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Abstract Several image test suites are available in the literature to evaluate
the performance of classification schemes. In the framework of colour texture
classification, OuTex-TC-00013 (OuTex) and Contrib-TC-00006 (VisTex) are
often used. These colour texture image sets have allowed the accuracies reached
by many classification schemes to be compared. However, by analysing the clas-
sification results obtained with these two sets of colour texture images, we have
noticed that the use of colour histogram yields a higher rate of well-classified
images compared to colour texture features. It does not take into account any
texture information in the image, this incoherence leads us to question the
relevance of these two benchmark colour texture sets for measuring the per-
formances of colour texture classification algorithms. Indeed, the partitioning
used to build these two sets consists of extracting training and validating sub-
images of a original image. We show that such partitioning leads to biased
classification results when it is combined with a classifier such as the nearest
neighbour. In this paper a new relevant image test suite is proposed for eval-
uating colour texture classification schemes. The training and the validating
sub-images come from different original images in order to ensure that the
correlation of the colour texture images is minimized.
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1 Introduction

Many studies of texture analysis have been carried out on grey-level images.
Their extension to colour is still relatively recent and has led to a growing
interest in the scientific community. The construction of several databases
of colour texture images shows this interest and the requirement of common
benchmark databases in order to test different texture analysis algorithms and
to compare their performance. Four benchmark colour texture databases are
commonly considered:

– The VisTex database is a collection of natural colour textures observed
under non-controlled illumination conditions [1]. This database is com-
posed of 168 images that are divided into 19 categories of colour texture.
These images are available in different sizes. However, for each category
of texture, only a limited number of samples are available. Indeed, the
number of images per category ranges from 2 to 20. Most of the authors
who have used this database to evaluate the performance of their classifi-
cation scheme, have divided the images into several sub-images in order to
increase the number of samples [2,3,4,5,6,7].

– The BarkTex database includes six tree bark classes, with 68 images per
class, available in two sizes [8]. Like VisTex, the images of the BarkTex
database represent natural colour textures which have been acquired under
non-controlled illumination conditions. However, although the number of
object categories is lower, this database is much more complex than VisTex
as all the BarkTex images represent a single type of object, namely bark
of trees.

– The OuTex database has been created in order to provide a wide range of
textures for image processing applications [9]. Like the VisTex database,
OuTex contains a large number of different objects. They are divided into
29 categories of colour texture images and the number of images per cat-
egory ranges from 1 to 47. Contrary to VisTex and BarkTex, the OuTex
database provides images that are acquired under controlled conditions.
Each image is available with different illuminants, resolutions and rotation
angles. In a similar manner to the VisTex database many authors have over-
come the limited number of samples by creating multiple sub-images [3,4,
10,11,12].

– Contrary to the three previous databases, each class of the Curet database
is defined by a single colour texture which has been observed with over 200
combinations of illumination and viewing directions [13]. This database is
divided into 60 classes of colour texture images.

These databases have been used several times in the framework of super-
vised classification of images. To operate a supervised colour texture classifica-
tion, it is necessary to extract training and validating image subsets from the
database. The training subset is used to build a discriminating feature space
during a supervised learning stage. For this purpose, the training images are
first coded in one or several colour spaces [14]. Colour texture features are
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then computed from the so-coded images. Each image is thus represented in
a feature space in which a classifier operates during a decision stage to de-
termine the class to which the image belongs. The validating subset is thus
used to evaluate the performances of the proposed classification scheme during
this decision stage [15]. Among the learning algorithms commonly used in the
framework of colour texture classification, there are local algorithms, where
classifiers like the k Nearest Neighbour (k-NN) are considered, and global al-
gorithms, among which we find the Support Vector Machines (SVM) classifier
[16].

Several approaches are commonly considered to build the training and
the validating subsets, like the holdout decomposition [3,4,17,18] or like the
leaving-one-out method [7,19,20,21].

