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Hörmander Functional Calculus for Poisson
Estimates

Christoph Kriegler

Abstract. The aim of the article is to show a Hörmander spectral multi-
plier theorem for an operator A whose kernel of the semigroup exp(−zA)
satisfies certain Poisson estimates for complex times z. Here exp(−zA)
acts on Lp(Ω), 1 < p < ∞, where Ω is a space of homogeneous type with
the additional conditions that the volume of balls grows polynomially of
exponent d and the measure of annuli is controlled by the correspond-
ing euclidean term. In most of the known Hörmander type theorems in
the literature, Gaussian bounds and self-adjointness for the semigroup
are needed, whereas here the new feature is that the assumptions are
the to some extent weaker Poisson bounds, and H∞ calculus in place
of self-adjointness. The order of derivation in our Hörmander multiplier
result is typically d

2
, d being the dimension of the space Ω. Moreover

the functional calculus resulting from our Hörmander theorem is shown
to be R-bounded. Finally, the result is applied to some examples.

Mathematics Subject Classification (2010). 42A45, 47A60, 47D03.

Keywords. Functional calculus, Hörmander Type Spectral Multiplier
Theorems, Spaces of homogeneous type, Poisson Semigroup.

1. Introduction

Let f be a bounded function on (0,∞) and u(f) the operator on Lp(Rd)

defined by [u(f)g ]̂ (ξ) = f(|ξ|2)ĝ(ξ). Hörmander’s theorem on Fourier multi-
pliers [9, Theorem 2.5] asserts that u(f) : Lp(Rd) → Lp(Rd) is bounded for
any p ∈ (1,∞) provided that for some integer N strictly larger than d

2

sup
R>0

∫ 2R

R/2

∣

∣

∣tkf (k)(t)
∣

∣

∣

2 dt

t
<∞ (k = 0, . . . , N). (1.1)

This theorem has many generalisations to similar contexts, for example
to elliptic and sub-elliptic differential operators A, including sublaplacians on
Lie groups of polynomial growth, Schrödinger operators and elliptic operators
on Riemannian manifolds [5]: Note first that the above u(f) equals f(−∆),
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the functional calculus of the self-adjoint positive operator −∆. Now for
a self-adjoint operator A, a Hörmander theorem states that the operator
f(A) extends boundedly to Lp(Ω), 1 < p < ∞ for any function f satisfying
(1.1) with suitable N. In most of the proofs for a Hörmander theorem in the
literature, the assumption of so called Gaussian bounds plays a crucial role.
That means the following. Suppose that A acts on Lp(Ω), 1 < p <∞, where
(Ω, µ, ρ) is a space of homogeneous type. Then the semigroup (exp(−tA))t≥0

generated by A has an integral kernel kt(x, y) such that

|kt(x, y)| ≤ Cµ(B(y,
√
t))−1 exp

(

−cρ(x, y)
2

t

)

(t > 0, x, y ∈ Ω). (1.2)

This hypothesis includes many elliptic differential operators. However there
are operators such that the integral kernel of the semigroup satisfies only
weaker estimates, see e.g. [8, 15, 19]. Establishing a Hörmander theorem for
these operators is the issue of the present article. More precisely, let Ω be a
space of homogeneous type with the additional properties that the volume of
balls grows polynomially of exponent d > 0 and that the measure of annuli
is controlled by (a constant times) the corresponding euclidean term, see
(2.2) and (2.3) for a precise definition. Let further A act on Lp(Ω) such that
(exp(−zA))Re z>0 has an integral kernel kz(x, y) such that

|kz(x, y)| ≤ C(cos arg z)−β 1

µ(B(x, |z|))
1

|1 + ρ(x,y)2

z2 | d+1

2

(Re z > 0, x, y ∈ Ω)

(1.3)
holds for some C, β ≥ 0. If Ω = Rd and β = 0, the right hand side of this
estimate is (a constant times) the absolute value of the complex Poisson ker-
nel which obviously decays slower as ρ(x, y) → ∞ than the Gaussian kernel
above. Under a further hypothesis on the homogeneous space Ω, see (2.2)
and (2.3) below, and the presence of an H∞ calculus of A on L2(Ω), we
obtain a Hörmander theorem of the order N > d

