
HAL Id: hal-00794328
https://hal.science/hal-00794328

Submitted on 25 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling the environment using graphs with behaviour:
do you speak Ocelet?

Pascal Degenne, Ayoub Ait Lahcen, Olivier Curé, Rémi Forax, Didier Parigot,
Danny Lo Seen

To cite this version:
Pascal Degenne, Ayoub Ait Lahcen, Olivier Curé, Rémi Forax, Didier Parigot, et al.. Modelling the
environment using graphs with behaviour: do you speak Ocelet?. iEMSs 2010, Jul 2010, Ottawa,
Canada. 8 p. �hal-00794328�

https://hal.science/hal-00794328
https://hal.archives-ouvertes.fr


International Environmental Modelling and Software Society (iEMSs)
2010 International Congress on Environmental Modelling and Software

Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada
David A. Swayne, Wanhong Yang, A. A. Voinov, A. Rizzoli, T. Filatova (Eds.)

http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings

Modelling the environment using graphs with
behaviour: do you speak Ocelet?

P. Degennea, A. Ait Lahcenb, O. Curéc, R. Foraxc D. Parigotb D. Lo Seena

aCIRAD - UMR TETIS, Montpellier France (pascal.degenne@cirad.fr),(danny.lo seen@cirad.fr)
bINRIA, Sophia Antipolis France (ayoub.ait lahcen@inria.fr),(didier.parigot@inria.fr)

cInstitut Gaspard Monge - Université Paris Est, Marne la Vallée France
(ocure@univ-mvl.fr),(forax@univ.mvl.fr)

Abstract: Environmental modelling often implies defining elements that relate and interact with
each other, in a system that evolves with time. Ocelet is a domain specific environmental mod-
elling language that was designed around a limited set of key concepts chosen to help modellers
focus on their model, while leaving the implementation to an automatic code generation phase.
Here, we focus more specifically on a concept called Relation in Ocelet that allows to build graphs
that describe which elements of the model interact, and how. It is designed to be used in combi-
nation with two other main concepts: Entities (elements of the model) and Scenarios (describing
the temporal evolution). Every Ocelet Relation can express one specific point of view of a system
and several Relations can be combined to integrate different points of view in the same model. By
its diversity, points of view convey expressive power: with different expert views on a system, at
different spatial scales, or an environment sensed by its different components. Moreover, in this
versatile design, a Relation defined for one specific model can be reused in a different modelling
context. Libraries of generic interaction behaviours can thus be developed for efficient and reli-
able modelling practices. An example is given to illustrate how interaction graphs can be built,
manipulated, and reused using Ocelet. Finally, we give insight into the code generation phase that
produces the simulator.

Keywords: Domain Specific Language, Landscape, Ocelet, Interaction graph, Relation

1 INTRODUCTION

Interactions are at the heart of most environmental studies and the way they are modelled is
strongly characterised by the modelling formalism used. In System Dynamics (SD), interac-
tion operations can be performed between any of the components of the system, but the latter
are generally not spatially represented. In Cellular Automata, interaction operations are defined
by a set of rules applied to the cells of a tessellation, and every cell can only interact with its
immediate neighbours. Agent based models (ABM) are more versatile and agents are allowed to
interact with each other according to a set of locally defined rules. In the case of Discrete Events
and Object Oriented design, there is no constraint on how the elements of a model can interact
with each other, but this comes at the expense of complex programming for the modeller. When
building environmental simulation models, Domain Specific Languages (DSL) are an interesting
compromise between expressive power and a steep programming language learning curve. How-
ever, to our knowledge only few attempts have been made in this domain so far. Fall and Fall
[2001] proposed SELES in which a landscape modelling language is used to define landscape
states in the form of grid layers and a set of landscape events to make the model evolve with time.
Gaucherel et al. [2006] designed L1, a DSL based platform for simulating the evolution of patchy
landscapes. CAOS (Grelck et al. [2007]) is a DSL specialized in parallel simulation of cellular



Degenne et al. / Modelling the environment using graphs with behaviour: do you speak Ocelet?