Most of the authors who have assessed the efficiency of a colour texture
classification algorithm, have considered image test suites extracted either from
the VisTex or the OuTex databases [2,3,4,5,6,7,10,11,17,20,22]. Among these
different sets, two have often been used in the literature: the OuTex-TC-00013
and Contrib-TC-00006 test suites1. They have allowed the classification perfor-
mances reached by several features, like 3D colour histogram [3,4,23], Haralick
features [11,24], Local Binary Pattern (LBP) histogram [4,10], features from
autoregressive models [23] or from wavelet transform [12] to be evaluated using
one or several colour spaces. Several studies where colour texture classification
algorithms have been applied on the OuTex-TC-00013 and Contrib-TC-00006
test suites are presented in tables 1 and 2.

Using the same test suites for evaluating different classification algorithms
allows the performance of these algorithms to be compared. However, by
analysing and comparing the classification results obtained with these two
sets of colour texture images, we have noticed some incoherences. That leads
us to reassess the relevance of these two benchmark colour texture sets for
measuring the performance of colour texture classification algorithms (see sec-
tion 2). Indeed, the partitioning which builds a training and a validating subset
from an initial image set can lead to biased classification results, when it is
combined with a classifier such as the nearest neighbour classifier. In section 3
a new colour texture test suite based on an alternative partitioning is proposed
and its relevance is evaluated in section 4.

2 Limits of the OuTex-TC-00013 and Contrib-TC-00006 test suites

In this section, we first describe the OuTex-TC-00013 and Contrib-TC-00006
test suites (see section 2.1) and we then synthesize the classification results
obtained by the different authors with these two benchmarks sets (see section
2.2). Finally, we highlight the incoherences related to the building of these two

1 http://www.OuTex.oulu.fi/temp/

http://www.OuTex.oulu.fi/temp/
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sets (see section 2.3) and corroborate our analysis using experimental data (see
section 2.4).

2.1 The OuTex and VisTex colour texture sets

2.1.1 OuTex set: OuTex-TC-00013

The OuTex set is available at the OuTex web site as test suite OuTex-TC-
00013. To build this set, 68 colour texture images of the OuTex database,
whose size is 746 × 538 pixels, are split up into 20 disjoint sub-images whose
size is 128 × 128 pixels [4]. Let us note that several of these colour texture
images come from the same category of colour textures but each of the 68
images define one class of colour texture. Here, the 20 sub-images of a same
class come from the same acquired image. Figure 1 shows an example of OuTex
colour textures among the 68 available. The images of the considered OuTex
set have been acquired with a 100 dpi resolution at 0o rotation and with the
2856 K incandescent CIE A light source.

Among the 1360 images of the OuTex set, 680 images are used to build
the training subset and the 680 remaining ones to build the validating subset,
according to the holdout decomposition method.

Fig. 1 Example of OuTex colour textures among the 68 available ones: each image illus-
trates a class of texture.

2.1.2 VisTex set: Contrib-TC-00006

The VisTex set is available at the OuTex web site as test suite Contrib-TC-
00006. To build this set, 54 colour texture images (see figure 2), whose size is
512×512 pixels, are split up into 16 disjoint sub-images whose size is 128×128
pixels [4]. So, the 16 sub-images of a same class come from the same acquired
image.

Among the 864 images of the VisTex set, 432 images are used to build the
training subset and the 432 remaining images are used to build the validating
subset, according to the holdout decomposition.

Fig. 2 Example of VisTex colour textures among the 54 available ones: each image illus-
trates a class of texture.
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After having described the OuTex and VisTex sets, the next section syn-
thesizes the classification results obtained by the authors who have assessed
the efficiency of their colour texture classification schemes using these two sets.

