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This paper presents an original method, based on artificial neural networks, to reduce the torque ripple in a permanent-magnet non-sinusoidal synchronous motor. Solutions for calculating optimal currents are deduced from geometrical considerations and without a calculation step which is generally based on the Lagrange optimization. These optimal currents are obtained from two hyperplanes. The study takes into account the presence of harmonics in the back-EMF and the cogging torque. New control schemes are thus proposed to derive the optimal stator currents giving exactly the desired electromagnetic torque (or speed) and minimizing the ohmic losses. Either the torque or the speed control scheme, both integrate two neural blocks, one dedicated for optimal currents calculation and the other to ensure the generation of these currents via a voltage source inverter. Simulation and experimental results from a laboratory prototype are shown to confirm the validity of the proposed neural approach.

I. INTRODUCTION

P ERMANENT MAGNET SYNCHRONOUS MOTORS (PMSMs) are widely used in many industrial production systems due to their attractive features which are their compactness, high torque mass ratio, high efficiency and ease to be controlled. There are mainly two principal types of PMSMs which are characterized by sinusoidal or non-sinusoidal back electromotive forces (back-EMF) [START_REF] Jahns | Pulsating torque minimization techniques of permanent magnet ac motor drives -a review[END_REF].

Whatever the PMSMs, torque ripples come from various causes [START_REF] Jahns | Pulsating torque minimization techniques of permanent magnet ac motor drives -a review[END_REF]- [START_REF] Islam | Issues in reducing the cogging torque of mass-produced permanent-magnet brushless dc motor[END_REF]. The cogging torque is generated by the interaction between the rotor magnetic field and the stator teeth even if there is no current in the stator. Another source of torque pulsation results from the interaction between the stator currents and the rotor magnetic field. Generally, this torque can be divided into two terms. The first one is due to the rotor's magnets and the stator currents. The second one is due to the saillance. In this paper, only the first term is considered because our interest lays in the non-saillance motor. Works related to saillance motors can be found in [START_REF] Sturzer | Extension of the park's transformation applied to non-sinusoidal saturated synchronous motors[END_REF]- [START_REF] Nagel | Rotating vector methods for smooth torque control of a switched reluctance motor drive[END_REF].

A constant torque is highly required in many applications. Therefore, various works were proposed to minimize the undesirable torque ripple [START_REF] Zhang | A simple method to reduce torque ripple in direct torque-controlled permanent-magnet synchronous motor by using vectors with variable amplitude and angle[END_REF], [START_REF] Zhu | Torque ripple reduction of the torque predictive control scheme for permanent-magnet synchronous motors[END_REF]. These works can be divided into two categories. The techniques from the first one consists in developing the machine's stator and rotor design to cancel the undesirable torque ripple. The magnets's properties and how to distribute them optimally on the rotor's surface are studied in [START_REF] Islam | Issues in reducing the cogging torque of mass-produced permanent-magnet brushless dc motor[END_REF], [START_REF] Wang | Optimization of magnetic pole shifting to reduce cogging torque in solid-rotor permanent-magnet synchronous motors[END_REF]- [START_REF] Seo | A technique of torque ripple reduction in interior permanent magnet synchronous motor[END_REF]. The influence of the slots/poles ratio of the machine on the torque ripple is specifically studied in [START_REF] Islam | Permanentmagnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction[END_REF]. The techniques from the second category are based on the stator current control. An analyze of the torque's expression is used to calculate the best currents that cancel the torque ripple. The literature provides various techniques for the optimal current determination according to adequate transformations. For example, the individual harmonics of the Fourier's series of the back-EMF are used in order to obtain the stator currents in [START_REF] Le-Huy | Minimization of torque ripple in brushless dc motor drives[END_REF]- [START_REF]Design of currents to reduce torque ripple in brushless permanent magnet motors[END_REF]. The work presented in [START_REF] Le-Huy | Minimization of torque ripple in brushless dc motor drives[END_REF] optimizes the currents only for harmonics of rank 5 and 7 while the method presented in [START_REF] Hung | Minimization of torque ripple in permanent magnet motors: a closed form solution[END_REF], [START_REF]Design of currents to reduce torque ripple in brushless permanent magnet motors[END_REF] gives the optimal currents by calculating a pseudo-inverse matrix containing the harmonics of the back-EMF. A formula was proposed in [START_REF] Clenet | Compensation of permanent magnet motors torque ripple by means of current supply waveshapes control determined by finite element method[END_REF] which works in the a-b-c reference frame. In this method the homopolar current is null and moreover, the loss by Joule effect is not optimal. Always in the a-b-c reference frame, the works presented in [START_REF] Kogure | Magnet configurations and current control for high torque to current ratio in interim permanent magnet synchronous motors[END_REF], [START_REF] Wu | Simple expressions for optimal current waveforms for permanent-magnet synchronous machine drives[END_REF] give the expressions of the optimal currents. These methods are based on a Lagrange's optimization to obtain the currents which minimize the stator ohmic losses and maintain the desired torque. While working in the d-q reference frame of Park, the authors in [START_REF] Chapman | Optimal current control strategies for surface-mounted permanent-magnet synchronous machine drives[END_REF], [START_REF] Cho | Torque harmonics minimisation in permanent magnet synchronous motor with back emf estimation[END_REF] determine the expressions of the d-q optimal currents; [START_REF] Cho | Torque harmonics minimisation in permanent magnet synchronous motor with back emf estimation[END_REF] optimizes only for one harmonic of rank 6. A direct expression of the a-b-c currents is given in [START_REF] Grenier | A park-like transformation for the study and the control of a nonsinusoidal brushless dc motor[END_REF], [START_REF] Grenier | Experimental nonlinear torque control of a permanent-magnet synchronous motor using saliency[END_REF] by using an extension of Park's transformation. In [START_REF] Matsui | Autonomous torque ripple compensation of dd motor by torque observer[END_REF], an adaptive process based on the Fourier series expansion is presented for a machine containing 4 pairs of poles and 24 stator slots. The flow chart proposed leads to the determination of the current i q (pθ) in order to compensate for the 6 th rank harmonic of the torque ripple. The repetitive and iterative learning control schemes were presented in [START_REF] Qian | Torque ripple minimization in pm synchronous motors using iterative learning control[END_REF], [START_REF] Mattavelli | Torque-ripple reduction in pm synchronous motor drives using repetitive current control[END_REF]. Based on a vectorial approach, the generation of optimal current references for multiphase PMSM in real time is reported in [START_REF] Kestelyn | A vectorial approach for generation of optimal current references for multiphase permanent-magnet synchronous machines in real time[END_REF]. This approach reduces the computing operations compared to scalar methods which generally require a large amount of calculus. The performance of the proposed method is experimentally valided in normal and fault mode (open-circuited phases). Zhao et al. in [START_REF] Zhao | Remedial injectedharmonic-current operation of redundant flux-switching permanentmagnet motor drives[END_REF] recently presented an other approach based on harmonic current injection, on which the Redundant Flux-Switching Permanent-Magnet Motor (R-FSPM) can be operated with high dynamique performance and good behavior at steady-state. If the back-EMF of the R-FSPM is highly non-sunisoidal, then the current calculation with the proposed method becomes complicated.