automata where space is represented in the form of a grid.
In these examples, a major constraint for the modeller is that space representation is imposed.
This is not the case for Ocelet, a DSL developed for landscape and environmental modelling and
simulation (Degenne et al. [2009]). Ocelet was built by carefully selecting the most elementary
concepts needed for spatio-temporal modelling. It offers the possibility of creating new modelling
primitives based on these concepts, and to incrementally assemble them for developing complex
models. The result is a DSL with increased expressivity where the complexities of implementation
are left to a code generator. In this article we emphasise on the concept of interaction graphs, as
used in Ocelet under the name of Relation. In the next section we explain how and why interaction
graphs can be used to express relations in a model. We then briefly present the Ocelet modelling
language, the associated code generation and development framework, and also how Ocelet can
be used with an ontology language. Finally, based on an example, we present how a relation can
be built, manipulated and reused within Ocelet.

2 RELATIONS AS INTERACTION GRAPHS

An interaction graph not only defines who are in relation (graph structure) but also how the ele-
ments relate (behaviour). When modelling the environment, we consider that working directly on
interaction graphs can be useful for at least two reasons. First, acting at the most elementary level
of the underlying data structure (a set of dynamic graphs) allows manipulating in a similar way
different kinds of relations (aggregations, spatial, functional, ...) Second, the state of the model
at any given time can be analysed using graph analysis algorithms to extract topological charac-
teristics that emerge during the simulation. These may reflect some specificities of the model that
would hardly be visible otherwise. Such analysis algorithms have for example been developed by
Batagelj and Mrvar [1998], Fuller and Sarkar [2006] or Saura and Torne [2009]. In this section,
we describe the structure and the dynamic nature of relations or interaction graphs. We then ex-
plain how they are made to express behaviour, and how a relation developed in one case can be
reused in another. Finally we outline how a relation holds the notion of a point of view.

2.1 Graph with dynamic structure and behaviour

Entities of a model can, at a given time, relate to each other in diverse ways. For example,
neighbourhood (where two entities are considered neighbours if they are close enough for a given
distance function), aggregation (where some entities are considered parts of a larger composite
entity), connectivity (where entities can reach each other if a communication route exist between
them), influence (where one entity can influence the behaviour of another one) are in fact relations.
For each relation, one can build a graph where the nodes are entities and the relations between
entities are the arcs.
In many environmental modelling cases the graphs needed are actually hypergraphs (each arc may
connect more than two nodes). Such hypergraphs can be built explicitly. For example, if we have
several groups of entities connected to each other in the form of simple graphs, one can establish
another graph connecting those groups to each other at a broader scale. In that way, it is possible
to consider the behaviour of entities within a group as well as between groups. But one can also
build hypergraphs implicitly. For example, in the case of a spatial relation where an agricultural
parcel is linked to each of its borders by one n-node arc, a graph is built using arcs linking more
than two nodes. Such n-node arcs based graphs are de facto hypergraphs. Using n-node arcs can
be a way to simplify the graph structure we have to manipulate in the model. Another aspect to
take in consideration when modelling with interaction graphs is their dynamic nature. During a
simulation, some entities can be added to the model, others can disappear, and individual relation-
ships can be established or removed. This means that the interaction graphs are dynamic, with
evolving numbers of nodes and arcs, and have changing graph topologies.
Attached to the graph are semantics that specify what happens between the linked entities when
they do interact: the kind of information they exchange, the actions one performs on the other, the
effects produced by the interaction on the entities and on the arcs involved. In many types of envi-
ronmental models, attaching behaviour to an interaction graph is not straightforward. Sometimes
the graph structure is implicit (e.g. cellular automata based on tessellations) and only the be-



Degenne et al. / Modelling the environment using graphs with behaviour: do you speak Ocelet?

haviour is specified. The programming work is then reduced but the specification of the behaviour
is seriously constrained by the implicit graph structure. In other cases where the graph structure is
more versatile, a greater power of expression is obtained but the lack of adapted tools makes the
programming work difficult. In order to get the best of both solutions, it would be necessary to
have ways to manipulate the graph structure and attach the behaviour semantics directly on that
structure using one same appropriate modelling concept.

