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Vector extension of monogenic wavelets for geometric
representation of color images

Raphaël Soulard, Philippe Carré and Christine Fernandez-Maloigne

Abstract—Monogenic wavelets offer a geometric representation of
grayscale images through an AM/FM model allowing invariance of
coefficients to translations and rotations. The underlying concept of local
phase includes a fine contour analysis into a coherent unified framework.
Starting from a link with structure tensors, we propose a non-trivial
extension of the monogenic framework to vector-valued signals to carry
out a non marginal color monogenic wavelet transform. We also give a
practical study of this new wavelet transform in the contexts of sparse
representations and invariant analysis, which helps to understand the
physical interpretation of coefficients and validates the interest of our
theoretical construction.

Index Terms—wavelet transform, color, analytic signal, monogenic
signal, monogenic wavelets.

I. INTRODUCTION

Signal processing tools are accordingly suitable for audiovisual
data thanks in part to their ability to model human perception. For
several years, the large topic of defining visually relevant 2D tools
gave rise to various geometric wavelet transforms designed to be
local in space, direction and frequency [1]. In parallel, the 2D phase
concept has gained much interest with new definitions for low-level
vision and wavelet representations [2]–[5].

Research around phase concept began in the late 40’s with the
analytic signal [6], [7] giving the 1D ‘instantaneous’ phase by using
a Hilbert transform. This tool is classical in 1D signal processing. In
2D, the Fourier phase is the first known 2D phase concept, and it has
been shown to carry important visual information in [8]. Afterwards,
study of phase congruency [9], [10] proved that the phase can provide
meaningful edge detection being invariant to intensity changes. A
direct link between local phase and geometric shape of analyzed
signal has been clearly established in [2], [11], [12]. In optics, image
demodulation [13], [14] consists of building a 2D AM/FM model
by extracting local amplitude and frequency (derivative of the phase)
which in turn appears useful for texture segmentation.

The monogenic signal proposed by M. Felsberg [3] is the unifying
framework that generalizes the analytic signal carrying out the 2D
AM/FM model. As well as 2D Fourier atoms are plane waves defined
by a 1D sinusoid and an orientation, the most natural 2D phase is
basically a 1D phase with a local orientation. The Riesz transform is
the key building block to define it - as the proper 2D generalization
of the Hilbert transform [3], [15]. Note that the spiral quadrature
phase transform of [14] used in optics is conceptually equivalent.
Any image is viewed like local plane waves at different scales,
with smoothly varying amplitude, phase, frequency and orientation.
Because the phase concept is meaningful only for narrowband signals,
it clearly has to go hand in hand with some multiscale decomposition
such as a wavelet transform in order to analyze any class of signal.
Among recent propositions of monogenic wavelets [5], [16], [17]
we focus on this of [5] since it is tied to a minimally redundant
perfect reconstruction filterbank. As we will see, monogenic wavelet
coefficients have a direct physical meaning of local 2D geometry.

Despite this substantial research for the 2D case, signal tools are
only applicable to grayscale images and hardly generalize to the
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vector-valued case. Yet analyzing color data is essential for quality
control in different areas like agro-business, cosmetology or auto
industry for example. Unfortunately, processing of color images is
most often based on a marginal scheme that is applying scalar tools
separately on each color channel [18]. Marginal schemes can produce
unwanted false colors because they do not consider color entities.
In the case of monogenic analysis, three independent orientations
and phases would be extracted at every position and would have no
physical meaning. The other circumvention is to use scalar tools on
the intensity of a color image. Then the problem is a clear loss of
information making impossible the detection of some contours for
instance. Actually the color geometry information is spread over all
color channels hence a real need for vector tools. A very recent color
extension of Felsberg’s work can be found in the literature [19]. We
proposed its wavelet counterpart in a previous work [20] to carry out a
non-marginal representation relying on a vector extension of Cauchy-
Riemann equations that are the fundamental basis of the monogenic
signal. This definition needs to improve its underlying phase concept.
This paper goes further by proposing a new fully interpretable color
monogenic analysis based on a link between the Riesz transform and
differential geometry.

Differential approaches have a favorable algebraic framework to
clearly define true vector tools through the vector structure tensor,
popularized by Di Zenzo in 1986 [21]. These methods are based
on estimation of image’s gradient and rely on the assumption that
resolution is ‘sufficient’. Such methods yield remarkable geometric
analysis and structure preserving regularization of color images [22],
[23]. We propose to get the best of both worlds by considering
the structure tensor based geometric analysis that is intrinsic to the
monogenic framework.

We define in this paper a physical interpretation driven color
extension of the grayscale monogenic wavelet transform by Unser et
al. [5]. A few different approaches to wavelet analysis of multi-valued
images may be retained in the literature. A vector lifting scheme
is proposed in [24] for compression purpose, as well as wavelets
within the triplet algebra in [25], but these separable schemes do
not feature any geometric analysis, in contrast to our non separable
approach allowing isotropy and rotation invariance. The multiwavelet
framework yields generalized orthogonal filterbanks for multi-valued
signals [26] but seems still limited to non-redundant critically sam-
pled filterbanks. The connection with monogenic analysis is not yet
apparent contrary to wavelet frames of [5]. None of these works make
use of the phase concept that is central to this paper. In a previous
work we have proposed a quaternionic filterbank [27], [28] for color
images based on the quaternion color Fourier transform of [29]. We
have observed that this quaternion formalism is impeding for proper
physical interpretation of the data. The present contribution is a new
step in this long line of works trying to propose a physical/signal
framework for color images.

The paper will start with the recent and less recent definitions
around the analytic/monogenic concepts in section II. Then section III
will consist in proposing new definitions of color analytic/monogenic
signal. Finally, the non-marginal color monogenic wavelet transform
will be defined together with a practical study of the interpretation
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and use of wavelet coefficients in section IV.
Special Notations:
• Complex numbers: z = <{z}+ j={z} = |z|ej arg{z}.
• 2D coordinate in bold: x = [x1 x2]

T in the space domain,
ω = [ω1 ω2]

T in the fourier domain.
• Fourier transform: s F←→ ŝ means that ŝ is the Fourier

transform of s.
• max: Maximum absolute value of a displayed dataset (used to

normalize some illustrations).

II. ANALYTIC AND MONOGENIC ANALYSES

This section recalls existing definitions around the analytic signal
and the monogenic signal. Provided analysis can be viewed like
the demodulation of a 1D (resp. 2D) signal in amplitude, phase
and frequency, based on the use of Hilbert (resp. Riesz) transform.
Interpretation in terms of local geometry will be emphasized. The
multiscale aspect will be presented through an overview of existing
analytic wavelets followed by a more detailed description of the
monogenic wavelets by Unser et al. [5]. Note that we present it from
a rather practical point of view so we refer the reader to references
provided in each subsection for further details.

A. The analytic signal (1D)

The analytic signal is defined in [6], [7] and can also be found in
some general signal processing manuals as a classical tool. Given a
scalar 1D signal s(t), the associated complex-valued analytic signal
sA(t) reads:

sA(t) = s(t) + j{Hs}(t) = A(t)ejϕ(t) (1)

where {Hs} is the Hilbert transform of s:

{Hs}(t) = p.v.
∫
s(t− τ)
πτ

dτ
F←→ −j sgn(ω)ŝ(ω) (2)

Amplitude is A(t) = |sA(t)| and ϕ(t) = arg{sA(t)} is the
instantaneous (local) phase, as illustrated figure 1. Instantaneous
frequency is given by ν(t) = dϕ

dt
.

Under certain conditions s can be viewed like a modulated oscilla-
tion, and then the underlying model tied to the analytic signal allows
reconstructing s with:

s(t) = A(t) cos[ϕ(t)] (3)

which highlights the notion of modulation.

❄

Amplitude A

❄
Phase ϕ∈ [−π;π]

✻
s

✻
ϕ=±π : ‘pulse’

✻

ϕ=−π

2
: ‘slope’

✲

Fig. 1. Classical 1D analytic signal associated to a narrowband real (scalar)
signal.

