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NORMAL SURFACE SINGULARITIES ADMITTING

CONTRACTING AUTOMORPHISMS

CHARLES FAVRE AND MATTEO RUGGIERO

Abstract. We show that a complex normal surface singularity admitting a con-
tracting automorphism is necessarily quasihomogeneous. We also describe the
geometry of a compact complex surface arising as the orbit space of such a con-
tracting automorphism.
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1. Introduction

Recent interest arose in describing complex analytic spaces carrying interesting
holomorphic dynamical systems. Automorphisms of compact complex surfaces with
non-trivial dynamics have been classified by Gizatullin [Giz80] and Cantat [Can99].
Endomorphisms of compact surfaces have been analyzed in detail in a recent work
of Nakayama [Nak]. In higher dimensions the situation is less clear, but many
progress have been realized in the case of projective varieties [NZ09, NZ10, Zha13],
see also [HP11].

Here we focus our attention to a local version of this problem, and more specifically
we consider a self-map f : (Y, 0) → (Y, 0) of a complex normal surface singularity.
Any such space admits non finite self-maps with non-trivial dynamics so it is nec-
essary to impose suitable restrictions on f in order to be able to say something
on the geometry of the singularity. When f is non-invertible and finite, a theo-
rem of Wahl [Wah90] states that up to a finite cover then (Y, 0) is either smooth,
simple elliptic or a cusp singularity. When f is merely assumed to be an automor-
phism, nothing can be said on (Y, 0) even if f has infinite order. It is a theorem
of Müller [Mül87, p.230–231] that (Y, 0) carries m analytic vector fields that are in
involution and linearly independent for any fixed integer m ≥ 1. In particular, the
automorphism group Aut(Y ) is always “infinite dimensional”.

We propose here to give a classification of automorphisms of complex normal sur-
face singularities that are contracting, in the sense that there exists an open neigh-
borhood U of the singularity (Y, 0) whose image by the automorphism is relatively
compact in U , and

⋂∞
n=0 f

n(U) = {0}.

Before stating our main theorem let us describe some examples of contracting
automorphisms. Pick (w1, . . . , wn) ∈ (N∗)n and suppose we are given a family
of weighted homogeneous polynomials P1, . . . , Pk satisfying Pi(t

w1x1, . . . , t
wnxn) =

tdiPi(x1, . . . , xn) for all t ∈ C∗ and all x = (x1, . . . , xn) ∈ Cn and for some di ∈ N∗.
The map ft(x) = (tw1x1, . . . , t

wnxn) is then an automorphism that is contracting as

soon as |t| < 1 and leaves the analytic space Y :=
⋂k

i=1{Pi = 0} invariant. Such sin-
gularities are known as weighted homogeneous (or quasihomogeneous) singularities.
They are characterized as those normal singularities carrying an effective action of
C

∗ such that all orbits contain the singular point in its closure. We refer to the
survey of Wagreich [Wag83] for more detail.

Our main result can be stated as follows.

Theorem A. Suppose (Y, 0) is a complex normal surface singularity, and f :
(Y, 0) → (Y, 0) is a contracting automorphism.

Then (Y, 0) is a weighted homogeneous singularity and when (Y, 0) is not a cyclic
quotient singularity we have fN = ft for some integer N ≥ 1 and some |t| < 1.

We refer to Theorem 7.5 for a more precise statement.
Up to an iterate, any contracting automorphism on a cyclic quotient singularity

arises as follows, see the Appendix A. One can write (Y, 0) as the quotient of C2 by
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the automorphism γ(x, y) = (ζx, ζqy) for some m-th root of unity ζ with q coprime

with m; and f can be lifted to C2 under the form f̃(z, w) = (αz, βw + εzk) with

ε ∈ {0, 1}, 0 < |α|, |β| < 1, ε(αk − β) = 0, and f̃ ◦ γ = γ ◦ f̃ . One can check that f
does not belong to the flow of a C∗-action when βn 6= αm for all n,m ∈ N∗.

If f belongs to a reductive algebraic subgroup G of Aut(Y ), then our result would
follow since the Zariski closure of f in G is a subgroup isomorphic to C∗ acting
effectively on Y , and a theorem of Scheja and Wiebe [SW81, Satz 3.1] implies Y to
be a weighted homogeneous singularity, see [Mül99, Theorem 1]. If f is the time-one
map of the flow of a holomorphic vector field having a dicritical singularity at 0, our
theorem is then due to Camacho, Movasati and Scardua [CMS09].

In our situation, we only have a map at hands and we shall therefore base our
analysis on the dynamical properties of this map. One can summarize our strategy
as follows.

First we prove that the dual graph of the minimal resolution of (Y, 0) is star-
shaped (Theorem 4.4). When this graph is a chain of rational curves, then (Y, 0) is
a cyclic quotient singularity and it is not difficult to conclude. Otherwise, the unique
branched point of the dual graph is a component E to which are attached finitely
many chains of rational curves that we may contract to cyclic quotient singularities.
Since f is contracting, one can construct a natural foliation by stable disks that are
all transversal to E. Linearizing f on each stable disk allows one to endow them
with a canonical linear structure, so that we may linearize the embedding of E in
the ambient surface. In other words, a tubular neighborhood of E is analytically
isomorphic to a neighborhood of the zero section in the total space of a suitable
line bundle L → E of negative degree. This implies (Y, 0) to be a cone singularity,
which implies our theorem.

Actually one subtlety arises from the presence of quotient singularities on E. To
deal with this problem, it is convenient to endow E with a natural structure of orb-
ifold. One can linearize a tubular neighborhood of E exactly as before, except that
L is in general only an orbibundle1. The rest of the argument remains unchanged
and we conclude that the singularity is weighted homogeneous.

Our dynamical approach gives an alternative proof of the result of Orlik and
Wagreich [OW71] that the dual graph of the minimal desingularization of a weighted
homogeneous singularity is star-shaped. The original approach of op. cit. was
very much topological in nature and relied on the classification of S1-action on
Seifert 3-manifolds, whereas the (short) proof given by Müller in [Mül00] is based
on Holmann’s slice theorem [Hol60, Satz 4] and uses in an essential way the C∗-action
on such a singularity.

Since a contracting automorphism acts properly on a punctured neighborhood
of the singularity, we may form the orbit space S(f) := (Y \ {0})/〈f〉 which is

1line orbibundles are also known as line V-bundles (see e.g. [Sat57]).
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a compact complex surface. Our second result gives a precise description of the
geometry of this surface. To state it properly we recall some terminology.

A Hopf surface is a compact complex surface whose universal cover is isomorphic
to C2 \ {0}. An isotrivial elliptic fibration is a proper submersion π : S → B from
a compact complex surface to a Riemann surface whose fibers are all isomorphic
to a given elliptic curve E. When there is an action of E on S preserving π which
induces a translation on each fiber of π, then we say that S is a principal elliptic fibre
bundle. A Kodaira surface is a non-Kähler compact surface of Kodaira dimension
0, see e.g. [BHPVdV04, §VI]. Any Kodaira surface can be obtained as a principal
elliptic fibre bundle over an elliptic base or as a quotient of it by a cyclic group.

Corollary B. Let f : (Y, 0) → (Y, 0) be a contracting automorphism of a complex
normal surface singularity.

(a) The surface S(f) is a non-Kähler compact complex surface.
(b) Either S(f) is isomorphic to a Hopf surface; or S(f) is the quotient of a prin-

cipal elliptic fibre bundle S by a finite group acting freely on S and preserving
the elliptic fibration.

(c) When kod(S(f)) = −∞, then S(f) is a Hopf surface; when kod(S(f)) = 0,
it is a Kodaira surface; otherwise kod(S(f)) = 1.

We observe that Corollary B (a) and (c) can be obtained directly as follows. In-
deed, any normal surface singularity admits a strongly pseudoconvex neighborhood
U by [Gra62], and the image of ∂U on S(f) defines a global strongly pseudoconvex
shell in S(f) in the sense of [Kat79]. Theorem p.538 of op. cit. thus applies and
statements (a) and (c) of our corollary follow. Our proof however follows a very dif-
ferent path. We do not rely on Kodaira’s classification of compact complex surfaces,
and show constructively the existence of an isotrivial elliptic fibration.

It is tempting to ask whether the results of this paper can be generalized to higher
dimensions. In particular we may ask the following questions.

Question 1.1. Is it true that any complex normal isolated singularity (Y, 0) admit-
ting a contracting automorphism admits a proper C∗-action?