2.2 Roles and re-usability

It is rare when an environmental model is original in all its parts. The most common situation is
to have some parts of the model that are similar to other already existing models. Re-usability has
been a key concern in software development and modelling tools as well. In the case of behaviours
attached to relation graphs, two situations can be considered:

Re-usability of a relation graph topology: It can be interesting to have ready made relation
graph structures such as the 3-neighbours situations found in triangulated irregular network,
the 4 or 8-neighbours situations found in grids, or also star and circular shaped relationships
just to name a few. Based on the well known characteristics of such structures, one could
imagine a modelling tool that provides optimized implementations for them to be used in
different models.

Re-usability of an attached behaviour: In that case we wish to be able to reuse the definition
of how entities interact with each other when they do, in different modelling situations. To
make the behaviour definition adaptable to a different context, the interaction should not be
specified using the entities relating with each other but using the role they play. It would
then be possible to attach a behaviour definition to a different relationship graph where
entities are able to play similar roles. It also means that a behaviour defined once can be
instantiated several times, on different graphs, even in one same model.

Finally, it can be noted that by designing a modelling tool with re-usability concerns as described
above, it becomes possible to build sub-model libraries (named primitives in Ocelet) and make
them available for a modellers community.

2.3 Modelling your point of view

At least two cases can be identified where the notion of point of view can take the form of se-
mantics attached to a graph. First, when specialists of several different fields work on the same
environmental model, they may share the same entities but need to describe interactions between
these entities differently according to their own expert view. The nodes of the graph could be
shared, but the arcs and the behaviour attached to those arcs would reflect their different points
of views on the model. Second, it happens that different entities of a model have different points
of view on their environment and would then have to interact accordingly with that environment
(see example section 4). Here again the nodes of a graph could be shared but the arcs and the
behaviour attached to those arcs could be specific to every point of view.

3 THE OCELET LANGUAGE

The main concepts of the Ocelet domain specific language are presented here. The concept of
Relation in Ocelet is then explained in more detail, showing how it addresses most of the concerns
discussed in section 2. Models written in Ocelet are translated into a general purpose language
through a code generation phase before a simulation can be run. The code generation aspect and
the associated development platform, and the use of Ocelet with an ontology language are also
briefly presented here.



Degenne et al. / Modelling the environment using graphs with behaviour: do you speak Ocelet?

3.1 Key concepts of the language

Three main concepts are at the core of the language. They are named Entity, Relation and Sce-
nario:

• Entity: Entities are the basic elements that can be linked together to build a model. An
entity may contain other entities, and is then called a composite entity. Entities that do
not contain other entities are atomic entities. Entities have properties that can be used to
reflect their state. Entities also provide Services which are published functions that can be
called locally or remotely. The concept of entity is close to and inspired by the definition of
Components in Service Oriented Architectures (Szyperski [1998]).

• Relation: A relation is a connection between two or more entities that provide and require
compatible services. It defines the nature of interactions between these entities and provides
services for the activation of those interactions. This concept in detailed in paragraph 3.2

• Scenario: A scenario is a sequence of actions composed of service calls or relation ex-
pressions within a model or composite entity. A scenario is activated for a period of time.
Therefore the scenario expresses most of the temporal behaviour of a model or a composite
entity.

In addition to these concepts, we have to mention a special category of atomic entities that is
named Datafacer. A Datafacer is an atomic entity specialized in data access. The Datafacer
provides different mechanisms for data persistence. Its implementation code can be written in a
programming language other than Ocelet in order to optimize data access performances for every
type of data sources that a model can integrate. Other concepts such as primary types (number,
boolean, ...), tests and control instructions, are also available in Ocelet but they are not different
from those of other programming languages such as C or Java, and therefore do not require specific
descriptions here. It is also important to mention that even though Ocelet is not strictly an object
oriented language, the elements (Entities and Relations) of a model have to be defined first and
then instantiated within a Scenario allowing to create as many individual copies as necessary.

