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Introduction

The applications of the SU (3) group theory in nuclear physics have occurred in particles and for description of nuclear collective properties and for the classification of elementary particles [1][START_REF] Rougé | Introduction à la physique subatomique[END_REF]. Representation of SU (3) and its generating function has been determined for a longtime [1,[START_REF] Rougé | Introduction à la physique subatomique[END_REF]. Cartan found the fundamental representations of SU (n) and Gel'fand-Zeitlin [START_REF] Hage-Hassan | [END_REF] have found an orthogonal basis but the explicit determination of the expression of the basis of SU (n) are, very important in physics, not completely found. We want to study this problem using the generating function method [START_REF] Hage-Hassan | On Fock-Bargmann space, Dirac delta function, Feynman propagator, angular momentum and SU(3) multiplicity free[END_REF].

In this work we observe that the vectors of the fundamental representations basis of SU (n) can be represented by binary numbers, the " binary basis ", very interesting for the determination of the generating function of SU(n) . We review the determination of the generating function of SU [START_REF] Hage-Hassan | [END_REF] by two different methods and we find the basis of Gel'fand based in terms of the well known Quarks indices [START_REF] Hage-Hassan | On Fock-Bargmann space, Dirac delta function, Feynman propagator, angular momentum and SU(3) multiplicity free[END_REF][START_REF] Baird | [END_REF][START_REF] Barut | Theory of group representations and applications PWN-Warszawa[END_REF]: {p, q}, I the isospin and its projection on the z axis, I z , and the hypercharge Y. And we give also the correspondence between the binary basis, Gel'fand basis and the Quarks representations. By analogy with the mesons and quarks we consider the primes{a}and it's supplements the primes { ā } with n/2 ≤ a < n and a + ā = n. We find n=5,7,10,16, 36 and 210.

The properties of SU (2) and the Gel'fand basis are treated in part two. We present in part three the fundamental representation and the binary basis. In the fourth, fifth and six parts we determine the generating function of SU (3) and the representation of quarks using the binary basis and the Gel'fand basis. In part seven we treat the analogy between The Baryons and Quarks and the prime numbers.

The basis of the unitary group

The SU(2) group

A-The SU(2) basis

It's well known from Schwinger work [START_REF] Schwinger | Quantum Theory of angular momentum[END_REF] "on angular momentum" that the generators of angular momentum or SU(2) may be written in terms of creation and destruction operators of the two dimensional harmonic oscillator as:
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J + and J -are the raising and lowering operators of SU [START_REF] Rougé | Introduction à la physique subatomique[END_REF].

And , )! ( )! 2 ( )! ( j j J m l l m j jm m j ± ± = m m m
(2,3) j j ± are the maximal et minimal states of SU [START_REF] Rougé | Introduction à la physique subatomique[END_REF].

B-The generating function of SU(2)

The generating function of SU( 2) is give by: ( )
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is the basis of the analytic Hilbert space, the Fock or the Fock-Bargmann(F-B) space, with the Gaussian measure:
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It's important to note that z 1 and z 2 have the same powers of J + and J - [START_REF] Rougé | Introduction à la physique subatomique[END_REF][START_REF] Hage-Hassan | [END_REF].

The Gel'fand basis of the unitary groups

Using the "Weyl's branching law" Gelfand-Zeitlin [START_REF] Gel | [END_REF] 
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And h nn =0 for SU(n)

The Weyl dimension formula

The dimension of subspaces ] [ μν h is finite and given by the Weyl formula:
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The maximal and minimal states

We associate to each state n h) ( a vector or weight vector which has components:
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is positive. We deduce simply that there are a maximal and a minimal vector as SU(2).

Explicit expression of Gel'fand basis vectors

By analogy with SU(2), Nagel and Moshinsky [9] proved that the basis L and find the explicit expressions of these operators. We write:
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N and N 'are the normalization constants.

The fundamental representations and the Binary numbers

3.1 The fundamental representations: E. Cartan proved that any arbitrary irreducible representation of U(n) can be expressed in terms of a set of subspaces called the fundamental representations [START_REF] Barut | Theory of group representations and applications PWN-Warszawa[END_REF]. The fundamental representations of U (n) are the irreducible subspaces [h] n :
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The dimension of the subspace:
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It is simple to prove that that the total number of basis vectors of the fundamental representations of U(n) is 2 n -1 and 2 n -2 for SU(n).

The binary numbers of the fundamental representations:

We observe that the vectors basis of the fundamental representations may be expressed in terms of the binary numbers so we called it the binary fundamentals basis. And it is easy to establish the correspondence between these binary basis and the fundamentals representation of Gel'fand basis. We write as an example:
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The representations of the binary basis in the analytic Hilbert space

Let n j i z j i ,..., 1 , ), ( = a matrix of complexes numbers and we consider the minors of this matrix: We associate to each miner
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of the matrix (z i j ) i, j=1,.., n a table of nboxes numbered from 1 to n. We put "one" in the boxes
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We denote these orthogonal basis of F-B space by:
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The Gel'fand representation can be written in the analytic Hilbert or F-B space by: )
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Schwinger approach and generating function of SU(3)

The coupling in the angular momentum

We emphasize only the Schwinger couplings formula [START_REF] Baird | [END_REF][START_REF] Schwinger | Quantum Theory of angular momentum[END_REF]:
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This formula determine simply the coupling of several angular momentum and the representation of SU (3) and for simplicity we use the F-B space.