A special interestingr case of the above question is the following

Question 1.2. Does a cusp singularity in the sense of Tsuchihashi support any
contracting automorphism?

We refer to [Oda88, Tsu83] for a definition of cusp singularities, and to [San87]
for the description of interesting subgroups of local automorphisms of these singu-
larities. Observe that these singularities carry finite endomorphisms that are not
automorphisms, see [BdFF12, §6.3].

Question 1.3. Is the orbit space of any contracting automorphism of a complex
normal isolated singularity (Y, 0) non-Kähler?

Acknowledgements. We warmly thank Serge Cantat for useful discussions.
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2. Admissible data

Suppose that f : (Y, 0) → (Y, 0) is a contracting automorphism of a normal
surface singularity. Then f lifts to an automorphism F : X → X of the minimal
resolution π : X → Y of (Y, 0), see [Lau71, Theorem 5.12]. In the course of the
proof of our main Theorem A we shall replace several times the model X by other
more adequate bimeromorphic models. In order to deal with these modifications,
we shall consider the triple (X,W, F ) with W = π−1(0), and it is convenient to
introduce the following terminology.

Definition 2.1. An admissible data is a triple H = (X,W, F ), such that

(a) X is a (non-compact) connected normal complex surface;
(b) W is a connected compact analytic subset of X ;
(c) F : X → X is a biholomorphism onto its image;
(d) F (X) ⋐ X , F (W ) =W and

⋂
n≥0 F

n(X) ⊆W ;
(e) the intersection form of W is negative definite.

Observe that Condition (d) is saying that W is an attractor whose basin contains
X (see [Mil85] for definitions).

Thanks to Grauert’s contraction criterion, any admissible data (X,W, F ) gives
rise to a contracting automorphism on a normal surface singularity obtained by
contracting W to a point. If the resulting contracting automorphism is conjugated
to f : (Y, 0) → (Y, 0) then we say that the admissible data is compatible with
(Y, 0, f).

Definition 2.2. Two admissible data (X,W, F ) and (X ′,W ′, F ′) are said to be
equivalent if there exists a neighborhoodX1 ofW andX ′

1 ofW
′ and a bimeromorphic

map φ : X1 99K X
′
1 such that:

• φ induces an isomorphism from X1 \W1 onto X ′
1 \W

′,
• (X1,W, F ) and (X ′

1,W
′, F ′) both define an admissible data, and

• we have F ′ ◦ φ = φ ◦ F .

Classifying admissible data modulo equivalence is the same as classifying con-
tracting automorphisms on normal surface singularities modulo conjugacy.

3. Local Green function

Suppose (Y, 0) is a normal surface singularity, and f : (Y, 0) → (Y, 0) is a contract-
ing automorphism. In this section we quantify the condition of being contracting
by introducing a suitable function that is strictly decreasing under iteration of f .
Before stating precisely our main statement we recall a few facts about canonical
desingularization of surfaces.

3.1. Canonical desingularization. Denote by m = mY,0 the maximal ideal of
OY,0. Recall a log-resolution of m is a bimeromorphic map π : X → Y from a smooth
surface X to Y that is an isomorphism above Y \ {0} and such that the pull-back
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of the ideal m to X is locally principal at each point on the exceptional divisor. We
also impose that the exceptional divisor π−1(0) has simple normal crossings, i.e.,
any irreducible component of π−1(0) is smooth, any two such components intersect
transversely, and no three distinct components have a common intersection.

Proposition 3.1. Let (Y, 0) be any normal isolated surface singularity. There exists
a log-resolution π : X → Y of m such that any automorphism of Y lifts to an
automorphism of X.

For convenience, we shall say that X is a nice resolution of Y if it satisfies the
condition of the proposition.

Remark 3.2. It is not the case that the minimal resolution of a normal surface sin-
gularity is always a log-resolution of its maximal ideal. Pick any ample line bundle
L→ E over a compact Riemann surface. The total space of its dual L−1 is the mini-
mal resolution of the cone singularity (Y, 0) obtained by contracting its zero section.
Observe that Y is isomorphic to the normalization of Spec (⊕n≥0H

0(E,L⊗n)). When
h0(E,L) 6= 0 and L has some base points, then mY,0 is not locally principal in |L−1|.
This happens for instance when the degree of L is equal to the genus of E.

Proof. Since the maximal ideal m is preserved by any automorphism, it follows that
Aut(Y ) lifts to the normalized blow-upX ′ of the maximal ideal. It is possible thatX ′

has some singularities. We may then consider the minimal (good) desingularization
of each of these points. In this way we get a smooth surface X ′′ such that m · OX′′

is locally principal and Aut(Y ) lifts to X ′′. Finally the exceptional divisor might
not have simple normal crossing singularities. But the singularities of this divisor
are fixed by Aut(X ′′) hence we may resolve them by keeping the property of lifting
Aut(Y ). This concludes the proof. �

3.2. Local Green functions. Put any euclidean distance on X . In this section,
we prove the following result.

Proposition 3.3. Let (X,W, F ) be any admissible data. Suppose X is smooth and
W has simple normal crossings. Then there exists a function g : X → [−∞, 0] that
is smooth on X \W , and satisfies the following conditions:

• g is bounded on X \ F n(X) for all n ≥ 1;
• g(p) ≤ log dist(p,W ) for all p ∈ X;
• for any constant C > 0, there exists an integer N ≥ 1 such that g◦FN ≤ g−C
on X.

Remark 3.4. Observe that if the statement is true for an admissible data (X,W, F ),
then it is true for any other equivalent admissible data (X ′,W ′, F ′). Indeed, if the
equivalence is given by a map φ : X ′ 99K X , then we may set g′ := g ◦ φ in a
neighborhood ofW ′ and extend it to X ′ by taking min{g′,−A} for some sufficiently
large positive constant A.

Observe that this result implies
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Corollary 3.5. For any admissible data (X,W, F ) there exists a basis of neigh-
borhoods Xn of W ⊂ X such that F (Xn) ⊂ Xn hence (Xn,W, F |Xn

) remains an
admissible data.

Proof. Observe that exp(g) is continuous on X . Define D :=
∑

n≥0 exp(g◦F
n). The

previous proposition applied to C = 1 yields

exp(g ◦ F n) ≤ exp
(
−
⌊ n
N

⌋)
sup

0≤l≤N−1
exp(g ◦ F l) ≤ exp

(
−
⌊ n
N

⌋)

for any n ≥ 0. This implies the series definingD converges uniformly to a continuous
function vanishing at 0. Now we have D ◦ F = D− exp(g ◦ F ) < D, so that we can
take Xn := {D < 1

n
}. �

The rest of this section is devoted to the proof of Proposition 3.3. We first need
some preliminary results.

Lemma 3.6. Let (Y, 0) a normal surface singularity, and f : (Y, 0) → (Y, 0) a
contracting automorphism. Then there exists a compatible admissible data (X,W, F )
satisfying the following conditions.

• X is a nice resolution of (Y, 0);
• there exists a psh function g0 : X → [−∞, 0] such that ddcg0 = ω+[Z] where
ω is a smooth positive form and [Z] is a current of integration whose support
is equal to W .

Proof. Let m := mY,0 be the maximal ideal at 0 ∈ Y . Let π : X → (Y, 0) be any
nice resolution of (Y, 0), whose existence is given by Proposition 3.1.

Pick any finite set of holomorphic maps χ1, ..., χr generating mY,0 and defined in
some common open neighborhood U of 0. Restricting U if necessary we may assume
that supi |χi| ≤ 1 for all i, f(U) ⋐ U , and ∩n≥0f

n(U) = {0}. We now set

(1) gY (y) := log

(
r∑

i=1

|χi(y)|
2

)
− log r .

This is a [−∞, 0]-valued function that is smooth and plurisubharmonic on U \ {0}
and tends to −∞ when the point tends to 0. Since X is a log-resolution of m,
then locally at each point p ∈ π−1(0) we may find local coordinates (z, w) such that
m · OX,p is locally generated by zawb for some a, b ≥ 0. It follows that the function

(2) gY ◦ π(z, w)− a log |z| − b log |w|

is a smooth function. We conclude by setting g0 = gY ◦ π. �

By Remark 3.4 we may hence suppose the existence of a non-negative psh function
g0 on X satisfying the conclusion of the previous lemma.

Let us introduce the following set:

G := {h ∈ Psh(X), h ≤ 0, and ν(h, p) ≥ ν(g0, p) for any p ∈ W} ,
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where ν(h, p) stands for the Lelong number associated to the psh function h, see
e.g. [Dem93]. Observe that g0 belongs to G. We now follow the construction of
upper envelope in the spirit of [RS05].