3.2 Relations are interaction graphs in Ocelet

The Relation concept as defined in Ocelet is an interaction graph very close to what was discussed
in section 2: it contains the information of who is in interaction and also of how they interact.
As Relations have semantics attached to the arcs of their graph, they are constrained by the type
of entities that can be linked. The definition of a Relation has to specify the role played by the
different entities involved, like for example:
relation RelationName[roleA, roleB] {...}
The statement above defines a Relation of the most common kind: every arc of the graph links two
nodes. The nodes will be entities; one entity playing role A and the other role B. Once defined,
the Relation must be instantiated, and which entities playing role A and role B must also be stated
for that instance:
myInstance = RelationName[EntityA, EntityB];
The fact that Relations are defined using roles makes them reusable in different con-
texts. A Relation carefully designed with genericity in mind could then be used and
adapted for several different models. To establish connections and actually build the graph,
the predefined connect() and disconnect() services are available. For example,
myInstance.connect(lake,river) implies that lake is an instance of EntityA,
river is an instance of EntityB and an arc will be added to the Relation graph between
them. Ocelet allows to define Relations holding hypergraphs directly by specifying more than two
roles in the declaration statement, like for example: relation RelationName[roleA,
roleB, roleC, roleD] {...}. The how part is defined in the form of services that the
modeller can write to precisely describe what happens when the entities interact. The services are
written in the declaration of the Relation, like in:



Degenne et al. / Modelling the environment using graphs with behaviour: do you speak Ocelet?

relation RelationName[roleA, roleB] {
service foo() { roleA.doSmthg(); roleB.setVal(roleA.getVal()); }
}

The definition above implies that the entities playing roleA for that Relation must provide the
two services doSmthg() and getVal(), while the entities playing roleB must provide the
service setVal(). getVal() and setVal() must also return and accept compatible types.
These are verified when the Relation is instantiated. One important point to note is that only one
call to the foo() service is necessary to activate all the arcs of the relation graph.

3.3 Code generation and development platform

Models written in Ocelet are not compiled directly, but are translated into a general purpose pro-
gramming language first. For the target language we use Java, and the Ocelet development envi-
ronment is integrated into the Eclipse platform in the form of Eclipse plug-ins. The code generated
is based on components such as defined by Szyperski [1998] to better separate the functional (the
code related to what the model is about) and non-functional (the components discovery and com-
munication mechanisms) aspects, as well as on the Service oriented computing (SOC) paradigm
as described by Papazoglou and Georgakopoulos [2003]. SOC is a paradigm that uses services
as fundamental elements for developing applications. The main purpose of this approach is to
introduce the minimum dependencies between software bricks to promote their re-usability and
their dynamic discovery and combination at run time.
For every Ocelet element, description files are generated that describe the services provided and
required by that element. According to the description files, the component generator will produce
non-functional code which will manage external communications based on sending or receiving
messages synchronously or asynchronously. The assembly of components for a given applica-
tion is not necessarily known at the start of a simulation and may change dynamically over time.
Such a component framework provides an extensibility mechanism allowing the clear separation
between the business logic and context-aware service interactions. The code generation allows
modellers using Ocelet to take advantage of that dynamic execution environment without having
to deal with implementation details.

3.4 Mapping Ocelet’s concepts to an ontology language

The limited set of key concepts present in Ocelet have been selected to ease the work of the
modellers but also to permit a mapping to an ontology language. We have chosen an ontology
language, namely OWL2, which is based on Description Logics (Baader et al. [2003]) and recom-
mended by the W3C’s Semantic Web working group. The mapping is relatively straightforward
and enables to transform automatically one language to the other. Hence modellers either have the
possibility to specify their models directly in OWL2, using an editor like Protégé, or to specify
the model directly in Ocelet, using an Eclipse plug-in.
Several advantages are provided by such an OWL2 serialisation of an Ocelet model. The main one
consists in enjoying state of the art reasoning tools on standard inference services, i.e. detecting
and repairing ontology inconsistencies and classifying the set of entities of a model. A second
advantage corresponds to proposing an efficient storage and query solution for model instances.
This aspect is particularly important considering that modellers will simulate temporal situations
in any possible order. This feature will enable modellers to analyze the data stored in these data
management systems directly with a query language or through applications using API for these
query languages.

