have neighboring capacities, the
time-reversal operator may admit nonsimple eigenvalues. In this situation, the diago-
nalization of the latter cannot choose the selective focusing densities among all their
linear combinations which compose the corresponding eigenspace.

5. Open time-reversal mirrors. In this section, we consider the case of a TRM
that does not entirely surround the obstacle. Given a subset Ŝ of S2, we assume that
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the TRM can emit plane waves of directions α ∈ Ŝ, and measures the far field in the
opposite directions β ∈ (−Ŝ). One emission-diffraction-reception cycle is described
by the directional far field operator

F̂ = P̂− F P̂
∗
+ : L2(+Ŝ) −→ L2(−Ŝ),

where P̂± are the restriction operators from L2(S2) to L2(±Ŝ), and thus their respec-

tive adjoints P̂ ∗± : L2(±Ŝ) −→ L2(S2) are the operators of continuation by 0 outside

±Ŝ. Note here that F̂ appears as the integral operator

F̂ f(β) =

∫
+Ŝ

A(α, β) f(α) dα for β ∈ −Ŝ.

The time-reversal operator T̂ in the case of an open TRM is then defined by

T̂ f = R̂ F̂ R̂ F̂ f ,

where R̂ : L2(−Ŝ) −→ L2(+Ŝ) is the restriction of the symmetry operator defined in

section 2 (i.e., R̂f(α) = f(−α) for α ∈ Ŝ).

But one can easily check that R̂ P̂− = P̂+R and P̂ ∗+ R̂ = R P̂ ∗−, and since these
operators commute with the conjugation, we have by virtue of (2.5)

F̂ ∗f = P̂+F
∗P̂ ∗−f = P̂+RFRP̂ ∗−f = R̂ P̂−FP̂ ∗+R̂ f = R̂ F̂ R̂ f .

Hence, we can state the following result.
Proposition 5.1. The time-reversal operator T̂ for an open TRM is given by

T̂ = F̂ ∗F̂ : L2(Ŝ) −→ L2(Ŝ).

Thus, it is the integral operator with kernel

(5.1) t̂(α, β) =

∫
−Ŝ

A(α, γ)A(β, γ) dγ for α, β ∈ Ŝ.

Moreover, T̂ defines a compact positive and self-adjoint operator.
Besides the value 0, the spectrum T̂ is thus constituted of a finite or countable

sequence of positive eigenvalues (µ̂p)p≥1 admitting 0 for only possible accumulation

point. The largest eigenvalue µ̂1 of T̂ is thus given by

µ̂1 = sup
f∈L2(Ŝ) , f 6=0

(
T̂ f, f

)
L2(Ŝ)

‖f‖2L2(S2)

= sup
f∈L2(Ŝ) , f 6=0

‖F̂ f‖2
L2(−Ŝ)

‖f‖2
L2(+Ŝ)

.

This expression shows in particular that the incident field corresponding to an eigen-
vector associated with this eigenvalue maximizes the diffracted field in the direction of
the TRM. Our goal now is to see if the global and selective properties proved respec-
tively in sections 3 and 4 for closed mirrors still hold in the case of an open TRM. The
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main difference between both situations is that in the latter one, the directional far
field operator F̂ is not anymore normal (the range of F̂ ∗F̂ is contained in L2(Ŝ), when

that of F̂ F̂ ∗ is contained in L2(−Ŝ)). Consequently, the eigenelements of T̂ = F̂ ∗F̂

cannot be directly related to those of F̂ . Contrary to the case of a closed TRM, the
spectral analysis need thus to be carried on the time reversal operator and not on
the far field one. Nevertheless, as we are going to see now, all the focusing results
obtained previously still hold.

5.1. Global focusing. In this subsection, we prove a global focusing property
similar to the one given in Proposition 3.3. More precisely, we have the following
result.

