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The aim of the article is to show a Hörmander spectral multiplier theorem for an operator A whose kernel of the semigroup exp(-zA) satisfies certain Poisson estimates for complex times z. Here exp(-zA) acts on L p (Ω), 1 < p < ∞, where Ω is a space of homogeneous type with the additional conditions that the volume of balls grows polynomially of exponent d and the measure of annuli is controlled by the corresponding euclidean term. In most of the known Hörmander type theorems in the literature, Gaussian bounds and self-adjointness for the semigroup are needed, whereas here the new feature is that the assumptions are the to some extent weaker Poisson bounds, and H ∞ calculus in place of self-adjointness. The order of derivation in our Hörmander multiplier result is typically d 2 , d being the dimension of the space Ω. Moreover the functional calculus resulting from our Hörmander theorem is shown to be R-bounded. Finally, the result is applied to some examples.

Introduction

Let f be a bounded function on (0, ∞) and u(f ) the operator on L p (R d ) defined by [u(f )g] ˆ(ξ) = f (|ξ| 2 )ĝ(ξ). Hörmander's theorem on Fourier multipliers [9, Theorem 2.5] asserts that u(f ) : L p (R d ) → L p (R d ) is bounded for any p ∈ (1, ∞) provided that for some integer N strictly larger than d

2 sup R>0 2R R/2 t k f (k) (t)
2 dt t < ∞ (k = 0, . . . , N ). (1.1) This theorem has many generalisations to similar contexts, for example to elliptic and sub-elliptic differential operators A, including sublaplacians on Lie groups of polynomial growth, Schrödinger operators and elliptic operators on Riemannian manifolds [START_REF] Duong | Plancherel-type estimates and sharp spectral multipliers[END_REF]: Note first that the above u(f ) equals f (-∆), the functional calculus of the self-adjoint positive operator -∆. Now for a self-adjoint operator A, a Hörmander theorem states that the operator f (A) extends boundedly to L p (Ω), 1 < p < ∞ for any function f satisfying (1.1) with suitable N. In most of the proofs for a Hörmander theorem in the literature, the assumption of so called Gaussian bounds plays a crucial role. That means the following. Suppose that A acts on L p (Ω), 1 < p < ∞, where (Ω, µ, ρ) is a space of homogeneous type. Then the semigroup (exp(-tA)) t≥0 generated by A has an integral kernel k t (x, y) such that |k t (x, y)| ≤ Cµ(B(y, √ t)) -1 exp -c ρ(x, y) 2 t (t > 0, x, y ∈ Ω). (1.2) This hypothesis includes many elliptic differential operators. However there are operators such that the integral kernel of the semigroup satisfies only weaker estimates, see e.g. [START_REF] Gimperlein | Heat kernel estimates for pseudodifferential operators, fractional Laplacians and Dirichlet-to-Neumann operators[END_REF][START_REF] Martell | The higher order regularity Dirichlet problem for elliptic systems in the upper-half space. Harmonic Analysis and Partial Differential Equations[END_REF][START_REF] Ouhabaz | Analysis of the heat kernel of the Dirichlet-to-Neumann operator[END_REF]. Establishing a Hörmander theorem for these operators is the issue of the present article. More precisely, let Ω be a space of homogeneous type with the additional properties that the volume of balls grows polynomially of exponent d > 0 and that the measure of annuli is controlled by (a constant times) the corresponding euclidean term, see (2.2) and (2.3) for a precise definition. Let further A act on L p (Ω) such that (exp(-zA)) Re z>0 has an integral kernel k z (x, y) such that

|k z (x, y)| ≤ C(cos arg z) -β 1 µ(B(x, |z|)) 1 |1 + ρ(x,y) 2 z 2 | d+1 2
(Re z > 0, x, y ∈ Ω)

(1.3) holds for some C, β ≥ 0. If Ω = R d and β = 0, the right hand side of this estimate is (a constant times) the absolute value of the complex Poisson kernel which obviously decays slower as ρ(x, y) → ∞ than the Gaussian kernel above. Under a further hypothesis on the homogeneous space Ω, see (2.2) and (2.3) below, and the presence of an H ∞ calculus of A on L 2 (Ω), we obtain a Hörmander theorem of the order N > d 2 + β for operators A satisfying the above estimate. The proof relies on the behaviour of the semigroup exp(-zA) generated by A when the complex parameter z approaches the imaginary axis. Here simple norm estimates are not sufficient but R-bounds of the semigroup are needed. Our method does not need self-adjointness of A. This is new compared to most of the spectral multiplier results in the literature. In particular, we give a non-self-adjoint example of a Lamé operator to which our main result applies. Note also that Gaussian estimates as in (1.2) and self-adjointness in general yield only a Mihlin calculus [START_REF] Ouhabaz | Analysis of heat equations on domains[END_REF]Theorem 7.23], i.e. bounded spectral multipliers f (A) for f satisfying

max 0≤k≤N |t k f (k) (t)| < ∞,
and N > d 2 , whereas we show that complex Poisson estimates give a Hörmander functional calculus, i.e. f (A) is bounded for f satisfying (1.1) with N > d 2 , if β = 0 in (1.3). This yields better estimates for the Bochner-Riesz means (1 -A/λ) ν + on L p (Ω), see the discussion in the introduction of [START_REF] Duong | Plancherel-type estimates and sharp spectral multipliers[END_REF]. The difficulty in assumption (1.3) is to show an estimate for complex times z, something that for Gaussian estimates one gets somehow for free out of an estimate like (1.2) and self-adjointness.

In Section 2 we will introduce the necessary background and cite a theorem which allows to pass from R-bounds on the semigroup to a Hörmander functional calculus. In Section 3 we state and prove the main result, Theorem 3.2 and Corollary 3.6 of this article. In Section 4, an application to a concrete operator is given, for which a Hörmander theorem was previously unknown, and two further examples entering our context are discussed. Finally, in Section 5, two proofs of technical lemmas are annexed.

Preliminaries

In this section, we provide the necessary background for the Main Section 3. Let ω ∈ (0, π). A densely defined and closed operator A on L p (Ω), 1 < p < ∞, is called ω-sectorial if σ(A) ⊂ Σ ω where Σ ω = {z ∈ C * : | arg z| < ω}, and λ(λ -A) -1 ≤ C θ for any λ ∈ Σ θ c and any θ ∈ (ω, π). For an

ω-sectorial operator A and a function f ∈ H ∞ 0 (Σ θ ) = {g : Σ θ → C : g analytic and bounded, ∃ C, ǫ > 0 : |g(z)| ≤ C min(|z| ǫ , |z| -ǫ )} where 0 < ω < θ < π, one defines the operator f (A) by f (A)x = 1 2πi Γ f (λ)(λ -A) -1 xdλ.
Here, Γ is the boundary of Σ ω+θ 2 oriented counterclockwise. This definition coincides with the self-adjoint calculus if applicable. If there is a constant

C > 0 such that f (A) ≤ C sup | arg z|<θ |f (z)| for any f ∈ H ∞ 0 (Σ θ ), then A is said to have a bounded H ∞ (Σ θ ) calculus, or just bounded H ∞ calculus. Let φ 0 ∈ C ∞ c ( 1 2 ,
2) and for n ∈ Z put φ n = φ 0 (2 -n •). We can and do assume that n∈Z φ n (t) = 1 for any t > 0 [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Lemma 6.1.7]. Now define

H α = {f : [0, ∞) → C : f H α = |f (0)| + sup n∈Z (φ n f ) • exp W α 2 (R) < ∞},
where W α 2 (R) is the usual Sobolev space. For α > 1 2 , the space H α is a Banach algebra endowed with the norm • H α . This class refines condition (1.1) in the sense that f ∈ H α =⇒ f satisfies (1.1) for α > N and the converse holds for

α < N. If f (A) ≤ C f H α for any f ∈ ω>0 H ∞ 0 (Σ ω ) ∩ H α , then there exists a bounded homomorphism H α → B(L p (Ω)), f → f (A), and A is said to have a bounded H α calculus. If A is moreover self-adjoint on L 2 (Ω) then for f ∈ H α ⊆ L ∞ (R + ) for some α > 1 2 , f ( 
A) is defined twice, but one can show that the definition from the H ∞ calculus plus density in H α and the definition from the self-adjoint spectral calculus coincide. In particular, our notion of H α calculus is the same as in most of the definitions in the literature.

Let (ǫ n ) n∈N be a sequence of independent random variables such that Prob(ǫ n = 1) = Prob(ǫ n = -1) = 1 2 , i.e. a sequence of independent Rademacher variables. Let X be a Banach space. A subset τ ⊂ B(X) is called Rbounded if there exists a constant C > 0 such that for any choice of finite families T 1 , . . . , T n ∈ τ and x 1 , . . . , x n ∈ X, one has

  E n k=1 ǫ k T k x k 2 X   1 2 ≤ C   E n k=1 ǫ k x k 2 X   1 2 .
The least possible constant is denoted by R(τ ), and

R(τ ) = ∞, if no such con- stant is admitted. Any R-bounded set τ is norm bounded, i.e. sup T ∈τ T ≤ R(τ ), but the converse is false in general. If X = L p , 1 ≤ p < ∞, then E n k=1 ǫ k x k X 1 2 ∼ = n k=1 |x k | 2 1 2 p (2.1)
uniformly in n and x 1 , . . . , x n . A linear mapping u :

Y → B(X), where Y is a further Banach space is called R-bounded if R(u(y) : y Y ≤ 1) < ∞.
The following proposition gives a condition on the semigroup generated by a sectorial operator A so that A has a H β calculus.

Proposition 2.1. Let A be an ω-sectorial operator for any ω > 0 defined on an L p space for some 1 < p < ∞, and let A have a bounded H ∞ calculus. Suppose that for some α > 0 the set {exp(-e iθ 2 k tA) : k ∈ Z} is R-bounded for any t > 0 and |θ| < π 2 , with R-bound (cos(θ)) -α . Then for any β > α+ 1 2 , A has a bounded H β calculus. Moreover, this calculus is an R-bounded mapping.

Proof. This is proved in the case that A has dense range in [START_REF] Kriegler | Spectral multipliers, R-bounded homomorphisms, and analytic diffusion semigroups[END_REF]Lemma 4.72 and Proposition 4.79], see also [START_REF] Kriegler | Spectral multiplier theorems via H ∞ calculus and norm bounds[END_REF]. This proof for which we give a sketch applies also here. First one deduces from the assumption of R-boundedness of the semigroup that

{(1 + |t|) -α (1 + 2 k A) -α exp(i2 k tA) : t ∈ R} is R-bounded with R-bound independent of t ∈ R. Then for g ∈ C ∞ c (0, ∞) a representation formula of g(2 k A)(1 + 2 k A) -α is available, namely g(2 k A)(1+2 k A) -α x = 1 2π R ĝ(t)(1+|t|) β (1+|t|) -β (1+2 k A) -α exp(i2 k tA)xdt. If β > α + 1 2 , then (1 + |t|) -β (1 + 2 k A) -α exp(i2 k tA) is dominated by a function in L 2 (R), and if g belongs to W β 2 (R) then also ĝ(t)(1+|t|) β ∈ L 2 (R).
In fact, more can be said. By [10, Proposition 4.1, Remark 4.2], the set

{g(2 k A)(1 + 2 k A) -α : g ∈ C ∞ c (0, ∞), g W β 2 (R) ≤ 1, k ∈ Z} is R-bounded. Next one gets rid of the factor (1 + 2 k A) -α above by using a function ψ(λ) = (1 + λ) α φ(λ) where φ ∈ C ∞ c (0, ∞) and φ(λ) = 1 for λ ∈ [ 1 2 , 2]
. The hypotheses of the proposition imply that {ψ(

2 k A) : k ∈ Z} is R-bounded. Then {g(2 k A) : g ∈ C ∞ c (0, ∞), supp g ⊂ [ 1 2 , 2], g W β 2 (R) ≤ 1, k ∈ Z} is R-bounded.
The hypotheses imply moreover that there holds the following equivalences of Paley-Littlewood type:

f p ∼ = k∈Z |φ(2 k A)f | 2 1 2 p ∼ = k∈Z | φ(2 k A)φ(2 k A)f | 2 1 2 p for a function φ ∈ C ∞ c (0, ∞), φ not vanishing identically zero, supp φ ⊂ [ 1 2 , 2] and φ = φ(2 -1 •) + φ + φ(2•). Then one can show that g(A) is bounded for g H β < ∞ : g(A)f p ∼ = k∈Z | φ(2 k A)g(A)φ(2 k A)f | 2 1 2 p ∼ = k | φg(2 -k •)(2 k A)φ(2 k A)f | 2 1 2 p R({ φg(2 -k •) : k ∈ Z}) k∈Z |φ(2 k A)f | 2 1 2 p g H β f p .
Thus {g(A) : g H β ≤ 1} is a bounded subset of B(L p ). In a similar manner to the calculation right above, using the fact that L p has Pisier's property (α), one shows that this set is moreover R-bounded.