The growing interest on this tool within the image community is
due to an alternative interpretation of amplitude, phase and frequency
in terms of local geometric shape given in [2]. While amplitude con-
veys the relative presence of elements in the signal; phase describes
the shape of those elements according to the correspondence given
in table I. Hence the importance of defining a 2D analytic signal to
extend this phase based analysis.

TABLE I
CORRESPONDENCE BETWEEN PHASE AND LOCAL SHAPE [2], [11].

Phase ϕ 0 π
2

±π −π
2

Signal shape

B. The monogenic signal (2D)

The 2D extension of the analytic signal has been defined in several
ways [2], [3], [30]. We are interested in the monogenic signal [3]
because it is rotation invariant and its generalization is according to
both fundamental definition and signal interpretation. Note that the
underlying 2D phase concept was also studied in [11]. Given a 2D
real (scalar) signal s, the associated monogenic signal sM is 3-vector
valued (instead of complex-valued in the 1D case) and must be taken
in spherical coordinates:

sM =

 s
<{Rs}
={Rs}

 =

 A cosϕ
A sinϕ cos θ
A sinϕ sin θ

 (4)

where Rs is the complex-valued Riesz transform of s:

{Rs}(x) = p.v.
∫
τ1+jτ2
2π‖τ‖3 s(x− τ )dτ

F←→ ω2−jω1

‖ω‖ ŝ(ω) (5)

The monogenic signal is composed of the three following features:

Amplitude: A =
√
s2+|Rs|2

Orientation: θ = arg{Rs} ∈ [−π;π[
1D Phase: ϕ = arg{s+ j|Rs|} ∈ [0;π]

(6)

Note that we use a particular C embedding of the two components of
the Riesz transform that is equivalent to the spiral phase quadrature
transform defined by Larkin et al. in [14] and used by Unser et al.
[5]. The first advantage of this formulation is the interpretation of the
Riesz transform like a complex-valued filter. As the Hilbert transform
can be viewed like an all-pass pure π

2
-phase-shifting 1D filter,

this embedding of the Riesz transform is an orientation dependent
counterpart of it. The second advantage shown in [5] is that R is a
unitary operator, which will help to define complex wavelet frames
involving the Riesz transform.

We now discuss physical interpretation of analytic and monogenic
analyses.

C. Interpretation

Both analytic and monogenic analyses give access to local am-
plitude and phase so as to model a signal by a modulated sinusoid
s=A cosϕ. In the 2D case, ϕ is understood along a local orientation
θ analogous to some gradient direction data (more on this later).

The amplitude encodes local presence of geometrical elements
while phase encodes the 1D local structure according to the cor-
respondence in table I. Local phase is known to give a continuous
model of the kind of discontinuity between the ‘line’ (resp. ‘pulse’ in
1D) and the ‘edge’ (resp. ‘slope’) in a unified framework [12]. Note
that in [18], [31], amplitude is considered to carry some contrast
information while local frequency (derivative of phase) conveys
texture granularity. The signal model here is an A-strong structure
that is oriented along θ and looking like rather an edge (ϕ ≈ ±π/2)
or a line (ϕ ≈ 0 or π). Note that it excludes intrinsically 2D structures
like junctions and corners. A recent extension of the monogenic
framework - the conformal monogenic signal [32] - solves this
problem but is out of the scope of this paper.

An important feature of this model is that the signal under analysis
is expected to be narrowband. Equivalently, amplitude, phase and
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frequency must be smooth [13], [31]. A first reason comes from
the meaning of phase. This data basically indicates a particular
stage of some cyclic process - namely an oscillation. So for ϕ
to be interpretable the signal must be oscillating i.e. narrowband.
Moreover, a narrowband signal is most likely to contain a unique
frequency component; which ensures consistency of the analysis.
Another reason is the mathematical constraint of Hilbert and Riesz
transforms having a singularity at ω = 0 in the Fourier domain -
which excludes all signals having a DC component. Note also that
for the local frequency ν to exist, ϕ and thus s must be differentiable.
In practice, the Riesz transform is used jointly with an isotropic band-
pass filter [3].

This clearly suggests using monogenic analysis in a multiscale
fashion through some subband decomposition in order to handle non
narrowband signals as well.

D. Scalar analytic wavelets: overview

Gabor filters [13] and continuous scale-space [33] have been used
in the literature to perform multiscale analytic/monogenic analysis.
However these methods are overly redundant so they have to be
compared with various differential approaches (PDE’s, other scale
spaces etc.) that already give efficient local geometric analysis. In
contrast, filterbank and sampling approaches often involve small
redundancy thanks in part to information/sampling theories. In this
work we adopt this latter approach to multiscale monogenic analysis
by focusing on wavelet transforms tied to perfect reconstruction
filterbanks.

Here we recall some state of the art analytic wavelet transforms.
These recent tools of representation allow some geometric multiscale
analysis of grayscale images thanks to the phase concept brought by
the analytic signal.

Note that these approaches are distinct from many definitions
focusing on directionality such as Contourlets, 2D Complex Wavelets,
Directionlets and adaptive lifting schemes. With analytic signal
approaches, some redundancy is not set into a direction analysis;
but rather into a phase data carrying richer geometric information
and allowing some invariance.

The first proposition of analytic wavelets is for the 1D scalar case
with the Dual-tree Complex Wavelet Transform (CWT) in 1999 [34].
It is a 1D discrete scheme consisting of two parallel filterbanks
which filters are linked by Hilbert transforms. In fact, the Hilbert
transforms are approximate because of discrete constraints. This
method allows near shift-invariance of wavelet coefficients (shift-
variance is a famous problem of classical wavelets).

In 2004, a Quaternion Wavelet Transform (QWT) [4], [35] based
on the quaternionic analytic signal of [2] is proposed for grayscale
images. The quaternionic signal is a 2D generalization of the analytic
signal that is prior to and maybe less convincing than the monogenic
signal. Every quaternionic coefficient has a 3-angle phase that carries
geometric information being complementary to the magnitude infor-
mation from the modulus. The QWT of [4] consists of a separable
implementation of the Dual-Tree algorithm, resulting in 4 parallel 2D
filterbanks. A few applications of the QWT have been proposed [36]–
[38] and take advantage of the shift invariance and the quaternionic
phase to analyze images.

Finally in 2009 a Monogenic Wavelet Transform is proposed in
[5]. This representation - specially defined for 2D signals - is a great
theoretic improvement of the complex and quaternion wavelets; as
well as the monogenic signal itself is an improvement of its complex
and quaternion counterparts. To our knowledge this is the only
monogenic wavelet transform that is tied to a minimally redundant
filterbank in the present literature. In this paper this tool will be

considered as the reference scalar (grayscale) 2D analytic wavelet
transform. Let us present it in more details.

E. The monogenic wavelet transform (MWT)

The scheme of [5] performs multiresolution monogenic analysis by
using two parallel filterbanks. One ‘primary’ transform tied to a real
continuous wavelet frame and a so-called ‘Riesz-Laplace’ wavelet
transform tied to a complex frame. Multiresolution analyses are built
from the nearly isotropic polyharmonic B-spline of [39]:

βγ
F←→

(
4(sin2 ω1

2
+ sin2 ω2

2
)− 8

3
sin2 ω1

2
sin2 ω2

2

‖ω‖2

) γ
2

(7)

which is a valid scaling function. The wavelet for the ‘primary’
decomposition ψ is a Mexican hat-like nearly isotropic function and
the ‘Riesz-Laplace’ wavelet ψR is derived from it:

ψ(x) = (−∆)
γ
2 β2γ(2x) ψR F←→ jω1 + ω2

‖ω‖ ψ̂(ω) (8)

where the fractional Laplacian [40] is defined by1:

(−∆)αs
F←→ ‖ω‖2αŝ (9)

Let ψi,k(x) = 2iψ(2ix − k/2) be the scaled and shifted version
of ψ (same for ψR). It is shown in [5] that ψi,k and ψR

i,k form
two wavelet frames ensuring perfect reconstruction and orthogonality
across scales. In addition, their operator-like behavior induces:

ci,k = 〈s, ψi,k〉 = (ψi ∗ s) (2−(i+1)k) (10)

di,k =
〈
s, ψR

i,k

〉
= {R (ψi ∗ s)}(2−(i+1)k) (11)

This means that wavelet coefficients form an exact monogenic signal
at each scale. ci,k and di,k are merged into 3-vectors and turned into
polar coordinate according to eqs. (4) and (6) as illustrated figure 2.
Interpretation of coefficients is the same as explained section II-C for

s A ϕ θ(π)

0 1 0 max 0 π −π
2

0 π
2

Fig. 2. Unser’s MWT of image ‘face’. Orientation θ is shown modulo π
for visual convenience. Phase values of small coefficients have no meaning
so they are replaced by black pixels. We used γ = 3 and the scales are
i ∈ {−1,−2,−3}.

the monogenic signal but now concerns different scales of the image.
Contrary to most used wavelet transforms this one is non-separable to
nearly achieve rotation invariance of the monogenic framework. Both
wavelet frames correspond to a dyadic pyramid filterbank needing
only one 2D wavelet for each transform. Dyadic downsampling is
done only at the low frequency branch leading to a total redundancy
of 4:1. These particular pyramids designed in [41] feature a specific
subband regression algorithm at the synthesis side.