The work presented in this paper is different from the approaches mentioned above. A torque control scheme and a speed control scheme are proposed to cancel the torque ripple, including the cogging torque. The design of the controllers are based on Adaline Neural Networks (ANNs) [START_REF] Ould Abdeslam | A unified artificial neural network architecture for active power filters[END_REF], [START_REF] Nguyen | A comparative experimental study of neural and conventional controllers for an active power filter[END_REF]. Indeed, the learning capabilities of the ANNs allow to calculate the optimal currents which give exactly the desired torque (or a desired speed) and minimum ohmic losses. This solution can be applied for a multiphase Permanent Magnet (PM) machine under normal operation or under open-circuit fault conditions. This paper is organized as follows. The problem related to torque pulsation due to the harmonics of the back-EMF is presented in Section II. Section III presents new geometrical considerations leading to the optimal currents. They are based on the definition of hyperplanes whose equations depend on stator currents. Section IV proposes an original direct torque (or speed) controller based on an Adaline neural network. Simulation results in Section V and experimental results in Section VI confirm the validity of the proposed neural approach. Finally, concluding remarks are provided in Section VII.

II. PMSM'S TORQUE RIPPLE

The stator current and the back-EMF vectors of a n phases PMSM can be defined respectively by: If the machine is non-sinusoidal, we can develop the back-EMF for the i th phase as:

i = [ i 1 i 2 • • • i i . . . i n ] T , (1) 
e i = kmax ∑ k=1 e ak,i sin (kpθ) + e bk,i cos (kpθ), i = 1, • • • , n,
(3) and the fundamental component of e i is:

e 0 i = e a1,i sin (pθ) + e b1,i cos (pθ), i = 1, • • • , n, (4) 
where k max is the highest considered harmonic of the back-EMF, θ is the angular position, e ak,i and e bk,i are the Fourier coefficients. p is the number of pole pairs. The speed normalized back-EMF vector K 1 can be expressed by:

K 1 = 1 Ω [ e 1 e 2 • • • e i • • • e n ] T . ( 5 
)
We can define K 0 by:

K 0 = 1 Ω [ e 0 1 e 0 2 • • • e 0 i • • • e 0 n ] T , (6) 
where Ω = dθ dt is the rotor's speed. The total torque of the machine is given by:

C total (pθ) = C em (pθ) + C cog (pθ), (7) 
with C em (pθ) = K T 1 i which represents the electromagnetic torque of the interaction between the stator currents and the rotor's magnetic field. Fig. 1 shows the current and the back-EMF of phase 1 as well as the total torque of a non-sinusoidal three-phase machine. It is obvious that the sinusoidal excitation currents reveal a torque pulsation. To supply the machine correctly, we have to determine the stator current for each phase such that the desired torque C ref is obtained.