The space Ω on which the operator A acts will be a space of homogeneous type. This means that (Ω, ρ) is a metric space endowed with a nonnegative Borel measure µ which satisfies the doubling condition: There exists a constant C > 0 such that for all x ∈ Ω and r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)) < ∞,
where we set B(x, r) = {y ∈ Ω : ρ(x, y) < r}. Note that the doubling condition implies the following strong homogeneity property: There exists C > 0 and a dimension d > 0 such that for all λ ≥ 1, for all x ∈ Ω and all r > 0 we have µ(B(x, λr)) ≤ Cλ d µ(B(x, r)). We will assume that the space of homogeneous type (Ω, µ, ρ) has the following two additional properties

µ(B(x, r)) ∼ = r d if diam(Ω) = ∞, µ(B(x, r)) ∼ = min(r d , 1) if diam(Ω) < ∞ (2.2) and µ(B(x, r, R)) ≤ C(R d -r d ) (x ∈ Ω, R > r > 0) if diam(Ω) = ∞, µ(B(x, r, R)) ≤ C(R -r) min(R d-1 , 1) (x ∈ Ω, R > r > 1 2 R > 0) if diam(Ω) < ∞ (2.3)
where we denote diam(Ω) = sup{ρ(x, y) : x, y ∈ Ω} and B(x, r, R) = B(x, R)\B(x, r). Note that if (2.2) holds, then diam(Ω) < ∞ if and only if µ(Ω) < ∞.

The Main Theorem

We let (Ω, µ, ρ) be a space of homogeneous type with the additional properties (2.2) and (2.3). We further let T z = exp(-zA) be a semigroup on L 2 (Ω) with the properties: The generator A has a bounded H ∞ (Σ ω ) calculus for some ω ∈ (0, π) on L 2 (Ω), and T z has an integral kernel k z (x, y) for Re z > 0 i.e. (T z f )(x) = Ω k z (x, y)f (y)dµ(y) for any f ∈ L 2 (Ω). We assume that 

|k z (x, y)| ≤ C(cos arg z) -β 1 µ(B(x, |z|)) 1 |1 + ρ(x,y) 2 z 2 | d+1 2 (z ∈ C + , x, y ∈ Ω). ( 3 
(Ω), 1 < p < ∞. Assume that T z is analytic on L 2 (Ω) on z ∈ C + = {λ ∈ C : Re λ > 0}
and bounded on each subsector Σ ω for ω ∈ (0, π 2 ), and that T z has an integral kernel which satisfies (3.1). Assume moreover that A has a bounded H ∞ (Σ ω ) calculus on L 2 (Ω) for some ω ∈ (0, π), which is the case e.g. when A is selfadjoint. Then the operator A has an H ∞ (Σ ω ) calculus on L p (Ω) for any ω ∈ (0, π) and 1 < p < ∞.

Proof. The proposition follows from [START_REF] Duong | Semigroup kernels, Poisson bounds, and holomorphic functional calculus[END_REF]Theorem 3.1]. Indeed, let θ ∈ (0, π 2 ). The kernel k z (x, y) satisfies on z ∈ Σ θ the bound

|k z (x, y)| (cos arg z) -β µ(B(x, |z|)) 1 1 + ρ(x,y) z 2 d+1 2 θ µ(B(x, | Re z|)) -1 1 + ρ(x, y) Re z 2 -d+1 2 since |z| ∼ = Re z for z ∈ Σ θ and |1+ ρ(x,y) Re z 2 | ≤ 1+ ρ(x,y) Re z 2 1+ ρ(x,y) z 2 1 + ρ(x,y) z 2
. Then with G t given by [6, [START_REF] Galé | Functional calculus for infinitesimal generators of holomorphic semigroups[END_REF]] and g(x) = c(1 + x 2 ) -d+1 2 , we can deduce from [6, Theorem 3.1] that A has a bounded H ∞ (Σ ω ) calculus on L p (Ω) for any p ∈ (1, ∞) and ω > π 2θ. The following is the main theorem of this article. Theorem 3.2. Let (Ω, µ, ρ) be a space of homogeneous type satisfying (2.2) and (2.3) and T t = exp(-tA) a semigroup which acts on all L p (Ω), 1 < p < ∞. Assume that T z is analytic on L 2 (Ω) on z ∈ C + and that T z has an integral kernel which satisfies (3.1). Assume that for z ∈ C + , exp(-zA) B(L 2 (Ω))

(cos(arg z)) -d-1 2 -β (1 + | log(cos(arg z))|) 2
, which is the case e.g. when A is self-adjoint. Then the semigroup exp(-zA) satisfies on X = L p (Ω) for any 1 < p < ∞ the R-bound estimate R exp(-e iθ 2 j tA)

: j ∈ Z (cos(θ)) -d-1 2 -β (1 + | log(cos(θ))|) 2 .
For the proof of the theorem, we state two preliminary lemmas. 

|k e iθ t0+t (x, y) -k e iθ t0 (x, y)| (cos(θ)) -β µ(B(x, t 0 )) min(cos(θ)t 0 , t) cos(θ)t 0 1 - ρ(x, y) 2 t 2 0 + cos(θ) -d+1 2 +              (5.5) : t 2 0 ≥ ρ(x, y) 2 and 1 √ 2-ρ(x,y) 2 /t 2 0 -1 ≥ 2t 0 /t (5.6) : t 2 0 ≥ ρ(x, y) 2 and 1 √ 2-ρ(x,y) 2 /t 2 0 -1 ≤ 2t 0 /t (5.7) : t 2 0 ≤ ρ(x, y) 2 ≤ 2t 2 0 (5.8) : ρ(x, y) 2 ≥ 2t 2 0 ,
where (5.5), (5.6), (5.7), (5.8) can be found in the proof of this lemma in Section 5.

Lemma 3.4. Let (Ω, µ, ρ) be a space of homogeneous type satisfying (2.2). Let k z (x, y) be analytic in z ∈ C + and satisfy (3.1). Let t > 0,

t 0 ∈ [1, 2], l ∈ Z with l ≤ L max = max{j ∈ Z : 2 j t 0 ≤ diam(Ω)} + 1 ≤ ∞, θ ∈ (-π 2 , π 2 ) with |θ| sufficiently close to π 2 and x, y ∈ Ω such that ρ(x, y) ≥ 3t. 1. If | ρ(x,y) 2 (2 l t0) 2 -1| ≤ cos(θ), then sup j∈Z:2 j t0≥t |k e iθ 2 j t0+t (x, y) -k e iθ 2 j t0 (x, y)| 1 µ(B(x, 2 l t 0 )) min(cos(θ)2 l t 0 , t) cos(θ)2 l t 0 (cos(θ)) -d+1 2 -β . 2. If ρ(x,y) 2 (2 l t0) 2 ∈ [1 + cos(θ), 2], then with r = ρ(x, y) 2 /(2 l t 0 ) 2 , sup j∈Z:2 j t0≥t |k e iθ 2 j t0+t (x, y) -k e iθ 2 j t0 (x, y)| (cos(θ)) -β µ(B(x, 2 l t 0 )) × ×                                (r -1) -d+1 2 1 + log 1- √ 2-r cos(θ) + 1 - √ 2 -r -d+1 2 -t 2 l t0 -d+1 2 , if cos(θ) ≤ 1 - √ 2 -r ≤ t 2 l t0 ; (r -1) -d+1 2 1 + log t 2 l t0 cos(θ) + | log cos(θ)|, if cos(θ) ≤ t 2 l t0 ≤ 1 - √ 2 -r; (cos(θ)) -d+1 2 , if 1 - √ 2 -r ≤ cos(θ) ≤ t 2 l t0 ; and t cos(θ)2 l t0 (r -1) -d+1 2 , if cos(θ) ≥ t 2 l t0 . 3. If ρ(x,y) 2 (2 l t0) 2 ∈ [ 1 2 , 1 -cos(θ)], then with r = ρ(x, y) 2 /(2 l t 0 ) 2 , sup j∈Z:2 j t0≥t |k e iθ 2 j t0+t (x, y) -k e iθ 2 j t0 (x, y)| (cos(θ)) -β µ(B(x, 2 l t 0 )) × ×                                                                      (1 -r) -d+1 2 1 + log 1-r cos(θ) + (1 -r) -d+1 4 -1 × × ( √ 1 -r - √ 2 -r + 1) -d-1 2 -( √ 1 -r -1 2 √ 2 -r + 1 2 -cos(θ) 2 ) -d-1 2 +| log(cos(θ))|, if cos(θ) ≤ √ 2 -r -1 ≤ 1 2 t 2 l t0 ; (1 -r) -d+1 2 1 + log 1-r cos(θ) + (1 -r) -d+1 4 -1 × × ( √ 1 -r - √ 2 -r + 1) -d-1 2 -( √ 1 -r -1 2 √ 2 -r + 1 2 -cos(θ) 2 ) -d-1 2 +( t 2 l t0 - √ 2 -r + 1)(1 -r) -d+3 2 + | log(cos(θ))|, if max(cos(θ), 1 2 t 2 l t0 ) ≤ √ 2 -r -1 ≤ t 2 l t0 ; (1 -r) -d+1 2 (1 + log r-1 cos(θ) ) + (1 -r) -d+1 4 -1 × × ( √ 1 -r - √ 2 -r + 1) -d+1 2 -( √ 1 -r -1 2 √ 2 -r + 1 2 -cos(θ) 2 ) -d-1 2 +| log(cos(θ))|, if cos(θ) ≤ t 2 l t0 ≤ √ 2 -r -1; (1 -r) -d+1 2 + ( t 2 l t0 - √ 2 -r + 1)(1 -r) -d+3 2 + | log(cos(θ))|, if 1 2 t 2 l t0 ≤ √ 2 -R -1 ≤ cos(θ) ≤ t 2 l t0 ; (1 -r) -d+1 2 + | log(cos(θ))|, if √ 2 -r -1 ≤ min(cos(θ), 1 2 t 2 l t0 ) and cos(θ) ≤ t 2 l t0 ; t cos(θ)2 l t0 (1 -r) -d+1 2 if cos(θ) ≥ t 2 l t0
. The proofs of Lemmas 3.3 and 3.4 are technical and dereferred to Section 5 due to their length.