In [5] a demonstration of AM/FM analysis is done with fine orien-
tation estimation and gives very good results in terms of coherency
and accuracy. The transform is also used in [42] for stereo vision.

1Note the particular case α = −1/2 implying the isotropic low-pass
filtering of frequency gain 1/‖ω‖; which will be used later.
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However, the monogenic wavelet representation clearly fails to
handle color images. Applying it on intensity of an image would
induce a serious loss of information around isoluminant contours.
Using it marginally would have no more sense because independent
geometric analyses would then be made on each color channel. Before
going to our main proposition, let us quickly recall some background
reference.

F. Literature on color ‘signal’ tools

Signal approaches to color images clearly suffer from a lack of
tools. Some work must yet be mentioned.

Color algorithms can be processed by encoding the three color
channels on the three imaginary parts of a quaternion as proposed by
S. T. Sangwine and T. Ell in [29], [43] through their quaternion
Fourier transform (this one is independent from the quaternion
Fourier transform defined by T. Bülow for grayscale images [2]).
We have studied it in a previous paper [28] for a precise definition
of its properties in terms of color information. The representation is
parameterized by a pure quaternion giving a direction of analysis
in the color space. Depending on this choice, the interaction with
the different real and imaginary parts of the spectral quaternionic
domain is investigated. In most cases, the chosen parameter is on
the gray line, so that the transform basically consists in two complex
Fourier transforms used separately on the luminance part and the
chrominance part of the image. We have also proposed a quaternion
filterbank based on this concept [28], and came to the conclusion
that the quaternion framework is impeding for an easy physical
interpretation of the data.

A more recent work within the geometric algebra defines a
non-marginal color extension of the monogenic analysis [19]. We
extended it to a color monogenic wavelet transform in [20] and con-
cluded that despite the non-marginality, the concept is not developed
enough to obtain a clear physical interpretation. Furthermore, because
this method applies the Riesz transform on the sum of color channels
(due to prior mathematical justification), the geometric analysis fails
to handle isoluminant contours.

In contrast, the present approach extends the monogenic wavelet
transform so that a coherent color orientation is considered and the
1D phase interpretation is kept.

III. COLOR MONOGENIC SIGNAL: A TENSOR APPROACH

Given the great success of differential approaches in color vision
[21], [22], we propose here to take advantage of the well established
color structure tensor for a new color extension of monogenic
analysis. The theoretical link between Riesz transform and gradient
has already been studied and used in the grayscale case in [5], [44],
[45]. We extend it to color thanks to the vector structure tensor
concept. Then we discuss and define phase retrieval by oriented
Hilbert analysis for color signals which completes the color phase
concept. Physical interpretation of color monogenic features is given.
Since the next section will extend the concept to a multiscale analysis,
the present section is independent of any wavelet decomposition. We
more generally assume that signals are bounded in frequency.

A. The gradient-based structure tensor

Here is recalled the classical gradient-based local analysis of
grayscale images. A detailed explanation will be found in [46]. The
gradient of an image s is defined by:

∇s =
[
∂s

∂x

∂s

∂y

]T
= [sx sy]

T F←→ [jω1ŝ jω2ŝ]
T (12)

It points toward the direction of the local maximum variation of s;
and its amplitude is relative to the strength of this variation. To get
convinced of this, let us introduce the directional gradient:

Dθs = ∇sT[cos(θ) sin(θ)] (13)

This differential operator gives the ‘1D’ local variation of s in the
direction θ. We get an insight when rewriting it as follows:

Dθs = N cos (θ − θ+) (14)

N =
√
s2x + s2y (gradient norm) (15)

θ+ = arg{sx + jsy} (gradient direction) (16)

We see that the local variation is a cos-shaped function of the direc-
tion θ that reaches its maximum Dθ+s = N in the gradient direction.
In other words, the gradient operator solves the maximization of the
local variation with respect to direction2. Note that the minimum
Dθ++π = −N means an equally high variation in the opposite
direction. These two opposite directions are merged into the same
orientation according to the classical ‘angle doubling’ technique [11]:

θ+ =
2arg{sx + jsy}

2
=

arg{s2x−s2y + j2sxsy}
2

∈ [−π
2
;
π

2
]

(17)
The edge strength N and orientation θ+ form the well-known basic
features for edge detection, as illustrated on the first row of Figure
3. However, the gradient analysis is only efficient for edge-like
structures (see ‘intrinsically 1D’ or ‘simple neighborhoods’) - which
is tied to the fact that it is done pointwise.

Let us now use the squared measure s2θ(x) = (Dθs(x))
2 in order

to merge opposite directions, and consider its neighborhood defined
by a window function h(x), so as to carry out a more relevant
oriented local variation [46]:(

h ∗ s2θ
)
(x) =

∫
R2

h(x− x′)〈∇s(x′),u〉2dx′ (18)

where u = [cos(θ) sin(θ)]. This provides a quadratic form which
maximization is known to be equivalent to find eigen- values/vectors
of the underlying symmetric positive-definite matrix:

T (s) =

[
h ∗ s2x h ∗ sxsy
h ∗ sxsy h ∗ s2y

]
=

[
T11 T12

T12 T22

]
(19)

called structure tensor. Eigenvalues can be derived analytically:

λ± =
1

2

(
T11+T22 ±

√
(T22−T11)2 + 4T 2

12

)
(20)

The eigenvector tied to λ+ is parallel to [cos(θ+) sin(θ+)] with3:

θ+ =
1

2
arg{T11 − T22 + j2T12} (21)

The second eigenvector is orthogonal to the first one. Note that we
have directly the orientation θ+ ∈ [−π

2
; π
2
] instead of direction. The

strength of the maximum variation is given by:(
h( · ) ∗ (Dθ+s)

2( · )
)
(x) = λ+(x) (22)

while λ− measures the minimum variation that is in the or-
thogonal orientation. This third feature enriches the local analysis
and classically allows to discriminate isotropic structures, constant
neighborhoods, junctions, corners. . . In the degenerate case where
h(x) = δ(x), we get back to the gradient features with λ+ = N 2,

2More precisely, it finds the best fit to the underlying linear model, with
respect to the quadratic error [47]

3Depending on the paper one reads, both ‘T11 − T22’ [21], [48]–[50] and
‘T22−T11’ [5], [46] can be found. According to us the former is the correct
one (note that it is consistent with equation (17)).
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Deriche filters Deriche outputs (gradient) Norm Orientation
Derx(ω) Dery(ω) sx sy N θ+

0 max 0 max −max 0 max −max 0 max 0 max −π
2

π
2

Isotropic band-pass filtering Riesz transform Norm Orientation
B(ω) sbp <{Rsbp} ={Rsbp} N θ+

0 max −max 0 max −max 0 max −max 0 max 0 max −π
2

0 π
2

Fig. 3. Analogy between gradient analysis and Riesz analysis on test image s already used in figure 2. N and θ+ are according to eqs. (15) and (17).

