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A Self-Learning Solution for Torque Ripple
Reduction for Non-Sinusoidal Permanent Magnet

Motor Drives Based on Artificial Neural Networks
Damien Flieller, Ngac Ky Nguyen, Member, IEEE, Patrice Wira, Member, IEEE, Guy Sturtzer, Djaffar Ould

Abdeslam, Member, IEEE, and Jean Mercklé

Abstract—This paper presents an original method, based on
artificial neural networks, to reduce the torque ripple in a
permanent-magnet non-sinusoidal synchronous motor. Solutions
for calculating optimal currents are deduced from geometrical
considerations and without a calculation step which is generally
based on the Lagrange optimization. These optimal currents are
obtained from two hyperplanes. The study takes into account the
presence of harmonics in the back-EMF and the cogging torque.
New control schemes are thus proposed to derive the optimal
stator currents giving exactly the desired electromagnetic torque
(or speed) and minimizing the ohmic losses. Either the torque
or the speed control scheme, both integrate two neural blocks,
one dedicated for optimal currents calculation and the other
to ensure the generation of these currents via a voltage source
inverter. Simulation and experimental results from a laboratory
prototype are shown to confirm the validity of the proposed
neural approach.

Index Terms—Permanent Magnet Synchronous Motor, Torque
Ripple, Cogging Torque, Homopolar Current, Neuro-controller,
Adaline.

NOMENCLATURE

i Stator current vector
e Back-EMF vector
n Number of phases of PMSM
p Number of pole pairs
K1 Speed normalized back-EMF vector
K0 Vector containing only fundamental components

of K1

K2 Vector does not containing the components of
rank nq, q = 1, 2, · · · which exist in K1

θ Mechanical rotor angle
Ω Mechanical rotor speed
Ctotal(pθ) Total torque
Cem(pθ) Electromagnetic torque
Ccog(pθ) Cogging torque
Cref Desired torque
Ωref Desired speed
kopt−i Optimal function by strategy i = 0, 1, 2
iopt−i Stator current vector corresponding to strategy

i = 0, 1, 2
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I. INTRODUCTION

PERMANENT MAGNET SYNCHRONOUS MOTORS
(PMSMs) are widely used in many industrial production

systems due to their attractive features which are their
compactness, high torque mass ratio, high efficiency and
ease to be controlled. There are mainly two principal
types of PMSMs which are characterized by sinusoidal or
non-sinusoidal back electromotive forces (back-EMF) [1].

Whatever the PMSMs, torque ripples come from various
causes [1]–[5]. The cogging torque is generated by the inter-
action between the rotor magnetic field and the stator teeth
even if there is no current in the stator. Another source of
torque pulsation results from the interaction between the stator
currents and the rotor magnetic field. Generally, this torque can
be divided into two terms. The first one is due to the rotor’s
magnets and the stator currents. The second one is due to
the saillance. In this paper, only the first term is considered
because our interest lays in the non-saillance motor. Works
related to saillance motors can be found in [6]–[8].

A constant torque is highly required in many applications.
Therefore, various works were proposed to minimize the
undesirable torque ripple [9], [10]. These works can be divided
into two categories. The techniques from the first one consists
in developing the machine’s stator and rotor design to cancel
the undesirable torque ripple. The magnets’s properties and
how to distribute them optimally on the rotor’s surface are
studied in [5], [11]–[13]. The influence of the slots/poles ratio
of the machine on the torque ripple is specifically studied
in [12]. The techniques from the second category are based
on the stator current control. An analyze of the torque’s
expression is used to calculate the best currents that cancel
the torque ripple. The literature provides various techniques
for the optimal current determination according to adequate
transformations. For example, the individual harmonics of the
Fourier’s series of the back-EMF are used in order to obtain
the stator currents in [14]–[16]. The work presented in [14]
optimizes the currents only for harmonics of rank 5 and 7
while the method presented in [15], [16] gives the optimal
currents by calculating a pseudo-inverse matrix containing the
harmonics of the back-EMF. A formula was proposed in [17]
which works in the a-b-c reference frame. In this method the
homopolar current is null and moreover, the loss by Joule
effect is not optimal. Always in the a-b-c reference frame,
the works presented in [18], [19] give the expressions of the
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optimal currents. These methods are based on a Lagrange’s
optimization to obtain the currents which minimize the stator
ohmic losses and maintain the desired torque. While working
in the d-q reference frame of Park, the authors in [20],
[21] determine the expressions of the d-q optimal currents;
[21] optimizes only for one harmonic of rank 6. A direct
expression of the a-b-c currents is given in [22], [23] by using
an extension of Park’s transformation. In [24], an adaptive
process based on the Fourier series expansion is presented for
a machine containing 4 pairs of poles and 24 stator slots. The
flow chart proposed leads to the determination of the current
iq(pθ) in order to compensate for the 6th rank harmonic of
the torque ripple. The repetitive and iterative learning control
schemes were presented in [4], [25]. Based on a vectorial
approach, the generation of optimal current references for
multiphase PMSM in real time is reported in [26]. This
approach reduces the computing operations compared to scalar
methods which generally require a large amount of calculus.
The performance of the proposed method is experimentally
valided in normal and fault mode (open-circuited phases).
Zhao et al. in [27] recently presented an other approach
based on harmonic current injection, on which the Redundant
Flux-Switching Permanent-Magnet Motor (R-FSPM) can be
operated with high dynamique performance and good behavior
at steady-state. If the back-EMF of the R-FSPM is highly
non-sunisoidal, then the current calculation with the proposed
method becomes complicated.