Proposition 5.2. Let µ̂p 6= 0 be an eigenvalue of T̂ and f̂p ∈ L2(Ŝ) be a

corresponding eigenvector. Then, the Herglotz wave ûI,p associated with f̂p and defined

by ûI,p(x) =
∫
Ŝ
f̂p(α)uαI (x) dα can be written in the form

(5.2) ûI,p(x) =

∫
Γ

̂ (k(x− y))hp(y) dΓ

for some density hp, where

(5.3) ̂ (k(x− y)) =

∫
Ŝ

uβI (x)uβI (y) dβ =

∫
Ŝ

eikβ·(x−y) dβ.

Proof. Like in the proof of Proposition 3.3, formula (5.2) will be proved if we can

write f̂p in the form

(5.4) f̂p(β) =

∫
Γ

hp u
β
I dΓ

for a given density hp. Indeed, if such a relation holds, then

ûI,p(x) =

∫
Ŝ

f̂p(β)uβI (x) dβ =

∫
Ŝ

∫
Γ

hp u
β
I dΓ uβI (x) dβ.

Equation (5.2) follows then by inverting the integrals over Ŝ and Γ.

Thus, it only remains to prove (5.4). We first write that for all β ∈ Ŝ,

(5.5) f̂p(β) =
1

µ̂p
T̂ f̂p(β) =

1

µ̂p

∫
Ŝ

t̂(α, β)f̂p(α) dα.

Thanks to the reciprocity relation (2.3), formula (5.1) can be written

t̂(α, β) =

∫
−Ŝ

A(α, γ)A(−γ,−β) dγ.

Using the integral representation (2.2) in the above relation, we get after some simple
computations that

(5.6) t̂(α, β) =

∫
Γ

hαp u
β
I dΓ,
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where the density hαp is given by

hαp (x) =
1

(4π)2

∫
−Ŝ

∫
Γ

∂uαT
∂ν

uγI dΓ
∂u−γT
∂ν

(x) dγ.

Combining (5.5) and (5.6), one obtains the claimed relation (5.4), with the density

hp(x) = µ̂−1
p

∫
Ŝ
hαp (x) f̂p(α) dα.

It is well known in oscillatory integrals theory that the function ̂ (x) defined by
(5.3) satisfies (one can use the stationary phase theorem; see, for instance, Theorem
1 in [19, p. 322])

(5.7) ̂ (x) = O
(
‖x‖−1

)
.

In the directions which are not covered by the TRM (i.e., when x/‖x‖ /∈ ±S), one
can in fact obtain a faster decay for ̂ (x), since we have then ̂ (x) = O

(
‖x‖−3/2

)
.

Thanks to (5.7), formula (5.2) shows thus that the incident field generated by an

eigenvector of T̂ focuses on the obstacles located in the propagation medium.

5.2. Diffraction by several small obstacles. Now we turn to the analysis
of the selective focusing in the case of a TRM partially surrounding several small
obstacles. The assumptions made on the geometry of the small scatterers are identical
to those made in section 4. Let us recall that the main difference with section 4 is that
since F̂ is not normal, the spectral analysis can no longer be achieved on F̂ but has
to be carried out directly on the time-reversal operator T̂ . In this subsection, we are
going to see that the selective focusing results obtained in section 4 can be extended
to the case of an open mirror.

Using the asymptotic formula (4.2) of the scattering amplitude, one easily gets

that the kernel t̂ε(α, β) of the time-reversal operator T̂ ε = (F̂ ε)∗F̂ ε satisfies

t̂ ε(α, β)

ε2
= t̂ (1)(α, β) +O(ε),

where

t̂ (1)(α, β) =

∫
−Ŝ

A(1)(α, γ)A(1)(β, γ) dγ ∀α, β ∈ Ŝ

and where A(1)(·, ·) is the degenerate kernel defined in (4.2). Since T̂ ε is compact
and self-adjoint, classical results of perturbation theory show again that for small ε,
the spectral elements of ε−2T̂ ε can be approximated by those of the integral operator
T̂ (1) with kernel t̂ (1)(·, ·), which also reads T̂ (1) = (F̂ (1))∗F̂ (1), where the operator

F̂ (1) : L2(Ŝ) −→ L2(−Ŝ) is defined by

F̂ (1)f(β) = −
∑
p=1,N

Cp (f, ep)L2(Ŝ) ep(β) for β ∈ −Ŝ.