2 + β for operators A satis-
fying the above estimate. The proof relies on the behaviour of the semigroup
exp(−zA) generated by A when the complex parameter z approaches the
imaginary axis. Here simple norm estimates are not sufficient but R-bounds
of the semigroup are needed. Our method does not need self-adjointness of
A. This is new compared to most of the spectral multiplier results in the
literature. In particular, we give a non-self-adjoint example of a Lamé op-
erator to which our main result applies. Note also that Gaussian estimates
as in (1.2) and self-adjointness in general yield only a Mihlin calculus [18,
Theorem 7.23], i.e. bounded spectral multipliers f(A) for f satisfying

max
0≤k≤N

|tkf (k)(t)| <∞,

andN > d
2 , whereas we show that complex Poisson estimates give a Hörmander

functional calculus, i.e. f(A) is bounded for f satisfying (1.1) with N > d
2 , if

β = 0 in (1.3). This yields better estimates for the Bochner-Riesz means
(1 − A/λ)ν+ on Lp(Ω), see the discussion in the introduction of [5]. The
difficulty in assumption (1.3) is to show an estimate for complex times z,
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something that for Gaussian estimates one gets somehow for free out of an
estimate like (1.2) and self-adjointness.

In Section 2 we will introduce the necessary background and cite a the-
orem which allows to pass from R-bounds on the semigroup to a Hörmander
functional calculus. In Section 3 we state and prove the main result, Theorem
3.2 and Corollary 3.6 of this article. In Section 4, an application to a concrete
operator is given, for which a Hörmander theorem was previously unknown,
and two further examples entering our context are discussed. Finally, in Sec-
tion 5, two proofs of technical lemmas are annexed.

2. Preliminaries

In this section, we provide the necessary background for the Main Section 3.
Let ω ∈ (0, π). A densely defined and closed operatorA on Lp(Ω), 1 < p <∞,
is called ω-sectorial if σ(A) ⊂ Σω where Σω = {z ∈ C∗ : | arg z| < ω},
and ‖λ(λ − A)−1‖ ≤ Cθ for any λ ∈ Σθ

c
and any θ ∈ (ω, π). For an

ω-sectorial operator A and a function f ∈ H∞
0 (Σθ) = {g : Σθ → C :

g analytic and bounded, ∃ C, ǫ > 0 : |g(z)| ≤ Cmin(|z|ǫ, |z|−ǫ)} where
0 < ω < θ < π, one defines the operator f(A) by

f(A)x =
1

2πi

∫

Γ

f(λ)(λ −A)−1xdλ.

Here, Γ is the boundary of Σω+θ
2

oriented counterclockwise. This definition

coincides with the self-adjoint calculus if applicable. If there is a constant
C > 0 such that ‖f(A)‖ ≤ C sup| arg z|<θ |f(z)| for any f ∈ H∞

0 (Σθ), then A

is said to have a bounded H∞(Σθ) calculus, or just bounded H∞ calculus.
Let φ0 ∈ C∞

c (12 , 2) and for n ∈ Z put φn = φ0(2
−n·). We can and do assume

that
∑

n∈Z
φn(t) = 1 for any t > 0 [1, Lemma 6.1.7]. Now define

Hα = {f : [0,∞) → C : ‖f‖Hα = |f(0)|+ sup
n∈Z

‖(φnf) ◦ exp ‖Wα
2
(R) <∞},

whereWα
2 (R) is the usual Sobolev space. For α > 1

2 , the spaceHα is a Banach
algebra endowed with the norm ‖ · ‖Hα . This class refines condition (1.1) in
the sense that f ∈ Hα =⇒ f satisfies (1.1) for α > N and the converse holds
for α < N. If ‖f(A)‖ ≤ C‖f‖Hα for any f ∈ ⋂

ω>0H
∞
0 (Σω) ∩ Hα, then

there exists a bounded homomorphism Hα → B(Lp(Ω)), f 7→ f(A), and A
is said to have a bounded Hα calculus. If A is moreover self-adjoint on L2(Ω)
then for f ∈ Hα ⊆ L∞(R+) for some α > 1

2 , f(A) is defined twice, but one
can show that the definition from the H∞ calculus plus density in Hα and
the definition from the self-adjoint spectral calculus coincide. In particular,
our notion of Hα calculus is the same as in most of the definitions in the
literature.