C cog is the cogging torque which can be expressed by [START_REF] Wang | Optimization of magnetic pole shifting to reduce cogging torque in solid-rotor permanent-magnet synchronous motors[END_REF], [START_REF] Zhu | Influence of design parameters on cogging torque in permanent magnet machines[END_REF], [START_REF] Favre | Permanent-magnet synchronous motors: A comprehensive approach to cogging torque suppression[END_REF]: where mp is the least common multiple of the number of stator slots N s and the number of poles. We have:

C cog (pθ) = lmax ∑ l=1 C coga,ml sin (mlpθ) + C cogb,ml cos (mlpθ) = lmax ∑ l=1 C cog,ml cos (mlpθ + φ ml ) , l = 1, 2, 3 . . . ( 8 
)
C cog,ml = √ C 2 coga,ml + C 2 cogb,ml , ( 9 
)
tan φ ml = - C coga,ml C cogb,ml . ( 10 
)
Tab. I gives the angular frequencies of the pulsation of the cogging torque in a three-phase machine (n = 3) for several feasible combinations of slot number and pole number of PMSM [START_REF] Zhu | Influence of design parameters on cogging torque in permanent magnet machines[END_REF], [START_REF] Dosiek | Cogging torque reduction in permanent magnet machines[END_REF].

Our goal is to cancel the torque ripple and we'll obtain:

C total (pθ) = C ref . ( 11 
)
From now, a torque analysis is necessary to design an efficient controller. Indeed, we want to establish a relationship between the back-EMF and the torque. This allows to determine the coefficients of the current harmonic terms and therefore allows to eliminate several or all undesirable torque harmonic terms. In steady state, when the stator current is: [START_REF] Islam | Permanentmagnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction[END_REF] the electromagnetic torque is then given by: [START_REF] Seo | A technique of torque ripple reduction in interior permanent magnet synchronous motor[END_REF] where n ′ = 2n if the back-EMF contains only odd or even harmonic components,h max and q max n ′ are the highest harmonics of stator currents and electromagnetic torque respectively. In the general case, when the back-EMF contains both odd and even harmonic terms, we have n ′ = n. This analyze is obtained by an extension of the work presented in [START_REF] Hung | Minimization of torque ripple in permanent magnet motors: a closed form solution[END_REF]. C 0 is the mean value and C a,qn ′ , C b,qn ′ are the Fourier coefficients of C em (pθ). q max is determined by:

i i = hmax ∑ h=1 i ah,i sin (hpθ) + i bh,i cos (hpθ), i = 1, • • • , n,
C em (pθ) = C 0 + qmax ∑ q=1 C a,qn ′ sin (qn ′ pθ) + C b,qn ′ cos (qn ′ pθ),
q max = integer( k max + h max n ′ ). (14) 
We note:

C qn ′ = √ C 2 a,qn ′ + C 2 b,qn ′ . ( 15 
)
The compensation of the torque ripple leads to: [START_REF]Design of currents to reduce torque ripple in brushless permanent magnet motors[END_REF] and this condition is obtained when: The torque pulsations produced by the stator current components h and the back-EMF components k for a three-phase machine are given by Tab. II [START_REF] Favre | Permanent-magnet synchronous motors: A comprehensive approach to cogging torque suppression[END_REF]. It is obvious that a nonsinusoidal PMSM exited by sinusoidal currents gives a torque pulsation. In order to supply the machine correctly, the stator current for each phase must be determined so that:

C 0 = C ref
qmax ∑ q=1 C a,qn ′ sin (qn ′ pθ) + C b,qn ′ cos (qn ′ pθ) = -C cog (pθ). (17) 
K T 1 i = C ref -C cog (pθ). (18) 
There is an infinity of solutions i for ( 18) and we aim to obtain one giving a minimum ohmic losses. In [START_REF] Wu | Simple expressions for optimal current waveforms for permanent-magnet synchronous machine drives[END_REF], [START_REF] Chapman | Optimal current control strategies for surface-mounted permanent-magnet synchronous machine drives[END_REF], [START_REF] Hanselman | Minimum torque ripple, maximum efficiency excitation of brushless permanent magnet motors[END_REF], [START_REF] Hung | Design of the most efficient excitation for a class of electric motor[END_REF], solutions are obtained from an optimization based on Lagrange's method to derive the stator currents. The work presented thereafter will complete these solutions by using a geometrical approach to deduce the optimal currents. Furthermore, the optimal currents can be easily obtained by a feed-back current control scheme based on an Adaline neural network. It should be noticed that these currents give exactly the desired torque by taking into account the cogging torque.