2.2 Analysis of the classification results

Tables 1 and 2 show the different classification rates reached with the OuTex
and VisTex validating subsets, respectively. The first column of these tables
indicates the references of the authors who have applied their colour texture
classification schemes on the OuTex or VisTex set. The second presents the
colour spaces that have been used to code the colours within the images [14].
The texture features which have been processed from the colour images, are
shown in the third column. Finally, the last column presents the rate T (%)
of well-classified validating images obtained with the classifier defined in the
fourth column. These rates are sorted in descending order.

Table 1 Comparison between the well-classified image rates (T ) reached with the OuTex
validating subset.

Ref. Colour space Features Classifier T (%)

[14] Multi colour
spaces

Haralick features from
RSCCMs2

1-NN 96.6

[4] HSV 3D colour histogram 1-NN 95.4
[11] RGB Haralick features from

RSCCMs
5-NN 94.9

[3] RGB 3D colour histogram 3-NN 94.7
[23] Improved-HLS 3D colour histogram 1-NN 94.5
[10] HSV Between and within LBP

histogram
SVM 93.5

[4] RGB Between colour compo-
nent LBP histogram

1-NN 92.5

[23] Improved-HLS Features from autoregres-
sive models + 3D colour
histogram

1-NN 88.9

[23] Lab Features from autoregres-
sive models

1-NN 88.0

[4] RGB Within colour component
LBP histogram

1-NN 87.8

[12] RGB Features from wavelet
transform

7-NN 85.2

[25] Lab Morphological covariance 1-NN 80.1
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Table 2 Comparison between the well-classified image rates (T ) reached with the VisTex
validating subset.

Ref. Colour space Features Classifier T (%)

[4] I1I2I3 3D colour histogram 1-NN 100

[4] Lab Within colour component
LBP histogram

1-NN 100

[14] Multi colour
spaces

Haralick features from
RSCCMs

1-NN 99.8

[3] I1I2I3 3D colour histogram 3-NN 99.8
[10] RGB Between and within LBP

histogram
SVM 99.8

[4] RGB Between colour compo-
nent LBP histogram

1-NN 99.5

[11] RGB Haralick features from
RSCCMs

5-NN 97.7

By analysing these tables, we notice that the classification accuracies
reached with the different classification schemes are relatively close to each
other, particularly for the VisTex colour texture set. We also notice that,
among the twelve classification algorithms which have been tested on the Ou-
Tex set, eight perform the first nearest neighbour (1-NN) classifier. Likewise,
more than half of the classification algorithms which have been tested on the
VisTex set consider the 1-NN classifier. Furthermore, for these two image test
suites, we notice that very high classification accuracies are obtained with 3D
colour histogram. However, it only characterizes the colour distribution within
the colour space and does not take into account the spatial relationships be-
tween neighbouring pixels, as a colour texture feature should. To understand
this result, let us examine the OuTex and VisTex sets.

2.3 Discussion about the OuTex and VisTex sets

According to the holdout decomposition, the OuTex and VisTex sets are di-
vided into two subsets: the training and the validating subsets. The sub-images
which constitute these two subsets, come from the same original image of
colour texture according to the partitioning presented in figure 3.

This figure, based on an image of the OuTex database, shows that ten
sub-images extracted from the original colour texture image constitute a part
of the training subset, while the ten others are validating images. As the sub-
images of the training and the validating subsets come from the same original
colour texture image, they are very similar. So, the points which characterize

2 Reduced Size Chromatic Co-occurrence Matrices
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Training subset

Draughtboard used to separate training 
and validating sub-images from the 

original texture image Validating subset

Fig. 3 Building of the training and the validating subsets according to a draughtboard
partitioning.

these colour texture sub-images in the feature space would be very close to
each other, whatever the considered feature space.

According to the considered classifier, this partitioning could provide high
classification accuracy whatever the considered features. With a local learning
algorithm such as the 1-NN classifier, the probability to assign sub-images
coming from the same original image to a same class is very high, because at
least one training sub-image is spatially close to any validating sub-image [16].