Let (ǫn)n∈N be a sequence of independent random variables such that
Prob(ǫn = 1) = Prob(ǫn = −1) = 1

2 , i.e. a sequence of independent Rademach-
er variables. Let X be a Banach space. A subset τ ⊂ B(X) is called R-
bounded if there exists a constant C > 0 such that for any choice of finite
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families T1, . . . , Tn ∈ τ and x1, . . . , xn ∈ X, one has



E

∥

∥

∥

∥

∥

n
∑

k=1

ǫkTkxk

∥

∥

∥

∥

∥

2

X





1
2

≤ C



E

∥

∥

∥

∥

∥

n
∑

k=1

ǫkxk

∥

∥

∥

∥

∥

2

X





1
2

.

The least possible constant is denoted by R(τ), and R(τ) = ∞, if no such con-
stant is admitted. Any R-bounded set τ is norm bounded, i.e. supT∈τ ‖T ‖ ≤
R(τ), but the converse is false in general. If X = Lp, 1 ≤ p <∞, then

(

E

∥

∥

∥

∥

∥

n
∑

k=1

ǫkxk

∥

∥

∥

∥

∥

X

)
1
2

∼=

∥

∥

∥

∥

∥

∥

(

n
∑

k=1

|xk|2
)

1
2

∥

∥

∥

∥

∥

∥

p

(2.1)

uniformly in n and x1, . . . , xn. A linear mapping u : Y → B(X), where Y
is a further Banach space is called R-bounded if R(u(y) : ‖y‖Y ≤ 1) < ∞.
The following proposition gives a condition on the semigroup generated by a
sectorial operator A so that A has a Hβ calculus.

Proposition 2.1. Let A be an ω-sectorial operator for any ω > 0 defined on
an Lp space for some 1 < p < ∞, and let A have a bounded H∞ calculus.
Suppose that for some α > 0 the set {exp(−eiθ2ktA) : k ∈ Z} is R-bounded

for any t > 0 and |θ| < π
2 , with R-bound . (cos(θ))

−α
. Then for any β >

α+ 1
2 , A has a bounded Hβ calculus. Moreover, this calculus is an R-bounded

mapping.

Proof. This is proved in the case that A has dense range in [11, Lemma 4.72
and Proposition 4.79], see also [12]. This proof for which we give a sketch
applies also here. First one deduces from the assumption of R-boundedness
of the semigroup that

{(1 + |t|)−α(1 + 2kA)−α exp(i2ktA) : t ∈ R}
is R-bounded with R-bound independent of t ∈ R. Then for g ∈ C∞

c (0,∞) a
representation formula of g(2kA)(1 + 2kA)−α is available, namely

g(2kA)(1+2kA)−αx =
1

2π

∫

R

ĝ(t)(1+|t|)β(1+|t|)−β(1+2kA)−α exp(i2ktA)xdt.

If β > α + 1
2 , then (1 + |t|)−β‖(1 + 2kA)−α exp(i2ktA)‖ is dominated by a

function in L2(R), and if g belongs toW β
2 (R) then also ĝ(t)(1+ |t|)β ∈ L2(R).

In fact, more can be said. By [10, Proposition 4.1, Remark 4.2], the set

{g(2kA)(1 + 2kA)−α : g ∈ C∞
c (0,∞), ‖g‖Wβ

2
(R) ≤ 1, k ∈ Z}

is R-bounded. Next one gets rid of the factor (1 + 2kA)−α above by using
a function ψ(λ) = (1 + λ)αφ(λ) where φ ∈ C∞

c (0,∞) and φ(λ) = 1 for
λ ∈ [ 12 , 2]. The hypotheses of the proposition imply that {ψ(2kA) : k ∈ Z} is
R-bounded. Then

{g(2kA) : g ∈ C∞
c (0,∞), supp g ⊂ [

1

2
, 2], ‖g‖Wβ

2
(R) ≤ 1, k ∈ Z}
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is R-bounded. The hypotheses imply moreover that there holds the following
equivalences of Paley-Littlewood type:

‖f‖p ∼=

∥

∥

∥

∥

∥

∥

(

∑

k∈Z

|φ(2kA)f |2
)

1
2

∥

∥

∥

∥

∥

∥

p

∼=

∥

∥

∥

∥

∥

∥

(

∑

k∈Z

|φ̃(2kA)φ(2kA)f |2
)

1
2

∥

∥

∥

∥

∥

∥

p

for a function φ ∈ C∞
c (0,∞), φ not vanishing identically zero, suppφ ⊂ [ 12 , 2]

and φ̃ = φ(2−1·) + φ + φ(2·). Then one can show that g(A) is bounded for
‖g‖Hβ <∞ :

‖g(A)f‖p ∼=

∥

∥

∥

∥

∥

∥

(

∑

k∈Z

|φ̃(2kA)g(A)φ(2kA)f |2
)