Proposition 3.7. The function g1 := sup{h ∈ G} is a psh function such that g1−g0
is bounded.

Proof. Since the maximum of two plurisubharmonic functions h1, h2 is still psh and
ν(max{h1, h2}, p) = max{ν(h1, p), ν(h2, p)} for any point p it is clear that G is stable
by taking maximum.

By Choquet’s lemma, one can find an increasing sequence hn ∈ Psh(X) such that
hn → g1. Let g⋆(p) := limp′→p g1(p

′) be the upper semi-continuous regularization
of g1. Then g⋆ is psh. Lelong numbers are upper semicontinuous along increasing
sequences hence ν(g⋆, p) ≥ ν(g0, p) for all p ∈ W . It follows that g⋆ belongs to G

whence g1 = g⋆ ∈ Psh(X).
Since g1 ≥ g0, we have ν(g1, p) ≤ ν(g0, p) for any p ∈ W , hence ν(g1, p) = ν(g0, p).

Pick now local coordinates (z, w) at p ∈ W such that W = {z = 0} (the case
where the exceptional divisor is reducible at p can be treated analogously). Then
g0(z, w) = a log |z|+O(1), and g1(z, w) ≤ a log |z|+O(1), which implies g1 ≤ g0+O(1)
in a neighborhood of p. By the compactness of W , we conclude that g1 − g0 ≥ 0 is
also bounded from above everywhere in X as required. �

Proof of Proposition 3.3. Since we have F (X) ⋐ X , and
⋂

n F
n(X) ⊆W , and g0(p)

tends to −∞ when p tends to W , it follows that for any positive constant C1 > 0
there exists an integer N ≥ 1 such that g0 ◦ F

N ≤ −C1.
The map F is a biholomorphism preserving W , hence for a suitably divisible

integer N (for example if FN fixes all the components ofW ) we have (FN)∗[Z] = [Z].
It follows that (FN)∗(ddcg0)−[Z] = ddc(g0◦F

N)−[Z] is a smooth form. We conclude
that g0 ◦ F

N + C1 belongs to G, hence g0 ◦ F
N ≤ g1 − C1 ≤ g0 + sup |g1 − g0| − C1

which implies the result for g := g0. �

4. Geometry of the dual graph

Our standing assumptions in this section are the following: (X,W, F ) is an admis-
sible data, X is smooth, W has simple normal crossings, F : X → X is holomorphic
and fixes any irreducible component of W .

4.1. Main statement. Let us begin by introducing some convenient terminology.

Definition 4.1. An automorphism h : E → E of a compact Riemann surface E is
said to be hyperbolic if E is the Riemann sphere and h has one contracting and one
repelling fixed points.

Definition 4.2. Let X be any smooth complex surface. A cycle (resp., chain)
of rational curves on X is a finite collection E1, ..., En of smooth rational curves
intersecting transversally whose dual graph is a circle (resp., a segment).
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Definition 4.3. A graph is said to be star-shaped if it is a tree (i.e., it is homotopi-
cally trivial) and admits at most one branched point.

By convention a segment is star-shaped.
This section is devoted to the proof of the following result.

Theorem 4.4. Suppose (X,W, F ) is an admissible data, X is smooth, W has simple
normal crossings, and F fixes any irreducible component of W .

Then the dual graph Γ(W ) of W is star-shaped. More precisely, we are in one
and exactly one of the following two situations.

(a) The support of W is a chain of rational curves, and F |E is hyperbolic for any
component E ⊆W .

(b) There exists a component E⋆ such that F |E⋆
is not hyperbolic. In this case,

F is hyperbolic on any other components and the closure of W \ E⋆ is the
disjoint union of a finite number of chains of rational curves. Moreover if
E⋆ is not a rational curve, then F |E⋆

has finite order.

4.2. Proof of Theorem 4.4. We shall proceed in four steps. The first three steps
are devoted to the case when X is a nice resolution of (Y, 0). We explain how to
reduce the theorem to this case in the fourth and last step.

Step 1. Assume π : X → (Y, 0) is a nice resolution of (Y, 0), and suppose that F |E
is hyperbolic for all irreducible components E ⊆W .

Then all components are rational curves. Since a hyperbolic map has exactly
two periodic points, it follows that a component can intersect at most two other
components. In particular the dual graph is either a segment or a circle.

Proposition 4.5. Suppose (X,W, F ) is an admissible data as above.
Suppose F |E is hyperbolic for any irreducible component of W . Then W cannot

be a cycle of rational curves.

This proves that W is a chain of rational curves, and we get case (a) of Theorem
4.4.

Remark 4.6. A singularity for which the exceptional divisor of its desingularization
is cycle of rational curves is called a cusp. Interesting subgroup of automorphisms of
cusp singularities have been constructed by Pinkham in [Pin84] in connection with
the automorphism group of compact complex surfaces of Inoue-Hirzebruch’s type.

We rely on the following lemma.

Lemma 4.7. Pick any point p ∈ W that is fixed by F .

• When p belongs to a unique exceptional component E, then dF (p) admits a
eigenvalue of modulus < 1 whose eigenvector is transverse to E.

• When p is the intersection point of two irreducible components E,E ′ of W ,
then we have

(3)
log |dF |E(p)|

aE
+

log |dF |E′(p)|

aE′

< 0,
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where aE = ordE(m · OY ) is the order of vanishing of π∗m along E, and
aE′ = ordE′(m · OY ).

Proof. We treat only the second case, the first being completely analogous and
easier. We denote by g the Green function given by Proposition 3.3.

Pick local coordinates (z, w) at p such that E = {z = 0} and E ′ = {w = 0} In
these coordinates we have

∣∣g(z, w)− aE log |z| − aE′ log |w|
∣∣ ≤ C1

for some C1 > 0, see (2). Notice that here we use the fact that X is a nice resolution
of (Y, 0).

Set λ = (dF |E′)(p) and µ = (dF |E)(p). Then for any integer N ≥ 0, one can
write

FN(z, w) =
(
λNz(1 + εN), µ

Nw(1 + ηN)
)

with εN(0) = ηN(0) = 0. Pick C > 2C1. By Proposition 3.3, for any C > 0 there
exists N ≫ 0 so that

g(FN(z, w)) ≤ g(z, w)− C.

It follows

aE log
∣∣λNz

∣∣+ aE′ log
∣∣µNw

∣∣+ O(z, w)− C1 ≤ aE log |z| + aE′ log |w|+ C1 − C,

and hence
N
(
aE log |λ|+ aE′ log |µ|

)
≤ 2C1 − C + O(z, w).

Letting (z, w) → 0, we get aE log |λ|+ aE′ log |µ| < 0.
We conclude by dividing the last relation by aEaE′ > 0. �

Proof of Proposition 4.5. Enumerate the exceptional components E0, ..., En−1 in
such a way that Ei · Ej = 1 if and only if |i− j| = 1, and set En := E0. Set
pj = Ej ∩Ej+1 for j = 0, . . . , n− 1, and write λj = dF |Ej

(pj) and µj = dF |Ej+1
(pj).

Since F |Ej
is hyperbolic it follows that λj = µ−1

j−1.
Set aj := ordEj

(m · OY ). By Lemma 4.7 we get

0 >
n−1∑

j=0

(
log |λj |

aj
+

log |µj|

aj+1

)
=

n−1∑

j=0

(
log |λj |

aj
−

log |λj+1|

aj+1

)
= 0,

a contradiction. �

Remark 4.8. In the paper of Camacho-Movasati-Scardua [CMS09], our argument is
replaced by a suitable use of the Camacho-Sad index formula for holomorphic vector
fields on complex surfaces.

Step 2. We now prove that there exists at most one component E⋆ for which F |E⋆

is not hyperbolic. More precisely we aim at

Proposition 4.9. Suppose F |E⋆
is not hyperbolic. Let d be the graph metric on the

vertices of the dual graph Γ(W ) of W . Pick any component E 6= E⋆. Then
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(a) E is rational, and F |E is hyperbolic;
(b) there exists a unique component E ′ intersecting E s.t. d(E⋆, E

′) = d(E⋆, E)−
1;

(c) if p = E ∩E ′, then |dF |E(p)| < 1, and either E ′ = E⋆ and |dF |E′(p)| = 1, or
|dF |E′(p)| > 1.