The work presented in this paper is different from the
approaches mentioned above. A torque control scheme and a
speed control scheme are proposed to cancel the torque ripple,
including the cogging torque. The design of the controllers are
based on Adaline Neural Networks (ANNs) [28], [29]. Indeed,
the learning capabilities of the ANNs allow to calculate the
optimal currents which give exactly the desired torque (or a
desired speed) and minimum ohmic losses. This solution can
be applied for a multiphase Permanent Magnet (PM) machine
under normal operation or under open-circuit fault conditions.

This paper is organized as follows. The problem related
to torque pulsation due to the harmonics of the back-EMF
is presented in Section II. Section III presents new geo-
metrical considerations leading to the optimal currents. They
are based on the definition of hyperplanes whose equations
depend on stator currents. Section IV proposes an original
direct torque (or speed) controller based on an Adaline neural
network. Simulation results in Section V and experimental
results in Section VI confirm the validity of the proposed
neural approach. Finally, concluding remarks are provided in
Section VII.

II. PMSM’S TORQUE RIPPLE

The stator current and the back-EMF vectors of a n phases
PMSM can be defined respectively by:

i =
[
i1 i2 · · · ii . . . in

]T
, (1)

e =
[
e1 e2 · · · ei . . . en

]T
. (2)
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Fig. 1. Torque obtained in a non-sinusoidal three-phase machine in BLAC
mode

If the machine is non-sinusoidal, we can develop the back-
EMF for the ith phase as:

ei =

kmax∑
k=1

eak,i sin (kpθ) + ebk,i cos (kpθ), i = 1, · · · , n,

(3)
and the fundamental component of ei is:

e0i = ea1,i sin (pθ) + eb1,i cos (pθ), i = 1, · · · , n, (4)

where kmax is the highest considered harmonic of the back-
EMF, θ is the angular position, eak,i and ebk,i are the Fourier
coefficients. p is the number of pole pairs.

The speed normalized back-EMF vector K1 can be ex-
pressed by:

K1 =
1

Ω

[
e1 e2 · · · ei · · · en

]T
. (5)

We can define K0 by:

K0 =
1

Ω

[
e01 e02 · · · e0i · · · e0n

]T
, (6)

where Ω = dθ
dt is the rotor’s speed.

The total torque of the machine is given by:

Ctotal(pθ) = Cem(pθ) + Ccog(pθ), (7)

with Cem(pθ) = KT
1 i which represents the electromagnetic

torque of the interaction between the stator currents and the
rotor’s magnetic field. Fig. 1 shows the current and the back-
EMF of phase 1 as well as the total torque of a non-sinusoidal
three-phase machine. It is obvious that the sinusoidal excita-
tion currents reveal a torque pulsation. To supply the machine
correctly, we have to determine the stator current for each
phase such that the desired torque Cref is obtained.
Ccog is the cogging torque which can be expressed by [11],

[30], [31]:

Ccog(pθ) =

lmax∑
l=1

Ccoga,ml sin (mlpθ) + Ccogb,ml cos (mlpθ)

=

lmax∑
l=1

Ccog,ml cos (mlpθ + φml) , l = 1, 2, 3 . . .

(8)
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TABLE I
RELATIVE ANGULAR FREQUENCIES OF THE COGGING TORQUE

PULSATIONS IN A THREE-PHASE PMSM (n = 3) [30], [32]

Winding Ns 2p angular frequencies mlp of Ccog

Distributed 18 6 18, 36, 54,. . .
36 6 36, 72, 108. . .
9 6 18, 36, 54,. . .

Concentrated 12 10 60, 120, 180. . .
12 14 84, 168, 252,. . .

where mp is the least common multiple of the number of stator
slots Ns and the number of poles. We have:

Ccog,ml =
√
C2

coga,ml + C2
cogb,ml, (9)

tanφml =− Ccoga,ml

Ccogb,ml
. (10)

Tab. I gives the angular frequencies of the pulsation of the
cogging torque in a three-phase machine (n = 3) for several
feasible combinations of slot number and pole number of
PMSM [30], [32].