λ− = 0, and orientation being identical to eq. (17) (due to the fact
that in this case we have T11T22 = T 2

12). In the general case, we still
have this useful relation with gradient:(

h( · ) ∗ N 2( · )
)
(x) = λ+(x) + λ−(x) (23)

Now let us see that the Riesz transform can as well give rise to such
analysis.

B. Link between Riesz and gradient

As already studied in [5], [45] the Riesz transform is very anal-
ogous to the gradient. More precisely, equations (5), (9) and (12)
give:

Rs =
(
−(−∆)−

1
2 sx
)
+ j

(
−(−∆)−

1
2 sy
)

(24)

Note that in spite of the Laplacian ∆ being conceptually a high-
pass filter, (−∆)−

1
2 is low-pass - see eq. (9). As a result, R can be

viewed either like the smoothed gradient of s or like the gradient of
a smoothed version of s. In [5], a Riesz counterpart of the structure
tensor is derived to improve the Riesz analysis. The key is to see
that Rs maximizes the directional Hilbert transform response over
the direction θ - in an identical fashion to the gradient. Based on
this fact the whole structure tensor formalism can be derived with R
replacing ∇, so that we get the Riesz based tensor Trz defined as
follows:

Trz(s) = h ∗ [<{Rs} ={Rs}]T[<{Rs} ={Rs}] (25)

= h ∗
[
∂

∂x

(
(−∆)−

1
2 s
) ∂

∂y

(
(−∆)−

1
2 s
)]T

[
∂

∂x

(
(−∆)−

1
2 s
) ∂

∂y

(
(−∆)−

1
2 s
)]

(26)

= T ( (−∆)−
1
2 s ) (27)

that is nothing but the structure tensor of (−∆)−
1
2 s as defined in eq.

(19). Finally, the Riesz features are equivalent to the structure tensor

features of a smoothed version of s:

|Rs| ≡ N (28)

arg{R} ≡ θ+ (29)

Let us discuss the connection between R and ∇ from a practical
point of view.

Observations and Remarks: Most numerical implementations of
gradient (Canny, Deriche, Shen-Castan, Sobel. . . ) are basically di-
rectional band-pass filters resulting from the combination of differ-
entiation (high-pass) and smoothing (low-pass). In the particular case
of the Riesz transform, the frequency gain is 1 everywhere except at
ω = 0 - see eq. (5). The all-pass phase-shifting that is performed by
the Riesz transform can be viewed like a generic variational analysis
that is free from any scale selection. Then scale selection can be
totally controlled by proper choice of band-pass filtering prior to the
Riesz transform: this scheme is intrinsic to the monogenic analysis.
Using some particular subband decomposition with a Riesz transform
will therefore perform a multiscale gradient analysis which frequency
selectivity will only depend on the chosen filterbank.

Figure 3 shows on the first row a classical gradient analysis with
Deriche filters (Those filters optimize Canny’s detector [51]). Second
row is a Riesz analysis joint with an isotropic band-pass filtering.
Deriche filters are parameterized with α = 0.125 × 2π

√
3, which

correspond to a maximum Fourier response at ω = 0.125× 2π. The
band-pass filter is an isotropic difference of Poisson (DOP) wavelet
with maximum response at the same frequency so that both analyses
are at the same scale (Note that DOP filters have already been used
in [52]). Filters are displayed with their normalized frequency gain.
Outputs of filters and of Riesz transform are normalized around the
gray level 128 to see positive (white) and negative (black) values.
Riesz transform is computed with FFT which corresponds to a
numerical approximation - this has a small impact since the impulse
response decays like 1/x2 (see eq. (5)). Orientation data is displayed
in HSV color system with the hue encoding the angle. Value is set in
{0, 1} with the thresholded norm so as not to display absurd angles,
and Saturation is set to 1 everywhere.

We can see the perfect analogy between gradient and Riesz - which
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experimentally confirms the theoretic connection. It is clear that the
difference of frequency response between R and ∇ does not alter
the local orientation analysis thanks to to the isotropy of (−∆)−

1
2 .

Finally, the building block of the monogenic analysis R performs
the same efficient orientation analysis as a gradient. The advantage
over the classical gradient is that it gives access to the local phase
and frequency thanks to the monogenic concept that also includes the
subband component sbp in a unified framework. It is now possible
to extend it to color signals.

C. Color Riesz analysis

The color structure tensor is the central tool of color differential
approaches. The idea was first proposed by Di Zenzo in [21], and
then further developed in [50]. This is now generally defined in
Riemannian manifold embeddings [23] and used in general color
imaging with PDE’s and variational approaches [22]. Given a color
image s = (sR, sG, sB), consider its marginal gradients along x and
y:

[∇sR,∇sG,∇sB] = [sRx, s
R
y, s

G
x, s

G
y, s

B
x, s

B
y] (30)

The color structure tensor M is defined as follows:

M(s) = T (sR) + T (sG) + T (sB) =

[
M11 M12

M12 M22

]
(31)

with

M11 = h ∗
(
(sRx)

2 + (sGx)
2 + (sBx)

2 ) (32)

M12 = h ∗
(
sRxs

R
y + sGxs

G
y + sBxs

B
y

)
(33)

M22 = h ∗
(
(sRy)

2 + (sGy)
2 + (sBy)

2 ) (34)

Norm N and direction θ+ of the maximum local variation are again
obtained from eigenvalues and eigenvectors according to eqs. (20)
and (21). The underlying measure of variation analogous to eq. (18)
now involves Euclidean distances between neighboring vector-valued
pixels.

We saw above that Riesz features are equivalent to gradient norm
and direction so we straightforwardly obtain the following color Riesz
features:

N =
√
|RsR|2 + |RsG|2 + |RsB|2 (35)

θ+ =
1

2
arg

 ∑
C∈{R,G,B}

<{RsC}2 −={RsC}2

+j
∑

C∈{R,G,B}

2<{RsC}={RsC}

 (36)

Note that according to the monogenic framework [3] and to the color
gradient by Di Zenzo [21], we restrict ourselves to gradient features;
which are a degenerate case of the structure tensor where h(x) =
δ(x). The advantage of defining color Riesz features with differential
geometry is the proper analysis of color discontinuities; as illustrated
figure 4. Note that only the RGB color space is considered, although
it is well known to be a ‘bad’ space with respect to the human visual
system, as well as highly correlated. However this is mathematically
handy and the definition of color structure tensor on non-linear spaces
like Lab is not as well established, and is linked to the open topic of
perceptual color distances. As we will see, choosing the RGB space
will still allow performing satisfactory color image processing and
analysis.

The figure 4 shows a band-pass filtering (same filter as figure 3) of
a color image followed by the color Riesz analysis. Output of filtering
s and its Riesz transform components are ‘subbands’ i.e. oscillating
at those locations where the original image has a discontinuity. As

illustrated figure 5 (A), a color discontinuity in the original image
I(x) draws a certain direction ~u in the RGB cube. The resulting
subband s(x) locally oscillates along the color axis ~u (B). This data
has negative values so it must be normalized to observe it as a color
bitmap (C). Note that mid-gray (128, 128, 128) actually encodes
value (0, 0, 0), which explains the gray background of subbands of
figure 4 corresponding to uniform areas. Colors of illustrations of
subbands in figure 4 are rather ‘encoded 3-vectors’ than actual colors.

Note the use of marginal band-pass filtering and marginal Riesz
transform; which is the direct consequence of using a tensor approach
i.e. based on a marginal gradient. However, final features N and θ+
are extracted in a non marginal way.

Figure 4 shows that the color Riesz analysis gives the proper
orientation of all color contours, including isoluminant ones like
the border between red and green disks that would disappear in an
intensity-based scheme like this of our previous work [20] based on
[19]. Note that we have two distinct notions of direction:

• Spatial orientation corresponding to the geometry of image
content that is given by θ+ from the Riesz analysis,

• Color direction in the RGB space, which is a feature of dis-
continuities independent from the Riesz analysis. This will be
studied below.

Now that color Riesz features N and θ+ are well defined, we can
generalize the whole monogenic analysis to color. The last step is to
build the 1D phase for color images.