2.4 Experiments

In order to show that the partitioning presented in figure 3 provides biased
classification results when it is combined with a specific classifier, the classifi-
cation results reached with a classifier based on a local learning and a classifier
based on a global learning are compared. For this purpose we consider the 1-
NN classifier and the rank sum classifier, which considers more than the single
nearest training sub-image to classify the validating sub-images.

The rank sum classifier first computes the distances between each validat-
ing image and all training images in the feature space and then ranks the
obtained measures in ascending order. For each class, the rank sum of its
training images is computed. The validating image is finally assigned to the
class for which the rank sum is the lowest. To make the decision, the classi-
fier takes into account all the training images, and even possible outliers like
training sub-images which are spatially far from the validating sub-image to
be classified. So high accuracy is more difficult to obtain with the rank sum
classifier than with the 1-NN one. The rates of images that are well-classified
by the rank sum thus indicate more precisely the discriminating power of the
examined feature spaces.
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Tables 3 and 4 show the classification accuracies reached by the 1-NN and
the rank sum classifier, for three different sets of features:

– First we consider 3D colour histograms, which do not take into account
the spatial relationships between neighbouring pixels, as a colour texture
feature should. As Mäenpää et al. do in [4], we use the histogram intersec-
tion measure, that sums up the minimum values of two histograms for each
histogram bin, to compare the training and the validating images. We also
extract these histograms from colour texture images coded in the HSV

colour space with a number of levels used to quantify the colour compo-
nents set to 16 for the OuTex set and from images coded in the I1I2I3

colour space with a quantization level set to 32 for the VisTex set.
– Then we consider Haralick features extracted from Reduced Size Chromatic

Co-occurrence Matrices (RSCCMs). These features take into account both
the colour distribution in a colour space and the spatial relationships be-
tween neighbouring pixels [24]. The aim is to compare the classification
results obtained by the previous feature set composed of 3D colour his-
tograms with those obtained by considering colour texture features. We
propose to test two different approaches with these Haralick colour texture
features:
– To build the second feature set considered in our experiments, Haralick

features are extracted from RSCCMs calculated in images coded in the
HSV colour space for the OuTex set and from the I1I2I3 space for the
VisTex set, as Mäenpää et al. did with the 3D colour histograms [14].

– Furthermore, we also propose to compute Haralick features extracted
from RSCCMs calculated in several different colour spaces. To build
the third colour texture feature set, a reduced number of discriminating
features is selected thanks to a sequential selection procedure associated
with criteria of class separability and compactness (see [14] for more
details about the feature selection procedure). This approach is called
the Multi colour Space Feature Selection (MCSFS) [24].

Table 3 Classification rates (T ) reached by the 1-NN and the rank sum classifiers, for the
OuTex validating subset.

colour spaces Features T (%) with
1-NN

T (%) with
rank sum

Multi colour
spaces

Haralick features from
RSCCMs (MCSFS)

96.6 90.3

HSV Haralick features from
RSCCMs

92.5 82.5

HSV 3D colour histogram 95.4 80.7
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Table 4 Classification rates (T ) reached by the 1-NN and the rank sum classifiers, for the
VisTex validating subset.

colour spaces Features T (%) with
1-NN

T (%) with
rank sum

Multi colour
spaces

Haralick features from
RSCCMs (MCSFS)

99.8 95.1

I1I2I3 Haralick features from
RSCCMs

98.6 91.9

I1I2I3 3D colour histogram 100 82.4

By analysing tables 3 and 4, we first notice that the rates of well-classified
images obtained by the three tested approaches are close when the 1-NN clas-
sifier operates, whereas they are scattered when the rank sum classifier is used.
Indeed, the difference between the results provided by the MCSFS approach
and those obtained by analysing 3D colour histograms is rather low (about
1%) when the 1-NN classifier is considered, whereas the results are more dis-
persed for the rank sum classifier (the difference reaches 9.6% for the OuTex
set and 12.7% for the VisTex set).