Our goal is to cancel the torque ripple and we’ll obtain:

Ctotal(pθ) = Cref . (11)

From now, a torque analysis is necessary to design an
efficient controller. Indeed, we want to establish a relation-
ship between the back-EMF and the torque. This allows to
determine the coefficients of the current harmonic terms and
therefore allows to eliminate several or all undesirable torque
harmonic terms. In steady state, when the stator current is:

ii =

hmax∑
h=1

iah,i sin (hpθ) + ibh,i cos (hpθ), i = 1, · · · , n,

(12)
the electromagnetic torque is then given by:

Cem(pθ) = C0 +

qmax∑
q=1

Ca,qn′ sin (qn′pθ) +Cb,qn′ cos (qn′pθ),

(13)
where n′ = 2n if the back-EMF contains only odd or
even harmonic components,hmax and qmaxn

′ are the highest
harmonics of stator currents and electromagnetic torque re-
spectively. In the general case, when the back-EMF contains
both odd and even harmonic terms, we have n′ = n. This
analyze is obtained by an extension of the work presented
in [15]. C0 is the mean value and Ca,qn′ , Cb,qn′ are the Fourier
coefficients of Cem(pθ). qmax is determined by:

qmax = integer(
kmax + hmax

n′
). (14)

We note:
Cqn′ =

√
C2

a,qn′ + C2
b,qn′ . (15)

The compensation of the torque ripple leads to:

C0 = Cref (16)

and this condition is obtained when:
qmax∑
q=1

Ca,qn′ sin (qn′pθ) + Cb,qn′ cos (qn′pθ) = −Ccog(pθ).

(17)

TABLE II
RELATIVE ANGULAR FREQUENCY OF THE TORQUE PULSATIONS IN A

THREE-PHASE PMSM (n = 3) [31]

h k 1 3 5 7 9 11 13 15 17

1 0 6 6 12 12 18
3 0,6 6,12 12,18
5 6 0 12 6 18
7 6 12 0 24
9 6,12 0,18 6,24
11 12 6 18 0 24 6
13 12 18 6 24 0 30
15 12,18 24 0,30
17 18 12 24 6 30 0
19 18 24 12 30 6 36
21 18,24 12,30 6,36

The torque pulsations produced by the stator current com-
ponents h and the back-EMF components k for a three-phase
machine are given by Tab. II [31]. It is obvious that a non-
sinusoidal PMSM exited by sinusoidal currents gives a torque
pulsation. In order to supply the machine correctly, the stator
current for each phase must be determined so that:

KT
1 i = Cref − Ccog(pθ). (18)

There is an infinity of solutions i for (18) and we aim
to obtain one giving a minimum ohmic losses. In [19],
[20], [33], [34], solutions are obtained from an optimization
based on Lagrange’s method to derive the stator currents. The
work presented thereafter will complete these solutions by
using a geometrical approach to deduce the optimal currents.
Furthermore, the optimal currents can be easily obtained by a
feed-back current control scheme based on an Adaline neural
network. It should be noticed that these currents give exactly
the desired torque by taking into account the cogging torque.

III. GEOMETRICAL INTERPRETATION OF THE THREE
OPTIMAL CURRENTS

(18) is an equation of a hyperplane. Let P be the hyperplane
that contains all points M whose coordinates are equal to i
and which satisfies (18). K1 is thus normal to P .

In the case of a star coupled machine, the zero homopolar
current constraint can be introduced by:

uT
1 i = 0, (19)

with u1 =
[
1 1 · · · 1

]T , ∥u1∥2 = n.
(18) is also an equation of an other hyperplane. Let H1 be a

second hyperplane where all points M verify (19). u1 is thus
normal to H1. P and H1 are represented on Fig. 2.

First, we try to find i = iopt−0 proportional to K0:

iopt−0 = kopt−0K0. (20)

From (18) and (20), we have:

kopt−0 =
Cref − Ccog(pθ)

KT
1 K0

, (21)

and finally, we obtain:

iopt−0 =
Cref − Ccog(pθ)

KT
0 K1

K0 =
Cref − Ccog(pθ)

KT
1 K0

K0. (22)
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The current of the ith phase is therefore:

iopt−0,i =
Cref − Ccog (pθ)

n∑
k=1

eke0k

Ωe0i . (23)