III. GEOMETRICAL INTERPRETATION OF THE THREE

OPTIMAL CURRENTS [START_REF] Kogure | Magnet configurations and current control for high torque to current ratio in interim permanent magnet synchronous motors[END_REF] is an equation of a hyperplane. Let P be the hyperplane that contains all points M whose coordinates are equal to i and which satisfies [START_REF] Kogure | Magnet configurations and current control for high torque to current ratio in interim permanent magnet synchronous motors[END_REF]. K 1 is thus normal to P .

In the case of a star coupled machine, the zero homopolar current constraint can be introduced by:

u T 1 i = 0, (19) 
with

u 1 = [ 1 1 • • • 1 ] T , ∥u 1 ∥ 2 = n. ( 18 
)
is also an equation of an other hyperplane. Let H 1 be a second hyperplane where all points M verify [START_REF] Wu | Simple expressions for optimal current waveforms for permanent-magnet synchronous machine drives[END_REF]. u 1 is thus normal to H 1 . P and H 1 are represented on Fig. 2.

First, we try to find i = i opt-0 proportional to K 0 :

i opt-0 = k opt-0 K 0 . ( 20 
)
From ( 18) and ( 20), we have:

k opt-0 = C ref -C cog (pθ) K T 1 K 0 , ( 21 
)
and finally, we obtain:

i opt-0 = C ref -C cog (pθ) K T 0 K 1 K 0 = C ref -C cog (pθ) K T 1 K 0 K 0 . ( 22 
) 1 u 1 K 1 opt M - 1 opt - i X 2 opt - i 2 opt M - 1 H O P -0 opt M -0 opt i 0 X Fig. 2.
Geometrical representation of the three optimal current vectors i opt-0 , i opt-1 , i opt-2 3. Geometrical representation of the three vectors K 0 , K 1 , and K 2
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The current of the i th phase is therefore:

i opt-0,i = C ref -C cog (pθ) n ∑ k=1 e k e 0 k Ωe 0 i . ( 23 
)
It should be noticed that i opt-0 always gives a zero homopolar current. This solution is represented by the point M opt-0 on Fig. 2. i opt-0 does not give the minimal ohmic losses.

Let us define M opt-1 , represented on Fig. 2, that belongs to the hyperplane P and is nearest point to the origin O. We will show that taking some geometrical considerations allows to easily derive the expression of the current vector i opt-1 , corresponding to M opt-1 , which has the minimal module. The current i opt-1 is thus proportional to K 1 , so:

i opt-1 = ( K T 1 ∥K 1 ∥ i opt-1 ) K 1 ∥K 1 ∥ , ( 24 
)
with K1 ∥K1∥ is the unit vector in the direction of K 1 . From (18), we have K T 1 i opt-1 = K T 1 i opt-0 , and (24) becomes:

i opt-1 = ( K T 1 ∥K 1 ∥ i opt-0 ) K 1 ∥K 1 ∥ , ( 25 
)
and with

K T 1 K 1 = ∥K 1 ∥ 2
, we obtain:

i opt-1 = (C ref -C cog (pθ)) K T 1 K 0 K T 1 K 0 K 1 ∥K 1 ∥ 2 = C ref -C cog (pθ) K T 1 K 1 K 1 . ( 26 
)
i opt-1 gives the minimal ohmic losses and the i th phase can be written as follow:

i opt-1,i = C ref -C cog (pθ) n ∑ k=1 e k 2 Ωe i . ( 27 
)
In a star connected machine, we have to introduce the additional constraint given by [START_REF] Wu | Simple expressions for optimal current waveforms for permanent-magnet synchronous machine drives[END_REF].

Let us define M opt-2 , represented on Fig. 2, that belongs to the intersection of H 1 and P and is nearest to the origin O. Once again, we will show that taking some geometrical considerations allows to easily derive the expression of the current vector i opt-2 , corresponding to M opt-2 , which has the minimal module.