We also note that, with the rank sum classifier, the best rate of well-
classified images is obtained with MCSFS (90.3% for the OuTex set and 95.1%
for the VisTex set), whereas the lowest accuracy is obtained with the 3D colour
histogram which does not take into account any texture information (80.7%
for the OuTex set and 82.4% for the VisTex set).

These experiments thus corroborate the previous analysis (section 2.3)
which shows that, by considering the partitioning presented in figure 3, the
use of a 1-NN classifier provides biased classification results. They allow us to
conclude that with such partitioning, a classifier based on a global learning al-
gorithm, like the rank sum or the SVM classifier, allows to better evaluate the
relevance of the consider features. Iakovidis et al. consider a nonlinear SVM
classifier based on a global learning algorithm and overcome the problem of
such partitioning [10].

In order to be compatible with all the classifiers, a partitioning must extract
the training and the validating sub-images from different original images, like
for object recognition applications. It ensures that colour texture images of
the training and the validating subsets are not as strongly correlated. Such a
partitioning should be more consistent in the context of industrial applications,
where the training images are different from the images that are classified on-
line. In the next section, we propose to build a new benchmark colour texture
test suite that overcomes this problem.
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3 New benchmark colour texture image test suite

In order to build a colour texture set for which training and validating sub-
images come from different original images, we have to dispose of several orig-
inal images for each class. The number of images by category for the OuTex
and VisTex databases is too few if we want to consider all the categories of
these databases. We thus propose to build a new colour texture image test
suite coming from the BarkTex database. This database, which has been used
by several authors [5,19,21,26], is composed of six tree bark classes, with 68
images per class [8]. Figure 4 shows an example of BarkTex colour textures.

Fig. 4 Example of BarkTex colour textures: each image illustrates a class of texture.

The size of the images that we use to build the new set, is 256×384 pixels.
A region of interest, centered on the bark and whose size is 128×128 pixels, is
first defined. Then, four sub-images whose size is 64× 64 pixels are extracted
from each region. We thus obtain a set of 68× 4 = 272 sub-images per class.
Among the 1632 resulting images, 816 images are used for the training subset
and the 816 others are considered as validating images.

In order to ensure that colour texture images are as weakly correlated as
possible, we extract training and validating sub-images from different original
images thanks to the partitioning 1 presented in figure 5. Here, the four sub-
images extracted from a same original image belong either to the training or
the validating subset. This new BarkTex image test suite can be downloaded on
the web at https://www-lisic.univ-littoral.fr/∼porebski/BarkTex image test suite.html.

4 Experimental results

Table 5 shows the classification accuracies reached by the 1-NN and the rank
sum classifiers with the new BarkTex benchmark image test suite. We consider
the same features as in section 2.4.

By analysing the results presented in table 5, we notice that there is a signif-
icant difference (about 14%) between the results provided by the MCSFS ap-
proach (75.9%) and those obtained by analysing 3D colour histograms (61.6%
with the HSV colour space and 62.9% with the I1I2I3 colour space) when the
nearest neighbour classifier is performed. This differrence is similar with the
rank sum classifier (approximately 12.5%).

This result contrasts with those obtained with the OuTex and VisTex sets,
where the rates of well-classified images obtained by the different tested ap-

https://www-lisic.univ-littoral.fr/~porebski/BarkTex_image_test_suite.html
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Fig. 5 Building of the training and the validating subsets thanks to partitioning 1 and
partitioning 2.

Table 5 Comparison between the well-classified image rates (T ) reached by the 1-NN and
the rank sum classifiers with the new BarkTex validating subset (partitioning 1).

colour spaces Features T (%)
with
1-NN

T (%)
with rank
sum

Multi colour
spaces

Haralick features from
RSCCMs (MCSFS)

75.9 62.1

HSV Haralick features from
RSCCMs

73.3 51.3

I1I2I3 Haralick features from
RSCCMs

62.6 50.2

HSV 3D colour histogram 61.6 51.0
I1I2I3 3D colour histogram 62.9 48.3

proaches are always close when the 1-NN classifier operates with the draugh-
tboard of figure 3.