1
2

∥

∥

∥

∥

∥

∥

p

∼=

∥

∥

∥

∥

∥

∥

(

∑

k

|φ̃g(2−k·)(2kA)φ(2kA)f |2
)

1
2

∥

∥

∥

∥

∥

∥

p

. R({φ̃g(2−k·) : k ∈ Z})

∥

∥

∥

∥

∥

∥

(

∑

k∈Z

|φ(2kA)f |2
)

1
2

∥

∥

∥

∥

∥

∥

p

. ‖g‖Hβ‖f‖p.
Thus {g(A) : ‖g‖Hβ ≤ 1} is a bounded subset of B(Lp). In a similar manner
to the calculation right above, using the fact that Lp has Pisier’s property
(α), one shows that this set is moreover R-bounded. �

The space Ω on which the operator A acts will be a space of homoge-
neous type. This means that (Ω, ρ) is a metric space endowed with a nonneg-
ative Borel measure µ which satisfies the doubling condition: There exists a
constant C > 0 such that for all x ∈ Ω and r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)) <∞,

where we set B(x, r) = {y ∈ Ω : ρ(x, y) < r}. Note that the doubling
condition implies the following strong homogeneity property: There exists
C > 0 and a dimension d > 0 such that for all λ ≥ 1, for all x ∈ Ω and all
r > 0 we have µ(B(x, λr)) ≤ Cλdµ(B(x, r)). We will assume that the space
of homogeneous type (Ω, µ, ρ) has the following two additional properties

µ(B(x, r)) ∼= rd if diam(Ω) = ∞,

µ(B(x, r)) ∼= min(rd, 1) if diam(Ω) <∞ (2.2)

and

µ(B(x, r, R)) ≤ C(Rd − rd) (x ∈ Ω, R > r > 0) if diam(Ω) = ∞,

µ(B(x, r, R)) ≤ C(R − r)min(Rd−1, 1) (x ∈ Ω, R > r >
1

2
R > 0) if diam(Ω) <∞

(2.3)
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where we denote diam(Ω) = sup{ρ(x, y) : x, y ∈ Ω} and B(x, r, R) =
B(x,R)\B(x, r). Note that if (2.2) holds, then diam(Ω) < ∞ if and only
if µ(Ω) <∞.

3. The Main Theorem

We let (Ω, µ, ρ) be a space of homogeneous type with the additional properties
(2.2) and (2.3). We further let Tz = exp(−zA) be a semigroup on L2(Ω) with
the properties: The generator A has a bounded H∞(Σω) calculus for some
ω ∈ (0, π) on L2(Ω), and Tz has an integral kernel kz(x, y) for Re z > 0 i.e.
(Tzf)(x) =

∫

Ω
kz(x, y)f(y)dµ(y) for any f ∈ L2(Ω). We assume that

|kz(x, y)| ≤ C(cos arg z)−β 1

µ(B(x, |z|))
1

|1 + ρ(x,y)2

z2 | d+1

2

(z ∈ C+, x, y ∈ Ω).

(3.1)

Proposition 3.1. Let (Ω, µ, ρ) be a space of homogeneous type satisfying (2.2)
and (2.3) and Tt = exp(−tA) a semigroup which acts on all Lp(Ω), 1 < p <
∞. Assume that Tz is analytic on L2(Ω) on z ∈ C+ = {λ ∈ C : Reλ > 0}
and bounded on each subsector Σω for ω ∈ (0, π2 ), and that Tz has an integral
kernel which satisfies (3.1). Assume moreover that A has a bounded H∞(Σω)
calculus on L2(Ω) for some ω ∈ (0, π), which is the case e.g. when A is self-
adjoint. Then the operator A has an H∞(Σω) calculus on Lp(Ω) for any
ω ∈ (0, π) and 1 < p <∞.