The current i opt-2 is proportional to K 2 :

i opt-2 = ( K T 2 ∥K 2 ∥ i opt-2 ) K 2 ∥K 2 ∥ , ( 28 
)
where K 2 is determined by (Fig. 3):

K 2 = K 1 - K T 1 u 1 ∥u 1 ∥ 2 u 1 = K 1 -u T 1 K 1 u 1 n . ( 29 
)
It can be seen from ( 29) that K 2 does not contain harmonics components of rank nq, q = 1, 2, • • • which exist in the vector K 1 . K 2 can thus be expressed by:

K 2 = 1 Ω [ e ′ 1 e ′ 2 • • • e ′ i • • • e ′ n ] T , ( 30 
)
where:

e ′ i =e i - 1 n kmax ∑ k=1 e k = k ′ max ∑ k=1,k̸ =nq e ak,i sin (kpθ) + e bk,i cos (kpθ), i = 1, . . . , n. ( 31 
)
k ′ max is the highest component of e ′ i and k ′ max = k max when k max ̸ = nq.
From (18), we have:

K T 1 i opt-2 = K T 1 i opt-0 ( 32 
)
where:

K T 1 i opt-2 = ( K 2 + K T 1 u 1 ∥u 1 ∥ 2 u 1 ) T i opt-2 = K T 2 i opt-2 (33) K T 1 i opt-0 = ( K 2 + K T 1 u 1 ∥u 1 ∥ 2 u 1 ) T i opt-0 = K T 2 i opt-0 (34)
We can thus deduce:

K T 2 i opt-2 = K T 2 i opt-0 . ( 35 
)
From ( 22) and ( 35), the expression (28) becomes:

i opt-2 = ( K T 2 ∥K 2 ∥ i opt-0 ) K 2 ∥K 2 ∥ = ( K T 2 K 0 K T 2 K 2 C ref -C cog (pθ) K T 1 K 0 ) K 2 . ( 36 
)
From ( 29), we obtain:

K T 2 K 0 = K T 1 K 0 . ( 37 
)
Moreover, from the Pythagorean theorem:

K T 2 K 2 = K T 1 K 1 - ( K T 1 u 1 ) 2 ∥u 1 ∥ 2 = K T 1 K 2 = K T 2 K 1 . ( 38 
)
According to (37) and (38), we obtain the expression of i opt-2 as follow:

i opt-2 = C ref -C cog (pθ) K T 1 K 2 K 2 . ( 39 
)
The expression for the i th phase current (i opt-2 ) is given by:

i opt-2,i = C ref -C cog (pθ) n ∑ k=1 ( e k -1 n n ∑ l=1 e l ) 2 ( e i - 1 n n ∑ l=1 e l ) Ω = C ref -C cog (pθ) n n ∑ k=1 e k 2 - ( n ∑ k=1 e k ) 2 ( ne i - n ∑ l=1 e l ) Ω. ( 40 
)
i opt-2 is the current vector which offers less ohmic losses with zero homopolar current. This section has developed the expressions of optimal currents which are already presented in various works by using different approaches. Indeed, i opt-0 is identical to the solution given in [START_REF] Clenet | Compensation of permanent magnet motors torque ripple by means of current supply waveshapes control determined by finite element method[END_REF]. Based on the Lagrange's optimization, the currents i opt-1 and i opt-2 are also obtained in [START_REF] Wu | Simple expressions for optimal current waveforms for permanent-magnet synchronous machine drives[END_REF], [START_REF] Chapman | Optimal current control strategies for surface-mounted permanent-magnet synchronous machine drives[END_REF], [START_REF] Dwari | An optimal control technique for multiphase pm machines under open-circuit faults[END_REF]. Our solution leads to the same results. We give a completed geometrical representation on which we can easily determine these different optimal currents. Expressions (22) ( 26) and (39) can be generalized to faulty conditions. In the faulty phases, the current can be null (open circuit), equal to a saturation value, or be a short-circuit current. The current of the healthy phases can be calculated if the defect conditions are known by imposing the desired torque, minimizing Joule losses, and fulfilling the constraints on the homopolar current (free or null). But, it is difficult to determine in real time the cogging torque and the nature of the fault. A learning schemes based on an Adaline network is thus proposed as a torque controller to provide the Fourier's coefficients of an optimal function. This technique will thus be able to calculate the desired optimal currents on real time. This main contribution is presented in the following section.

IV. TORQUE AND SPEED CONTROLLERS BASED ON ADALINE NEURAL NETWORKS

A. Principal ideas for the torque and speed control

The optimal current is a product between k opt-i (pθ) with the vector K i , i = 0, 1, 2. The optimal currents i opt-i can be rewritten as:

i opt-0 = C ref -C cog (pθ) K T 1 K 0 K 0 = k opt-0 (pθ) K 0 , (41) 
i opt-1 = C ref -C cog (pθ) K T 1 K 1 K 1 = k opt-1 (pθ) K 1 , ( 42 
)
i opt-2 = C ref -C cog (pθ) K T 1 K 2 K 2 = k opt-2 (pθ) K 2 . ( 43 
)
Fig. 4 gives the shapes of the three optimal functions k opt-i corresponding to a cogging torque and to a non-sinusoidal back-EMF (the Fourier's components of the back-EMF are given in section V-A).