It should be noticed that iopt−0 always gives a zero homopolar
current. This solution is represented by the point Mopt−0

on Fig. 2. iopt−0 does not give the minimal ohmic losses.
Let us define Mopt−1, represented on Fig. 2, that belongs to
the hyperplane P and is nearest point to the origin O. We
will show that taking some geometrical considerations allows
to easily derive the expression of the current vector iopt−1,
corresponding to Mopt−1, which has the minimal module. The
current iopt−1 is thus proportional to K1, so:

iopt−1 =

(
KT

1

∥K1∥
iopt−1

)
K1

∥K1∥
, (24)

with K1

∥K1∥ is the unit vector in the direction of K1. From (18),
we have KT

1 iopt−1 = KT
1 iopt−0, and (24) becomes:

iopt−1 =

(
KT

1

∥K1∥
iopt−0

)
K1

∥K1∥
, (25)

and with KT
1 K1 = ∥K1∥2, we obtain:

iopt−1 =(Cref − Ccog(pθ))
KT

1 K0

KT
1 K0

K1

∥K1∥2

=
Cref − Ccog(pθ)

KT
1 K1

K1. (26)

iopt−1 gives the minimal ohmic losses and the ith phase can
be written as follow:

iopt−1,i =
Cref − Ccog (pθ)

n∑
k=1

ek2
Ωei. (27)

In a star connected machine, we have to introduce the
additional constraint given by (19).

Let us define Mopt−2, represented on Fig. 2, that belongs
to the intersection of H1 and P and is nearest to the origin
O. Once again, we will show that taking some geometrical
considerations allows to easily derive the expression of the
current vector iopt−2, corresponding to Mopt−2, which has the
minimal module.

The current iopt−2 is proportional to K2:

iopt−2 =

(
KT

2

∥K2∥
iopt−2

)
K2

∥K2∥
, (28)

where K2 is determined by (Fig. 3):

K2 = K1 −
KT

1 u1

∥u1∥2
u1 = K1 − uT

1 K1
u1

n
. (29)

It can be seen from (29) that K2 does not contain harmonics
components of rank nq, q = 1, 2, · · · which exist in the vector
K1. K2 can thus be expressed by:

K2 =
1

Ω

[
e′1 e′2 · · · e′i · · · e′n

]T
, (30)

where:

e′i =ei −
1

n

kmax∑
k=1

ek

=

k′
max∑

k=1,k ̸=nq

eak,i sin (kpθ) + ebk,i cos (kpθ), i = 1, . . . , n.

(31)

k′max is the highest component of e′i and k′max = kmax when
kmax ̸= nq.

From (18), we have:

KT
1 iopt−2 = KT

1 iopt−0 (32)

where:

KT
1 iopt−2 =

(
K2 +

KT
1 u1

∥u1∥2
u1

)T

iopt−2 = KT
2 iopt−2 (33)

KT
1 iopt−0 =

(
K2 +

KT
1 u1

∥u1∥2
u1

)T

iopt−0 = KT
2 iopt−0 (34)

We can thus deduce:

KT
2 iopt−2 = KT

2 iopt−0. (35)
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From (22) and (35), the expression (28) becomes:

iopt−2 =

(
KT

2

∥K2∥
iopt−0

)
K2

∥K2∥

=

(
KT

2 K0

KT
2 K2

Cref − Ccog(pθ)

KT
1 K0

)
K2. (36)

From (29), we obtain:

KT
2 K0 = KT

1 K0. (37)

Moreover, from the Pythagorean theorem:

KT
2 K2 = KT

1 K1 −
(
KT

1 u1

)2
∥u1∥2

= KT
1 K2 = KT

2 K1. (38)

According to (37) and (38), we obtain the expression of iopt−2

as follow:

iopt−2 =
Cref − Ccog(pθ)

KT
1 K2

K2. (39)

The expression for the ith phase current (iopt−2) is given by:

iopt−2,i =
Cref − Ccog (pθ)

n∑
k=1

(
ek − 1

n

n∑
l=1

el

)2

(
ei −

1

n

n∑
l=1

el

)
Ω

=
Cref − Ccog (pθ)

n
n∑

k=1

ek2 −
(

n∑
k=1

ek

)2

(
nei −

n∑
l=1

el

)
Ω. (40)

iopt−2 is the current vector which offers less ohmic losses with
zero homopolar current.

This section has developed the expressions of optimal
currents which are already presented in various works by
using different approaches. Indeed, iopt−0 is identical to the
solution given in [17]. Based on the Lagrange’s optimization,
the currents iopt−1 and iopt−2 are also obtained in [19],
[20], [35]. Our solution leads to the same results. We give a
completed geometrical representation on which we can easily
determine these different optimal currents.

Expressions (22) (26) and (39) can be generalized to faulty
conditions. In the faulty phases, the current can be null (open
circuit), equal to a saturation value, or be a short-circuit
current. The current of the healthy phases can be calculated
if the defect conditions are known by imposing the desired
torque, minimizing Joule losses, and fulfilling the constraints
on the homopolar current (free or null). But, it is difficult to
determine in real time the cogging torque and the nature of
the fault. A learning schemes based on an Adaline network is
thus proposed as a torque controller to provide the Fourier’s
coefficients of an optimal function. This technique will thus
be able to calculate the desired optimal currents on real time.
This main contribution is presented in the following section.