Proof. The proposition follows from [6, Theorem 3.1]. Indeed, let θ ∈ (0, π2 ).
The kernel kz(x, y) satisfies on z ∈ Σθ the bound

|kz(x, y)| .
(cos arg z)−β

µ(B(x, |z|))
1

∣

∣

∣

∣

1 +
(

ρ(x,y)
z

)2
∣

∣

∣

∣

d+1

2

.θ µ(B(x, |Re z|))−1

(

1 +

(

ρ(x, y)

Re z

)2
)− d+1

2

since |z| ∼= Re z for z ∈ Σθ and |1+
(

ρ(x,y)
Re z

)2

| ≤ 1+
∣

∣

∣

ρ(x,y)
Re z

∣

∣

∣

2

. 1+
∣

∣

∣

ρ(x,y)
z

∣

∣

∣

2

.
∣

∣

∣

∣

1 +
(

ρ(x,y)
z

)2
∣

∣

∣

∣

. Then with Gt given by [6, (7)] and g(x) = c(1+x2)−
d+1

2 , we

can deduce from [6, Theorem 3.1] that A has a bounded H∞(Σω) calculus
on Lp(Ω) for any p ∈ (1,∞) and ω > π

2 − θ. �

The following is the main theorem of this article.

Theorem 3.2. Let (Ω, µ, ρ) be a space of homogeneous type satisfying (2.2)
and (2.3) and Tt = exp(−tA) a semigroup which acts on all Lp(Ω), 1 < p <
∞. Assume that Tz is analytic on L

2(Ω) on z ∈ C+ and that Tz has an integral
kernel which satisfies (3.1). Assume that for z ∈ C+, ‖ exp(−zA)‖B(L2(Ω)) .
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(cos(arg z))−
d−1

2
−β(1 + | log(cos(arg z))|)2, which is the case e.g. when A is

self-adjoint. Then the semigroup exp(−zA) satisfies on X = Lp(Ω) for any
1 < p <∞ the R-bound estimate

R
(

exp(−eiθ2jtA) : j ∈ Z
)

. (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2.

For the proof of the theorem, we state two preliminary lemmas.

Lemma 3.3. Let kz(x, y) be analytic in z ∈ C+ and satisfy (3.1). Let θ ∈
(−π

2 ,
π
2 ) with |θ| sufficiently close to π

2 and 0 < t < t0 < ∞. Then one has
the estimate

|keiθt0+t(x, y)− keiθt0(x, y)| .

(cos(θ))−β

µ(B(x, t0))

min(cos(θ)t0, t)

cos(θ)t0

[∣

∣

∣

∣

1− ρ(x, y)2

t20

∣

∣

∣

∣

+ cos(θ)

]− d+1

2

+



























(5.5) : t20 ≥ ρ(x, y)2 and 1√
2−ρ(x,y)2/t2

0
−1

≥ 2t0/t

(5.6) : t20 ≥ ρ(x, y)2 and 1√
2−ρ(x,y)2/t2

0
−1

≤ 2t0/t

(5.7) : t20 ≤ ρ(x, y)2 ≤ 2t20
(5.8) : ρ(x, y)2 ≥ 2t20,

where (5.5), (5.6), (5.7), (5.8) can be found in the proof of this lemma in
Section 5.

Lemma 3.4. Let (Ω, µ, ρ) be a space of homogeneous type satisfying (2.2). Let
kz(x, y) be analytic in z ∈ C+ and satisfy (3.1). Let t > 0, t0 ∈ [1, 2], l ∈ Z

with l ≤ Lmax = max{j ∈ Z : 2jt0 ≤ diam(Ω)} + 1 ≤ ∞, θ ∈ (−π
2 ,

π
2 ) with

|θ| sufficiently close to π
2 and x, y ∈ Ω such that ρ(x, y) ≥ 3t.

1. If |ρ(x,y)
2

(2lt0)2
− 1| ≤ cos(θ), then

sup
j∈Z:2jt0≥t

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)| .

1

µ(B(x, 2lt0))

min(cos(θ)2lt0, t)

cos(θ)2lt0
(cos(θ))−

d+1

2
−β .

2. If ρ(x,y)2

(2lt0)2
∈ [1 + cos(θ), 2], then with r = ρ(x, y)2/(2lt0)

2,

sup
j∈Z:2jt0≥t

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)| .
(cos(θ))−β

µ(B(x, 2lt0))
×
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×































































(r − 1)−
d+1

2

(

1 + log 1−
√
2−r

cos(θ)

)

+
(

1−
√
2− r

)− d+1

2 −
(

t
2lt0

)− d+1

2

,

if cos(θ) ≤ 1−
√
2− r ≤ t

2lt0
;

(r − 1)
− d+1

2

(

1 + log t
2lt0 cos(θ)

)

+ | log cos(θ)|,
if cos(θ) ≤ t

2lt0
≤ 1−

√
2− r;

(cos(θ))−
d+1

2 , if 1−
√
2− r ≤ cos(θ) ≤ t

2lt0
; and

t
cos(θ)2lt0

(r − 1)
− d+1

2 , if cos(θ) ≥ t
2lt0

.