Proof. We proceed by induction on n = d(E⋆, E). Suppose first n = 1, then E⋆

is the unique element at zero distance from E⋆, hence (b) obviously holds. Since
dF |E⋆

(p) is of modulus one by assumption, Lemma 4.7 implies |dF |E(p)| < 1 hence
F |E is hyperbolic. This shows (a) and (c) hold.

Suppose now the result holds for some n ≥ 1. Pick a component E such that
d(E⋆, E) = n+1. In particular there exists a component E ′ such that d(E⋆, E

′) = n
and p := E ∩E ′ 6= ∅. By the inductive hypothesis, there exists a unique component
E ′′ such that E ′′ ∩ E ′ = {p′} 6= ∅ and d(E⋆, E

′′) = n− 1. Moreover, |dF |E′(p′)| < 1
and since p is also fixed it follows that |dF |E′(p)| > 1. By Lemma 4.7 we conclude
that |dF |E(p)| < 1 hence F |E is hyperbolic. This proves (a). Suppose E intersects

another component Ê. The intersection point p̂ = E ∩ Ê is fixed and |dF |E(p̂)| > 1

so that
∣∣dF |

Ê
(p̂)
∣∣ < 1 by Lemma 4.7. In particular d(E⋆, Ê) cannot be ≤ n otherwise

the inductive hypothesis would imply
∣∣dF |

Ê
(p̂)
∣∣ ≥ 1, a contradiction. This shows

(b) and (c). �

Step 3. Suppose now that there exists a component E⋆ such that F |E⋆
has infinite

order but is not hyperbolic.
Then E⋆ is either an elliptic or a rational curve. The next lemma excludes the

former case.

Lemma 4.10. If E⋆ is complex torus, then F |E⋆
has finite order.

Proof. Denote by L the normal bundle of E⋆ in X , and by n < 0 its degree. Write
E⋆ = C/Λ, and suppose F |E⋆

is a translation by τ ∈ C. Any divisor of degree n in
E⋆ is linearly equivalent to (n−1)[0]+[p] for some p ∈ E⋆ and such a decomposition
is unique in the sense (n − 1)[0] + [p] = (n − 1)[0] + [p′] in the Picard group of E⋆

iff p = p′. Now write L = (n − 1)[0] + [p] and observe that F |E⋆
fixes L, whence

n[τ ]+(n−1)[0]+ [p] = (n−1)[0]+ [p]. It follows that n[τ ] = 0 in E⋆ and F
n|E⋆

= id
as required. �

Step 4. Suppose X is smooth andW has normal crossing singularities but π : X →
(Y, 0) is not a nice resolution of (Y, 0). This means that π∗m admits a non-empty
finite set B of base points included in W . Since f ∗m = m, we have F (B) = B.
By applying Proposition 3.1 to a suitable iterate of F , there exists a nice resolution
µ : X̂ → X dominating X obtained by blowing-up (infinitely near) points above

B. Set Ŵ = µ−1(W ) and pick F̂ : X̂ → X̂ a lift of F . Pick any sufficiently large

integer N ≥ 1 such that FN fixes all the irreducible components of Ŵ .

We may now apply Steps 1–3 to (X̂, Ŵ , FN). If we are in case (a), the support

of Ŵ is a chain of rational curves such that F̂N |
Ê
is hyperbolic for any irreducible
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component Ê in Ŵ . By contracting µ−1(B) we see that W remains a chain of
rational curves, such that FN |E is hyperbolic for any irreducible component E in
W . Since F fixes any component in W by assumption, we get case (a) of the
statement.

Suppose we are in case (b). There exists a unique component Ê⋆ on which the

action of F is not hyperbolic. If Ŵ is the support of a chain of rational curves,

we can conclude as before that W is a chain of rational curves. Moreover, if Ê⋆ ⊂
µ−1(B), then F |E is hyperbolic for any component E in W , and we get case (a) of

the statement. If Ê⋆ is not contained in µ−1(B), then E⋆ = µ(Ê⋆) is the unique
component in W on which F has a non-hyperbolic action.

Suppose Ŵ is not the support of a chain of rational curves. If Ê⋆ is not contained

in µ−1(B), then µ only contracts rational curves in the chains intersecting Ê⋆. We
argue as before and conclude that W satisfies condition (b) of the statement.

If Ê⋆ ⊆ µ−1(B), then Ê⋆ is rational, and it intersects at least three components

in Ŵ . Notice that W has simple normal crossings by assumption, and it is obtained

by contracting some rational curves in Ŵ . We infer that W is in this case a chain
of rational curves, with F |E hyperbolic for any component E of W , hence case (a)
of the statement.

Remark 4.11. Suppose E⋆ is a rational curve and F |E⋆
has infinite order but is not

hyperbolic. Then F |E⋆
is either a translation or a rotation of infinite order. It admits

respectively one or two periodic points. It follows that in this case the closure of
W \ E⋆ is the union of at most two chains of rational curves, so that W itself is a
chain of rational curves.

4.3. Chains of negative rational curves. We shall call negative rational curve
a smooth rational curve E in X such that E · E ≤ −2.

Theorem 4.12. Suppose (X,W, F ) is an admissible data, X is smooth, W has
simple normal crossings, F fixes any irreducible component of W .

Then, up to equivalence of admissible data, we are in one of the following two
situations.

(i) The support of W is a chain of negative rational curves. The action of F |E
is hyperbolic for all irreducible components E of W , but at most one.

(ii) There exists a component E⋆ with E⋆·E⋆ ≤ −1 such that F |E⋆
has finite order.

In this case, the closure ofW \E⋆ is a disjoint union of a finitely many chains
of negative rational curves, and F |E is hyperbolic for any component E of W
different from E⋆.

Notice that cases (i) and (ii) are not mutually exclusive. The case E⋆ is rational,
F |E⋆

has finite order, and the closure of W \E⋆ is the disjoint union of at most two
chains of negative rational curves both satisfies (i) and (ii).

Proof. Suppose first thatW is a chain of rational curves. SinceW can be contracted
to a point, for any irreducible component E ofW we have E ·E ≤ −1. If there exists
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E with E · E = −1, we can contract this irreducible component and get a shorter
chain of rational curves, that can still be contracted to a point. By induction on the
length of the chain, we may suppose that W is a chain of negative rational curves.
Theorem 4.4 then gives case (i) of the statement.

If W is not a chain of rational curves then we are in case (b) of Theorem 4.4 and
there exists a unique component E⋆ on which F is not hyperbolic. By Remark 4.11,
we know in fact that F |E⋆

has finite order. Let E1, . . . , En be a chain of rational
curves in the closure foW \E⋆. Arguing as before, we can suppose that Ej ·Ej ≤ −2
for any j. Since W can be contracted to a point, we infer E⋆ · E⋆ ≤ −1. �

5. Hirzebruch-Jung singularities

In this section,we analyze in detail the dynamics of an automorphism in a neigh-
borhood of a chain of rational curves.

5.1. Dynamics on a chain of rational curves. Recall that any chain of nega-
tive rational curves can be contracted to a cyclic quotient singularity, also called
Hirzebruch-Jung singularity. Any Hirzebruch-Jung singularity (Y, 0) is isomorphic
to C2 modulo the action of a finite automorphism of the form

(z, w) 7→ (ζz, ζqw),

where ζ is a primitive m-th root of unity and m and q are coprime, see [BHPVdV04,
chapter III.5].

We begin with the following observation.

Proposition 5.1. Suppose we are given a chain of negative rational curves in a
smooth surface X, and an automorphism F : X → X that leaves the chain invariant.

Then one can contract all curves Ei to a Hirzebruch-Jung singularity (Y, 0) and
F descends to an automorphism f : (Y, 0) → (Y, 0).

Furthermore, there exist a local analytic diffeomorphism f̃ : (C2, 0) → (C2, 0)
and a linear automorphism γ of C2 of finite order such that the quotient C

2/〈γ〉

is isomorphic to Y , and f̃ descends to an automorphism of Y that is analytically
conjugated to f .

Proof. Contract the chain of rational curves to a Hirzebruch-Jung singularity (Y, 0).
Since F is an automorphism and preserves

⋃
Ei, it induces an automorphism f on

Y \ {0} which extends to the singularity by normality.
Write (Y, 0) as a quotient of C2 by a finite order automorphism. Restricting Y if

necessary, we may assume that the natural projection µ : (C2, 0) → (Y, 0) induces
an unramified covering from B \ {0} onto Y \ {0} where B is a small ball centered
at 0. Since B \ {0} is simply connected, it follows that f : (Y, 0) → (Y, 0) lifts to

f̃ : B \ {0} → B \ {0}. Finally f̃ extends through 0 by Hartogs’ Lemma. �
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5.2. Local conjugacy along curves of fixed points. We shall also need the
following refinement.