IV. TORQUE AND SPEED CONTROLLERS BASED ON
ADALINE NEURAL NETWORKS

A. Principal ideas for the torque and speed control

The optimal current is a product between kopt−i (pθ) with
the vector Ki, i = 0, 1, 2. The optimal currents iopt−i can be
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rewritten as:

iopt−0 =
Cref − Ccog (pθ)

KT
1 K0

K0 = kopt−0 (pθ)K0, (41)

iopt−1 =
Cref − Ccog (pθ)

KT
1 K1

K1 = kopt−1 (pθ)K1, (42)

iopt−2 =
Cref − Ccog (pθ)

KT
1 K2

K2 = kopt−2 (pθ)K2. (43)

Fig. 4 gives the shapes of the three optimal functions kopt−i

corresponding to a cogging torque and to a non-sinusoidal
back-EMF (the Fourier’s components of the back-EMF are
given in section V-A).

The optimal functions kopt−i(pθ) with i = 0, 1, 2 can be
written by a sum of Fourier’s terms as follow:

kopt−i = k0−i+

N∑
q=1

(kaqn′−i sin(qn
′pθ) + kbqn′−i cos(qn

′pθ)) .

(44)
The functions kopt−i (i = 0, 1, 2) will be learned and synthe-
sized by an Adaline network.

The value of N is important in order to compensate for
the torque ripple and has to be determined correctly. This
value can be obtained after a mathematical decomposition of
the optimal function kopt−i. We present the development of
kopt−1. Based on the value of N for kopt−1, we can determine
the ones for kopt−0 and kopt−2. Indeed, the product of KT

1 K1

can be expressed as:

KT
1 K1 = A0 +

qmax∑
q=1

Aqn′ cos(qn′pθ + ψqn′) (45)

where qmax = int
(
2kmax

n′

)
.
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When the coefficients Aqn′ << A0, we can write:

1

KT
1 K1

≈ 1

A0

(
1−

qmax∑
q=1

Aqn′

A0
cos(qn′pθ + ψqn′)

)
. (46)

Finally, we obtain:

kopt−1 =
Cref − Ccog(pθ)

KT
1 K1

=
C0

A0

(
1−

lmax∑
l=1

Ccog,ml

C0
cos(mlpθ + φml)

−
qmax∑
q=1

Aqn′

A0
cos(qn′pθ + ψqn′)

)
. (47)

By observing (47), we notice that the Adaline can estimate
correctly the function kopt−1 if the input vector x contains all
the terms presented in kopt−1. So, the highest rank of Adaline’s
input (Nn′) has to be:

Nn′ = max

(
mlmax, int

(
2kmax

n′

)
n′
)
. (48)

With the same development, we determine N for the kopt−0:

Nn′ = max

(
mlmax, int

(
kmax + 1

n′

)
n′
)
, (49)

and for the kopt−2:

Nn′ = max

(
mlmax, int

(
kmax + k′max

n′

)
n′
)
. (50)

Fig. 5 shows the estimation of kopt−1 with different values
of N (the machine’s parameters are given in section V). We
can see that a good estimation is obtained when N ≥ 2.

For the three strategies, the vector containing the Fourier
coefficients must be determined:

w∗
i =

[
k0−i kan′−i kbn′−i .. kaNn′−i kbNn′−i

]T
.

(51)

Based on this, a torque control and a speed control can be
synthesized in one single scheme represented by Fig. 6. The
switch s allows to chose between the torque control or the
speed control (s = 1 or s = 0 respectively) according to the
inverter’s characteristics and to the machine’s coupling. The
functions kopt−i (i = 0, 1, 2) will be learned and synthesized
by the Adaline network of the controller based on the three
possible strategies:

• Strategy 0: Only the fundamental component of the back-
EMF is used. This strategy can be used for all machines
and all couplings with or without a neutral line.

• Strategy 1: The back-EMF is used completely, with all
its harmonic components. This strategy can be used for
star-coupled machines without a neutral line, which does
not have harmonic components that are multiple of three
in their back-EMFs, or all the machines that support a
homopolar current.

• Strategy 2: The back-EMF is used without its harmonic
component of rank multiple of n. This strategy can be
used for all star-coupled machines without a neutral line.

The Adaline controller takes the place of the traditional torque
or speed controller for ensuring the convergence of the motor’s
torque or speed toward the desired ones. All the torque ripples
are compensated. The details about the Adaline are presented
in the next section (Ki can be obtained off-line by another
Adaline, see Section VI-A).