Proof of Theorem 3.2. Let θ ∈ (-π 2 , π 2 ), j ∈ Z, t 0 ∈ [1, 2] and x, y ∈ Ω. Write in short T j = exp(-e iθ 2 j t 0 A). Recall that {T j : j ∈ Z} is R-bounded on L p (Ω) with R-bound C < ∞, if   j∈F |T j f j | 2   1 2 L p (Ω) ≤ C   j∈F |f j | 2   1 2 L p (Ω)
for any finite index set F ⊆ Z and f j ∈ L p (Ω), j ∈ F. To prove the theorem, it thus suffices to show that

T : L p (Ω, ℓ 2 (F )) → L p (Ω, ℓ 2 (F )) (f j ) j∈F → (T j f j ) j∈F (cos(θ)) -d-1 2 -β (1 + | log(cos(θ))|) 2 (3.
2) independently of F. To show this, we apply the boundedness criterion for singular integral operators with non-smooth kernels [4, Theorem 1] in its vector-valued version [START_REF] Mo | Vector-valued Singular Integral Operators with Nonsmooth Kernels and Related Multilinear Commutators[END_REF]Theorem 2.3]. Note that the standing assumption in [START_REF] Mo | Vector-valued Singular Integral Operators with Nonsmooth Kernels and Related Multilinear Commutators[END_REF] 

that µ(Ω) = ∞ is not needed in [16, Theorem 2.3]. First note that L 2 (Ω, ℓ 2 (F )) = ℓ 2 (F, L 2 (Ω)) isometrically, so that for p = 2, T ≤ sup j∈Z T j B(L 2 (Ω))
and that the assumption of the theorem gives that T :

L 2 (Ω, ℓ 2 (F )) → L 2 (Ω, ℓ 2 (F )) has the norm bound in (3.
2). To conclude, it suffices to show that T is a vector-valued singular integral operator with non-smooth kernel in the sense of [START_REF] Mo | Vector-valued Singular Integral Operators with Nonsmooth Kernels and Related Multilinear Commutators[END_REF]Definition 2.1]. We choose the approximation to identity A t = A ′ t = ((f j ) j∈F → (exp(-tA)f j ) j∈F ). Note that (1.4), (1.5) and (1.6) in [START_REF] Mo | Vector-valued Singular Integral Operators with Nonsmooth Kernels and Related Multilinear Commutators[END_REF] are satisfied for this choice due to the Poisson estimate (3.1) and the volume control (2.2). Note that T -

A ′ t T = T -T A t : (f j ) j∈F → ((T j -T j exp(-tA))f j ) j∈F ,
that this operator has the B(ℓ 2 (F ))valued kernel with entry k e iθ 2 j t0 (x, y)-k e iθ 2 j t0+t (x, y) on the diagonal, so that its B(ℓ 2 (F ))-norm is controlled by sup j∈Z |k e iθ 2 j t0 (x, y)k e iθ 2 j t0+t (x, y)|. By [16, Definition 2.1 (i) and (ii)], we are reduced to show that ρ(x,y)≥3t sup j∈Z |k e iθ 2 j t0+t (x, y)k e iθ 2 j t0 (x, y)|dµ(x) 

(cos(θ)) -d-1 2 -β (1 + | log(cos(θ))|) 2 (y ∈ Ω, t > 0). ( 3 
≥ 3t ≥ 3 2 2 j t 0 + 3 2 t, we have |1 + ρ(x,y) 2 (e iθ 2 j t0+t) 2 | ∼ = ρ(x,y) 2 |e iθ 2 j t0+t| 2 . Thus, ρ(x,y)≥3t sup j: 2 j t0≤t |k e iθ 2 j t0+t (x, y)|dµ(x) ρ(x,y)≥3t sup j: 2 j t0≤t (cos(θ)) -β µ(B(x, |e iθ 2 j t 0 + t|)) |e iθ 2 j t 0 + t| d+1 ρ(x, y) d+1 dµ(x) ρ(x,y)≥3t sup j: 2 j t0≤t (cos(θ)) -β µ(B(x, t)) t d+1 ρ(x, y) d+1 dµ(x) ∞ k=0 B(y,3t•2 k ,3t•2 k+1 ) (cos(θ)) -β µ(B(x, t)) 2 -k(d+1) dµ(x) ∞ k=0 M k n=1 B(y k n ,t) (cos(θ)) -β µ(B(x, t)) 2 -k(d+1) dµ(x) ∞ k=0 2 kd 2 -k(d+1) (cos(θ)) -β (cos(θ)) -β , where B(y, 3t • 2 0 , 3t • 2 0+1
) should be replaced by B(y, 3t • 2), and we used the two well-known facts on spaces of homogeneous type that B(y, 3t•2 k , 3t•2 k+1 ) can be covered by M k ∼ = 2 kd balls B(y k n , t) and that sup y∈Ω B(y,t)

1 µ(B(x,t)) dµ(x) ∼ = 1. Note that if µ(Ω) < ∞, then the above sum over k was finite. Furthermore, for ρ(x, y) ≥ 3t ≥ 3 • 2 j t 0 , we have |1 + ρ(x,y) 2 (e iθ 2 j t0) 2 | ∼ = ρ(x,y) 2
(2 j t0) 2 . Thus, similarly to the above calculation, with

M k t•2 k 2 j t0 d this time, ρ(x,y)≥3t sup j: 2 j t0≤t |k e iθ 2 j t0 (x, y)|dµ(x) j: 2 j t0≤t ρ(x,y)≥3t (cos(θ)) -β µ(B(x, 2 j t 0 )) (2 j t 0 ) d+1 ρ(x, y) d+1 dµ(x) j: 2 j t0≤t ∞ k=0 B(y,3t•2 k ,3t•2 k+1 ) (cos(θ)) -β µ(B(x, 2 j t 0 )) (2 j t 0 ) d+1 (3t • 2 k ) d+1 dµ(x) j: 2 j t0≤t ∞ k=0 M k n=1 B(y k n ,2 j t0) (cos(θ)) -β µ(B(x, 2 j t 0 )) (2 j t 0 ) d+1 (3t • 2 k ) d+1 dµ(x) j: 2 j t0≤t ∞ k=0 (cos(θ)) -β t d 2 kd 2 jd t d 0 2 j(d+1) t d+1 0 t d+1 2 kd 2 k j: 2 j t0≤t ∞ k=0 (cos(θ)) -β t -1 2 -k 2 j t 0 (cos(θ)) -β .
To conclude (3.3), it now suffices to show ρ(x,y)≥3t

sup j: 2 j t0≥t |k e iθ 2 j t0+t (x, y) -k e iθ 2 j t0 (x, y)|dµ(x) (cos(θ)) -d-1 2 -β (1 + | log(cos(θ))|) 2 (y ∈ Ω, t > 0). (3.4)
To this end, we use the estimates from Lemma 3.4. Therefore, as a first step, we divide the integral in (3.4) into

ρ(x,y)≥3t ≤ Lmax l=Lmin |ρ(x,y) 2 /(2 l t0) 2 -1|≤cos(θ) + Lmax l=Lmin ρ(x,y) 2 /(2 l t0) 2 ∈[1+cos(θ),2] + Lmax l=Lmin ρ(x,y) 2 /(2 l t0) 2 ∈[ 1 2 ,1-cos(θ)]
=:

Lmax l=Lmin I 1 + I 2 + I 3 ,
where

L min = min{l ∈ Z : 2 l t 0 ≥ 3 2 √ 1-cos(θ)
t} and L max = max{l ∈ Z : 2 l t 0 ≤ diam(Ω)} + 1. For I 1 , we have by Lemma 3.4 1. and the volume control (2.3),

|ρ(x,y) 2 /(2 l t0) 2 -1|≤cos(θ) sup j: 2 j t0≥t |k e iθ 2 j t0+t (x, y) -k e iθ 2 j t0 (x, y)|dµ(x) ... 1 µ(B(x, 2 l t 0 )) min(cos(θ)2 l t 0 , t) cos(θ)2 l t 0 (cos(θ)) -d+1 2 -β dµ(x) 2 ld cos(θ)2 -ld min(cos(θ)2 l t 0 , t) cos(θ)2 l t 0 (cos(θ)) -d+1 2 -β ∼ = min(cos(θ)2 l t 0 , t) cos(θ)2 l t 0 (cos(θ)) -d-1 2 -β .
Now summing over l, we obtain

Lmax l=Lmin min(cos(θ)2 l t 0 , t) cos(θ)2 l t 0 (cos(θ)) -d-1 2 -β (cos(θ)) -d-1 2 -β (cos(θ)) -1 1 dx x + ∞ (cos(θ)) -1 (cos(θ)) -1 x -1 dx x ∼ = (cos(θ)) -d-1 2 -β (1 + | log(cos(θ))|).
Now for I 2 . We distinguish the cases I) (cos(θ)2 l t 0 ≤ t) and II) (cos(θ)2 l t 0 ≥ t). In case I), we decompose I 2 into three integrals according to Lemma 3.4 2. We write r = ρ(x, y) 2 /(2 l t 0 ) 2 .

I 2 ≤ cos(θ)≤1- √ 2-r≤ t 2 l t 0 ,1+cos(θ)≤r≤2 + cos(θ)≤ t 2 l t 0 ≤1- √ 2-r + 1- √ 2-r≤cos(θ)≤ t 2 l t 0 =: I 1 2 + I 2 2 + I 3 2 .
Then by the volume condition (2.3) and Lemma 3.4 2.,

I 1 2 cos(θ)≤1- √ 2-r≤ t 2 l t 0 ,1+cos(θ)≤r≤2 (cos(θ)) -β (r -1) -d+1 2 1 + log r -1 cos(θ) r d 2 dr r (cos(θ)) -β 2 1+cos(θ) (r -1) -d+1 2 1 + log r -1 cos(θ) dr (cos(θ)) -d-1 2 -β 1 + max cos(θ)≤r≤1 log r cos(θ) ∼ = (cos(θ)) -d-1 2 -β (1 + | log(cos θ)|). Further, I 2 2 (cos(θ)) -β 1+cos(θ)≤r≤2, t 2 l t 0 ≤1- √ 2-r (r -1) -d+1 2 1 + log t 2 l t 0 cos(θ) +| log(cos(θ))|) r d 2 dr r (cos(θ)) -β 2 1+cos(θ) (r -1) -d+1 2 dr(1 + log t 2 l t 0 + | log(cos(θ))|) + | log(cos(θ))| (cos(θ)) -d-1 2 -β (1 + | log(cos(θ))|), due to t 2 l t0 ≤ 1 - √ 2 -r ≤ r -1 ≤ 1 in this case. Finally, I 3 2 (cos(θ)) -β 1- √ 2-r≤cos(θ),1+cos(θ)≤r≤2 (cos(θ)) -d+1 2 r d 2 dr r (cos(θ)) -d+1 2 -β 1+2 cos(θ) 1+cos(θ) r d 2 dr r ∼ = (cos(θ)) -d-1 2 -β ,
where we have used that 1 2 (r -1) ≤ 1 -√ 2r, and thus r -

1 ≤ 2(1 - √ 2 -r) ≤ 2 cos(θ)
. Now summing up the three estimates, we get

I 2 (cos(θ)) -d-1 2 -β (1 + | log(cos(θ))|),

and thus, as for

Lmax l=Lmin I 1 , we deduce

Lmax l=Lmin I 2 (cos(θ)) -d-1 2 -β (1 + | log(cos(θ))|) 2 .
In case II), we have by the volume condition (2.3) and Lemma 3.4 2.,

I 2 ∼ = (cos(θ)) -β t cos(θ)2 l t 0 2 1+cos(θ) (r -1) -d+1 2 r d 2 dr r ∼ = (cos(θ)) -β t cos(θ)2 l t 0 -(r -1) -d-1 2 2 1+cos(θ) (cos(θ)) -d-1 2 -β t cos(θ)2 l t 0 .
Now summing over those l with cos(θ)2 l t 0 ≥ t, we obtain l: cos(θ)2 l t0≥t I 2

(cos(θ)) -d-1 2 -β 1 0 x dx x = (cos(θ)) -d-1 2 -β .
It remains to estimate I 3 , for which we use part 3. of Lemma 3.4. Again we distinguish the cases I) (cos(θ)2 l t 0 ≤ t) and II) (cos(θ)2 l t 0 ≥ t). In case I), we decompose I 3 (cos(θ)) -β µ(B(x,2 l t0)) (1+| log(cos(θ))|)dµ(x)+ remainder dµ(x). The first term is estimated by

ρ(x,y) 2 /(2 l t0) 2 ∈[ 1 2 ,1-cos(θ)] (cos(θ)) -β µ(B(x, 2 l t 0 )) (1 + | log(cos(θ))|)dµ(x) 1-cos(θ) 1 2 
(cos(θ)

) -β (1 + | log(cos(θ))|)r d 2 dr r ∼ = (cos(θ)) -β (1 + | log(cos(θ))|).
The remainder is decomposed into the following five integrals corresponding to the first five cases in Lemma 3.4 3. We write again r = ρ(x, y) 2 /(2 l t 0 ) 2 .