If we define the normalized functions {êp; p = 1, N} in L2(Ŝ) and L2(−Ŝ) by

(5.8) êp(α) = (4πr̂ )−1/2 e−ikα·sp ,

where r̂ = mes(Ŝ)/(4π) is the opening ratio of the TRM, then

(5.9) F̂ (1)f = −r̂
∑
p=1,N

Cp (f, êp)L2(Ŝ) êp in L2(−Ŝ).
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Hence, for all f ∈ L2(Ŝ), we have

(5.10) T̂ (1)f = r̂ 2
∑
q=1,N

Cq

 ∑
p=1,N

Cp (f, êp)L2(Ŝ)(êp, êq)L2(−Ŝ)

 êq.

We can now state the main result of this subsection.
Proposition 5.3. The limit time reversal operator T̂ (1) : L2(Ŝ) −→ L2(Ŝ)

defined by (5.10) is a self-adjoint operator with finite rank N (the number of obstacles).
Furthermore, if the wavelength ` = 2π/k is small compared with the minimum

distance between the obstacles, the family {êp; p = 1, N} defined in (5.8) provides an

approximate basis of eigenvectors of T̂ (1) associated with the approximate eigenvalues
(r̂ Cp)

2:

(5.11) T̂ (1)êp = (r̂ Cp)
2 êp +O

(
`

d

)
.

Proof. The fact that T̂ (1) is of rank N follows from the fact that the family
{êp; p = 1, N} is linearly independent in L2(Ŝ)(see the proof of Proposition 5.3).
Equation (5.11) follows from (5.10) combined with the fact that

(êp, êq)L2(Ŝ) = (êp, êq)L2(−Ŝ) =

 1 for p = q,

O

(
`

d

)
for p 6= q.

The last estimate follows from the relation

(êp, êq)L2(Ŝ) = (4πr̂)−1

∫
Ŝ

eikβ·(sp−sq) dβ = (4πr̂)−1̂ (k(sp − sq))

and from the decay property (5.7) of ̂ for p 6= q.
Remark 6. Contrary to the case of a closed mirror (compare Propositions 4.3 and

5.3), we have not been able to compare the spectral radius of T̂ (1) with the greatest
value taken by the quantities (r̂Cp)

2.
As in the case of a closed mirror, Proposition 5.3 shows that the eigenvectors of

the time-reversal operator for an open mirror will produce selective focusing acoustic
waves if

(i) the obstacles are small enough, compared to the wavelength,
(ii) the smallest distance between them is large, compared to the wavelength,
(iii) their capacities are all distinct.

Indeed in this case all the nonzero eigenvalues of T̂ (1) will be simple: the diagonal-
ization of the time-reversal operator will then yield approximations of the focusing
densities êp since each êp generates an incident Herglotz wave ûI,p which focuses on
the pth obstacle for

ûI,p(x) =

∫
Ŝ

êp(α)uαI (x) dα =
1√
4πr̂

̂ (k(x− sp)) = O

(
`

‖x− sp‖

)
.

Appendix A. Asymptotics for small obstacles. We detail here a constructive
proof of the asymptotic behavior (4.2) of the scattering amplitude for small obstacles,
claimed in Proposition 4.2. This result is formally derived in other papers (see, e.g.,
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[17, 18]). A more abstract proof based on potential theory was recently proposed
in [8].

The idea of our proof is to rewrite the scattering problem as a regular perturbation
of a Fredholm equation in a fixed Hilbert space, in the sense that it does not depend
on the size, say ε, of the obstacles:

(A.1) (I + Kε)ϕε = gε.

We obtain such a formulation by means of a variant of the integral method introduced
by Jami and Lenoir [10], which has the advantage to involve nonsingular kernels,
contrary to usual integral equations (for which perturbation theory requires more
complicated arguments).