B. Adaline-based controller design

Adaline’s structure is shown in 7. The rule of the torque
or the speed controller based on the Adaline is to provide
the optimal functions kopt−i with i = 0, 1, 2. The same input
vector of the Adaline is used for the three strategies :

x =
[
x0 sin(n′pθ) cos(n′pθ) · · ·

sin(Nn′pθ) cos(Nn′pθ)
]T (52)

where θ is supposed to be close to θm which is measured by
an encoder.
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For each control strategy, the weights of Adaline are defined
by:

wi =
[
w0−i wan′−i wbn′−i .. waNn′−i wbNn′−i

]T
.

(53)
The output of Adaline is then:

yi = wi
Tx

=w0−ix0 +
N∑
q=1

(waqn′−i sin(qn
′pθ) + wbqn′−i cos(qn

′pθ)) .

(54)

The Adaline weights are solved using an iterative linear Least
Mean Squares (LMS) algorithm [36] in order to minimize the
torque or speed error. The weights of the Adaline can be inter-
preted, giving thus a non negligible advantage to the Adaline
over other types of ANNs. The Adaline is well-suited and
ideal for approximating and learning linear relations. It will
thus be used to learn the expressions previously developed.
The Adaline weights are adjusted at each sampled time k:

wi(k + 1) =
wi(k) + ηϵx

xTx
=

wi(k) + ηϵx

x20 +N
, (55)

where η is a learning rate [36], ϵ is the torque or speed error.
On each iteration, the weights of Adaline are enforced to

converge toward the amplitudes of current corresponding to
the control strategy. After convergence,

wi(k)−−−→k→∞w∗
i , (56)

where w∗
i is the optimal solution given by (51). Finally, the

output of Adaline yi converges toward kopt−i.

V. SIMULATION RESULTS

In this section, simulation results are presented to evaluate
and to compare the performances of the approaches previously
developed. A non-sinusoidal three-phase PMSM (n = 3) is
considered and a constant torque of 1.5 N.m is desired.
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Fig. 8. Simulation results of a three-phase non-sinusoidal machine: a)
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3 (Wb); b) kopt−0, kopt−1 and kopt−2 (A/Wb) obtained by
the Adaline controller; c) optimal currents (one phase) obtained with three
approaches (A); d) torque developed (N.m)

A. Case without a cogging torque

The following numerical example is taken. The non-
sinusoidal three-phase PMSM has no cogging torque and a
speed normalized back-EMF for the first phase expressed by:

e1 (pθ)

Ω
=pϕf1 sin(pθ) + 3pϕf3 sin(3pθ) + 5pϕf5 sin(5pθ)

+7pϕf7 sin(7pθ) + 9pϕf9 sin(9pθ) (57)

with ϕf1 = 0.1223 Wb, ϕf3 = 0.0258 Wb, ϕf5 = 0.0027
Wb, ϕf7 = −0.0049 Wb, and ϕf9 = −0.0054 Wb. In this
case, kmax = 9 (according to (3)) and k′max = 7 according
to (31). e1 contains only odd terms, the ranks of torque ripple
is thus 2qn = 6q and q = 1, 2, 3.

According to (49), (48), (50), we chose 6N = 18 to reach an
optimal solution. Fig. 8 shows the performances of the neural
torque control with 6N = 18. More precisely, Fig. 8 a) shows
the flux linkage, Fig. 8 b) shows the three optimal functions
kopt−0, kopt−1 and kopt−2 obtained by the Adaline controller.
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Fig. 8 c) gives the shapes of the three optimal currents obtained
with three strategies and Fig. 8 d) shows the total torque
developed. It can be seen that the approach based on iopt−0

gives the same results than the one based on iopt−2 since these
two currents are close.

The stator’s ohmic losses have been estimated for the
three approaches. Fig. 9 confirms that the ohmic losses ob-
tained with iopt−1 are minimum. The currents iopt−0 present
5.2 % more ohmic losses and the losses of iopt−2 are lightly
smaller. iopt−2 are thus the optimal solution for a machine
which does not have a homopolar current. Fig. 10 shows
the currents iopt−0, iopt−1 and iopt−2 obtained by learning
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torque (N.m)

respectively (41), (42) and (43) with an Adaline. We can see
that the convergence of all strategies is obtained approximately
in one round.