D. Color phase

In the grayscale case, the analytic signal consists in combining
a signal s with a phase-shifted version of itself (Hs or |Rs|) to
extract local amplitude A and phase ϕ. In 2D, orientation is locally
taken into account in the definition of the phase-shift so that |Rs|
is analogous to Hs in the direction of maximum variation. With
eq. (28) it turns out that this phase-shifted signal is in fact the Riesz
gradient normN which also holds in the color case with eq. (35). Our
mathematical problem is that in color, s is a 3-vector while N is still

scalar. Fortunately, the Euclidean norm ‖s‖=
√

(sR)2+(sG)2+(sB)2

carries all needed information to compute meaningful amplitude and
phase.

To get convinced, let us replace s by its absolute value |s| in the
grayscale monogenic model (recall that s is considered oscillating so
s 6= |s|):

s =
√
s2+N 2︸ ︷︷ ︸

A

cos ( arg{s+jN}︸ ︷︷ ︸
ϕ∈[0;π[

) (37)

=
√
|s|2+N 2︸ ︷︷ ︸

A

cos ( arg{|s|+jN}︸ ︷︷ ︸
ϕ2∈[0;π

2
[

) s/|s|︸︷︷︸
“sign”

(38)

We must separate the sign of s as a new data, but A is unchanged, and
the new phase ϕ2 is a restricted version of ϕ to interval [0; π

2
]. This

restriction just reduces to an angle-wrapping problem. In the original
model, a black line on white background has a π phase while a white
line on a black background has a 0 phase. Now both lines have a
0 phase but the former is along the ‘black-white’ axis while the
latter is along the opposite ‘white-black’ axis. This axis information
is encoded in the sign data. The same remark holds with edges from
black to white and from white to black with π/2 and −π/2. We
still keep the desired edge/line discrimination - as illustrated in table
II - and still can differentiate the phase to get the local frequency.
This means that the sign data is not needed to retrieve satisfactory
physical interpretation of phase. The sign data does not encode any
shape information but rather a direction in the space of gray levels
(not to be confused with spatial direction given by θ).
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Image Subband Marginal Riesz transform Color Riesz analysis IR

IG

IB

  sR

sG

sB

  <{RsR}<{RsG}
<{RsB}

  ={RsR}={RsG}
={RsB}

 N θ+

Fig. 4. Color Riesz analysis. From left to right: Color image, marginal band-pass filtering output, marginal Riesz transform (2 components), color Riesz
features (norm and direction).

A: Color discontinuity (1D) B: Band-pass filtering C: Embedding of B D: Color axis ~u
in the RGB space [0; 255]3: output in R3: in the RGB cube: on the unit sphere:

b
lu
e

red

gre
en

~u

b
lu
e

red

gre
en

s(x)

b
lu
e

red

green

s

b
lu
e

red

gre
en

~u

α

β

Bitmap display: Bitmap display:
I ✲x s ✲x

Fig. 5. Study of a color discontinuity: 1D example. Column (A) illustrates a color discontinuity in the RGB cube along the direction ~u. Such a discontinuity
is conveyed by an oscillation in the color space along the same direction ~u as shown in (B). This time s(x) can be negative due to the band-pass filtering.
Displaying this data by bitmaps like color images needs embedding it in the RGB cube (C), which is used to display 2D color subband and Riesz transform
on figure 4. The basic Scilab code imshow(round(255 * (0.5+0.5*s/max(abs(s))))) provides the bitmap display of column (C). Particular
colors involved in the discontinuity determine a certain ‘color direction’ ~u of oscillation that we encode into two angles α and β as shown in column (D).

TABLE II
CORRESPONDENCE BETWEEN ϕ2 AND SIGNAL SHAPE.

sgn(s) / ϕ2 0 π
2

+1

−1

In the vector case, we can analogously split s into its Euclidean
norm ‖s‖ and its ‘color axis’4 ~u:

~u = s/‖s‖ = [cosα sinα cosβ sinα sinβ]T (39)

Color axis - illustrated figure 5 (D) - generalizes the sign data of
the grayscale case and directly conveys a colorimetric feature of the
original image’s discontinuity (A).

The color monogenic model that we propose is defined as follows:

s =
√
‖s‖2 +N 2︸ ︷︷ ︸

A

cos ( arg{‖s‖+jN}︸ ︷︷ ︸
ϕ2

) ~u︸︷︷︸
‘axis’

(40)

where ~u indicates a direction in the 3D color space and ϕ2 is
the usual 1D phase. Gradient norm N is obtained with eq. (35).
Finally, amplitude and phase can be retrieved with the sole Euclidean
norm of s. The color extension brings two new components (α, β)
corresponding to the local color axis along which s oscillates.

4This is an arbitrary choice of spherical coordinate decomposition of ~u.

The new color monogenic signal is built like a 4-vector whose
spherical coordinates are amplitude, phase and color axis:

scolor
M = [ sR sG sB N ]T

Amplitude: A =
√
‖s‖2 +N 2 ∈ [0;+∞[

1D Phase: ϕ2 = arg{‖s‖+jN} ∈ [0; π
2
[

Color axis:

{
α = arg{sR+j

√
(sG)2 + (sB)2} ∈ [0;π[

β = arg{sG+jsB} ∈ [−π;π[

(41)

It should be noticed that this is one direct way to estimate the
4 parameters of the model of equation (40) from the 9 available
measures [ sR sG sB sRx sGx sBx sRy sGy sBy ]. It is in the line of
the classical estimation of amplitude and phase with the scalar tools.
Nevertheless, in a future work, a more general projection process will
be studied.

Note that our method is consistant with the grayscale case - for
which ~u = sgn(s) 1√

3
[1, 1, 1] - and can be trivially generalized to

n-vectors and hyperspectral images.
There is a very recent alternative approach toward 2-vector 1D

analytic signal in [53]. The definition is different from ours as it
implies a complex amplitude envelope with a complex instantaneous
phase and is based on the 1D quaternion Fourier transform. However
this work is limited to 1D complex signals and is not extendable to
higher dimensions due to its specific embedding in the quaternion
framework.

E. Interpreting color monogenic analysis

This new monogenic signal specially defined for multi-valued
images consists in using the color Riesz norm N as the phase-shifted
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Amplitude A Phase ϕ2 Color axis ~u

(Color pixels)
0 max 0 π

2

Fig. 6. Proposed color monogenic signal of image used in figure 4.
Here again, color axis and phase data are not displayed (black or gray) for
coefficients with low amplitude.

version of s given by |Rs| in the scalar case. This magnitude is
sufficient to have a complete reversible model through the 4 polar
coordinates of eq. (41). The general phase is composed of 3 angles
(ϕ, α, β), each one having a direct physical meaning in terms of
amplitude, phase and color axis.

Note that orientation θ+ from eq. (36) gives additional information
that may be crucial for analysis purpose, but it is not part of
the modulation model (see eq. 40). In fact the orientation analysis
is intrinsic to the construction of the data ϕ2 that only makes
sense perpendicularly to the discontinuity’s orientation. This ensures
translation/rotation invariance and the well balanced response to all
directions.

Let us observe the figure 6 illustrating our new color monogenic
signal. Like previously, the analysis is done on a subband of the color
image obtained with the same filter. We can see that amplitude is
again consistent with geometrical structures (including isoluminant
ones) and highlights oriented elements equally regardless of their
orientation - due to Riesz transform isotropy. Its invariance to shift
and rotation is due to the sharing of geometric information with ϕ2

which forms a coherent coding. This also allows coding a line by
a ‘simple line’ in amplitude instead of a ‘double line’ - as with
gradient analysis5 like in figure 4 - thanks to the encoding of kind
of discontinuity by ϕ2 - already discussed section II-C. Orientation
θ+ is exactly this of figure 4. Angles α and β - represented in
the same graphic through ~u - carry some information of local color
direction. They usually vary slowly up to sign changes, except around
complex color structures involving two local color axes e.g. the green
line separating the yellow region from the red disk. Note that our
color generalization keeps all the desirable properties of the grayscale
monogenic signal.

Based on this new extension of the monogenic signal, we can
derive the corresponding color extension of the MWT presented
section II-E.