4 RELATIONS ILLUSTRATED

The development of the Ocelet DSL was based on the analysis of several very different modelling
situations that are studied by our partners in different fields, such as the ecology of mangroves in
French Guiana, the epidemiology of the Rift Valley Fever in Senegal, agricultural land dynamics



Degenne et al. / Modelling the environment using graphs with behaviour: do you speak Ocelet?

in France and West Africa, and forest landscape dynamics in South India. But for the purpose of
this paper, in order to particularly illustrate the use of Relations in Ocelet, we have used a simple
and didactic example of a modelling situation.

4.1 Neighbourhood from a tree point of view

In this example, the objective is to model the progressive colonization of trees on a given land-
scape. A first version of the model contains two pieces of land crossed by a river. The trees
growing on one side (Land 1) spread their seeds around their close neighbourhood (Fig. 1(a)).
In the model, we define a relation named DropSeeds to connect every tree to the land or river
entities that are close enough to receive their seeds (Fig. 1(b)), and to specify what happens when
seeds are dropped. The seeds falling into the river are considered lost, and in the present case, as
the river is too large, the trees cannot spread their seeds on the other side of the river.

(a)

Land 1

Land 1

Tree i

River

Tree j

(b) Sample graph for the dropseed1
Relation

Figure 1: Trees dropping seeds in their close neighbourhood

The Tree entity is entirely defined using Ocelet. It has position coordinates and a service
getDroppedSeedLocations() that returns the positions of the seeds it produces. The Land
and River entities are also defined using Ocelet but their shape are defined by data sources. Those
data sources are accessed by an appropriate Datafacer. In particular, the Datafacer has a service
that can provide the distance between a shape and a given location. It does not matter if internally
the shapes are stored in vector or grid format, or if they are in a file or a database. It is the purpose
of the Datafacers to hide the underlying data implementations, and they are expected to be opti-
mized for the kind of data source they are dealing with.
The DropSeeds Relation is defined as follows :

relation DropSeeds[seedEmitter, seedReceiver] {
service drop() {

group[Position]
seedsPos = seedEmitter.getDroppedSeedLocations();

for (pos in seedsPos) {
seedReceiver.acceptSeedAt(Pos);

}
}

}

It can be noted that the DropSeeds Relation is defined not using Tree and Land entities, but using



Degenne et al. / Modelling the environment using graphs with behaviour: do you speak Ocelet?

the role they can play for that Relation: seedEmitter and seedReceiver. At initialization,
the Relation is instantiated with a statement:

dropseed1 = DropSeeds[Tree,Land];

That statement specifies that for dropseed1 the seedEmitter role will be played by Tree
entities and the seedReceiver role will be played by Land entities. Then, tree - land connec-
tions are established using calls to dropseed1.connect(). The resulting graph held by the
dropseed1 instance of the Relation will be similar to the example shown in Fig.1(b). During
the simulation, a scenario calls the dropseed1.drop() service when necessary. One such call
is enough for the code of that service to be executed on every arc belonging to the dropseed1
Relation graph. That service takes a list of seed positions from the seedEmitter and propose
to the seedReceiver to accept those seeds if they are located within its area. The seed loca-
tion tests are performed by the seedReceiver, through a Datafacer in the case of Land entities.

4.2 Neighbourhood from a bird point of view

Land 1

Land 1

Land 1

Land 2Bird

dropseed2

dropseed2

River

dropseed2

Bird

Tree keatSeeds

Tree l

eatSeeds

Tree i
dropseed1

River

dropseed1

Tree j dropseed1

(a) Sample graph for all Relation instances (b)

Figure 2: Adding a bird’s neighbourhood point of view allows trees to spread across the river