The basis of the group SU (2) ⊂ SU (3)

Let
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The vectors ) , (
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are eigenfunctions of the Casimir operator of the second order 2 T r , the projection ofT r on the z axis and the hypercharge Y. The eigenvalues of these operators are respectively t (t + 1), z t and the triple of the hypercharge quantum number y. The numbers z t t, are the isospin and the component of isospin on the z axis. We have:
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the condition of Young tableau on λμ α ) ( V imposes the further condition:
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The expression of ) , ( ) ( 21 z z V λμ α is well known [1,[START_REF] Baird | [END_REF] and we give only the result:
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The generating function of SU(3)

The vectors ) , ( ) , ( ) , ( ) , (
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it is easy to verify that the generators
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are the generators of SU (2).

We following Schwinger coupling method for the determination of { } λμ α) (

V by: a-The first coupling: ) , ( ) , ( 3) [1][START_REF] Rougé | Introduction à la physique subatomique[END_REF][START_REF] Hage-Hassan | [END_REF][START_REF] Hage-Hassan | On Fock-Bargmann space, Dirac delta function, Feynman propagator, angular momentum and SU(3) multiplicity free[END_REF][START_REF] Baird | [END_REF]. But we write it in a simple form by: 
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Generating function of SU(3) and Gel'fand basis

Generating function of harmonic oscillator and the Gel'fand basis

The generating function of the oscillator in terms of Gel'fand indices is: 
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Generating function of SU(2) and the Gel'fand basis

We express the generating function of SU(2) in terms of Gel'fand indices by: 0 
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. We have already noted that the powers of 1 2 x and 1 2 y have the same powers of raising and lowering operators (2,5).

The generating function of SU (3) and the Gel'fand basis

Generalizing the generating functions of the oscillator and SU (2) to SU (3) we write:

) [START_REF] Baird | [END_REF][START_REF] Hage-Hassan | [END_REF] We note that the powers of the parameters x, y are the same powers of raising and lowering operators of SU(n) [START_REF] Rougé | Introduction à la physique subatomique[END_REF][START_REF] Barut | Theory of group representations and applications PWN-Warszawa[END_REF]. Comparing the two generating functions (4,10) et [START_REF] Baird | [END_REF][START_REF] Hage-Hassan | [END_REF] (5,4) After solving the system we write the (h) 3 of Gel'fand basis by: 0
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Thus we find the same result obtained by Baird and Biedenharn by another method [START_REF] Baird | [END_REF]. So we find the Gel'fand basis in the Quarks notations. The generalization of the generating function for SU (n) is already studied [START_REF] Hage-Hassan | [END_REF][START_REF] Hage-Hassan | On Fock-Bargmann space, Dirac delta function, Feynman propagator, angular momentum and SU(3) multiplicity free[END_REF].

Quarks and Binary numbers

The fundamental representations of quarks and antiquarks [START_REF] Rougé | Introduction à la physique subatomique[END_REF][START_REF] Greiner | Quantum Mechanics (Symmetries)[END_REF] are represented by: a-The quarks states are (1/2,1/3) (-1/2,1/3) (0,-2/3) (-1/2,-1/3) (1/2, -1/3) (0, 2/3) 

  from the minimal or the maximal vectors by applying the raising operators μ λ R or the lowering operators μ λ

  apply then the Young pattern condition we obtain the generating function of SU(

  of SU (3) we find: p=λ+μ, q=μ, I=t et I z =t z t-t z = h 12 -h 11 , t+t z = h 11 -h 22, And λ-r=h 13 -h 12 , r= h 12 -h 23 , μ -s= h 23 -h 22 , s= h 22 .

Table 2 .

 2 binary basis, Gel'fand basis and Quarks notations of SU(3).

We determine the indices of these parameters by using the following rules: a-We associate to each "one" which appeared after the first zero a parameter ) , ( y μ λ whose index λ are the number of boxes and μ the number of "one" before him, plus one.

b-We associate to each zero after the first "one" a parameter ) , ( x μ λ whose index λ is the number of boxes and μ the number of "one" before him.

Quarks and the prime numbers

By analogy with the mesons, quarks and anti quarks we seek to find the numbers n with the conditions: for any prime a, n/2≤ a<n = 2,3,…etc. there are a prime supplements ā of a with a + ā = n.

If n = 12 the primes{a} are 11, 7 and their supplements{ā}: 1, 5 then twelve must be eliminate because one is not in the list of Almanac as prime. [START_REF] Baird | [END_REF] 3,2