IV. TENSOR BASED COLOR MONOGENIC WAVELET TRANSFORM

We saw that the monogenic analysis must be done together with
band-pass filtering that is selecting a particular scale for the analysis.
In this section we generalize this tool to handle all scales in a global
monogenic multiresolution analysis of color images.

A. Definition

The extension to the wavelet domain is direct since the above
construction relies on a marginal Riesz transform (non marginality
occurs when combining marginal outputs into meaningful data). So

5Derivative of an edge has a single response while derivative of a line
has a double response. In practice, this can be efficiently handled with post-
processing but the signal approach unifies both kinds of discontinuities.

we can again directly use polyharmonic spline wavelets of Unser et
al. (see section II-E) but with a different combination of Cartesian
coefficients. This time components will be combined to carry out
color AM/FM analysis.

We have first to compute the 6 following subband decompositions:

cCi,k =
〈
sC, ψi,k

〉
=
(
ψi ∗ sC

)
(2−(i+1)k) (42)

dC
i,k =

〈
sC, ψR

i,k

〉
= {R

(
ψi ∗ sC

)
}(2−(i+1)k) (43)

with C ∈ {R, G, B}

then to process Riesz norm:

Ni,k =
√
|dR

i,k|2 + |dG
i,k|2 + |dB

i,k|2 (44)

The proposed monogenic signal is for each scale i:

cM (k) =
[
cRi,k , c

G
i,k , c

B
i,k , Ni,k

]
(45)

Amplitude, phase and color axis can be retrieved with eq. (41), and
orientation with eq. (36). Computation load for the 6 decompositions
is not serious since each one has a linear complexity. The figure 7
illustrates the multiscale color monogenic features obtained from our
color monogenic wavelet transform.

A ϕ2 ~u θ+

0 max 0 π
2

(Color axis) −π
2

0 π
2

Fig. 7. The color monogenic wavelet transform (γ = 3).

B. Continuous VS Discrete

Before going into experimental use of this new representation, let
us give some practical remarks.

Analytic/monogenic analysis must be thought in a multiscale
scheme, this is why we focus on defining a monogenic wavelet trans-
form. As already discussed section II-D, we could have chosen scale-
space or PDE’s that give a handy continuous multiscale tool. But
we consider that signal processing tools are generally most relevant
through such discrete schemes as filterbanks since they involve fast
algorithms and provide compact data with each coefficient carrying
much information, which is necessary for compression and real-time
analysis.

The issue is that the monogenic analysis is basically defined in
a continuous framework. Constraints related to filterbank design -
perfect reconstruction, small redundancy - conflict with desirable
properties of isotropy and rotation invariance. The choice that is made
by Unser et al. [5] is to provide the ‘minimally-redundant wavelet
counterpart of Felsberg’s monogenic signal’. See also the Marr-like
pyramid using the same algorithm in [54]. Our color monogenic
wavelet transform is by extension in the same spirit.

Since filters cannot be exactly isotropic, the analysis is expected
to mildly favor some directions. In addition, the subbands are highly
subsampled (yet not ‘critically’ since number of coefficients is higher
than number of pixels), implying that the phase data is varying
fast with respect to sampling. Those two points slightly affect
invariance properties of coefficients: this is the price to pay for
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having the reasonable redundancy of ≈ 1.86. Fortunately, the implicit
numerical implementation of the Riesz transform does not suffer from
subsampling that appears outside the Riesz operator - see eqs. (42)
and (43).

Now let us study how the color monogenic wavelet transform can
be used. We will focus on sparsity and invariant analysis.

C. Use as a sparse representation

According to S. Mallat [55], sparse representations in redundant
dictionaries can improve pattern recognition, compression, and noise
reduction, but also the resolution of new inverse problems. This in-
cludes superresolution, source separation, and compressive sensing.
As a redundant decomposition driven by the physical meaning of
coefficients in terms of color and geometry, our multiscale color
monogenic representation is a good candidate for sparsity. We
expect that few coefficients will carry rich and meaningful visual
information, so that we can select and quantize them simply without
introducing serious artifacts.

We propose here to test the sparsity of this representation through
simple selection and quantization of coefficients, together with some
evaluation of the related distortion. This is also aimed at providing
some insight into the interpretation of the wavelet domain data.

1) Unusual data: Quantization is usually optimized by statistical
modeling - generalized Gaussian laws are often used for classical
wavelets. In our case, usual tools hardly apply since our coefficients
are in polar coordinate, basically a Euclidean norm and three angles.
For example, an input Gaussian noise induces the amplitude to
follow a Rayleigh distribution, as plotted figure 8. Usual wavelet

0.1
0.2
0.3
0.4
0.5

1 2 3 4 5 6 A

density

✲

Fig. 8. Rayleigh distribution of amplitude of any subband for a Gaussian
noise in input (γ = 3).

coefficients - in Cartesian coordinate - would follow a handier
Gaussian distribution. This means that thresholding based denoising
for example is not obviously transposed in our case by thresholding
of amplitude. This also means that classical quantization schemes
- optimized for classical wavelets - no longer apply. The issue is
similar for the phase that is a circular data. Literature is quite poor
about quantization of such data. The use of Von Mises distribution
for example may help to statistically model the coefficients, but this
is out of the scope of this paper.

2) Redundancy: Redundant representations may be thought of as
computationally more expensive, however they often exhibit better
sparsity. This is why undecimated wavelets for example have been
successful in denoising and analysis [56]–[58]. Low-rate compression
can also be better matched to the human visual system through
redundant representations such as matching pursuit based dictionaries
[59] or complex wavelets [60]. In a previous work [61] we highlighted
that quaternionic analytic wavelets are more appropriate than classical

6Note that we speak about the redundancy of the wavelet domain data that
is necessary to reconstruct the image, which is different from the redundancy
of the 9D intermediate data composed of subbands and their Riesz transforms.
Four pyramids of redundancy 4:3 to encode three color channels give 4 ×
4
3
/3 = 16

9
≈ 1.8. If we also count the orientation data - which is counted in

Unser’s proposition although not in the model - it raises to ≈ 2.2. Anyway,
since we have only one Riesz analysis for the three channels, redundancy is
less than in the grayscale case.

biorthogonal wavelets in a quantization scheme because they intro-
duce smoother artifacts. In particular, the quaternionic phase turns out
to be robust against hard quantization. We expect the color monogenic
transform to give analogous results for color images thanks to its
quality of representation. We particularly assume that the information
is significantly compressed.

3) Reconstruction: Wavelet domain processing requires the syn-
thesis part of the filterbank. However, reconstruction from ana-
lytic/monogenic wavelet coefficients has not been dealt in the lit-
erature to our knowledge. The issue rises from the fact that there
are several ways for the signal to be fully reconstructed, which also
occurs with any redundant representation. In addition, the monogenic
framework itself has this feature θ that is unused in the model
s = A cosϕ although it is part of the analysis. In our case, we
choose to follow the ‘modulation model’ of eq. (3). This implies
that the ‘Riesz-Laplace’ decomposition is not directly considered
under analysis, but rather as intermediate data used to process
an enriched description of ‘primary’ subbands composed of the 4
monogenic features (A,ϕ2, α, β) at several scales. The monogenic
wavelet domain processing consists in selecting and quantizing these
4 features - which are physically interpretable - rather than the raw
wavelet coefficients cC and dC. The corresponding modification of the
‘primary’ decomposition is obtained at a scale i from:[

cR cG cB
]
= A cosϕ2 [cosα sinα cosβ sinα sinβ] (46)

And the modified image comes from the synthesis part of the ‘pri-
mary’ filterbank applied on (cR, cG, cB). The advantage of this method
is that the 4 monogenic features are influent on the reconstructed
image.

4) Experiments: In order to test the sparsity of our transform, we
propose to observe partial reconstructions processed from monogenic
wavelet domain uniform quantization. Note that an underlying selec-
tion of coefficients is done, since all values of A in the first interval
will be set to zero. Then eq. (46) implies that A = 0 ⇒ cR = cG =
cB = 0 - which means that all the corresponding phase values are
also discarded. Depending on the number of bits used to quantize
A, a certain thresholding will be done so that a limited number of
(vector) coefficients will be retained. Together with this selection,
each feature will be independently quantized to get an idea of the
number of bits needed to properly code wavelet coefficients. This
is also a way to better understand the kind of visual content that is
coded by the various data.