Theorem 5.2. Suppose (X,W, F ) is an admissible data, X is smooth, W has simple
normal crossings, and F : X → X an automorphism.

Assume E1, . . . , En is a chain of negative rational curves in W such that F (Ei) =
Ei and F |Ei

is hyperbolic for all i. Assume moreover that there exists a component
E⋆ in W fixed pointwise by F and intersecting transversely E1.

Then one may contract
⋃

iEi to a Hirzebruch-Jung singularity (Y, 0), and F
induces an automorphism f : (Y, 0) → (Y, 0). Moreover, there exist coordinates
(z, w) ∈ C2, a finite-order automorphism γ(z, w) = (ζz, ζqw) with ζ a primitive m-
th root of unity, and gcd{m, q} = 1 such that (Y, 0) is isomorphic to C2/〈γ〉. And
f lifts to a linear map (z, w) 7→ (z, αw) for some 0 < |α| < 1.

Proof. By Proposition 5.1 there exists a linear automorphism γ(z, w) = (ζz, ζqw)
such that C2/〈γ〉 is isomorphic to the Hirzebruch-Jung singularity (Y, 0) obtained
by contracting the chain of negative rational curves E1, . . . , En. Moreover we can lift

f : (Y, 0) → (Y, 0) to an automorphism f̃ : (C2, 0) → (C2, 0) such that f̃ ◦γ = γk ◦ f̃

for a suitable k ∈ N with gcd{k,m} = 1. Set Ẽ = µ−1(π(E⋆)), where µ is the
canonical projection C2 → C2/〈γ〉, and π : X → Y is the contraction map of
E1, . . . , En.

Since E⋆ is a curve of fixed points by F , we get that Ẽ is a (possibly singular

reducible) curve of fixed points for f̃m. Replacing f̃ by γl ◦ f̃ for a suitable l if

necessary, we can suppose that Ẽ is a curve of fixed points for f̃ . It follows that

1 is an eigenvalue for df̃(0). Take a point p̃ ∈ Ẽ \ {0}. Since µ is an unramified

covering outside 0 and π is a biholomorphism on E⋆ \
⋃

j Ej , we infer det df̃(p̃) =

det dF (p) = α with 0 < |α| < 1, and p = π−1(µ(p̃)). By letting p̃ tend to 0, we get

that the eigenvalues of df̃0 are 1 and α. It follows that Ẽ is the central manifold of

f̃ at 0, and hence it is smooth. The condition f̃ ◦ γ = γk ◦ f̃ restricted to Ẽ implies

k = 1. We denote by D̃ the stable manifold at 0, that is smooth and transverse to
Ẽ at 0.

Pick φ, ψ ∈ m such that D̃ = {φ(z, w) = 0} and Ẽ = {ψ(z, w) = 0}. Denote by

φ1 = az + bw (resp., ψ1) the linear part of φ (resp., ψ). Since D̃ is invariant by the
action of γ, we infer that aζz+ bζqw is proportional to az+ bw. If q 6= 1, we deduce
that either a = 0 or b = 0. If q = 1, then γ is a homothety, and we can suppose
a = 0 or b = 0 up to a linear change of coordinates. We can argue analogously for
Ẽ. It follows that we can assume φ1 = z and ψ1 = w.

By direct computation, we get φ ◦ γ = ζφ and ψ ◦ γ = ζqψ. Then Φ(z, w) =
(φ(z, w), ψ(z, w)) defines an automorphism on (C2, 0) such that Φ◦γ = γ ◦Φ. After

conjugating by Φ, we get Ẽ = {z = 0}, D̃ = {w = 0}, and γ(z, w) = (ζz, ζqw).

The stable manifolds at any point p̃ ∈ Ẽ defines a γ-invariant holomorphic folia-

tion F̃. Up to a γ-equivariant change of coordinates, we can then suppose that F̃ is
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given by {z = const}. In these coordinates, f̃ is given by

f̃(z, w) =
(
z, αw(1 + ε(z, w))

)
,

where w divides ε(z, w). Since f̃ is γ-invariant, we infer ε ◦ γ = ε. For any z,
the Koenigs theorem (see for example [Mil06, section 6.1]) produces a holomorphic

invertible germ ηz : (C, 0) → (C, 0) that conjugates w ◦ f̃(z, w) to w 7→ αw. The
change of coordinates ηz is given by

ηz(w) := η(z, w) := w
∞∏

n=0

(
1 + ε ◦ f̃n(z, w)

)
,

so that

η ◦ γ(z, w) = ζqw

∞∏

n=0

(
1 + ε ◦ f̃n ◦ γ(z, w)

)
= ζqw

∞∏

n=0

(
1 + ε ◦ f̃n(z, w)

)
= ζqη(z, w).

We conclude by conjugating f̃ by the map (z, w) 7→ (z, ηz(w)), that is γ-invariant.
�

6. Orbifold Structures

In this section, we recall some properties of orbifold structures on compact
Riemann surfaces and the notion of orbibundle. References include [Sco83] or
[Sat57, FS92] where orbifolds are referred to as V -manifolds.

6.1. Orbifolds. An orbifold structure on a Riemann surface S is the data of a finite
collection of points

∑
mipi with multiplicities mi ∈ N∗. The multiplicity mult(p) of

any point p in S is defined to be mi if p = pi and 1 otherwise. To simplify we shall
talk about orbifold in place of orbifold structure on a compact Riemann surface.

An orbifold chart at a point p with multiplicity n is an effective holomorphic
action of Z/nZ on the unit disk D fixing only the origin, and a holomorphic map of
D to a neighborhood U of p in S that factors through D/(Z/nZ) as an isomorphism.

Example 6.1. Pick any coprime integers p, q ≥ 1. The weighted projective space
P1(p, q) is defined as the quotient of C2 \ {(0, 0)} modulo the action of C∗ given by
t · (x, y) = (tpx, tqy). The chart {x = 1} is isomorphic to C/〈ζqp〉 for a primitive
p-th root of unity ζp, whereas the chart {y = 1} can be analogously identified to
C/〈ζpq 〉. It follows that P

1(p, q) is diffeomorphic to the Riemann sphere, and carries
a natural orbifold structure where mult([x : y]) = 1 if xy 6= 0, mult([1 : 0]) = p and
mult([0 : 1]) = q.

An orbifold map f̄ : (S, n) → (S ′, n′) is the data of a holomorphic map f : S → S ′

that lifts locally to orbifold charts. In other words, it is a holomorphic map f such
that mult(p) deg(f, p) is a multiple of mult(f(p)) for any p ∈ S. When equality
holds mult(p) deg(f, p) = mult(f(p)) for all p, then the orbifold map is said to
be unramified. An orbifold covering map is an orbifold map that is proper and
unramified.
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Write Aff for the group of affine transformations of the complex plane, and H for
the upper-half plane. Observe that any discrete group of Aff (resp. PSL(2,R)) act-
ing properly discontinuously on C (resp. on H) defines a natural orbifold structure
on the quotient space C/G (resp. H/G). The multiplicity of a given point is then
equal to the order of the isotropy group of one (or any) of its preimage in C (resp.
in H).

Theorem 6.2. Suppose S is an orbifold whose underlying topological space is com-
pact. Then we are in one of the following four (exclusive) situations:

(a) S is a weighted projective space;
(b) there exists a finite group G of PGL(2,C) such that S is isomorphic to P1/G;
(c) there exists a discrete subgroup G of Aff(C) acting cocompactly on C such

that S is isomorphic to C/G;
(d) there exists a discrete subgroup G of PSL(2,R) acting cocompactly on H such

that S is isomorphic to H/G.

We refer to [Sco83, Theorems 2.3 and 2.4] for proofs, see also [FS92, Theorems
1.1 and 1.2]. It is of common use to say that an orbifold is good when it falls in one
of the three cases (b–d).

By Selberg’s lemma any finitely generated subgroup of GL(n,C) admits a normal
torsion-free subgroup, see [Sel60, Lemma 8] or [BN51, Fox52] for n = 2. It follows
that any good orbifold admits a finite orbifold covering by a genuine Riemann surface
(i.e. an orbifold with mult(p) = 1 for all p).

Corollary 6.3. Suppose S is a compact good orbifold. Then there exists a compact

Riemann surface S̃ and a finite subgroup G of Aut(S̃) such that S is isomorphic to

S̃/G.

We refer to [Sco83, Theorem 2.5] for a proof.