3. If ρ(x,y)2

(2lt0)2
∈ [ 12 , 1− cos(θ)], then with r = ρ(x, y)2/(2lt0)

2,

sup
j∈Z:2jt0≥t

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)| .
(cos(θ))−β

µ(B(x, 2lt0))
×

×











































































































































(1− r)−
d+1

2

(

1 + log 1−r
cos(θ)

)

+ (1− r)−
d+1

4
−1×

×
[

(
√
1− r −

√
2− r + 1)−

d−1

2 − (
√
1− r − 1

2

√
2− r + 1

2 − cos(θ)
2 )−

d−1

2

]

+| log(cos(θ))|, if cos(θ) ≤
√
2− r − 1 ≤ 1

2
t

2lt0
;

(1− r)−
d+1

2

(

1 + log 1−r
cos(θ)

)

+ (1− r)−
d+1

4
−1×

×
[

(
√
1− r −

√
2− r + 1)−

d−1

2 − (
√
1− r − 1

2

√
2− r + 1

2 − cos(θ)
2 )−

d−1

2

]

+( t
2lt0

−
√
2− r + 1)(1− r)−

d+3

2 + | log(cos(θ))|,
if max(cos(θ), 12

t
2lt0

) ≤
√
2− r − 1 ≤ t

2lt0
;

(1− r)−
d+1

2 (1 + log r−1
cos(θ) ) + (1 − r)−

d+1

4
−1×

×
[

(
√
1− r −

√
2− r + 1)−

d+1

2 − (
√
1− r − 1

2

√
2− r + 1

2 − cos(θ)
2 )−

d−1

2

]

+| log(cos(θ))|, if cos(θ) ≤ t
2lt0

≤
√
2− r − 1;

(1− r)−
d+1

2 + ( t
2lt0

−
√
2− r + 1)(1− r)−

d+3

2 + | log(cos(θ))|,
if 1

2
t

2lt0
≤

√
2−R− 1 ≤ cos(θ) ≤ t

2lt0
;

(1− r)−
d+1

2 + | log(cos(θ))|,
if
√
2− r − 1 ≤ min(cos(θ), 12

t
2lt0

) and cos(θ) ≤ t
2lt0

;
t

cos(θ)2lt0
(1− r)−

d+1

2 if cos(θ) ≥ t
2lt0

.

The proofs of Lemmas 3.3 and 3.4 are technical and dereferred to Section
5 due to their length.

Proof of Theorem 3.2. Let θ ∈ (−π
2 ,

π
2 ), j ∈ Z, t0 ∈ [1, 2] and x, y ∈ Ω. Write

in short Tj = exp(−eiθ2jt0A). Recall that {Tj : j ∈ Z} is R-bounded on
Lp(Ω) with R-bound C <∞, if

∥

∥

∥

∥

∥

∥

∥





∑

j∈F

|Tjfj|2




1
2

∥

∥

∥

∥

∥

∥

∥

Lp(Ω)

≤ C

∥

∥

∥

∥

∥

∥

∥





∑

j∈F

|fj|2




1
2

∥

∥

∥

∥

∥

∥

∥

Lp(Ω)
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for any finite index set F ⊆ Z and fj ∈ Lp(Ω), j ∈ F. To prove the
theorem, it thus suffices to show that
∥

∥

∥

∥

∥

T :

{

Lp(Ω, ℓ2(F )) → Lp(Ω, ℓ2(F ))

(fj)j∈F 7→ (Tjfj)j∈F

∥

∥

∥

∥

∥

. (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2

(3.2)
independently of F. To show this, we apply the boundedness criterion for
singular integral operators with non-smooth kernels [4, Theorem 1] in its
vector-valued version [16, Theorem 2.3]. Note that the standing assump-
tion in [16] that µ(Ω) = ∞ is not needed in [16, Theorem 2.3]. First note
that L2(Ω, ℓ2(F )) = ℓ2(F,L2(Ω)) isometrically, so that for p = 2, ‖T ‖ ≤
supj∈Z ‖Tj‖B(L2(Ω)) and that the assumption of the theorem gives that T :