We use 4 fixed numbers of bits (BA, Bϕ2 , Bα, Bβ) for the whole
transform, each one related to a feature. Decomposition level is 4
so that the scales are i ∈ {−1,−2,−3,−4}. The low frequency
subband is not processed because it is not concerned by the mono-
genic analysis, and involves a negligible amount of data. We show on
figure 9 (first column) that a uniform quantization on 6 bits (resp. 2,
3, 4) for A (resp. ϕ2, α and β) induces almost no visible artifact in
reconstructed image. This choice corresponds to a quantization step
of π/8 for the phase and color axis angles, which may be thought
quite coarse. Total number of bits needed to code the image is then
16/9 × (6 + 2 + 3 + 4) ≈ 27 times the number of pixels. This
amount of data is comparable to the original 24 bit coding of raw
color image.

Let us see the effect of applying a harder quantization on each
component. By degrading amplitude A (second column) we observe
the classical pseudo-Gibbs effect introducing oscillations at borders
of image circles. Textured areas are smoothed, like the lower
left corner of mandrill or barbara’s clothes. This confirms that
A is analogous to usual wavelet coefficients, which produce similar
degradations. However, in our non-marginal scheme, color is not
affected thanks to the separate coding of color axis.
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Quantization Correct Poor amplitude Poor phase Poor color axis
(BA, Bϕ2 , Bα, Bβ): (6, 2, 3, 4) (3, 2, 3, 4) (6, 1, 3, 4) (6, 2, 1, 2)

circles

Zooms:

PSNR / SSIM: 30 dB / 0.997 24 dB / 0.989 21 dB / 0.974 20 dB / 0.958

mandrill

Zooms:

PSNR / SSIM: 33 dB / 0.994 23 dB / 0.951 25 dB / 0.964 24 dB / 0.957

barbara

Zooms:

PSNR / SSIM: 32 dB / 0.993 25 dB / 0.961 25 dB / 0.965 23 dB / 0.940

Fig. 9. Basic uniform quantization of (A,ϕ2, α, β) on (BA, Bϕ2 , Bα, Bβ) bits.

Hard quantization of the phase ϕ2 produces visually annoying ‘wet
paper’ effect. Phase error is particularly serious around discontinu-
ities. Discontinuities are modeled like a sum of local oscillations
at different frequencies. In the case of ‘significant’ discontinuity,
those oscillations are expected to be locally in phase - this is the
phase congruency that must exist at the maxima of amplitudes
[9]. Quantization can badly increase small differences of phase
between scales by rounding off on different neighboring centroids.
This results in local bad alignments of different scales showing
kinds of transparent oscillations around edges and lines. Note that
phase error in a coarse scale coefficient implies a phase-shift on a
large neighboring due to the coarse wavelet large support. See large
oscillations at borders of circles or on table stand of barbara.
In contrast, fine scale phase-shift artifacts are less significant - see
that textures of mandrill are quite well preserved. Actually the
phase degradation is mainly in low-frequencies, which explains this
‘wet paper’ effect that we already observed in [61] with quaternionic

wavelets. Again, despite this strong degradation of contours, color is
strikingly consistant like the green-red border between the big disks
of circles.

Finally, by quantizing color axis only on 1 + 2 = 3 bits we
naturally introduce false colors. See for example mandrill’s eyes,
barbara’s hand, or just any line of circles which color has
totally changed. This confirms that α and β encode some true
colorimetric information being independent from A and ϕ2. Finer
manipulation of the color content should be investigated through a
deeper study of the color oscillation concept illustrated figure 5.

This preliminary experiment shows that our transform is stable
with quantization and can efficiently encode visually controlled color
geometric elements. Discarding low-amplitude coefficients vector-
wise does not introduce serious artifacts, due to the sparsity of this
representation. We can independently control contours’ sharpness and
quality of colors with a reasonable number of bits. The originality
of the work is that color images are handled in a unified framework
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revealing the color geometric content through interpretable coeffi-
cients. Our future work includes statistical modeling of monogenic
coefficients in polar coordinate in order to optimize quantization. It
will also be interesting to study the strong spatial correlation of
color axis that is supposed to vary slowly, as well as the inter-
scale correlation in order to reduce the data. Coefficients of small
amplitude encode uniform areas which need not any geometric
analysis. Their phase angles are not very significant so they may be
quantized harder. Human visual system constraints such as orientation
dependent weighting for example can be easily injected since an
orientation analysis is accessible in the transform.

Let us now consider the color monogenic wavelet transform from
the image analysis point of view.

D. Invariant analysis of color images

Wavelet based image analysis is generally aimed at handling
several resolutions and directions e.g. for texture recognition or
keypoint extraction. We propose here to perform basic analysis of
wavelet coefficients to highlight their rotation invariance and better
understand the information they carry. The great advantage of our
method is that color is fundamentally taken into account.

The monogenic model is well fitted to analyze contours, through
amplitude’s local maxima. At those points where amplitude A reaches
a maximum, geometric analysis given by the phase and orientation are
meaningful. It is shown in [9] (in the grayscale case) that amplitude’s
local maxima are equivalent to points of phase congruency giving
efficient contour detection. Note that in the case of phase analysis,
‘maximum’ is understood in one direction, which includes saddle
points as well. In practice, we will retain coefficients which amplitude
is superior to at least 6 of their 8 neighbors. This tends to retain
continuous thin contours, in contrast with usual keypoint detection
that uses strict maxima in order to extract isolated corners and
junctions.

To improve the invariance, we use the undecimated version of
the transform as usually done e.g. for keypoint detection. Note
that although the classical undecimated wavelet transform has been
mostly used for denoising, it is also interesting for analysis, see [58],
[62], [63]. This allows a better localization of features. Figure 10
shows analyses of a simple image rotated at three different angles.
This illustration aims at confirming rotation invariance of the color
monogenic analysis. The test image contains typical ‘edges’ and a
‘line’ that are elementary cases for the model.

1) Amplitude: We can see that the rotation does not change
amplitude’s shape, which experimentally confirms rotation invariance.
Coefficients ‘turn well’ without any oscillation or artifact, thanks to
the amplitude/phase representation. Like with the 1D Dual-Tree [34]
or the 2D quaternionic wavelets [4], the amplitude gives a consistant
representation of discontinuities analogous to some local energy. This
provides a fine multiscale contour detection that handles well different
kinds of discontinuities like lines and edges. A direct application of
the amplitude A could be a fast and efficient contour detection. This is
the first phase based contour detection that can be done with multi-
valued images through a true counterpart of grayscale monogenic
analysis and phase congruency.

For visual convenience, phase, color axis and orientation are
displayed only at positions of amplitude’s maxima.

2) Phase: Given the kind of discontinuity analysis detailed in table
II, phase ϕ2 is expected to have a value near 0 (‘red’) on the red
line and around π

2
(‘cyan’) at the edges of the blue rectangle. At

the coarsest scale ϕ2 is consistant with our perception: ‘red’ on the
line and ‘cyan’ on the edges. Corners are smoothed by the subband
analysis so they are conveyed by curved edges, which are not handled

in the monogenic framework. Invariance is perfect at the coarse scale,
and very good at finer scales. For finer scales, the line tends to be
considered as a thin rectangle. This is normal since the line’s width
is larger than one pixel so it can be viewed like either a line or a
rectangle depending on the scale. At the finest scale, the analysis
gives some rectangle shaped energy around the area of the line
which is obviously conveyed by ‘edges’ (ϕ2 ≈ π

2
). Actually, we

rather observe ‘green’ phases (ϕ2 ≈ π
4

) than ‘blue’. The reason is
low sampling density. Geometric analysis at the finest scale means
studying ‘one pixel wide’ objects. Most of the times, objects of an
image are not centered exactly on the grid. This issue is transposed in
the monogenic analysis that has a sub-pixel accuracy so amplitude’s
maxima are also mostly between neighbor coefficients. The problem
in this case is that ϕ2 varies too fast with respect to the size of the
object under analysis. We actually observe intermediate values of ϕ2

- mostly ‘green’ phases - at finest scales, except at some ‘cyan’ points
for which the edge fits well to the grid. Despite the sampling issue,
phase appears clearly invariant to rotation.