6.2. Orbibundles. An orbibundle on an orbifold S is a complex analytic space L
equipped with a map π : L → S such that for any p ∈ S of multiplicity m ≥ 1
there exists an integer q, a primitive m-th root of unity ζ , and a neighborhood U of
p in S such that D → D/〈ζz〉 ≃ U is an orbifold chart, and there exists an analytic
isomorphism π−1(U) ≃ D× C mod (ζz, ζqw) such that the diagram commutes:

(z, w) ∈ D× C
mod (ζz,ζqw)

//

��

π−1(U)

��

z ∈ D
mod (ζz)

// U

Coordinates (z, w) on D × C as above are called an orbifold trivialization of the
orbibundle at p.

Orbibundles are also known as line V -bundles, see e.g. [Sat57].
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Observe that L may have (cyclic quotient) singularities whereas S is always
smooth. In other words, an orbifold line bundle needs not be a locally trivial fi-
bration over an orbifold point.

Pick L → S any line bundle on a compact Riemann surface, and suppose G is a
finite group acting linearly on L. This means that G acts by linear transformations
on the fibers. One may then form the quotient space L/G, and one checks that this
space has a natural structure of orbibundle over the orbifold S/G. Conversely, one
has

Theorem 6.4. Let L→ S be any orbibundle on a compact good orbifold.
Then there exists a holomorphic line bundle L′ → S ′ over a (genuine) compact

Riemann surface S ′ and a finite group G acting linarly on L′ such that L is isomor-
phic to L′ quotiented by the action of G.

We refer to [FS92, Theorem 1.3] and [RT11, Section 2] and references therein.

7. The Main Theorem

In this section we prove a more precise version of Theorem A classifying contract-
ing automorphisms of a complex normal surface singularity. Before stating our main
result precisely we describe some examples.

Example 7.1. Pick any two coprime integers m, q ≥ 1, and ζ a primitive m-th root
of unity. Denote by γ the automorphism of C2 of order m defined by γ(z, w) =

(ζz, ζqw). Suppose f̃ is an automorphism of C2 of one of the following forms:

(a) f̃(z, w) = (αz, βw), with α, β ∈ C, 0 < |β| ≤ |α| < 1;

(b) f̃(z, w) = (αz, αuw + zu), with 0 < |α| < 1, u ∈ N∗ and q ≡ u mod m;

(c) f̃(z, w) = (βw, αz), with α, β ∈ C, 0 < |αβ| < 1, and q2 ≡ 1 mod m.

The automorphism f̃ then descends to a contracting automorphism of the
Hirzebruch-Jung singularity (Y, 0) = (C2, 0)/〈γ〉.

Example 7.2. Let L → S be a holomorphic line bundle of negative degree on a
Riemann surface, and denote by Fα : L→ L the bundle map such that the restriction
of Fα to each fiber is conjugated to w 7→ αw for some |α| < 1. The contraction of
the zero section of L gives rise to a normal cone singularity (Y, 0), and Fα induces
a contracting automorphism f : (Y, 0) → (Y, 0) since |α| < 1.

Observe that Y is the normalization of the affine space Spec
(⊕

n≥0H
0(Y, L⊗−n)

)
.

It is thus endowed with a natural proper C∗-action, and f belongs to the flow induced
by this action.

Example 7.3. Let L → S be a holomorphic line bundle of negative degree on a
Riemann surface, and choose φ : S → S an automorphism of finite order such
that φ∗L is isomorphic to L. Fix such a bundle isomorphism Φ : L → φ∗L. The
composite map F on the total space of L described in the following commutative
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diagram

L

F

$$Φ
//

��

φ∗L //

��

L
Fα

//

��

L

��

S
id

// S
φ

// S
id

// S

descends to (Y, 0) and induces a contracting automorphism if |α| is sufficiently small.

Example 7.4. In the same situation as in the previous example, suppose moreover
that we are given a finite group G acting by automorphisms on S and linearly on
L, whose action commutes with F . Then F descends to the quotient space Y/G as
a contracting automorphism. The singularity Y/G is again weighted homogeneous
since it carries a proper C∗-action.

Observe that L/G → S/G is an orbibundle. Conversely by Theorem 6.4 any
orbi-bundle L′ → S ′ of negative degree on a good orbifold arises as a quotient of a
genuine holomorphic line bundle. In particular, one may contract the zero section
of L′ to a weighted singularity. Since L′ carries a natural proper C∗-action, this
singularity also supports contracting automorphisms.

Theorem 7.5. Any contracting automorphism of a complex normal surface sin-
gularity is obtained by one of the constructions explained in Examples 7.1 or 7.4
above.

Observe that this result implies Theorem A.

Proof. Start with Y a complex surface having a (unique) isolated normal singularity
at 0, and f : Y → Y an automorphism fixing 0 such that f(Y ) is relatively compact
in Y and

⋂∞
n=0 f

n(Y ) = {0}. We fix a resolution of singularities π : X → Y , such
that W := π−1(0) has simple normal crossings and f lifts to a holomorphic map
F : X → X . The existence of such π is guaranteed by Proposition 3.1.

Apply Theorem 4.12 (to an iterate FN that fixes any irreducible component of
W ). Up to equivalence of admissible data, we have two possibilities.

Case 1. The exceptional locus W is a chain of rational curves. By Proposition 5.1
(Y, 0) is isomorphic to (C2, 0)/〈γ〉 for some automorphism γ of finite order. Denote
by µ : (C2, 0) → (Y, 0) the natural projection. Then f lifts to a local automorphism

f̃ : (C2, 0) → (C2, 0) such that µ ◦ f̃ = f ◦ µ and f̃ ◦ γ = γk ◦ f̃ for a suitable

k ∈ N. Observe that for any open neighborhood U of the origin, f̃N(U) is relatively

compact in U for N sufficiently large, hence f̃ is a contracting automorphism. We
now conclude in this case by giving the classification of those attracting germs
commuting with the group generated by γ.

Proposition 7.6. Let γ : (C2, 0) → (C2, 0) be an automorphism of finite order,

and f̃ : (C2, 0) → (C2, 0) a contracting automorphism satisfying f̃ ◦ γ = γk ◦ f̃ for
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some k ∈ N. Then in suitable holomorphic coordinates we are in the situation of
Example 7.1.

Proof. By a Theorem of Cartan we may suppose γ is linear, and write it under the
form γ(x, y) = (ζx, ζqy), where ζ is a primitive m-th root of unity (m ≥ 2), and
gcd{m, q} = 1. Observe that we may choose k prime with m. If we write

df̃(0) =

(
a b
c d

)

then a direct computation shows

df̃(0) ◦ γ =

(
ζa ζqb
ζc ζqd

)
and γk ◦ df̃(0) =

(
ζka ζkb
ζqkc ζqkd

)
,

and since df̃(0) ◦ γ = γk ◦ df̃(0) we infer that

(a) either k ≡ q ≡ 1 mod m;
(b) or k ≡ 1 mod m, q 6≡ 1 mod m, and b = c = 0;
(c) or k 6≡ 1 mod m, k ≡ q mod m, q2 ≡ 1 mod m, and a = d = 0.

In cases (a) and (b) we have k ≡ 1 mod m, so that we can directly use The-

orem A.2. In case (c), the eigenvalues of df̃(0) are opposite, hence there is no

resonance, and the Poincaré-Dulac normal form is linear. By Remark A.3 f̃ can be
conjugated to a linear map (αw, βz) by a change of coordinates that preserves the
cyclic group generated by γ. This concludes the proof. �

Case 2. Suppose W is not a chain of rational curves. By Theorem 4.12, there exists
an irreducible component E⋆ of W such that F |E⋆

has finite order, and the closure
of W \ E⋆ is a finite number of chains of negative rational curves.

We assume first that F |E⋆
= id.

By contracting all chains of rational curves, we obtain an admissible data
(X ′, E ′

⋆, F
′), where F ′|E′

⋆
= id. Observe that X ′ now admits (Hirzebruch-Jung)

singularities p1, . . . , pr ∈ E ′
⋆ each of which is an image of a contracted chain.

To understand the local situation at a point p ∈ E ′
⋆ we apply Theorem 5.2.

(a) If p 6= pj for all j, then X
′ is smooth at p and there is neighborhood Vp of p

in X ′ and an analytic diffeomorphism Φp : D× D → Vp sending {w = 0} to
E ′

⋆ and conjugating F ′ to (z, w) 7→ (z, αw) for some |α| < 1.
(b) When p = pj is a cyclic quotient singularity, we may find a neighborhood Vp

of p and a finite Galois cover Φp : D× D → Vp with Galois group generated
by (z, w) 7→ (ζjz, ζ

qj
j w) with ζj a primitive mj-th root of unity, and qj prime

with mj . In this situation E ′
⋆ is the image under the natural projection map

of {w = 0} and as before F ′ lifts to an automorphism (z, w) 7→ (z, αw) for
some |α| < 1.