1 2 ≤r≤1-cos(θ),cos(θ)≤ √ 2-r-1≤ 1 2 t 2 l t 0 + 1 2 ≤r≤1-cos(θ),max(cos(θ), 1 2 t 2 l t 0 )≤ √ 2-r-1≤ t 2 l t 0 + 1 2 ≤r≤1-cos(θ),cos(θ)≤ t 2 l t 0 ≤ √ 2-r-1 + 1 2 ≤r≤1-cos(θ), 1 2 t 2 l t 0 ≤ √ 2-r-1≤cos(θ)≤ t + 1 2 ≤r≤1-cos(θ), √ 2-r-1≤min(cos(θ), 1 2 t 2 l t 0 =: I 1 3 + I 2 3 + I 3 3 + I 4 3 + I 5 3 .
We estimate the five integrals separately. For I 1 3 , we have

(cos(θ)) β I 1 3 1 2 ≤r≤1-cos(θ),cos(θ)≤1-r≤ 1 2 1 √ 2-1 t 2 l t 0 (1 -r) -d+1 2 (1 + log 1 -r cos(θ) )r d 2 dr r + 1 2 ≤r≤1-cos(θ),cos(θ)≤ √ 2-r-1≤ 1 2 t 2 l t 0 (1 -r) -d+1 4 -1 × × (1 -r)( √ 1 -r -( √ 2 -r -1)) -d+1 2 r d 2 dr r (cos(θ)) -d-1 2 (1 + | log(cos(θ))|) + 1-cos(θ) 1 2 (1 -r) -d+1 4 -1+1-d+1 4 dr (cos(θ)) -d-1 2 (1 + | log(cos(θ))|) + (cos(θ)) -d-1 2 ,
where we have used the mean value theorem to estimate

( √ 1 -r -( √ 2 -r -1)) -d-1 2 -( √ 1 -r - 1 2 ( √ 2 -r -1) - cos(θ) 2 ) -d-1 2 (1 -r)( √ 1 -r -( √ 2 -r -1)) -d+1 2 .
For I 2 3 , we have

(cos(θ)) β I 2 3 1 2 ≤r≤1-(cos(θ)),max(cos(θ), 1 2 t 2 l t 0 )≤ √ 2-r-1≤ t 2 l t 0 1 st term + 2 nd term + ( t 2 l t 0 - √ 2 -r + 1)(1 -r) -d+3 2 r d 2 dr r ,
where the 1 st and 2 nd term are given in Lemma 3.4 3., and can be controlled as in I 1 3 by (cos(θ))

-d-1 2 (1 + | log(cos(θ))|).
The third term, we estimate by

1 2 ≤r≤1-cos(θ),max(cos(θ), 1 2 t 2 l t 0 ≤ √ 2-r-1≤ t 2 l t 0 ( t 2 l t 0 -( √ 2 -r -1))(1 -r) -d+3 2 dr 1 2 ≤r≤1-cos(θ) (1 -r)(1 -r) -d+3 2 dr (cos(θ)) -d-1 2 .
For I 3 3 , we apply exactly the same estimate as for I 1 3 , to get (cos(θ)

) β I 3 3 (cos(θ)) -d-1 2 (1 + | log(cos(θ))|), too. For I 4 3
, we have again with 1 st , 2 nd and 3 rd term given in the estimate in Lemma 3.4 3.,

(cos(θ)) β I 4 3 1 2 ≤r≤1-cos(θ), 1 2 t 2 l t 0 ≤ √ 2-r-1≤cos(θ)≤ t 2 l t 0 1 st term + 2 nd term + 3 rd term r d 2 dr r .
The 1 st and 2 nd term can be controlled as in I 1 3 , whereas the 3 rd term can be controlled as in I 2 3 . We get (cos(θ))

β I 4 3 (cos(θ)) -d-1 2 (1 + | log(cos(θ))|).
Eventually, we estimate I 5 3 by (cos(θ))

β I 5 3 1 2 ≤r≤1-cos(θ), √ 2-r-1≤min(cos(θ), 1 2 t 2 l t 0 ) (1 -r) -d+1 2 r d 2 dr r (cos(θ)) -d-1 2 .
Now summing up we obtain as for I 2 ,

Lmax l=Lmin I 3 ≤ Lmax l=Lmin I 1 3 + I 2 3 + I 3 3 + I 4 3 + I 5 3 (cos(θ)) -d-1 2 -β (1 + | log(cos(θ))|) 2 . In case II), we have (cos(θ)) β I 3 1 2 ≤r≤1-cos(θ) t cos(θ)2 l t 0 (1 -r) -d+1 2 r d 2 dr r t cos(θ)2 l t 0 (cos(θ)) -d-1 2 .
Summing over l with cos(θ)2 l t 0 ≥ t, we obtain as for I 2 , l: cos(θ)2 l t0≥t I 3

(cos(θ)) -d-1 2 -β . We have shown that Lmax l=Lmin I 1 + I 2 + I 3 (cos(θ)) -d-1 2 -β (1 + | log(cos(θ))|) 2 ,
and thus (3.4) and hence the theorem follows.

Remark 3.5. We have proved in Theorem 3.2 that the semigroup is Rbounded when taking dyadic arguments of the form e iθ 2 j t 0 , t 0 ∈ [1, 2] fixed.

It is unclear whether one gets also an R-bounded set when this argument is replaced by a continuous variant, i.e. if R(exp(-e iθ t 0 A) : 2 holds under the same hypotheses as in Theorem 3.2, and at least the above proof does not seem to work. By the method in [14, Last part of 2. [START_REF] Mo | Vector-valued Singular Integral Operators with Nonsmooth Kernels and Related Multilinear Commutators[END_REF] Example], which passes from dyadic arguments to continuous ones, one only gets a cruder estimate for the continuous variant involving an additional factor (cos(θ)) -2 . Corollary 3.6. Let (Ω, µ, ρ) be a space of homogeneous type of either finite or infinite measure, satisfying (2.2) and (2.3). Let T t = exp(-tA) a semigroup which acts on all L p (Ω), 1 < p < ∞. Assume that T z is analytic on L 2 (Ω) on z ∈ C + and that T z has an integral kernel k z (x, y) which satisfies the Poisson estimate

t 0 > 0) (cos(θ)) -d-1 2 -β (1 + | log(cos(θ))|)
|k re iθ (x, y)| ≤ C(cos(θ)) -β 1 µ(B(x, r)) 1 1 + ρ(x,y) 2 (re iθ ) 2 d+1 2
for any x, y ∈ Ω, r > 0, θ ∈ (-π 2 , π 2 ) and some C, β ≥ 0. Assume moreover that A has a bounded H ∞ (Σ ω ) calculus on L 2 (Ω) for some ω ∈ (0, π), and that for r > 0, θ ∈ (-

π 2 , π 2 ), exp(-re iθ A) B(L 2 (Ω)) ≤ C(cos(θ)) -d-1 2 -β (1 + | log(cos(θ))|) 2 ,
both of which are satisfied e.g. when A is self-adjoint. Then A has a bounded H α calculus on L p (Ω) for any 1 < p < ∞ and α > d 2 . Moreover this calculus is an R-bounded mapping, i.e.

R(f (A

) : f H α ≤ 1) < ∞.
Proof. This follows immediately from Propositions 2.1, 3.1 and Theorem 3.2.

Examples

In this section, we want to give some applications of Theorem 3.2 and Corollary 3.6. Note first that in the most classical example, namely A = (-∆) For a generalization, we consider the situation in [START_REF] Martell | The higher order regularity Dirichlet problem for elliptic systems in the upper-half space. Harmonic Analysis and Partial Differential Equations[END_REF]. Let M be a positive integer. Consider the constant coefficient second order, M × M system, differential operator

Lu = M γ=1 d+1 r,s=1 (∂ r (a αγ rs ∂ s u β )) 1≤α≤M ,
where a αβ rs are real coefficients for r, s = 1, . . . , d + 1 and α, γ = 1, . . . , M. Here, u is a function defined on the upper half space R d+1

+ = R d × [0, ∞).
Further, we assume as in [START_REF] Martell | The higher order regularity Dirichlet problem for elliptic systems in the upper-half space. Harmonic Analysis and Partial Differential Equations[END_REF] the ellipticity condition for every (ξ r ) 1≤r≤d+1 ∈ R d+1 , (η α ) 1≤α≤M ∈ C M and some κ 0 > 0. Then in [START_REF] Martell | The higher order regularity Dirichlet problem for elliptic systems in the upper-half space. Harmonic Analysis and Partial Differential Equations[END_REF] the following Dirichlet problem on R d+1 + is considered:

Lu = 0 in R d+1 + u| n.t. ∂R d+1 + = f ∈ L p (R d ; C M ),
where ∂R d+1 [15, (3.12)], which will be satisfied in our example, then this problem is well-posed in L p (R d ; C M ) [15, Theorem 4.1], so it possesses a unique solution u. As moreover the coefficients defining L are constant, we have ∂ r [u(• + (0, t))]| •=x = (∂ r u)(x + (0, t)), so that the expression T t f (x) := u(x, t), x ∈ R d , t ≥ 0 defines a semigroup on L p (R d ; C M ). In the sequel, we are interested in the Hörmander functional calculus of the negative generator of that semigroup. Note that for some cases, this semigroup is given by a convolution kernel. We now restrict to the following specific example.