3) Color axis: Amplitude and phase analysis (as well as orienta-
tion) have the advantage of being strictly analogous to their grayscale
counterpart while being processed from a multi-valued image through
a true vector geometric scheme. Remaining color information is
independent to amplitude and phase and is encoded by the color axis.
Color axis ~u is tricky to observe since it must be locally constant ‘up
to a sign change’. In the case of edges that are locally sin-shaped,
a sign change always occurs at the central point. So we observe
two values ~u1 and ~u2 = −~u1 coding the same axis in the color
space. See also figure 5. This does not occur for lines that are cos-
shaped. In figure 10, see that ~u is changing between ‘orange’ (~u1)
and ‘blue’ (~u2 = −~u1) at edges, while really constant on the line.
We actually have a representation issue about this data suggesting the
use of ‘modulo π’ operators with α and β. Up to this sign change ~u
is clearly invariant to rotation too.

This ensures that color information of image content is properly
encoded through our monogenic analysis.

4) Orientation: Orientation analysis is expected to be invariant up
to a constant offset θ0 equal to minus the angle of image’s rotation.
In the illustration we compensated this offset to make differences
more visible. The finest scale suffers from the same sampling issue
as ϕ2. Differences appear around some orientations, due to both
the approximate isotropy of filters, and the fact that orientation is
estimated pointwise. Note that invariance can be improved by an
additional smoothing of the Riesz tensor with Gaussian kernels as
proposed by Unser et al. in [5] in the grayscale case. This modifies
N and θ and thus the whole monogenic analysis, so that it is no
longer done pointwise but within a neighborhood. This results in
coefficients being more consistant with our perception, although this
is not directly part of the monogenic framework. We show figure 11
color monogenic wavelets of rotated test images without and with
Gaussian smoothing. Smoothing allows better orientation estimation
and more stable amplitude’s maxima. An additional illustration with
a real world image is given on figure 12.

5) Discussion: Finally, approximations related to the choice of a
filterbank approach are acceptable, since we get experimental rotation
invariance and correct physical interpretation of the yielded data. This
monogenic wavelet representation of color images is consistent with
the grayscale definition in terms of signal processing interpretation
(amplitude, phase and orientation) as well as it takes advantage of a
well defined differential model for handling vector signals.

Since existing wavelet transforms are fundamentally of a different
nature (known analytic wavelets are grayscale only, known color
wavelets are not analytic), and existing wavelet based applications
do not apply to monogenic coefficients, it is quite impossible to
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Fig. 10. Undecimated color monogenic wavelet decomposition (γ = 3) for several rotated versions of a simple test image (one per row). From left to right:
Test image, amplitudes for 3 scales from coarsest to finest, phase ϕ2, color axis and orientation for each scale. Phase/Axis/Orientation values are displayed
only at positions of amplitude’s local maxima. Orientation has been offset by a constant angle to compensate image rotation. Legend is the same as figure 7.

Fig. 11. Rotation variance of color monogenic wavelet transform without
(left) and with (right) Gaussian smoothing of the Riesz tensor. γ = 3 and the
Gaussian kernel is σ = 1.5.

compare our transform with the literature without carrying out a
whole competitive application. Our present work is the basis of a new
keypoint detector for color images through a fundamental geometric
analysis of the color content with new invariance properties and a
multiscale flavor. It paves the way to the definition of new invariant
descriptors based on local amplitude, phase, orientation and color
axis to fully characterize color keypoints. This would constitute a
competitive color alternative to the famous SIFT detector [64], by
introducing physical interpretation through ‘color phase’ and ‘color
frequency’ notions. This signal flavor will allow getting closer to the
human visual system. Our monogenic coefficients should also provide
good texture classification through statistical features as it is already
the case for grayscale quaternionic wavelets [61].

V. CONCLUSION

Concepts of multiscale analytic/monogenic signal and local phase
have been gaining much interest since they tend to provide physically
interpretable representations while being linked to flexible unifying
algebraic frameworks. This paper presents an innovative construction

of non-marginal color monogenic wavelets. Such a geometric repre-
sentation allows the color content of images to be coherently encoded
by meaningful data. This is the first time that color is considered in
such a wavelet transform so that no false color is introduced and all
contours are modeled - even isoluminant ones.

The construction is based on a theoretical link between the Riesz
transform, building block of the monogenic framework - and the
gradient, basis of the structure tensor. Thanks to vector differential
geometry, we build a color phase concept tied to a non-marginal color
extension of the grayscale monogenic signal. The efficient tensor-
based geometric analysis - which is responsible for the success of
PDE’s based color regularization by intrinsically considering color
distances - is joined to the physical amplitude/phase modeling, car-
rying out a unified representation of color images through amplitude,
phase, orientation and color axis data. These features are invariant
or covariant to shifts and rotation.

The wavelet transform is constructed from the grayscale mono-
genic wavelets of Unser et al [5] by extending it according to our non-
marginal color definition. The resulting transform is non-separable
and slightly redundant (16:9 ≈ 1.8) so that isotropy and rotation
invariance are nearly achieved.

The amplitude data indicates the local energy (local in both space
and frequency) similar to the modulus of usual wavelet coefficients,
and having the same kind of sparsity (A few high coefficients contain
most of the total energy). It performs an efficient multiscale contour
detection unifying color lines and edges without any preferred spatial
direction and handling all color contours. It is responsible for the
quality of textured areas and the global structure of the image.

Maxima of amplitude reveal multiscale keypoints for which values
of phase, orientation and color axis give geometric and colorimetric
information:

• The phase data gives the local contour type, already studied
through the concept of phase congruency yielding a continuous
model between ‘lines’ and ‘edges’. It controls the coherency of
contours.

• The color axis carries the color information related to disconti-
nuities, allowing controlling the quality of color independently
from the geometric structure of the image.

• Orientation is equivalent to a multiscale gradient direction that
is embedded in the monogenic framework. It can be used for
example to take into account the human visual system, but
remains an additional data with no impact on the reconstruction.

The whole data is unified in our color monogenic framework so as
to carry out consistant and complementary low-level features.

This elegant distribution of the information allows a sparse rep-
resentation, where most coefficients have low amplitude and thus
insignificant phase and color axis. We illustrate this sparsity through
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Fig. 12. Rotation variance of color MWT for a real image (γ = 3).

quantization experiments revealing the visual information carried
by the different coefficients. Geometric multiscale analysis of color
images is also investigated through invariant keypoint detection.
While the famous SIFT algorithm is widely used for its invariance
properties, we introduce the basis of a new method where color is
naturally handled and physical interpretation of the data is possible
thanks to our signal processing approach.

Our future work will include defining higher level local descriptors
to fully characterize the keypoints, as well as integrating human visual
system tools for interest point detection. The fundamental handling of
color information that we propose is very useful for such applications.
Theoretical prospects include consideration of other color spaces
than RGB in the definition of color phase, and a more general
reflexion about the estimation of the monogenic features as well as
the reconstruction method. The numerical aspect of the monogenic
analysis also has to be further studied, and possibly non redundant

schemes may be investigated. In addition, a unifying algebraic
embedding analogous to complex Fourier analysis in the 1D scalar
case could carry out an elegant signal processing framework adapted
to color images. It would also be interesting to look at the other
monogenic wavelets that have been proposed in the grayscale case.
The construction can easily be extended to the general multichannel
and multispectral case by considering general vector structure tensors.
Direct applications are sparse representation and classification of
multispectral images.
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[45] U. Köthe and M. Felsberg, “Riesz-transforms versus derivatives: On the
relationship between the boundary tensor and the energy tensor,” in Proc.
Scale-Space, LNCS 3459, Springer, 2005, pp. 179–191.

[46] B. Jähne, Digital Image Processing 6th Edition. Berlin: Springer, 2005.
[47] J. Bigun, G. Granlund, and J. Wiklund, “Multidimensional orientation

estimation with applications to texture analysis and optical flow,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 13, no. 8, pp. 775–790, 1991.
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