We may (and shall) assume that for any p 6= q the intersection Vp ∩ Vq ∩ E ′
⋆ is

simply connected and does not contain any of the points pj. It follows that the map
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Φ−1
q ◦Φp is always well defined in a neighborhood of Φ−1

p (Vp∩Vq ∩E
′
⋆) and is unique

up to a (pre- or post-)composition by a finite order linear automorphism.
We also observe that in both cases the foliation induced by {z = const} is intrin-

sically defined, since it coincides with the stable foliation of F , and leaves are stable
complex curves of points lying in E ′

⋆. It follows that the transition map Φq ◦Φ
−1
p for

any two points p 6= q can be written under the form Φ−1
q ◦ Φp(z, w) = (Φq,p(z), ⋆).

Since the restriction of this map to any vertical line {z = cst} commutes with
w 7→ αw we actually get

(4) Φ−1
q ◦ Φp(z, w) = (Φq,p(z), Hq,p(z) · w) ,

for some nowhere vanishing holomorphic map Hq,p.
To interpret geometrically what is going on, we note that E ′

⋆ is smooth, and
we endow it with the orbifold structure such that mult(p) = mj if p = pj as in
the discussion (b) above, and mult(p) = 1 otherwise. We may then construct an
analytic space L by patching together {(Vp ∩ E ′

⋆) × C} for all p ∈ E ′
⋆ using the

transition maps given by (4). The natural projection map L → E ′
⋆ makes L into an

orbibundle and we have a natural embedding X ′ → L such that E ′
⋆ appears as the

zero section of the orbibundle. By construction F ′ acts linearly on each fiber of L.
We now claim that the orbifold structure on E ′

⋆ is good. Indeed if this is not the
case, then E ′

⋆ is a rational curve with one or two multiple points and it follows that
(Y, 0) admits a resolution of singularities such that the exceptional divisor is a chain
of rational curves. We thus fall into Case (1) which has been already treated.

Since E ′
⋆ is a good orbifold, the orbibundle L → E ′

⋆ is a global quotient of a
genuine holomorphic line bundle on a compact Riemann surface by a finite group
acting linearly on the fiber, see Theorem 6.4. Observe that F ′ lifts to the line
bundle since it acts linearly on the fibers of L, so that we are in the situation of the
Example 7.4.

Finally we go back to the original setting, and suppose F |E is not necessarily the
identity but has finite order equal to N ≥ 2. We argue as above with the map FN

thereby conjugating this map to a linear map acting on an orbibundle L → E ′
⋆ by

multiplication by some α with |α| < 1. Since the fibers of L are also the stable
manifolds of the periodic points of F (i.e. of the points lying in E ′

⋆), it follows F
preserves these fibers.

We claim that F extends as an automorphism of the total space of the orbibundle
L acting linearly on the fibers. To see this recall that X ′ is a neighborhood of the
zero section of L and the closure of F (X ′) is relatively compact in X ′. It follows that
X ′ \ F (X ′) is a fundamental domain for the action of F on X ′ \ E ′

⋆. We may thus
take an infinite number of copies Xi of X

′ \ F (X ′) indexed by i ∈ N∗ and using F
patch the ”inner” boundary corresponding to ∂F (X ′) in Xi to the ”outer” boundary
corresponding to ∂X ′ in Xi−1. By adding X0 = F (X ′) to X1 we obtain an analytic
space X that contains naturally X ′ ∼= X1 and is endowed with an automorphism
F : X → X, given as the shift id : Xi → Xi−1 for i ≥ 2, and whose restriction to X ′

equals F .
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Since F(Xi) = Xi−1 for i ∈ N∗, for any p ∈ X the point Fn(p) eventually belongs
to X ′. Since the stable foliation in X ′ is F ′-invariant, it can be extended to an
F-invariant holomorphic foliation to X. The intersection of any leaf L of F with
Xi is an annulus Ai. Since FN = id, the annuli Ai and Ai+N are analytically
diffeomorphic, which implies L to be isomorphic to C. Observe that there exists a
unique isomorphism L ≃ C sending L ∩ E ′

⋆ to 0 up to a homothety, and F acts as
a linear transformation from a leaf L to its image.

Denote by Fα the map on the total space of L obtained by multiplication by α on
each fiber. Using the two natural embeddings of X ′ in X and L, we can construct a
natural map Φ : X → L defined by Φ(p) := F−k

α ◦ FNk(p) for any k large enough. It
is not difficult to check that Φ is an isomorphism sending F to the fibration L→ E ′

⋆

which conjugates F to F in the neighborhood of the zero section of L. We have thus
proved that F extends to an automorphism of the total space of L acting linearly
on the fibers as required.

As above, we may assume that E ′
⋆ is a good orbifold isomorphic to a quotient of a

finite groupG acting freely on a Riemann surface S. Moreover we may suppose there
exists a holomorphic line bundle LS → S and a linear action of G on L lifting the
one on S such that L is isomorphic to LS/G. Since S → E ′

⋆ is a Galois unramified
cover (in the sense of orbifold), the finite order automorphism F |E′

⋆
lifts to a finite

order automorphism FS : S → S. And since F acts linearly on L and F |E′

⋆
can be

lifted to S, the map F also lifts to LS and acts linearly on the fibers. This finally
proves that we are in the situation of the Example 7.4. �

8. The orbit space of a contracting automorphism

In this section, we prove Corollary B. Recall that the orbit space S(f) := (Y \
{0})/〈f〉 of a contracting automorphism f : (Y, 0) → (Y, 0) is a compact complex
surface. Our aim is to describe its geometry.

To do so we rely on the next observation whose proof is left to the reader.

Lemma 8.1. Suppose f : (Y, 0) → (Y, 0) is a contracting automorphism of a
complex normal surface singularity. For any integer N ≥ 1, the natural map
S(fN) → S(f) is an N-cyclic unramified (Galois) covering.

A generator of the Galois group of the covering is given by the map induced by
f on S(fN).

Proof of Corollary B. We pick a contracting automorphism f : (Y, 0) → (Y, 0) of a
complex normal surface singularity and we apply Theorem 7.5.

Suppose we are in the situation described in the Example 7.1. In this case, (Y, 0) is
a cyclic quotient singularity. We can thus write Y = C2/Γ for some finite subgroup
of GL(2,C) acting freely on C2 \ {0}, and f lifts to a polynomial automorphism

f̃ : C2 → C
2 such that f̃n(p) → 0 for all p ∈ C

2. It follows that the surface S(f̃)
is a primary Hopf surface, see [BHPVdV04, IV.18]. The natural projection map

C2 \ {0} → Y \ {0} induces a cyclic Galois covering S(f̃) → S(f) and S(f) is
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a secondary Hopf surface. The universal cover of these surfaces is isomorphic to
C2 \ {0}, and b1(S(f)) = 1 which implies them to be non-Kähler. This proves (a)
and (b) in this case.

Suppose now that Y is obtained as the contraction of the zero section of a line
bundle L→ S of negative degree over a compact Riemann surface, that is we are in
Example 7.2. Then a suitable iterate of f is induced by the bundle automorphism
F : L→ L acting by multiplication by some |α| < 1 on each fiber of L. If E denotes
the zero section of L, then the orbit space S(f) is isomorphic to the quotient space
(L \ E)/〈F 〉. The latter space is an principal elliptic fibre bundle2 over E.

Since L has negative degree, its dual L−1 can be endowed with a hermitian met-
ric h whose curvature is a smooth closed positive (1, 1)-form ω on E. In a local
trivialization of L over an open subset z ∈ U ⊂ E, one can write | · |h = e−ϕ(z) | · |
and ω = ddcϕ hence ϕ is psh. Over U , the dual metric h∗ on L writes as follows
| · |h∗ = eϕ(z) | · |. We may thus define a psh function ψ(z, w) := log |w|h∗ on the total
space of L which satisfies the relation ψ ◦ F = ψ + log |α|. We conclude that S(f)
carries a positive closed (1, 1) current T := ddcψ which is exact T = d(dcψ) whence
S(f) cannot be Kähler. This proves (a) and (b) in this case too.