The optimal functions k opt-i (pθ) with i = 0, 1, 2 can be written by a sum of Fourier's terms as follow:

k opt-i = k 0-i + N ∑ q=1 (k aqn ′ -i sin(qn ′ pθ) + k bqn ′ -i cos(qn ′ pθ)) .
(44) The functions k opt-i (i = 0, 1, 2) will be learned and synthesized by an Adaline network.

The value of N is important in order to compensate for the torque ripple and has to be determined correctly. This value can be obtained after a mathematical decomposition of the optimal function k opt-i . We present the development of k opt-1 . Based on the value of N for k opt-1 , we can determine the ones for k opt-0 and k opt-2 . Indeed, the product of K T 1 K 1 can be expressed as:

K T 1 K 1 = A 0 + qmax ∑ q=1 A qn ′ cos(qn ′ pθ + ψ qn ′ ) (45) 
where

q max = int ( 2kmax n ′
) . When the coefficients A qn ′ << A 0 , we can write:

1 K T 1 K 1 ≈ 1 A 0 ( 1 - qmax ∑ q=1 A qn ′ A 0 cos(qn ′ pθ + ψ qn ′ ) ) . ( 46 
)
Finally, we obtain:

k opt-1 = C ref -C cog (pθ) K T 1 K 1 = C 0 A 0 ( 1 - lmax ∑ l=1 C cog,ml C 0 cos(mlpθ + φ ml ) - qmax ∑ q=1 A qn ′ A 0 cos(qn ′ pθ + ψ qn ′ ) ) . ( 47 
)
By observing (47), we notice that the Adaline can estimate correctly the function k opt-1 if the input vector x contains all the terms presented in k opt-1 . So, the highest rank of Adaline's input (N n ′ ) has to be:

N n ′ = max ( ml max , int ( 2k max n ′ ) n ′ ) . ( 48 
)
With the same development, we determine N for the k opt-0 :

N n ′ = max ( ml max , int ( k max + 1 n ′ ) n ′ ) , ( 49 
)
and for the k opt-2 :

N n ′ = max

( ml max , int ( k max + k ′ max n ′ ) n ′ ) . ( 50 
)
Fig. 5 shows the estimation of k opt-1 with different values of N (the machine's parameters are given in section V). We can see that a good estimation is obtained when N ≥ 2.

For the three strategies, the vector containing the Fourier coefficients must be determined:

w * i = [ k 0-i k an ′ -i k bn ′ -i .. k aN n ′ -i k bN n ′ -i ] T . ( 51 
)
Based on this, a torque control and a speed control can be synthesized in one single scheme represented by Fig. 6. The switch s allows to chose between the torque control or the speed control (s = 1 or s = 0 respectively) according to the inverter's characteristics and to the machine's coupling. The functions k opt-i (i = 0, 1, 2) will be learned and synthesized by the Adaline network of the controller based on the three possible strategies:

• Strategy 0: Only the fundamental component of the back-EMF is used. This strategy can be used for all machines and all couplings with or without a neutral line. • Strategy 1: The back-EMF is used completely, with all its harmonic components. This strategy can be used for star-coupled machines without a neutral line, which does not have harmonic components that are multiple of three in their back-EMFs, or all the machines that support a homopolar current. • Strategy 2: The back-EMF is used without its harmonic component of rank multiple of n. This strategy can be used for all star-coupled machines without a neutral line. The Adaline controller takes the place of the traditional torque or speed controller for ensuring the convergence of the motor's torque or speed toward the desired ones. All the torque ripples are compensated. The details about the Adaline are presented in the next section (K i can be obtained off-line by another Adaline, see Section VI-A).

B. Adaline-based controller design

Adaline's structure is shown in 7. The rule of the torque or the speed controller based on the Adaline is to provide the optimal functions k opt-i with i = 0, 1, 2. The same input vector of the Adaline is used for the three strategies :

x = [ x 0 sin(n ′ pθ) cos(n ′ pθ) • • • sin(N n ′ pθ) cos(N n ′ pθ) ] T ( 52 
)
where θ is supposed to be close to θ m which is measured by an encoder. For each control strategy, the weights of Adaline are defined by:

w i = [ w 0-i w an ′ -i w bn ′ -i .. w aN n ′ -i w bN n ′ -i ] T .
(53) The output of Adaline is then:

y i = w i T x =w 0-i x 0 + N ∑ q=1 (w aqn ′ -i sin(qn ′ pθ) + w bqn ′ -i cos(qn ′ pθ)) . ( 54 
)
The Adaline weights are solved using an iterative linear Least Mean Squares (LMS) algorithm [START_REF] Widrow | Adaptive Inverse Control[END_REF] in order to minimize the torque or speed error. The weights of the Adaline can be interpreted, giving thus a non negligible advantage to the Adaline over other types of ANNs. The Adaline is well-suited and ideal for approximating and learning linear relations. It will thus be used to learn the expressions previously developed. The Adaline weights are adjusted at each sampled time k:

w i (k + 1) = w i (k) + ηϵx x T x = w i (k) + ηϵx x 2 0 + N , ( 55 
)
where η is a learning rate [START_REF] Widrow | Adaptive Inverse Control[END_REF], ϵ is the torque or speed error. On each iteration, the weights of Adaline are enforced to converge toward the amplitudes of current corresponding to the control strategy. After convergence,

w i (k)---→ k→∞ w * i , ( 56 
)
where w * i is the optimal solution given by (51). Finally, the output of Adaline y i converges toward k opt-i .