B. Case with a cogging torque

To clarify the performance of the proposed control strategy,
a cogging torque is now introduced under the same previous
conditions. Let us thus consider the following cogging torque:

Ccog(pθ) = 0.06 sin(6pθ) + 0.03 sin(12pθ). (58)
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The simulated results with a cogging torque are shown by
Fig. 11 which compares the total torques obtained for the
strategy based on iopt−2 with two cases, i.e., 6N = 6 and
6N = 12. This figure shows that for 6N = 6, the torque of
rank 6 is completely compensated but the torques of ranks 12,
18 and 24 are only partially eliminated. Finally, the torque
ripple results in ∆Ctotal = 3.3 %. In the second case, it can
be seen from the same figure that the torque ripples of rank
6, 12 and 18 are perfectly eliminated for 6N = 12. For this
value of N = 2, Fig. 12 shows the optimal functions and
the optimal currents, kopt−i and iopt−2 with i = 0, 1, 2, and
the resulting torques. It can be seen that all torque ripple,
including the cogging torque, is elimined. Finally, we have
Ctotal = Cref = 1.5 N.m.

C. Case with a cogging torque and a fault on one phase

Simulations with a faulty machine are performed to confirm
the validity of the proposed method. An additional pulsation
of the electromagnetic torque always appears when one of the
machine’s phases is faulty. The compensation of this pulsation
is ensured by the healthy phases. In the following, the third
phase of machine is faulty and the results are presented by
Fig. 13. In spite of a faulty phase, the control based on the
three strategies are able to maintain the torque as a constant.
Comparatively to the results obtained in Fig. 12 (with a

Dspace
1104 current

sensor

inverter
incremental
encoder

PMSM
& load

PC

transformer

Fig. 14. Experimental platform setup

cogging torque but no faulty phase), it can be seen that there
are more harmonics in the optimal functions kopt−i in the
presence of a fault. According to the training capabilities of the
Adaline, these harmonics are adjusted in real time in order to
produce the currents that compensate for the torque pulsation
created by the faulty phase. Finally, a desired constant torque
is obtained.

The proposed neural approaches are also compared to a
PI (Proportional Integrator) controller under the same faulty
conditions. Fig. 13 c) shows the irregular behavior of the
torque obtained by the PI controller. The neuronal controller
based on the optimal strategies is more efficient. Maintaining
a constant torque under faulty phase conditions remains a
difficult task.

VI. EXPERIMENTAL RESULTS

A three-phase non-sinusoidal machine PMSM with Rs = 3
Ω, Ls = 12.25 mH and a pair poles number p = 3 is connected
to a three-phase Voltage Source Inverter (VSI). The rotor’s
position as well as the stator currents are measured in real-
time by using an incremental coder and currents sensors. The
measures are sent to a process running on a dSPACE DS1104
board hosted by a PC. The process consists of the control
algorithm based on the proposed strategies which provides the
signals sent to a PWM generator for the control the inverter.

A. Speed normalized back-EMF estimation

In practice, the PMSM is actuated by an induction machine
which has no cogging torque in order to precisely estimate the
speed normalized back-EMF. In this experiment, the speed and
the back-EMF are measured by standard sensors. The speed
normalized back-EMF depends on the internal structure (rotor
and stator) of the machine and its amplitude is not related to
the rotor speed.

The optimal functions are learned with an Adaline network
with an input vector composed of cos kpθ and sin kpθ terms
with k varies from 0 to 15. After convergence, the signal k1 =
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e1
Ω is estimated with:

k1 =− 0.234 cos (pθ) + 0.563 sin (pθ)

+ 0.123 cos (3pθ) + 0.060 sin (3pθ)

− 0.003 cos (5pθ) + 0.007 sin (5pθ)

+ 0.001 cos (7pθ)− 0.003 sin (7pθ)

+ 0.002 cos (9pθ) + 0.005 sin (9pθ)

+ 0.003 cos (11pθ) + 0.003 sin (11pθ) + ... (59)

In (59), terms of ranks 13 and 15 are negligible and are
therefore not written down. The simultaneous presence of
cosine and sine terms clearly indicates the dissymmetry of the
back-EMF. Moreover, there are no even terms in the back-
EMF, the torque is thus Cqn′ with n′ = 6. The estimated
speed normalized back-EMF is given by Fig. 15.

B. Neural speed control

The torque control scheme can not be carried out because
the plate-form must be equipped with a torque meter. Thus,
only the speed control scheme is presented.

The test machine is a star coupled PMSM. Therefore, only
the strategy with iopt−0 or with iopt−2 can be employed. We
chose the strategy based on iopt−2 because of its lower ohmic
losses. In (59), we note: k′max = 11. By taking the highest
angular frequency of Ccog is mlmax = 18, we chose N = 3
to compensate all the significant torque harmonics.

A constant reference speed has been fixed at Ωref = 70
rad/s. Results are presented by Fig. 16. Fig. 16 a) shows the
electromagnetic torque Cem. We can notice that the expres-
sion (17) is justified. The pulsation of Cem compensates for
the cogging torque that exists in the motor. This compensation
leads to a smooth speed which is shown in Fig. 16 c). The
reference currents obtained by the optimal solution and the
measured currents are shown by Fig. 16 b). Its can be seen
that the resulting currents provided by the neural current
controller are close to their references. The non-sinusoidal
currents obtained with the Adaline controller compensate for
all the torque ripple.