+ = R d ×{0}, n.t. means non-tangential trace of u, and f is a given function in L p (R d ; C M ), 1 < p < ∞. If A dis L = ∅, a certain condition, see
Lamé system of elasticity. Assume that M = d+1 above. The so-called Lamé operator in R d+1 has the form

Lu = µ∆u + (λ + µ)∇ div u, u = (u 1 , . . . , u d+1 ), (4.1) 
where the constants λ, µ ∈ R (typically called Lamé moduli) are assumed to satisfy µ > 0 and 2µ + λ > 0. Then according to [15, Theorem 5.2], T t f (x) = u(x, t) is given by

(T t f ) α (x) = 4µ 3µ + λ 1 ω d R d t (|x -y| 2 + t 2 ) d+1 2 f α (y)dy + µ + λ 3µ + λ 2(d + 1) ω d d+1 γ=1 R d t(x -y, t)) α (x -y, t) γ (|x -y| 2 + t 2 ) d+3 2 f γ (y)dy (α = 1, . . . , d + 1), (4.2) 
where ω d is the area of the unit sphere S d in R d+1 , and (xy, t) α = x αy α if α ∈ {1, . . . , d} and (xy, t) d+1 = t. 2 )

(cos(θ)) -d-1 2 -β (1 + | log(cos(θ))|) 2
for t > 0 and |θ| < π 2 .

Proof. For the strong continuity of the semigroup, we show first that sup t>0

T t L p (R d ;C d+1 )→L p (R;C d+1 ) < ∞.
As T t is given by a linear combination of convolutions, we have T t p→p

R d t (|y| 2 +t 2 ) d+1 2 dy + R d t |y| 2 +t 2 (|y| 2 +t 2 ) d+3 2 dy = 2 R d 1 (|y/t| 2 +1) d+1 2
dy t d , which is clearly bounded independently of t > 0. Thus it suffices to show the strong continuity T t ff p → 0 as t → 0 for f belonging to the dense subset of continuous functions with compact support. In the following calculation, we use that the kernel k t (x, y) of T t satisfies

R k t (x, y)dy = 1 M d+1 , since T t 1 ℓ 2 d+1 = 1 ℓ 2 d+1
is the unique solution of the Dirichlet problem with constant initial value, and we use Jensen's inequality.

T t f -f p p ∼ = d+1 α=1 R d R d c 1 t (|y| 2 + t 2 ) d+1 2 f α (x -y)dy + d+1 γ=1 R d c 2 t (y, t) α (y, t) γ (|y| 2 + t 2 ) d+3 2 f γ (x -y)dy -f α (x) p dx = d+1 α=1 R d R d c 1 t (|y| 2 + t 2 ) d+1 2 [f α (x -y) -f α (x)]dy + d+1 γ=1 R d c 2 t (y, t) α (y, t) γ (|y| 2 + t 2 ) d+3 2 [f γ (x -y)dy -f γ (x)]dy p dx d+1 α=1 R d c 1 t R d 1 (|y| 2 + t 2 ) d+1 2 |f α (x -y) -f α (x)| p dy +c 2 t d+1 γ=1 R d |(y, t) α (y, t) γ | (|y| 2 + t 2 ) d+3 2 |f γ (x -y) -f γ (x)| p dy dx = d+1 α=1 R d c 1 R d 1 (|y| 2 + 1) d+1 2 |f α (x -ty) -f α (x)| p dy +c 2 d+1 γ=1 R d |(y, 1) α (y, 1) γ | (|y| 2 + 1) d+3 2 |f γ (x -ty) -f γ (x)| p dy dx ∼ = α |x|≤R R d . . . dy + γ R d . . . dydx + |x|≥R R d . . . dy + γ R d . . . dydx.
Now choose first ǫ > 0 and R >> 1 sufficiently large. Then there exists t 0 <<

1 such that |f α (x -ty) -f α (x)| p < ǫ µ(B(0,R)) for t ≤ t 0 and α ∈ {1, . . . , d + 1}. Thus the integral over |x| ≤ R is ǫ. Let supp f ⊂ B(0, r). Then the integral over |x| ≥ R is |y|≥1/t0(R-r) 1 (|y| 2 +1) d+1 2 
2 p f p p dy → 0 as R → ∞. We have proved the strong continuity of the semigroup.

For the analyticity, extend the definition of T t from (4.2) by replacing t > 0 by a complex z with Re z > 0 everywhere. Clearly, (4.2) is an analytic expression in t, so that we get an analytic family T z . The claimed B(L 2 (R d ; C d+1 )) estimate of T z follows from the integral kernel estimate of

z (|•| 2 +z 2 ) d+1 2
, which is shown in [7, p. 348] and gives the estimate for the first expression in (4.2), and also for the second expression by the pointwise estimate

|z(y,z)α(y,z)γ | ||y| 2 +z 2 | d+3 2 ≤ (cos(arg z)) -1 |z| ||y| 2 +z 2 | d+1 2
, which is shown in the following. Now for the claimed Poisson estimate (3.1) with β = 1. Fix some α, γ ∈ {1, . . . , d + 1}. We have by (4.2),

k z,αγ (x, y) = c 1 δ α=γ z (|x -y| 2 + z 2 ) d+1 2 + c 2 z(x -y, z) α (x -y, z) γ (|x -y| 2 + z 2 ) d+3 2 . (4.3)
Clearly, the first summand admits the complex Poisson estimate (3.1) even with β = 0. For the second summand, it clearly suffices to show that |(x, z) α (x, z) γ | (cos(θ)) -1 |x| 2 + z 2 , where arg z = θ. We distinguish the four cases α, γ ≤

d; α, γ = d + 1; α ≤ d, γ = d + 1 and α = d + 1, γ ≤ d. Suppose first α, γ ≤ d. If |x| 2 ≥ 2|z| 2 , then |x α x γ | ≤ 1 2 (x 2 α + x 2 γ ) ≤ 1 2 |x| 2 |x| 2 + z 2 . If |x| 2 ≤ 1 2 |z| 2 , then |x α x γ | ≤ 1 2 |x| 2 ≤ 1 4 |z| 2 ≤ 1 2 (|z| 2 -|x| 2 ) ≤ 1 2 z 2 + |x| 2 . If 1 2 |z| 2 ≤ |x| 2 ≤ 2|z| 2 , then |x α x γ | cos(θ) cos(θ)|z| 2 ≤ |z| 2 cos(θ) + |z| 2 (cos 2 (θ) -sin 2 (θ) + |x| 2 ∼ = |2(Re z)(Im z)| + (Re z) 2 -(Im z) 2 + |x| 2 = | Im(z 2 )| + Re(z 2 ) + |x| 2 ∼ = z 2 + |x| 2 .
The other three cases can be treated in the same manner. We now show that the negative generator A of T t has a bounded H ∞ calculus on L 2 (R d ; C d+1 ). According to [START_REF] Cowling | Banach space operators with a bounded H ∞ functional calculus[END_REF]Theorem 2.4], it suffices to show that both

∞ 0 t Ae -tA f 2 2 dt f 2 2 and ∞ 0 t A ′ e -tA ′ f 2 2 dt f 2 2 (4.4)
hold. We have with F denoting the Fourier transform, using the Plancherel formula and Fubini,

∞ 0 t Ae -tA f 2 L 2 (R d ;C d+1 ) dt = ∞ 0 d+1 α=1 t ∂ ∂t (e -tA f ) α 2 L 2 (R d ) dt = ∞ 0 d+1 α=1 t d+1 γ=1 ∂ ∂t k t,αγ * f γ 2 2 dt = ∞ 0 d+1 α=1 t d+1 γ=1 ∂ ∂t F [k t,αγ ] • F [f γ ] 2 2 dt d+1 α,γ=1 R d |F [f γ ](ξ)| 2 ∞ 0 t ∂ ∂t F [k t,αγ ](ξ) 2 dtdξ.
For the first estimate in (4.4), it thus suffices to show that

∞ 0 t ∂ ∂t F [k t,αγ ] (ξ) 2 dt 1 (4.5) 
independently of ξ ∈ R d . We decompose k t,αγ = k 1 t,αγ + k 2 t,αγ into the two summands according to (4.3). For the first summand, we have

F [k 1 t,αγ (ξ)] = c 1 δ α=γ e -t|ξ| . Thus, ∞ 0 t ∂ ∂t F [k 1 t,αγ ](ξ) 2 dt = c 2 1 δ α=γ ∞ 0 t|ξ| 2 e -2t|ξ| dt = c 2 1 δ α=γ ∞ 0 te -2t dt < ∞.
Next we claim that

F x → t (|x| 2 + t 2 ) d+3 2 (ξ) = c d |ξ| t e -t|ξ| (1 + 1 t|ξ| ), (4.6) 
from which we shall easily deduce F [k 2 t,αγ ](ξ). First note that the function which we Fourier transform in (4.6) is invariant under rotation, so also its Fourier transform is. Thus we can assume that ξ = (ξ 1 , 0, . . . , 0) with ξ 1 ≥ 0 and we get (l.h.s. of (4.6

)) = c 1 R . . . R t (x 2 1 +x 2 2 +...+x 2 d +t 2 ) d+3 2 e -ix1ξ1 dx 2 . . . dx d dx 1 . Note that R t (x 2 +s 2 ) a dx = c a t (s 2 ) a-1 2
for any a > 1 2 , so that by induction, we get by [17, p. 202], (l.h.s. of (4.6) If

) = c ′ d R t (x 2 1 +t 2 ) 2 e -ix1ξ1 dx 1 = c ′ d 2t √ πΓ(2) -1 ξ1 2t 3 2 K 3 2 (tξ 1 ), where K 3 2 (x) = π 2x e -x (1 + 1 x ) is
α = γ = d + 1, then ∂ ∂t F [k 2 t,αγ ](ξ) = c d ∂ ∂t t|ξ|e -t|ξ| (1 + 1 t|ξ| ) = c d e -t|ξ| (-t|ξ| 2 ). Thus, ∞ 0 t ∂ ∂t F [k 2 t,αγ ](ξ) 2 dt = c d ∞ 0 t 2 |ξ| 2 e -2t|ξ| (-t|ξ|) 2 dt t < ∞ independently of |ξ|. If α ≤ d and γ = d + 1, then ∂ ∂t F [k 2 t,αγ ](ξ) = c d i ∂ ∂t ∂ ∂ξα |ξ|e -t|ξ| (1 + 1 t|ξ| ) = c d ie -t|ξ| (tξ α |ξ|-ξ α ). Thus, ∞ 0 t ∂ ∂t F [k 2 t,αγ ](ξ) 2 dt = c d ∞ 0 e -t (t 2 ξα |ξ| -t ξα |ξ| ) 2 dt t < ∞ independently of ξ. If α = d + 1 and γ ≤ d, one obtains the same as above, roles of α and γ interchanged. If α, γ ≤ d and α = γ, we have ∂ ∂t F [k 2 t,αγ ](ξ) = -c d ∂ ∂t ∂ ∂ξα ∂ ∂ξγ (e -t|ξ| ( |ξ| t + 1 t 2 )) = -c d e -t|ξ| (-tξ α ξ γ + ξαξγ |ξ| ). Thus, ∞ 0 t ∂ ∂t F [k 2 t,αγ ](ξ) 2 dt = c d ∞ 0 e -2t (-t 2 ξαξγ |ξ| 2 + t ξαξγ |ξ| 2 ) 2 dt t < ∞ independently of ξ. If finally α = γ ≤ d, then ∂ ∂t F [k 2 t,αγ ](ξ) = -c d e -t|ξ| (-tξ 2 α + |ξ| + ξ 2 α ξ )
, and again