Now, let us introduce in the model a species of birds that eat the seeds of the trees and drop
them somewhere in their living area. A new Relation named EatSeeds[seedProvider,
seedEater] can be defined to specify how the birds would choose the trees or seeds in a
given area. Details of that new Relation are not given here as they are in principle similar to the
DropSeeds Relation described above.
The same DropSeed Relation can thus be reused to express the bird’s neighbourhood
point of view. For that, a second instance of DropSeeds is created: dropseed2 =
DropSeeds[Bird,Land]; But, as a prerequisite for playing the seedEmitter role in the
Relation, the Bird entity must provide the getDroppedSeedLocations() service. For the
birds, both Land 1 and Land 2 are within reach, and the dropseed2 graph reflects that situation.
Fig.2(a) shows both instances of the DropSeeds Relation. With this new point of view in the
model, the trees are likely to have some of their seeds dropped on the other side of the river, thus
allowing extension of the forest in that new area (Fig.2(b)).



Degenne et al. / Modelling the environment using graphs with behaviour: do you speak Ocelet?

5 CONCLUSION AND PERSPECTIVE

Interactions between landscape elements are essential in environmental modelling. For this rea-
son, we have taken special care in designing a versatile way of modelling them when developing
our DSL-based approach. Ocelet has been designed to take advantage of modelling all differ-
ent categories of relationship, including spatial and functionnal using one same programming
paradigm (graphs with behaviour) and to offer the tools necessary for considerably simplifying
what would otherwise be a tedious programming work. In Ocelet, a relation can be defined very
simply by an interaction graph that both describes who is interacting and how. The behaviour
attached to a graph can be activated on all the arcs at once with only one service call. That be-
haviour can also easily be made reusable for application in a different modelling context. This
relatively simple way of defining a relation has been found to allow modelling a large variety of
situations, and reusable primitives are being built with Ocelet to ease the modelling process. We
believe that the possibilities offered by integrating network analysis features to Ocelet’s relations,
the capacity of building reusable modelling bricks, and to relate them with an ontology language,
are promising research subjects to be investigated.

ACKNOWLEDGMENTS

This work was supported (in part) by the Agence Nationale de la Recherche (ANR) under Project
No. ANR-07-BLAN-0121 (STAMP: Modelling dynamic landscapes with Spatial, Temporal And
Multi-scale Primitives).

REFERENCES

Baader, F., D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The description Logic
Handbook : Theory, Implementation and Applications. Cambridge University Press, 2003.

Batagelj, V. and A. Mrvar. Pajek - program for large network analysis. Connections, 21(2):47–57,
1998.

Degenne, P., D. Lo Seen, D. Parigot, R. Forax, A. Tran, A. A. Lahcen, O. Curé, and R. Jeansoulin.
Design of a domain specific language for modelling processes in landscapes. Ecological Mod-
elling, 220(24):3527 – 3535, 2009. Selected Papers on Spatially Explicit Landscape Modelling:
Current practices and challenges.

Fall, A. and J. Fall. A domain-specific language for models of landscape dynamics. Ecological
Modelling, 141(1-3):1 – 18, 2001.

Fuller, T. and S. Sarkar. Lqgraph: A software package for optimizing connectivity in conservation
planning. Environmental Modelling & Software, 21(5):750 – 755, 2006.

Gaucherel, C., N. Giboire, V. Viaud, T. Houet, J. Baudry, and F. Burel. A domain-specific lan-
guage for patchy landscape modelling: The brittany agricultural mosaic as a case study. Eco-
logical Modelling, 194(1-3):233 – 243, 2006.

Grelck, C., F. Penczek, and K. Trojahner. Caos: A domain-specific language for the parallel
simulation of cellular automata. LNCS, 4671:410–417, 2007. Parallel Computing Technologies
(Pact’07), Pereslavl-Zalessky, Russia.

Papazoglou, M. P. and D. Georgakopoulos. Service oriented computing. Communications of the
ACM, 46(10):24–28, 2003.

Saura, S. and J. Torné. Conefor sensinode 2.2: A software package for quantifying the importance
of habitat patches for landscape connectivity. Environmental Modelling & Software, 24(1):135
– 139, 2009.

Szyperski, C. Component software: Beyond object-oriented programming. ACM Press and
Addison-Wesley, 1998.