V. SIMULATION RESULTS

In this section, simulation results are presented to evaluate and to compare the performances of the approaches previously developed. A non-sinusoidal three-phase PMSM (n = 3) is considered and a constant torque of 1.5 N.m is desired. Simulation results of a three-phase non-sinusoidal machine: a)

Φ ′ , Φ ′ 2 , Φ ′ 3 (Wb); b) k opt-0 , k opt-1
and k opt-2 (A/Wb) obtained by the Adaline controller; c) optimal currents (one phase) obtained with three approaches (A); d) torque developed (N.m)

A. Case without a cogging torque

The following numerical example is taken. The nonsinusoidal three-phase PMSM has no cogging torque and a speed normalized back-EMF for the first phase expressed by:

e 1 (pθ) Ω =pϕ f 1 sin(pθ) + 3pϕ f 3 sin(3pθ) + 5pϕ f 5 sin(5pθ) +7pϕ f 7 sin(7pθ) + 9pϕ f 9 sin(9pθ) (57) 
with ϕ f 1 = 0.1223 Wb, ϕ f 3 = 0.0258 Wb, ϕ f 5 = 0.0027 Wb, ϕ f 7 = -0.0049 Wb, and ϕ f 9 = -0.0054 Wb. In this case, k max = 9 (according to (3)) and k ′ max = 7 according to [START_REF] Favre | Permanent-magnet synchronous motors: A comprehensive approach to cogging torque suppression[END_REF]. e 1 contains only odd terms, the ranks of torque ripple is thus 2qn = 6q and q = 1, 2, 3.

According to (49), ( 48), (50), we chose 6N = 18 to reach an optimal solution. Fig. 8 shows the performances of the neural torque control with 6N = 18. More precisely, Fig. 8 a) shows the flux linkage, Fig. 8 b) shows the three optimal functions k opt-0 , k opt-1 and k opt-2 obtained by the Adaline controller. Fig. 8 c) gives the shapes of the three optimal currents obtained with three strategies and Fig. 8 d) shows the total torque developed. It can be seen that the approach based on i opt-0 gives the same results than the one based on i opt-2 since these two currents are close. The stator's ohmic losses have been estimated for the three approaches. Fig. 9 confirms that the ohmic losses obtained with i opt-1 are minimum. The currents i opt-0 present 5.2 % more ohmic losses and the losses of i opt-2 are lightly smaller. i opt-2 are thus the optimal solution for a machine which does not have a homopolar current. Fig. 10 shows the currents i opt-0 , i opt-1 and i opt-2 obtained by learning respectively (41), ( 42) and ( 43) with an Adaline. We can see that the convergence of all strategies is obtained approximately in one round.

B. Case with a cogging torque

To clarify the performance of the proposed control strategy, a cogging torque is now introduced under the same previous conditions. Let us thus consider the following cogging torque:

C cog (pθ) = 0.06 sin(6pθ) + 0.03 sin(12pθ).

(58) The simulated results with a cogging torque are shown by Fig. 11 which compares the total torques obtained for the strategy based on i opt-2 with two cases, i.e., 6N = 6 and 6N = 12. This figure shows that for 6N = 6, the torque of rank 6 is completely compensated but the torques of ranks 12, 18 and 24 are only partially eliminated. Finally, the torque ripple results in ∆C total = 3.3 %. In the second case, it can be seen from the same figure that the torque ripples of rank 6, 12 and 18 are perfectly eliminated for 6N = 12. For this value of N = 2, Fig. 12 shows the optimal functions and the optimal currents, k opt-i and i opt-2 with i = 0, 1, 2, and the resulting torques. It can be seen that all torque ripple, including the cogging torque, is elimined. Finally, we have

C total = C ref = 1.5 N.m.