Consider the family of obstacles {Oεp; p = 1, N} introduced in subsection 4.2.
We denote by Γεp (respectively, Γp) the boundary of Oεp (respectively, of Op), Γε =⋃
p=1,N Γεp and Oε =

⋃
p=1,N Oεp. Our exterior Dirichlet problem for the diffracted

field uε reads

(A.2)

 ∆uε + k2uε = 0 in R3 \ Oε,
uε = f on Γε,
R.C.,

where R.C. stands for the outgoing radiation condition, and f = −uαI is the Dirichlet
datum associated with an incident plane wave uαI (x) = exp(ikα·x) of direction α ∈ S2.

Reduction to a bounded domain. Around each reference obstacle Op, we
delimit a bounded part Dp of its exterior by a fictitious boundary Σp which does not
intersect Γp. We denote by Dε

p and Σεp the images of Dp and Σp by the same dilation
as for Oεp, as well as Dε =

⋃
p=1,N D

ε
p and Σε =

⋃
p=1,N Σεp.

The Jami–Lenoir method consists of introducing a transparent boundary condi-
tion on Σε which is derived from the usual integral representation of uε. Here, in order
to get rid of the normal derivative of uε on Γε, the single-layer potential is re-expressed
as a volume potential by Green’s formula. Indeed it is easy to see that near Σε we
have

uε = f
Γε

∗ ∂Gk
∂ν

+ k2uε
Dε

∗ (χεGk)−∇uε D
ε

∗ ∇(χεGk),

where the different “convolutions” represent, respectively, the surface double-layer
potential {

f
Γε

∗ ∂Gk
∂ν

}
(x) =

∫
Γε

f(y)
∂Gk
∂νy

(x− y) dγy

and the volume potentials

{uε D
ε

∗ (χεGk)}(x) =

∫
Dε

uε(y)χε(y)Gk(x− y) dy,

{∇uε D
ε

∗ ∇(χεGk)}(x) =

∫
Dε

∇uε(y) · ∇y(χε(y)Gk(x− y)) dy.

In the above expressions, Gk stands for the outgoing Green function of ∆ + k2, i.e.,
Gk(x) = − exp(ik|x|)/(4π|x|), and χε denotes a family of regular cutoff functions
(χεp)p=1,...,N defined by the ε-dilation: χεp(x) = χp((x− sp)/ε) if x ∈ Dε

p, where each
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χp is equal to 1 in a vicinity of Γp and 0 in a vicinity of Σp. Note that these integrals
involve regular kernels when x is near Σε.

As a consequence if uε solves (A.2), its restriction vε to Dε satisfies

(A.3)


∆vε + k2vε = 0 in Dε,
vε = f on Γε,

Zεvε = Zε
{
f

Γε

∗ ∂Gk
∂ν

+ k2vε
Dε

∗ (χεGk)−∇vε D
ε

∗ ∇(χεGk)

}
on Σε,

where Zε stands for the boundary operator (∂/∂ν + i/ε) on Σε.
Conversely, the solution to this problem extends outside Σε (by the integral rep-

resentation) to the solution to (A.2) (thanks to the term involving i/ε which prevents
the so-called irregular frequencies from being real; see [10]).

The limiting process. In order to work in a functional framework independent
of ε, we perform in each subdomain Dε

p the change of variable ξ = (x − sp)/ε. By
denoting ϕεp(ξ) = vε(x) and fεp (ξ) = f(x), for x ∈ Dε

p, as well as

Gεpq(ξ, η) = Gk(sp − sq + ε(ξ − η)) for ξ ∈ Dp and η ∈ Dq,

problem (A.3) amounts to a family of N problems set on the domains Dp coupled by
the transparent boundary conditions written on Σp:

(A.4)