∞ 0 t ∂ ∂t F [k 2 t,αγ ](ξ) 2 dt < ∞ indepen- dently of ξ.
We have shown the first inequality in (4.4). The second one follows by the same proof, there are only signs without further impact which change. This shows that A has an H ∞ calculus. Corollary 4.2. Let A be the negative generator of the Lamé semigroup given in (4.2) on L p (R d ; C d+1 ) for some 1 < p < ∞. Then A has an H α calculus for any α >

d 2 + 1. Moreover, {f (A) : f H α ≤ 1} is R-bounded on L p (R d ; C d+1 ) for these α.
Proof. The corollary follows immediately from Propositions 2.1 and 4.1 once we show that we can apply Proposition 3.1 and that {T (e iθ 2 k t 0 ) :

k ∈ Z} is R-bounded with R T (e iθ 2 k t 0 ) : k ∈ Z (cos(θ)) -d-1 2 -1 (1 + | log(cos(θ))|) 2 . (4.7)
For the application of Proposition 3.1, note that a careful inspection of the proof of [START_REF] Duong | Semigroup kernels, Poisson bounds, and holomorphic functional calculus[END_REF]Theorem 3.1] shows that a version in L p (R d ; C d+1 ) also holds, more precisely that: if T z is an analytic semigroup on L 2 (R d ; C d+1 ) for Re z > 0 such that its negative generator A has a bounded H ∞ calculus on L 2 (R d ; C d+1 ) and each of the (d + 1) × (d + 1) components of its matrix valued integral kernel k z,αγ (x, y) satisfies (3.1), then A has a bounded H ∞ calculus on L p (R d ; C d+1 ) for 1 < p < ∞. Note that we have shown the H ∞ calculus on L 2 (R d ; C d+1 ) and the bounds (3.1) for k z,αγ (x, y) in Proposition 4.1. It remains to show (4.7), which would follow immediately from Theorem 3.2, weren't it for the vector valued character. We give the adaption details now. First note that

E n k=1 ǫ k f k 2 L p (R d ;C d+1 ) 1 2 ∼ = d+1 α=1 n k=1 |f α,k | 2 1 2 L p (R d ) ∼ = d+1 α=1 n k=1 |f α,k | 2 1 2 L p (R d )
. Thus,

{T (e iθ 2 k t 0 ) : k ∈ Z} is R-bounded on L p (R d ; C d+1 ) iff d+1 α=1 k |(T (e iθ 2 k t 0 A)f k ) α | 2 1 2 p d+1 α=1 k |f α,k | 2 1 2 p , iff T ∈ B(L p (R d ; ℓ 2 {1,...,d+1}×N
)), where T (f α,j ) α,j = (T (e iθ 2 j t 0 )f j ) α . In view of [START_REF] Mo | Vector-valued Singular Integral Operators with Nonsmooth Kernels and Related Multilinear Commutators[END_REF]Definition 2.1], choose now the approximation of identity A t (f α,j ) α,j = (T t f j ) α . Then T A t (f α,j ) = T (T t f j ) = (T (e iθ 2 j t 0 )T t f j ) = A t T (f α,j ). Further, the kernel of A t , called a t satisfies 

A t (f α,j ) =

∂R d+1

+ = f if and only if u(x, t) = e -tA f (x). If Ω is bounded, the operator -L on L p (Ω; C d+1 ) for p ∈ (q ′ Ω , q Ω ) where q Ω > 2 is some constant, has a H α calculus for α > d| 1 p -1 2 | + 1 2 [13, Theorem 5.1]. In contrast, for A we get a Hörmander functional calculus on the full range p ∈ (1, ∞), but with a worse derivation exponent α > d 2 + 1. Note that A is not self-adjoint on L 2 (R d ; C d+1 ), in contrast to L on L 2 (Ω; C d+1 ), so that A and L are of a quite different nature.

Dirichlet-to-Neumann operator. Another application of Theorem 3.2 and Corollary 3.6 is the following operator from [START_REF] Ouhabaz | Analysis of the heat kernel of the Dirichlet-to-Neumann operator[END_REF]. There the authors suppose that Ω is the smooth boundary of an open connected subset Ω of R d+1 and A is the Dirchlet-to-Neumann operator defined as follows: Given φ ∈ L 2 (Ω) solve the Dirichlet problem ∆u = 0 weakly on Ω

u| Ω = φ with u ∈ W 1 2 ( Ω).
If u has a weak normal derivative ∂u ∂ν in L 2 (Ω), then φ ∈ D(A) and Aφ = ∂u ∂ν . This operator is a pseudodifferential operator, selfadjoint on L 2 (Ω). Then in [START_REF] Ouhabaz | Analysis of the heat kernel of the Dirichlet-to-Neumann operator[END_REF] it is shown that the semigroup satisfies the complex Poisson estimate:

|k z (x, y)| ≤ C(cos(θ)) -2(d-1)d min(|z|, 1) -d 1 + |x-y| |z| d+1 (cos(θ)) -2(d-1)d 1 µ(B(x, |z|)) 1 1 + |x-y| 2 z 2 d+1 2
for all x, y ∈ Ω and Re z > 0, where θ = arg z. Further a H α calculus for A with α > d 2 is derived in [START_REF] Ouhabaz | Analysis of the heat kernel of the Dirichlet-to-Neumann operator[END_REF]Section 7]. Suppose that Ω satisfies (2.2) and (2.3). Then since A is self-adjoint on L 2 (Ω), we can apply Corollary 3.6 to deduce that A has an R-bounded H α calculus for α > d 2 + 2(d -1)d. Note that our derivation order in this functional calculus is worse than the one obtained in [START_REF] Ouhabaz | Analysis of the heat kernel of the Dirichlet-to-Neumann operator[END_REF]Section 7], but since it is R-bounded, it contains square function estimates like

  n j=1 |g j (A)f j | 2   1 2 p n max j=1 g j H α   n j=1 |f j | 2   1 2 p .
Pseudodifferential operators on compact manifolds without boundary. Let Ω be a compact closed (i.e. without boundary) d-dimensional Riemannian C ∞manifold and A a classical, self-adjoint, strongly elliptic pseudodifferential operator on Ω of order 1 such that γ(A) = inf{Re z : z ∈ σ(A)} ≥ 0.

Then according to [START_REF] Gimperlein | Heat kernel estimates for pseudodifferential operators, fractional Laplacians and Dirichlet-to-Neumann operators[END_REF]Theorem 3.14], the semigroup generated by -A has an integral kernel satisfying , see [START_REF] Seeger | Bounds for eigenfunctions of differential operators[END_REF]), but at least, our result includes the R-boundedness of the calculus. 

|k z (x, y)| (cos(θ)) -β e -γ(A)
k z (x, y) (z -e iθ t 0 -s) 2 dzds,
where Γ e iθ t0+s is the contour of the circle centered at e iθ t 0 + s with radius r(cos(θ)t 0 + s), where r > 0 is some small constant determined later on in this proof. The rest of the proof is the rather long task to exploit (3.1) in the above double integral. Let z ∈ Γ e iθ t0+s . Then cos(arg z) ∼ = min(| Re z Im z |, 1) ∼ = min( cos(θ)t0+s sin(θ)t0+s , 1) ∼ = cos(arg(e iθ t 0 + s)) ≥ cos(θ). Also, |z| ∼ = |e iθ t 0 + s|. We divide the integral over s in . . . ds.

1st case: cos(θ)t 0 ≥ s.

We show that

1 + ρ(x, y) 2 [e iθ t 0 + s + re iφ (cos(θ)t 0 + s)] 2 ∼ = 1 + ρ(x, y) 2 (e iθ t 0 ) 2 . (5.1) First note that (5.1) is equivalent to |w l | ∼ = |w r |, where w l = [e iθ t 0 + s + re iφ (cos(θ)t 0 + s)] 2 + ρ(x, y) 2 and w r = (e iθ t 0 ) 2 + ρ(x, y) 2 . We have Re w r = cos(2θ)t 2 0 + ρ(x, y) 2 = -t 2 0 + ρ(x, y) 2 + o( π 2 -|θ|)t 2 0 and | Im w r | ∼ = cos(θ)t 2 0 . This gives |w r | ∼ = | Re w r | + | Im w r | ∼ = |ρ(x, y) 2 -t 2 0 | + cos(θ)t 2 0 . On the other hand, | Im w l | = 2(cos(θ)t 0 +s)(1+r cos(φ))| sin(θ)t 0 +r sin(φ)(cos(θ)t 0 +s)| ∼ = cos(θ)t 2 0 and Re w l = ρ(x, y) 2 -t 2 0 + t 2 0 (1 -sin 2 (θ)) -r 2 sin 2 (φ)(cos(θ)t 0 + s) 2 -2r sin(θ)t 0 sin(φ)(cos(θ)t 0 + s) + (cos(θ)t 0 + s) 2 (1 + r cos(φ)) 2 . This gives | Re w l | ≥ |ρ(x, y) 2 -t 2 0 | -( π 2 -|θ|) 2 + o(( π 2 -|θ|) 2 ) t 2 0 -4r 2 t 2 0 ( π 2 -|θ|) 2 (1 + o(1)) -2r • 2 • ( π 2 -|θ|)t 2 ≥ |ρ(x, y) 2 -t 2 0 | -c 1 ( π 2 -|θ|)t 2 0 ,
where c 1 << 1 is some small constant if r is sufficiently small and |θ| is sufficiently close to 

π 2 . Similarly, | Re w l | ≤ |ρ(x, y) 2 -t 2 0 | + c 1 ( π 2 -|θ|)t 2 0 . Thus, |w l | ∼ = | Re w l | + | Im w l | ∼ = |ρ(x, y) 2 -t 2 0 | + cos(θ)t 2 0 ∼ = |w r |,
(cos(θ)) -β µ(B(x, t 0 )) min(cos(θ)t0,t) 0 1 cos(θ)t 0 |ρ(x, y) 2 -t 2 0 | + cos(θ)t 2 0 -d+1 2 t d+1 0 ds = (cos(θ)) -β µ(B(x, t 0 )) min(cos(θ)t 0 , t) cos(θ)t 0 |1 - ρ(x, y) 2 t 2 0 | + cos(θ) -d+1 2 
.

(5.2) 2nd case: cos(θ)t 0 ≤ s. We show that

1 + ρ(x, y) 2 [e iθ t 0 + s + re iφ (cos(θ)t 0 + s)] 2 1 + ρ(x, y) 2 (s + it 0 ) 2 . ( 5.3) 
Put w l = [e iθ t 0 +s+re iφ (cos(θ)t 0 +s)] 2 +ρ(x, y) 2 and w r = [s+it 0 ] 2 +ρ(x, y) 2 , so that (5.3) ⇐⇒ |w l | |w r |. We have Re w r = s 2t 2 0 + ρ(x, y) 2 and Im w r = 2st 0 . On the other hand, Re w l = [cos(θ)t 0 + s + r cos(φ)(cos(θ)t 0 + s)]

2 -

[sin(θ)t 0 + r sin(φ)(cos(θ)t 0 + s)] 2 + ρ(x, y) 2 , and

| Im w l | = 2 |[cos(θ)t 0 + s + r cos(φ)(cos(θ)t 0 + s)] × × [sin(θ)t 0 + r sin(φ)(cos(θ)t 0 + s)]| ∼ = st 0 , if r < 1 4 . This gives Re w l = cos 2 (θ)t 2 0 + s 2 + r 2 cos 2 (φ)(cos(θ)t 0 + s) 2 + 2s cos(θ)t 0 + 2 • r(cos(θ)t 0 + s) cos(φ)(cos(θ)t 0 + s) -sin 2 (θ)t 2 0 -r 2 sin 2 (φ)(cos(θ)t 0 + s) -2 • r sin(θ)t 0 sin(φ)(cos(θ)t 0 + s) + ρ(x, y) 2 .
Now we distinguish the two cases that st 0 is bigger or smaller than |s 2t 2 0 + ρ(x, y) 2 |. In the first case, we have

|w l | ≥ | Im w l | ∼ = st 0 | Re w r |+| Im w r | ∼ = |w r |.
In the second case, we have with constants c 1 < 1 arbitrarily close to 1 and c 2 > 0 arbitrarily close to 0 if r is sufficiently small, and 

c 3 > 0 such that (cos(θ)) -1 ≤ c 3 ( π 2 -|θ|) -1 | Re w l | ≥ |c 1 s 2 + cos(2θ)t 2 0 + ρ(x, y) 2 | -c 2 t 0 s ≥ |s 2 -t 2 0 + ρ(x, y) 2 | -(1 -c 1 )s 2 -(1 + cos(2θ))t 2 0 -c 2 t 0 s ≥ |s 2 -t 2 0 + ρ(x, y) 2 | -(1 -c 1 )s 2 -(2( π 2 -|θ|) 2 + o(( π 2 -|θ|) 3 ))× × (cos(θ)) -1 c 3 st 0 -c 2 t 0 s ≥ |s 2 -t 2 0 + ρ(x, y) 2 | -st 0 [(1 -c 1 ) + 2c 3 ( π 2 -|θ|) + o(( π 2 -|θ|) 2 ) + c 2 ] |s 2 -t 2 0 + ρ(x, y) 2 |. Thus, |w l | ≥ | Re w l | |s 2 -t 2 0 + ρ(x, y) 2 | + st 0 | Re w r | + | Im w r | ∼ = |w r |.
1 s 1 + ρ(x, y) 2 (s + it 0 ) 2 -d+1 2 
ds.