With the new BarkTex benchmark image test suite, the colour texture
features most often allow to obtain better classification results than features
which do not take into account the spatial relationships between pixels in the
image. So, the partitioning 1 scheme provides a realistic measure of feature
relevance.
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In order to show that it is the partitioning which, when it is combined
with the 1-NN classifier, provides high classification accuracy whatever the
considered features, we have compared two partitioning strategies.

The first partitioning, called partitioning 1 and described in figure 5,
allows to build the new benchmark colour texture image test suite. Here, the
four sub-images extracted from a same original image belong either to the
training or the validating subset.

The second partitioning consists of extracting training and validating sub-
images from the same original images, as for the OuTex and the VisTex sets
(see figure 5). This partitioning, called partitioning 2, has been proposed by
Münzenmayer and al. [21].

Table 6 shows the classification rates obtained with the image set built
thanks to the partitioning 2 and the Holdout decomposition. It confirms the
conclusions obtained with the OuTex and VisTex sets. When images of the
training and validating subsets come from the same original images, the best
classification result (95.3%) is obtained with 3D colour histogram although
it only characterizes the colour distribution within the colour space and the
colour representation between the different classes of the new BarkTex set
is rather uniform. Furthermore, the difference between the results provided
by the MCSFS approach which considers colour texture features and those
obtained by analysing 3D colour histograms is rather low (about 1.3%) when
the 1-NN classifier is used. On the contrary, the classification results are much
scattered when the rank sum classifier operates (the difference is about 12.8%).
These experiments thus confirm that, with the partitioning 2, the classification
accuracies are biased when a classifier such as 1-NN is used. So, it is necessary
to dispose of a colour texture set where the training and the validating sub-
images come from different original images.

Table 6 Comparison between the well-classified image rates (T ) reached with the parti-
tioning 2.

colour spaces Features T (%)
with
1-NN

T (%)
with rank
sum

Multi colour
spaces

Haralick features from
RSCCMs (MCSFS)

93.5 62.7

HSV Haralick features from
RSCCMs

93.4 56.1

I1I2I3 Haralick features from
RSCCMs

79.0 54.0

HSV 3D colour histogram 95.3 51.2
I1I2I3 3D colour histogram 89.1 48.7
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5 Conclusion

Most of the authors who want to assess the relevance of their colour texture
classification algorithms, have considered the OuTex-TC-00013 and Contrib-
TC-00006 test suites. However, by analysing the classification results obtained
by a 1-NN classifier with these two sets of colour texture images, we have
noticed that colour histogram allows to obtain a higher rate of well-classified
images compared to colour texture features, although it does not take into
account any texture information in the image.

This incoherence leads us to question the relevance of the two benchmark
colour texture test suites OuTex-TC-00013 and Contrib-TC-00006 for measur-
ing the performances of colour texture classification algorithms. The partition-
ing used to build these two sets consists of extracting training and validating
sub-images from a same original image. We have shown that such partitioning,
when it is combined with a classifier based on a local learning algorithm such
as 1-NN, leads to biased classification results. This analysis is confirmed by
experimental data obtained with another classifier and another way of parti-
tioning the original images into training and validating sub-images.

These experiments allow us to conclude that with such partitioning, a
classifier based on a global learning algorithm like the rank sum or the SVM
classifier should be used. We have also proposed a new relevant image test
suite for evaluating colour texture classification schemes, where the training
and the validating sub-images come from different original images in order to
ensure a minimum degree of correlation between colour texture images and a
compatibility with all the classifiers.

This paper highlights the requirement of relevant benchmark colour texture
databases and proposes a first solution. On the basis of this work, other test
suites should be created in order to efficiently test the performances of colour
texture classification methods.
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