∆ϕεp + (εk)2ϕεp = 0 in Dp,
ϕεp = fεp on Γp,

Zϕεp = Z
∑
q=1,N

{
εfεq

Γq∗
∂Gεpq
∂ν

+ ε3k2ϕεq
Dq∗ (χqG

ε
pq)− ε∇ϕεq

Dq∗ ∇(χqG
ε
pq)

}
on Σp,

where Z = (∂/∂ν + i) on Σp.
We are now able to define the formal limit of the latter problem. Let G0 be the

limit of Gεk when ε tends to 0, i.e., G0(x) = −1/(4π|x|). Notice that

(A.5)
Gεpq(ξ, η) = Gk(sp − sq) +O(ε) if p 6= q,
Gεpp(ξ, η) = ε−1G0(ξ − η) +O(1) if p = q,

where these formulas hold uniformly in any compact subset of Dp × Dq which does
not contain points of the diagonal when p = q, and can be derived with respect to ξ
or η. Hence the formal limit of problem (A.4) reads as

(A.6)


∆ϕ0

p = 0 in Dp,

ϕ0
p = f0

p = −eikα·sp on Γp,

Zϕ0
p = Z

{
f0
p

Γp∗ ∂G0

∂ν
−∇ϕ0

p

Dp∗ ∇(χpG0)

}
on Σp,

which correspond to a family of uncoupled problems. Each of them amounts to solving
an exterior Laplace equation. More precisely, we can write that ϕ0

p = −uαI (sp)Vp,
where Vp is the static potential solution to

(A.7)

 ∆Vp = 0 in R3 \ Op,
Vp = 1 on Γp,
Vp = O(1/x) as |x| → ∞.
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Convergence. Consider the closed subspace of the usual Sobolev space H1(Dp)
given by Hp = {ψp ∈ H1(Dp); ψp = 0 on Γp}. The variational formulation of (A.4)
appears as a coupled system of variational equations:

Find ϕεp ∈ fεp +Hp, p = 1, N, such that∫
Dp

∇ϕεp · ∇ψp − (εk)2

∫
Dp

ϕεp ψp + i

∫
Σp

ϕεp ψp dσ

+

∫
Σp

Z

 ∑
q=1,N

ε3k2ϕεq
Dq∗ (χqG

ε
pq)− ε∇ϕεq

Dq∗ ∇(χqG
ε
pq)

 ψp dσ

=

∫
Σp

Z

 ∑
q=1,N

εfεq
Γq∗
∂Gεpq
∂ν

 ψp dσ ∀ψp ∈ Hp, p = 1, N.

Adding these equations yields the announced Fredholm equation (A.1) in the Hilbert
space H = H1 × · · · × HN which can be equipped with the scalar product

(ϕ,ψ) =
∑
p=1,N

∫
Dp

∇ϕp · ∇ψp.

Indeed, define ϕε = (ϕε1, . . . , ϕ
ε
N ), fε = (fε1 , . . . , f

ε
N ) and, respectively, the operator

Kε defined in H and gε ∈ H by

(Kεϕ,ψ) =
∑
p=1,N

−(εk)2

∫
Dp

ϕp ψp + i

∫
Σp

ϕp ψp dσ

+

∫
Σp

Z

 ∑
q=1,N

ε3k2ϕq
Dq∗ (χqG

ε
pq)− ε∇ϕq

Dq∗ ∇(χqG
ε
pq)

 ψp dσ

(gε, ψ) =
∑
p=1,N

∫
Σp

Z

 ∑
q=1,N

εfεq
Γq∗
∂Gεpq
∂ν

ψp dσ

for all ϕ = (ϕ1, . . . , ϕN ) and ψ = (ψ1, . . . , ψN ) in H. Then our coupled system reads
as follows:

(A.8) Find ϕε ∈ fε +H such that (I + Kε)ϕε = gε.

And of course we have a similar expression of the limit problem (A.6) with

(K0ϕ,ψ) =
∑
p=1,N

i

∫
Σp

ϕp ψp dσ −
∫

Σp

Z

{
∇ϕp

Dp∗ ∇(χqG0)

}
ψp dσ,

(g0, ψ) =
∑
p=1,N

∫
Σp

Z

{
f0
p

Γp∗ ∂G0

∂ν

}
ψp dσ.