Finally, Fig. 17 compares the speed obtained by our ap-
proach to the one obtained when the motor is feed by the
sinusoidal currents. It clearly shows that the speed pulsation
obtained by the neural approach is eliminated. When the
machine is supplied by the sinusoidal currents, it is obvious
that there is a torque ripple which leads to the speed pulsation.
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By using the proposed approach, the problem of torque and
speed pulsation that is present in the control of conventional
PMSMs have been solved.

VII. CONCLUSION

A new solution to calculate the optimal currents for non-
sinusoidal multiphase PMSMs and particularly for three-phase
non-sinusoidal machines has been presented in this paper.
These optimal currents are derived from control strategies
which depend on machine’s structure (for example, with or
without the neural current). The optimization criterion consists
of a desired constant torque and a minimal ohmic losses. These
optimal currents are directly deduced from a geometrical
development instead of calculations based on the Lagrange
optimization. A new torque (or speed) control scheme has
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been proposed. According to the learning capability of Adaline
neural network, the optimal currents are obtained in real time.
In each control scheme, the Adaline controller takes the place
of the traditional torque or speed controller for ensuring the
convergence of the motor’s torque or speed toward the desired
one. The torque (or speed) ripple is efficiently compensated.
This has been verified by various tests and comparisons under
different conditions, even when one of the machine’s phases
is faulty. The proposed simulations and experiments clearly
confirm the high performances of our approaches.
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cklé, “A comparative experimental study of neural and conventional
controllers for an active power filter,” in 36th Annual Conference of
the IEEE Industrial Electronics Society (IECON’10), Glendale, Arizona,
USA, 2010, pp. 1995–2000.

[30] Z. Zhu and D. Howe, “Influence of design parameters on cogging torque
in permanent magnet machines,” IEEE Trans. on Energy Conversion,
vol. 15, no. 4, pp. 407–412, 2000.

[31] E. Favre, L. Cardoletti, and M. Jufer, “Permanent-magnet synchronous
motors: A comprehensive approach to cogging torque suppression,”
IEEE Trans. on Industry Applications, vol. 29, no. 6, pp. 1141–1149,
1993.

[32] L. Dosiek and P. Pillay, “Cogging torque reduction in permanent magnet
machines,” IEEE Trans. on Industry Applications, vol. 43, no. 6, pp.
1565–1571, 2007.

[33] D. C. Hanselman, “Minimum torque ripple, maximum efficiency excita-
tion of brushless permanent magnet motors,” IEEE Trans. on Industrial
Electronics, vol. 41, no. 3, pp. 292–300, 1994.

[34] J. Y. Hung, “Design of the most efficient excitation for a class of electric
motor,” IEEE Trans. on Circuits and Systems I: Fundamental Theory and
Applications, vol. 41, no. 4, pp. 341–344, 1994.

[35] S. Dwari and L. Parsa, “An optimal control technique for multiphase
pm machines under open-circuit faults,” IEEE Trans. on Industrial
Electronics, vol. 55, no. 5, pp. 1988–1995, 2008.

[36] B. Widrow and E. Walach, Adaptive Inverse Control. Prentice-Hall,
Inc., 1996.



12

Damien Flieller received the M.Sc. degree in
Electrical Engineering from the Ecole Normale
Supérieure (Cachan), France, in 1988 and the Ph.D.
degree in Electrical Engineering from the University
of Paris, France, in 1995. Since 1995, he is an
Associate Professor in the Department of Electrical
Engineering, INSA of Strasbourg, France. He is now
director of the ERGE Group (Electrical Engineering
Research Team). His research’s field are modeling
and control of synchronous motors, active filter, and
induction heating converters.

Ngac Ky Nguyen received his B.Sc degree in
Electrical Engineering from the Ho Chi Minh City
University of Technology (HCMUT), Viet Nam
in 2005. In France, he received his M.Sc. from
Poly’Tech Nantes, in 2007 and his Ph.D. from the
University of Haute Alsace (UHA), in 2010, both in
Electrical and Electronic Engineering. From 2011 to
2012, he was with the Electrical Engineering Depart-
ment, INSA of Strasbourg, France. Since September
2012, he is Associate Professor with the Laboratoire
d’Electrotechnique et d’Electronique de Puissance

de Lille (L2EP), Arts et Métiers ParisTech. Lille Cedex, France. His research
interests are the modeling and control of synchronous motors and power
converters.

1501

Patrice Wira (M’04) received the M.Sc. degree
and the Ph.D. degree in Electrical Engineering from
the University of Haute Alsace, Mulhouse, France,
in 1997 and 2002, respectively. He received the
Accreditation to Supervise Research (the French
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