(5.4) We have

1 + ρ(x, y) 2 (s + it 0 ) 2 -d+1 2 ∼ = |s + it 0 | d+1 |(s + it 0 ) 2 + ρ(x, y) 2 | -d+1 2 ∼ = t d+1 0 max(|s 2 -t 2 0 + ρ(x, y) 2 |, 2st 0 ) -d+1 2 
.

Next we determine the value of the above maximum of two terms. A simple calculation shows that the two terms are the same iff s takes one of the four values s ±,± = ±t 0 ± 2t 2 0ρ(x, y) 2 . We distinguish three cases i) -iii).

Case i) t 2 0 ≥ ρ(x, y) 2 . Then out of s ±,± , only s -,+ = -t 0 + 2t (5.6)

Hereby, the last summand only exists for 2ρ(x, y) 2 /t 2 0 -1 ≤ t/t 0 and if ρ(x, y)/t 0 is so close to 1 that 2ρ(x, y) 2 /t 2 0 -1 ≤ cos(θ) then 2ρ(x, y) 2 /t 2 0 -1 in the last summand has to be replaced by cos(θ). Furthermore, everything before the last summand has to be replaced by 0 if cos(θ) ≥ 2ρ(x, y) 2 /t 2 0 -1.

Case ii) t 2 0 ≤ ρ(x, y) 

where [x] + = max(x, 0). Note that in the last expression above, in the first summand, 1 -2ρ(x, y) 2 /t 2 0 has to be replaced by t/t 0 if t/t 0 ≤ 1 -2ρ(x, y) 2 /t 2 0 . In the second summand, 1 -2ρ(x, y) 2 /t 2 0 has to be replaced by cos(θ) if 1 -2ρ(x, y) 2 /t 2 0 ≤ cos(θ).

Case iii) ρ(x, y) 2 ≥ 2t 2 0 . Then none of s ±,± is real. We always have |s 2t 2 0 + ρ(x, y) (5.8) Summarizing (5.2), (5.5), (5.6), (5.7), (5.8), we finally obtain the claimed estimate of the lemma.

Proof of Lemma 3.4. We start with estimating K := |k e iθ 2 j t0+t (x, y)-k e iθ 2 j t0 (x, y)| for a fixed j ∈ Z such that 2 j t 0 ≥ t, hereby using Lemma 3.3. Write in short R = ρ(x, y) 2 /(2 j t 0 ) 2 . We distinguish the following fifteen cases Iai), Iaii), Iaiii), Iaiv), Iav), Ibi), Ibii), Ic), Idi), Idii), Idiii), Ie), IIa), IIb+c), IId+e), which depend on the values of θ, 2 j t 0 , t and ρ(x, y). Here, case I stands for cos(θ)2 j t 0 ≤ t, case II stands for cos(θ)2 j t 0 ≥ t, case a stands for R ≤ 1cos(θ), b for 1cos(θ) ≤ R ≤ 1, c for 1 ≤ R ≤ 1 + cos(θ), d for 1 + cos(θ) ≤ R ≤ 2 and e for 2 ≤ R.

Case Iai) cos(θ)2 j t 0 ≤ t, R ≤ 1cos(θ) and cos(θ) ≤ √ 2 -R -1 ≤ 1 2 t 2 j t0 . Then with Lemma 3.3,

K

(cos(θ)) -β µ(B(x,

2 j t 0 )) (1 -R) -d+1 2 1 + log 1 2 [ √ 2 -R -1 + cos(θ)] cos(θ) + [ √ 2 -R -1 + cos(θ)] -1 ( √ 1 -R - √ 2 -R + 1) -d-1

  zA) the Poisson semigroup on L p (R d ) for some 1 < p < ∞ and d ∈ N, Corollary 3.6 gives the sharp order of derivation of the classical Hörmander multiplier theorem and strengthens it in that it includes the R-boundedness of spectral multipliers whose associated functions have bounded H α norm.

  αγ rs ξ r ξ s η α η β ] ≥ κ 0 |ξ| 2 |η| 2

Proposition 4 . 1 .

 41 The semigroup in (4.2) is strongly continuous on L p (R d ; C d+1 ) for 1 < p < ∞, has an analytic extension for Re z > 0 and if k z (x, y) = (k z;αγ ) d+1 α,γ=1 (x, y) denotes its (d + 1) × (d + 1) matrix valued integral kernel, then each of its components k z,αγ (x, y) satisfies the Poisson estimate (3.1) with β = 1. Further, the negative generator A of the semigroup has an H ∞ calculus on L 2 (R d ; C d+1 ) and exp(-e iθ tA) B(L 2 (R d ;C d+1 )) (cos(θ)) -1 max(1 + | log(cos(θ))|, (cos(θ)) -d-1

  a modified Bessel function. This immediately gives (4.6). Now we calculate ∂ ∂t F [k 2 t,αγ ](ξ) and distinguish the five cases α = γ = d + 1; α ≤ d and γ = d + 1; α = d + 1 and γ ≤ d; α, γ ≤ d and α = γ; and finally α = γ ≤ d.

2 ,Remark 4 . 3 .

 243 αγ (xy)f γ,j (y)dy and a t (xy) B(ℓ 2 {1,...,d+1}×N ) = sup wα,j : α,j |wα,j| 2 ≤1 so that A t is indeed an approximation of identity in the sense of[START_REF] Mo | Vector-valued Singular Integral Operators with Nonsmooth Kernels and Related Multilinear Commutators[END_REF] Definition 1.1]. If k T (x, y) and k T At (x, y) denote the B(ℓ 2 {1,...,d+1}×N ) valued kernels of T and T A t , then we have in view of the application of[START_REF] Mo | Vector-valued Singular Integral Operators with Nonsmooth Kernels and Related Multilinear Commutators[END_REF] Theorem 2.3], |x-y|≥3t k T (x, y)k T At (x, y) B(ℓ 2 {1,...,d+1}×N ) d+1 sup α,γ=1 |x-y|≥3t sup j∈Z |k e iθ 2 j t0,αγ (xy)k e iθ 2 j t0+t,αγ (xy)|dµ(x).Apply now the Poisson estimate and analyticity of k z,αγ (xy) in z, for fixed α and γ, exactly as in the proof of Theorem 3.2, to deduce (4.7) as wanted. Let us compare Corollary 4.2 with known Hörmander functional calculi for "Lamé operators" in the literature. Let L denote the operator as in (4.1), i.e. Lu = µ∆u + (λ + µ)∇ div u, where u : Ω → R d+1 and Ω ⊂ R d is an open subset satisfying the interior ball condition, i.e. there exists a positive constant c such taht for all x ∈ Ω and all r ∈ (0,1 2 diam(Ω)), µ(B(x, r)) ≥ cr d .Let further A denote the negative generator of the semigroup in (4.2), so that if Ω = R d , for functions u : R d+1 + → C d+1 and f ∈ L p (R d ; C d+1 ), we have Lu = 0, u| n.t.

5 .

 5 Proofs of Lemmas 3.3 and 3.4 Proof of Lemma 3.3. Since k z (x, y) is analytic in z, one has |k e iθ t0+t (x, y)k e iθ t0 (x, y)| ≤ t 0 ∂ ∂s k e iθ t0+s (x, y) ds ≤

t 0 .

 0 . . ds = min(cos(θ)t0,t) 0 . . . ds + t min(cos(θ)t0,t)

  The order of this calculus is worse than what is known in the literature for this kind of operator (α > d 2

	Re z 2 d + 11. If Ω satisfies (2.2), then this estimate |z| ((ρ(x, y)+|z|) -d +1) (Re z > 0) ρ(x, y) + |z| with θ = arg z and β = 7 readily gives (3.1). Thus if Ω also satisfies (2.3), we can appeal to Corollary
	3.6 and deduce that A has an R-bounded H α calculus for α > d 2 + 7 2 d + 11 on L p (Ω), 1 < p < ∞.

  This shows (5.3). It follows that if cos(θ)t 0 ≤ t, then

	t cos(θ)t0	∂ ∂s	k e iθ t0+s (x, y) ds	(cos(θ)) -β µ(B(x, t 0 ))	t cos(θ)t0

  2 0ρ(x, y) 2 lies in [0, t 0 ]. If s ≤ s -,+ , then |s 2t 2 0 + ρ(x, y) 2 | ≥ 2st 0 and if s ≥ s -,+ , then |s 2t 2 0 + ρ(x, y) 2 | ≤ 2st 0 . Now dividethe integral in (5.4) accordingly. We get The last integral above, with lower and upper bound abbreviated by a and b, can be further estimated by

			b/t0 a/t0		1 -	ρ(x, y) 2 t 2 0	-d+1 4	1 ( 1 -ρ(x,y) 2 t 2 0	-s)	d+1 2	ds s	.
	Case ia) Then the term after the integral in (5.5) can be simplified to 1 √ 2-ρ(x,y) 2 /t 2 0 -1 ≥ 2t 0 /t.
				2 -	ρ(x, y) 2 t 2 0	-1	-d+1 2	∼ = 1 -	ρ(x, y) 2 t 2 0	-d+1 2	∼ = 1 -	ρ(x, y) t 0	2 -d+1	.
	Case ib) Then we obtain 1 √ 2-ρ(x,y) 2 /t 2 0 -1	≤ 2t 0 /t.
	t cos(θ)t0		∂ ∂s	k e iθ t0+s (x, y) ds
	(cos(θ)) -β µ(B(x, t 0 ))	    	(1 -	ρ(x, y) 2 t 2 0	) -d+1 4	  	1 -	ρ(x, y) 2 t 2 0	-d+1 2	×
	× log	1 2 [ 2 -ρ(x, y) 2 /t 2 0 -1 + cos(θ)] cos(θ)	+ [ 2 -ρ(x, y) 2 /t 2 0 -1 + cos(θ)] -1 ×
	t cos(θ)t0    1 -(cos(θ)) -β ∂ ρ(x, y) 2 k e iθ t0+s (x, y) ds t 2 0 -2 -ρ(x, y) 2 t 2 0 ∂s µ(B(x, t 0 )) t0( √ 2-ρ(x,y) 2 /t 2 0 -1) cos(θ)t0 1 s t d+1 + 1 0 |s 2 -t 2 -d-1 2 0 + ρ(x, y) 2 | -d+1 2 ds -1 -ρ(x, y) 2 t 2 0 -1 2 2 -ρ(x, y) 2 t 2 0 + 1 2   -d-1 2 cos(θ)   -2  
	+ ∼ = +	(cos(θ)) -β µ(B(x, t 0 )) (cos(θ)) -β µ(B(x, t 0 )) t t 0 -2 -	t t0( cos(θ)t0 √ 2-ρ(x,y) 2 /t 2 0 -1) t0( √ 2-ρ(x,y) 2 /t 2 0 -1) 1 s t d+1 0 s [( t 2 (st 0 ) -d+1 2 ds 0 -ρ(x, y) 2 -s)× 1 ρ(x, y) 2 t 2 0 + 1 1 -ρ(x, y) 2 0 t 2 2 -d+3 .
	×( t 2 0 -ρ(x, y) 2 + s)] -d+1 2 t d+1 0	ds +	2 -	ρ(x, y) 2 t 2 0	-1	-d+1 2	-(t 0 /t)	d+1 2	    	.
												(5.5)
	a	b	1 s	t d+1 0	(t 2 0 -ρ(x, y) 2 ) -d+1 4	1 0 -ρ(x, y) 2 -s) ( t 2	d+1 2	+	1 0 -ρ(x, y) 2 + s) ( t 2	2 d+1	ds