Note that the uniqueness of the solution to (A.2) (respectively, (A.7)) implies that
I + Kε (respectively, I + K0) is injective, and thus bijective thanks to the following.

Lemma A.1. Kε defines a family of compact operators in H which satisfies

(A.9) ‖Kε −K0‖ = sup
ϕ,ψ∈H\{0}

(Kε −K0)ϕ,ψ)

‖ϕ‖‖ψ‖
= O(ε).
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Proof. Consider, for instance, the part of Kε corresponding to the operator Tεpq
given by

(Tεpqϕ,ψ) =

∫
Σp

Z

{
ε∇ϕq

Dq∗ ∇(χqG
ε
pq)

}
ψp dσ

=

∫
Σp

∫
Dq

∇ϕq(η) · ∇η(εχq(η)ZξG
ε
pq(ξ − η)) dη ψp dσξ.

We detail the proof only for the latter; similar arguments can be used for the other
terms involved in the definition of Kε.

The compactness of Tεpq can be easily deduced from that of its adjoint. Indeed,
using Schwarz inequality yields

‖(Tεpq)∗ψ‖ = sup
ϕ∈H\{0}

(Tεpqϕ,ψ)

‖ϕ‖
≤ Cεpq ‖ψ‖L2(Σp), where

Cεpq =

(∫
Σp

∫
Dq

∥∥∇η{εχq(η)ZξG
ε
pq(ξ − η)}

∥∥2
dη dσξ

)1/2

.

But the trace operator is compact from H1(Dq) to L2(Σp), which implies the com-
pactness of (Tεpq)∗ in H.

If p 6= q, formula (A.5) shows that Cεpq = O(ε), and consequently the same holds
for ‖Tεpq‖ = ‖(Tεpq)∗‖. If p = q, the limit operator is given by

(T0
ppϕ,ψ) =

∫
Σp

Z

{
∇ϕp

Dp∗ ∇(χpG0)

}
ψp dσ,

since (A.5) shows in this case (again by Schwarz inequality) that∣∣((Tεpp − T0
pp)ϕ,ψ)

∣∣ ≤ εC ‖∇ϕ‖L2(Dp) ‖ψ‖L2(Σp).

Hence ‖Tεpp − T0
pp‖ = O(ε).

Lemma A.1 turns our problem into one of the simplest situations of perturbation
theory [11]: the use of the Neumann series readily shows that

‖(I + Kε)−1 − (I + K0)−1‖ = O(ε).

It remains to notice that ‖fε − f0‖ and ‖gε − g0‖ are also of order ε, from which we
conclude that

(A.10) ‖ϕε − ϕ0‖ = O(ε).

The scattering amplitude. Thanks to formula (2.2), the local convergence
expressed by the latter result also provides the far field asymptotics. Here, using our
homothetic changes of variables, the scattering amplitude reads

Aε(α, β) =
−ε
4π

∑
p=1,N

∫
Γp

∂

∂ν
(ϕεp(α)− fεp (α)) fεp (β) dγ.

On one hand, (A.10) implies that ∂ϕεp(α)/∂ν tends to ∂ϕ0
p(α)/∂ν = −uαI (sp) ∂Vp/∂ν

in H−1/2(Γp) (recall that Vp is defined in (A.7)). On the other hand, fεp (α) tends to
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the constant function f0
p (α) = −uαI (sp). Hence

Aε(α, β) =
−ε
4π

∑
p=1,N

Cp u
α
I (sp)u

β
I (sp) + O(ε2), where

Cp =

∫
Γp

∂Vp
∂ν

dγ =

∫
R3\Op

|∇Vp|2

is referred to as the capacity of the obstacle Op. Proposition 4.2 is thus proved.

Acknowledgments. The authors would like to thank the referees for their valu-
able comments and suggestions.
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