C. Case with a cogging torque and a fault on one phase

Simulations with a faulty machine are performed to confirm the validity of the proposed method. An additional pulsation of the electromagnetic torque always appears when one of the machine's phases is faulty. The compensation of this pulsation is ensured by the healthy phases. In the following, the third phase of machine is faulty and the results are presented by Fig. [START_REF] Seo | A technique of torque ripple reduction in interior permanent magnet synchronous motor[END_REF]. In spite of a faulty phase, the control based on the three strategies are able to maintain the torque as a constant. Comparatively to the results obtained in Fig. 12 (with a cogging torque but no faulty phase), it can be seen that there are more harmonics in the optimal functions k opt-i in the presence of a fault. According to the training capabilities of the Adaline, these harmonics are adjusted in real time in order to produce the currents that compensate for the torque pulsation created by the faulty phase. Finally, a desired constant torque is obtained.

The proposed neural approaches are also compared to a PI (Proportional Integrator) controller under the same faulty conditions. Fig. 13 c) shows the irregular behavior of the torque obtained by the PI controller. The neuronal controller based on the optimal strategies is more efficient. Maintaining a constant torque under faulty phase conditions remains a difficult task.

VI. EXPERIMENTAL RESULTS

A three-phase non-sinusoidal machine PMSM with R s = 3 Ω, L s = 12.25 mH and a pair poles number p = 3 is connected to a three-phase Voltage Source Inverter (VSI). The rotor's position as well as the stator currents are measured in realtime by using an incremental coder and currents sensors. The measures are sent to a process running on a dSPACE DS1104 board hosted by a PC. The process consists of the control algorithm based on the proposed strategies which provides the signals sent to a PWM generator for the control the inverter.

A. normalized back-EMF estimation

In practice, the PMSM is actuated by an induction machine which has no cogging torque in order to precisely estimate the speed normalized back-EMF. In this experiment, the speed and the back-EMF are measured by standard sensors. The speed normalized back-EMF depends on the internal structure (rotor and stator) of the machine and its amplitude is not related to the rotor speed.

The optimal functions are learned with an Adaline network with an input vector composed of cos kpθ and sin kpθ terms with k varies from 0 to 15. After convergence, the signal k 1 = 

In (59), terms of ranks 13 and 15 are negligible and are therefore not written down. The simultaneous presence of cosine and sine terms clearly indicates the dissymmetry of the back-EMF. Moreover, there are no even terms in the back-EMF, the torque is thus C qn ′ with n ′ = 6. The estimated speed normalized back-EMF is given by Fig. 15.

B. Neural speed control

The torque control scheme can not be carried out because the plate-form must be equipped with a torque meter. Thus, only the speed control scheme is presented.

The test machine is a star coupled PMSM. Therefore, only the strategy with i opt-0 or with i opt-2 can be employed. We chose the strategy based on i opt-2 because of its lower ohmic losses. In (59), we note: k ′ max = 11. By taking the highest angular frequency of C cog is ml max = 18, we chose N = 3 to compensate all the significant torque harmonics.

A constant reference speed has been fixed at Ω ref = 70 rad/s. Results are presented by Fig. [START_REF]Design of currents to reduce torque ripple in brushless permanent magnet motors[END_REF]. Fig. 16 a) shows the electromagnetic torque C em . We can notice that the expression ( 17) is justified. The pulsation of C em compensates for the cogging torque that exists in the motor. This compensation leads to a smooth speed which is shown in Fig. 16 c). The reference currents obtained by the optimal solution and the measured currents are shown by Fig. 16 b). Its can be seen that the resulting currents provided by the neural current controller are close to their references. The non-sinusoidal currents obtained with the Adaline controller compensate for all the torque ripple.

Finally, Fig. 17 compares the speed obtained by our approach to the one obtained when the motor is feed by the sinusoidal currents. It clearly shows that the speed pulsation obtained by the neural approach is eliminated. When the machine is supplied by the sinusoidal currents, it is obvious that there is a torque ripple which leads to the speed pulsation. ( ) pq Fig. 17. Experimental speed obtained by the currents i opt-2 compared to the one derived by the sinusoidal currents By using the proposed approach, the problem of torque and speed pulsation that is present in the control of conventional PMSMs have been solved.

VII. CONCLUSION

A new solution to calculate the optimal currents for nonsinusoidal multiphase PMSMs and particularly for three-phase non-sinusoidal machines has been presented in this paper. These optimal currents are derived from control strategies which depend on machine's structure (for example, with or without the neural current). The optimization criterion consists of a desired constant torque and a minimal ohmic losses. These optimal currents are directly deduced from a geometrical development instead of calculations based on the Lagrange optimization. A new torque (or speed) control scheme has been proposed. According to the learning capability of Adaline neural network, the optimal currents are obtained in real time. In each control scheme, the Adaline controller takes the place of the traditional torque or speed controller for ensuring the convergence of the motor's torque or speed toward the desired one. The torque (or speed) ripple is efficiently compensated. This has been verified by various tests and comparisons under different conditions, even when one of the machine's phases is faulty. The proposed simulations and experiments clearly confirm the high performances of our approaches.
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