L2(Ω, ℓ2(F )) → L2(Ω, ℓ2(F )) has the norm bound in (3.2). To conclude, it
suffices to show that T is a vector-valued singular integral operator with
non-smooth kernel in the sense of [16, Definition 2.1]. We choose the approx-
imation to identity At = A′

t = ((fj)j∈F 7→ (exp(−tA)fj)j∈F ). Note that
(1.4), (1.5) and (1.6) in [16] are satisfied for this choice due to the Poisson
estimate (3.1) and the volume control (2.2). Note that T −A′

tT = T − TAt :
(fj)j∈F 7→ ((Tj − Tj exp(−tA))fj)j∈F , that this operator has the B(ℓ2(F ))-
valued kernel with entry keiθ2j t0(x, y)−keiθ2j t0+t(x, y) on the diagonal, so that
its B(ℓ2(F ))-norm is controlled by supj∈Z |keiθ2j t0(x, y)−keiθ2jt0+t(x, y)|. By
[16, Definition 2.1 (i) and (ii)], we are reduced to show that

∫

ρ(x,y)≥3t

sup
j∈Z

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)|dµ(x) .

(cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2 (y ∈ Ω, t > 0). (3.3)

At first, we estimate the above integral by
∫

ρ(x,y)≥3t

sup
j: 2jt0≤t

| . . . |dµ(x) +
∫

ρ(x,y)≥3t

sup
j: 2jt0≥t

| . . . |dµ(x)

and start by estimating the first integral. Estimate crudely |keiθ2j t0+t(x, y)−
keiθ2jt0(x, y)| ≤ |keiθ2jt0+t(x, y)| + |keiθ2jt0(x, y)| and consider both sum-

mands separately. For ρ(x, y) ≥ 3t ≥ 3
22

jt0 +
3
2 t, we have |1 + ρ(x,y)2

(eiθ2jt0+t)2
| ∼=

ρ(x,y)2

|eiθ2jt0+t|2 . Thus,
∫

ρ(x,y)≥3t

sup
j: 2jt0≤t

|keiθ2jt0+t(x, y)|dµ(x)

.

∫

ρ(x,y)≥3t

sup
j: 2jt0≤t

(cos(θ))−β

µ(B(x, |eiθ2jt0 + t|))
|eiθ2jt0 + t|d+1

ρ(x, y)d+1
dµ(x)

.

∫

ρ(x,y)≥3t

sup
j: 2jt0≤t

(cos(θ))−β

µ(B(x, t))

td+1

ρ(x, y)d+1
dµ(x)

.

∞
∑

k=0

∫

B(y,3t·2k,3t·2k+1)

(cos(θ))−β

µ(B(x, t))
2−k(d+1)dµ(x)
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.

∞
∑

k=0

Mk
∑

n=1

∫

B(yk
n,t)

(cos(θ))−β

µ(B(x, t))
2−k(d+1)dµ(x)

.

∞
∑

k=0

2kd2−k(d+1)(cos(θ))−β . (cos(θ))−β ,

where B(y, 3t ·20, 3t ·20+1) should be replaced by B(y, 3t ·2), and we used the
two well-known facts on spaces of homogeneous type that B(y, 3t·2k, 3t·2k+1)
can be covered byMk

∼= 2kd ballsB(ykn, t) and that supy∈Ω

∫

B(y,t)
1

µ(B(x,t))dµ(x)
∼=

1. Note that if µ(Ω) <∞, then the above sum over k was finite.

Furthermore, for ρ(x, y) ≥ 3t ≥ 3 ·2jt0, we have |1+ ρ(x,y)2

(eiθ2jt0)2
| ∼= ρ(x,y)2

(2jt0)2
.

Thus, similarly to the above calculation, with Mk .
(

t·2k
2jt0

)d

this time,

∫

ρ(x,y)≥3t

sup
j: 2jt0≤t

|keiθ2jt0(x, y)|dµ(x)

.
∑

j: 2jt0≤t

∫

ρ(x,y)≥3t

(cos(θ))−β

µ(B(x, 2jt0))

(2jt0)
d+1

ρ(x, y)d+1
dµ(x)

.
∑

j: 2jt0≤t

∞
∑

k=0

∫

B(y,3t·2k,3t·2k+1)

(cos(θ))−β

µ(B(x, 2jt0))

(2jt0)
d+1

(3t · 2k)d+1
dµ(x)

.
∑

j: 2jt0≤t

∞
∑

k=0

Mk
∑

n=1

∫

B(yk
n,2

jt0)

(cos(θ))−β

µ(B(x, 2jt0))

(2jt0)
d+1

(3t · 2k)d+1
dµ(x)

.
∑

j: 2jt0≤t

∞
∑

k=0

(cos(θ))−β t
d2kd

2jdtd0

2j(d+1)td+1
0

td+12kd2k

.
∑

j: 2jt0≤t

∞
∑

k=0

(cos(θ))−βt−12−k2jt0 . (cos(θ))−β .