In the case of Example 7.3, Y is obtained as before by contracting the zero section
of a genuine line bundle over a Riemann surface but only an iterate fN of f is induced
by a bundle automorphism. However f lifts to a map on L that preserves the fibers.
From Lemma 8.1 we conclude that S(fN) → S(f) is a cyclic Galois cover preserving
the elliptic fibration as required.

Finally in the general case, we know that there exists a finite group G acting
linearly on a line bundle L → S of negative degree as before, that Y \ {0} is the
quotient of L \ E by G, and that an iterate fN of f lifts to a linear automorphism
of L. It follows that S(fN) (hence S(f) by Lemma 8.1) admits a Galois unramified
covering from an principal elliptic fiber bundle. This concludes the proof of (a) and
(b).

We now prove (c). If (Y, 0) is a cyclic quotient singularity, then we have seen that
S(f) is a Hopf surface hence kod(S(f)) = −∞. Suppose S(f) is a principal elliptic
bundle over a base E. If the base is a rational curve, then [BHPVdV04, Theorem
V.5.4] implies S(f) to be a Hopf surface. If the genus of E is greater or equal to
2, then kod(S(f)) = 1 by [BHPVdV04, Proposition V.12.5 (ii)]. Finally suppose
E is an elliptic curve. By [BHPVdV04, §V.5], S(f) is either a Kodaira surface or
a complex 2-dimensional torus. Since S(f) is not Kähler, the latter case cannot
appear.

In general, S(f) admits a finite Galois unramified cover from a principal elliptic
bundle. We conclude the proof noting that the Kodaira dimension is preserved

2In fact any principal elliptic fibre bundle arises as follows (with L possibly of non-negative
degree), see [BHPVdV04, Proposition V.5.2].
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under finite unramified covers, and that both classes of Hopf and Kodaira surfaces
are also stable under finite unramified covers. �

Appendix A. Poincaré-Dulac normal forms for invariant germs

Our aim is to given normal forms for contracting automorphisms of (Cd, 0) com-
muting with a finite group action. Our result is a discrete analog of the results
obtained by Sanchez-Bringas [SB93] in the case of holomorphic vector fields.

Let f : (Cd, 0) → (Cd, 0) be an attracting fixed point germ, and Γ be a finite
subgroup of GL(d,C). We shall say that f commutes with Γ if fΓ = Γf , i.e. if
there exists a group isomorphism ρ : Γ → Γ such that f ◦ γ = ρ(γ) ◦ f for all γ ∈ Γ.
A stronger condition is that f commutes with all elements of Γ which is the case
exactly when ρ = id.

We call a group diagonalizable if it is conjugated to a subgroup of the group of
diagonal matrices. Observe that any finite abelian group is diagonalizable.

Finally we recall the definition of a Poincaré-Dulac normal form.

Definition A.1. Let f : (Cd, 0) → (Cd, 0) an attracting invertible germ. Denote by
λ = (λ1, . . . , λd) the eigenvalues of df(0) counted with multiplicities. A monomial
xn = xn1

1 · · ·xnd

d with n1 + · · ·+ nd ≥ 2 is called resonant for the k-th coordinate if
λn = λk.

The germ f is in Poincaré-Dulac normal form if df(0) is in Jordan normal form
and the map f(x)− df(0) · x admits only resonant monomials.

Theorem A.2. Let Γ be a finite diagonalizable subgroup of GL(d,C). Suppose
f : (Cd, 0) → (Cd, 0) is an attracting automorphism that commutes with all elements
of Γ.

Then there exists coordinates x = (x1, . . . , xd) at 0 such that any element g ∈ Γ
acts as a diagonal linear map, and f is in a Poincaré-Dulac normal form that
commutes with all elements of Γ.

Remark A.3. Suppose there exists an analytic local diffeomorphism Φ : (Cd, 0) →

(Cd, 0) conjugating f to holomorphic germ f̃ that also commutes with Γ. Then f

and f̃ are conjugated by a diffeomorphism Ψ that also commutes with Γ.
To see this introduce ρ and ρ̃ the group automorphisms such that f ◦g = ρ(g)◦f ,

and f̃ ◦ g = ρ̃(g) ◦ f̃ respectively. Then the map

Ψ =
1

|Γ|

∑

g∈Γ

ρ̃(g−1) ◦ Φ ◦ ρ(g) .

satisfies Ψ ◦ g = (ρ̃ ◦ ρ−1)(g) ◦Ψ as required.

Proof of Theorem A.2. Since Γ is diagonalizable and f commutes with all elements
of Γ, we may assume that any γ ∈ Γ is diagonal and df(0) is in (lower triangular)
Jordan normal form. Write f(x) = (f1(x), . . . , fd(x)), fk(x) =

∑
n fk,nx

n with
fn,k ∈ C and n ∈ Nd. If

γ = Diag(ζq1, . . . , ζqd),
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with ζ a primitive p-th root of unity, and q = (q1, . . . , qd) ∈ Nd, then f ◦ γ = γ ◦ f
if and only if

(5) q · n ≡ qk mod p ,

for all k, n such that fk,n 6= 0.
Following the standard scheme for conjugating f to a Poincaré-Dulac normal

form, we show by induction that for any integer N ≥ 1 there exists a Poincaré-
Dulac normal form f̃N and a local biholomorphism ΦN that both commute with
all elements of Γ such that ΦN ◦ f − f̃N ◦ ΦN = O(xN+1). This claim implies the

theorem since it is known that for N large enough f̃−n
N ◦fn converges to a conjugacy

Φ between the two, see e.g. [RR88, p.84–85], and this conjugacy commutes with all
elements of Γ by construction.

For N = 1, pick f̃1 = df(0) ·x and Φ1 = id. Suppose the claim has been proved for
N−1. Denote by HN the space of polynomial maps Cd → C

d whose coordinates are
homogeneous polynomials of degree N , and HΓ

N ⊂ HN for those commuting with all
elements of Γ. These are finite dimensional vector spaces. WriteXN for the subspace
of HN of those maps having only resonant monomials, and XΓ

N := XN ∩HΓ
N .

By [RR88, Lemma 2] any element G ∈ HN can be written as

(6) G = S +H ◦ df(0)− df(0) ◦H

for some S ∈ XN and H ∈ HN . If G ∈ HΓ
N , then we may replace S and H by

1
|Γ|

∑
γ−1 ◦ S ◦ γ and 1

|Γ|

∑
γ−1 ◦H ◦ γ, so that we can solve (6) with S ∈ XΓ

N and

H ∈ HΓ
N .

Decompose f = f<N + G + O(|x|N+1) where G is the homogeneous part of f
of degree N , and f<N contains only monomials of degree < N . Observe that by
assumption f<N is in Poincaré-Dulac normal form. The claim immediately follows
with f̃N = f<N + S and ΦN := id−H . �
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[Hol60] Harald Holmann. Quotientenräume komplexer Mannigfaltigkeiten nach komplexen
Lieschen Automorphismengruppen. Math. Ann., 139:383–402 (1960), 1960.
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[Sat57] Ichirô Satake. The Gauss-Bonnet theorem for V -manifolds. J. Math. Soc. Japan,
9:464–492, 1957.

[SB93] Federico Sánchez-Bringas. Normal forms of invariant vector fields under a finite
group action. Publ. Mat., 37(1):75–82, 1993.

[Sco83] Peter Scott. The geometries of 3-manifolds. Bull. London Math. Soc., 15(5):401–487,
1983.

[Sel60] Atle Selberg. On discontinuous groups in higher-dimensional symmetric spaces. In
Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960),
pages 147–164. Tata Institute of Fundamental Research, Bombay, 1960.

[SW81] Günter Scheja and Hartmut Wiebe. Zur Chevalley-Zerlegung von Derivationen.
Manuscripta Math., 33(2):159–176, 1980/81.

[Tsu83] Hiroyasu Tsuchihashi. Higher-dimensional analogues of periodic continued fractions
and cusp singularities. Tohoku Math. J. (2), 35(4):607–639, 1983.

[Wag83] Philip Wagreich. The structure of quasihomogeneous singularities. In Singularities,
Part 2 (Arcata, Calif., 1981), volume 40 of Proc. Sympos. Pure Math., pages 593–
611. Amer. Math. Soc., Providence, RI, 1983.

[Wah90] Jonathan Wahl. A characteristic number for links of surface singularities. J. Amer.
Math. Soc., 3(3):625–637, 1990.

[Zha13] De-Qi Zhang. Algebraic varieties with automorphism groups of maximal rank. Math.
Ann., 355(1):131–146, 2013.

CNRS - Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128
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