  2 ≤ 2t 2 0 . Then only s +,-lies in [0, t 0 ]. If s ≤ s +,-, then |s 2t 2 0 + ρ(x, y) 2 | ≥ 2st 0 and if s ≥ s +,-, then |s 2t 2 0 + ρ(x, y) 2 | ≤ 2st 0 .Then we obtain

	(cos(θ)) -β µ(B(x, t 0 ))		t0(1-cos(θ)t0 √ 2-ρ(x,y) 2 /t 2 0 )	[s 2 -t 2 0 + ρ(x, y) 2 ] -d+1 2 t d+1 0	ds s
	+	t t0(1-	√ 2-ρ(x,y) 2 /t 2 0 )	t d+1 0	2 (st 0 ) -d+1	ds s
	∼ =	(cos(θ)) -β µ(B(x, t 0 ))	log	1 -2 -ρ(x, y) 2 /t 2 0 cos(θ)	+	ρ(x, y) 2 t 2 0	-1	-d+1 2
	+ 1 -2 -ρ(x, y) 2 /t 2 0	-d+1 2	-(t/t 0 ) -d+1 2	+	,
	t cos(θ)t0	∂ ∂s	k e iθ t0+s (x, y) ds

  2 | ≥ 2st 0 .

	Then we obtain					
	t cos(θ)t0	∂ ∂s	k e iθ t0+s (x, y) ds	(cos(θ)) -β µ(B(x, t 0 ))	t cos(θ)t0	t d+1 0	|s 2 -t 2 0 + ρ(x, y) 2 | -d+1 2	ds s
	(cos(θ)) -β µ(B(x, t 0 ))	log	t t 0 cos(θ) +	ρ(x, y) 2 t 2 0	-1	2 -d+1	.

Case Ie) cos(θ)2 j t 0 ≤ t and R ≥ 2.
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Case Iaii) cos(θ)2 j t 0 ≤ t, R ≤ 1cos(θ) and max(cos(θ),

Case Iaiii) cos(θ)2 j t 0 ≤ t, R ≤ 1cos(θ) and max(cos(θ), t

Case Iaiv) cos(θ)2 j t 0 ≤ t, R ≤ 1cos(θ) and 1 2 t

Case Iav) cos(θ)2 j t 0 ≤ t, R ≤ 1-cos(θ) and √ 2 -R-1 ≤ min(cos(θ), 1 2 t 2 j t0 ).

In this case, we have

In this case, we have 0

Case IIb+c) cos(θ)2 j t 0 ≥ t and 1cos(θ) ≤ R ≤ 1 + cos(θ).

Case IId+e) cos(θ)2 j t 0 ≥ t and R ≥ 1 + cos(θ).

Now we want to prove part 1. of the lemma, i.e. to estimate sup j∈Z:

in the case that |ρ(x, y) 2 /(2 l t 0 ) 2 -1| ≤ cos(θ) for some l ≤ L max . We claim that in (5.9), the supremum is essentially attained for j = l, more precisely, that (5.9) can be estimated by the above estimate for j = l (which has to be in one of the four cases I or II, b or c). For j < l, we have ρ(x,y) 2 (2 j t0) 2 = ρ(x,y) 2 (2 l t0) 2 2 2l-2j ≥ (1cos(θ)) • 4, so that case e applies. We note again R = ρ(x,y) 2

(2 j t0) 2 , and moreover K j = |k e iθ 2 j t0+t (x, y)k e iθ 2 j t0 (x, y)|, and M l the right hand side of the estimate obtained for K l . Note that since j < l < L max , we have µ(B(x, 2 j t 0 )) ∼ = (2 j t 0 ) d by (2.2). For cos(θ)2 j t 0 ≤ t, we have by case Ie),

, which is true, since 2 j-l ≤ 1 and log t 2 j t0 ≤ 0.

For cos(θ)2 j t 0 ≥ t, we have by case IIe),

This is indeed majorized by M l , since cos(θ)2 l t 0 ≥ t, and thus,

For j > l, we have ρ(x,y) 2 (2 j t0)

In case Iaii),

In case Iaiii), K j

Cases Iaiv) and Iav) cannot appear here, since

Looking up M l in the four cases I or II, b or c, now yields part 1. of the lemma. Now for the proof of part 2. Suppose first that 1 + cos(θ) ≤ ρ(x,y) 2

(2 l t0) 2 ≤ 2. Then M l is given by one of the four cases Idi),Idii),Idiii) and IId). We will show that sup j∈Z:

, the logarithmic term only appearing in case Idii).

Suppose first that M l is given by case Idi). Consider a j < l. Then ρ(x,y) 2

(2 j t0) 2 = ρ(x,y) 2

(2 l t0) 2 • 2 2l-2j ≥ 4, so that for K j , case Ie) or IIe) applies. In fact, one is never in the case IIe), since then cos(θ)2 l t 0 ≤ t, cos(θ)2 j t 0 ≥ t and j < l. In case Ie), we have

.

On the other hand,

An elementary calculation shows that the minimum of the right hand side for 1 + cos(θ) ≤ ρ(x,y) 2 (2 l t0) 2 ≤ 2 is equivalent to 1 + | log(cos(θ))|. Thus K j M l for j < l. Now consider j > l. Then ρ(x,y) 2

(2 j t0) 2 = ρ(x,y) 2 (2 l t0) 2 2 2l-2j ≤ 1 2 , so that case a) applies for K j . Now we have 1

With this, we obtain easily in case Iai) that K j

In case Iaii), we also have K j (cos(θ)) -β µ(B(x,2 j t0)) (1+| log(cos(θ))|) M l , and the cases Iaiii), Iaiv) and Iav) can be handled in the same way. In case IIa), we have K j

Now suppose that M l is given by case Idii). Take first a j < l. Then ρ(x, y) 2 /(2 j t 0 ) 2 ≥ 4, so that for K j , case e) applies. In case Ie), we have

Again, case IIe) cannot appear since then, cos(θ)2 l t 0 ≤ t, cos(θ)2 j t 0 ≥ t and j < l. Now consider a j > l. We have ρ(x, y) 2 /(2 j t 0 ) 2 ≤ 1 2 , so that case a) applies for the estimate of K j . In case Iai), we have K j

The same estimate holds in the cases Iaii) and Iaiii). In case Iaiv), we have K j

M l , and similarly, also in the cases, Iav) and IIa), K j M l holds. We thus have

Suppose now that M l is given by case Idiii). Then

2 . Consider a j < l. Again, for the estimate of K j , case e) applies, and case IIe) is ruled out by the constraints on j and l. We have as above

Consider now a j > l. Again ρ(x, y) 2 /(2 j t 0 ) 2 ≤ 1 2 , so that for K j , case a) applies, and again, several expressions involving R appearing in this case are equivalent to 1. This gives in case Iai), Iaii) and Iaiii), K j

M l , and in case Iaiv) and Iav), K j (cos(θ)) -β µ(B(x,2 l t0))

M l . In case IIa), we have K j (cos(θ)) -β µ(B(x,2 l t0)) t cos(θ)2 j t0 M l . Thus sup j:2 j t0≥t K j M l if M l is given by case Idiii).

Suppose now that M l is given by case IId). Then

Consider j < l, so that for K j , the estimate in case e) applies. In case Ie), we have

In case IIe), we have

Consider now j > l, so that for K j , the estimate in case a) applies. The cases Iai) -Iav) cannot appear due to restrictions on j, l and cos(θ)t 0 /t similar as before. In case IIa), we have K j (cos(θ)) -β µ(B(x,2 j t0)) t cos(θ)2 j t0 (cos(θ)) -β µ(B(x,2 l t0)) M l . Thus sup j:2 j t0≥t K j M l if M l is given by case IId). We have proved part 2. of the lemma. Now for the proof of part 3. of the lemma. We proceed similarly as before. The expression M l is given by one of the six cases Iai) -Iav) or IIa). Suppose first that case Iai) applies. Consider j < l. Then R ≥ 2, so that for K j , case e) applies. In case Ie), we have

Case IIe) cannot appear. Now consider j > l. Then for K j , case a) applies. As several times before, diverse terms in R are equivalent to 1. In cases Iai), Iaii) and Iaiii), we have K j

M l , and in case IIa), we have K j

Suppose that M l is given by case Iaii). Consider a j < l. Then K j is estimated by case Ie), and we have K j (cos(θ)) -β (2 l t 0 ) -d (1 + | log(cos(θ))|). Consider a j > l. Then K j is estimated by case a), and we have K j (cos(θ)) -β µ(B(x,2 l t0)) (1 + | log(cos(θ))|). Thus, if M l is given by Iaii), we have again sup j:2 j t0≥t K j M l + (cos(θ)) -β µ(B(x,2 l t0)) (1 + | log(cos(θ))|).

Similarly, we obtain in the cases that M l is given by Iaiii), Iaiv) or Iav) that sup j:2 j t0≥t K j M l + (cos(θ)) -β µ(B(x,2 l t0)) (1 + | log(cos(θ))|).

If M l is given by IIa), we have M l = (cos(θ)) -β µ(B(x,2 l t0)) t cos(θ)2 l t0 1 -ρ(x,y) 2

(2 l t0) 2

Consider a j < l. Then R ≥ 2, so that case Ie) or IIe) applies for K j . In case Ie), we have K j (cos(θ)) -β (2 j t 0 ) -d (2 j t 0 ) d+1 (2 l t 0 ) d+1 1 + log t 2 j t 0 cos(θ) (cos(θ)) -β (2 l t 0 ) -d 2 j-l 1 + log t 2 j t 0 cos(θ) M l .

In case IIe), we have K j (2 l t 0 ) -d 2 j-l t cos(θ)2 j t0 M l . Consider now a j > l. Then for K j , case a) applies. Cases Iai) -Iav) cannot occur due to restrictions on j, l and cos(θ)t 0 /t as several times before. In case IIa), we have K j (cos(θ)) -β µ(B(x,2 j t0)) t cos(θ)2 j t0 (cos(θ)) -β µ(B(x,2 l t0)) t cos(θ)2 l t0 M l . Thus if M l is given by IIa), we have sup j:2 j t0≥t K j M l .