To conclude (3.3), it now suffices to show
∫

ρ(x,y)≥3t

sup
j: 2j t0≥t

|keiθ2j t0+t(x, y)− keiθ2jt0(x, y)|dµ(x) .

(cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2 (y ∈ Ω, t > 0). (3.4)

To this end, we use the estimates from Lemma 3.4. Therefore, as a first step,
we divide the integral in (3.4) into

∫

ρ(x,y)≥3t

≤
Lmax
∑

l=Lmin

∫

|ρ(x,y)2/(2lt0)2−1|≤cos(θ)

+

Lmax
∑

l=Lmin

∫

ρ(x,y)2/(2lt0)2∈[1+cos(θ),2]

+

Lmax
∑

l=Lmin

∫

ρ(x,y)2/(2lt0)2∈[ 1
2
,1−cos(θ)]

=:

Lmax
∑

l=Lmin

I1 + I2 + I3,
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where Lmin = min{l ∈ Z : 2lt0 ≥ 3

2
√

1−cos(θ)
t} and Lmax = max{l ∈ Z :

2lt0 ≤ diam(Ω)} + 1. For I1, we have by Lemma 3.4 1. and the volume
control (2.3),

∫

|ρ(x,y)2/(2lt0)2−1|≤cos(θ)

sup
j: 2jt0≥t

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)|dµ(x)

.

∫

...

1

µ(B(x, 2lt0))

min(cos(θ)2lt0, t)

cos(θ)2lt0
(cos(θ))−

d+1

2
−βdµ(x)

. 2ld cos(θ)2−ldmin(cos(θ)2lt0, t)

cos(θ)2lt0
(cos(θ))−

d+1

2
−β

∼= min(cos(θ)2lt0, t)

cos(θ)2lt0
(cos(θ))−

d−1

2
−β .

Now summing over l, we obtain

Lmax
∑

l=Lmin

min(cos(θ)2lt0, t)

cos(θ)2lt0
(cos(θ))−

d−1

2
−β

. (cos(θ))−
d−1

2
−β

(

∫ (cos(θ))−1

1

dx

x
+

∫ ∞

(cos(θ))−1

(cos(θ))−1x−1 dx

x

)

∼= (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|).

Now for I2.We distinguish the cases I) (cos(θ)2lt0 ≤ t) and II) (cos(θ)2lt0 ≥
t). In case I), we decompose I2 into three integrals according to Lemma 3.4
2. We write r = ρ(x, y)2/(2lt0)

2.

I2 ≤
∫

cos(θ)≤1−
√
2−r≤ t

2lt0
,1+cos(θ)≤r≤2

+

∫

cos(θ)≤ t

2lt0
≤1−

√
2−r

+

∫

1−
√
2−r≤cos(θ)≤ t

2lt0

=: I12 + I22 + I32 .

Then by the volume condition (2.3) and Lemma 3.4 2.,

I12 .

∫

cos(θ)≤1−
√
2−r≤ t

2lt0
,1+cos(θ)≤r≤2

(cos(θ))−β(r − 1)−
d+1

2

(

1 + log
r − 1

cos(θ)

)

r
d
2
dr

r

. (cos(θ))−β

∫ 2

1+cos(θ)

(r − 1)−
d+1

2

(

1 + log
r − 1

cos(θ)

)

dr

. (cos(θ))−
d−1

2
−β

(

1 + max
cos(θ)≤r≤1

log
r

cos(θ)

)

∼= (cos(θ))−
d−1

2
−β(1 + | log(cos θ)|).

Further,

I22 . (cos(θ))−β

∫

1+cos(θ)≤r≤2, t

2lt0
≤1−

√
2−r

(

(r − 1)−
d+1

2

(

1 + log
t

2lt0 cos(θ)

)

+| log(cos(θ))|) r d
2
dr

r
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. (cos(θ))−β

(

∫ 2

1+cos(θ)

(r − 1)−
d+1

2 dr(1 + log
t

2lt0
+ | log(cos(θ))|) + | log(cos(θ))|

)

. (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|),

due to t
2lt0

≤ 1−
√
2− r ≤ r − 1 ≤ 1 in this case. Finally,

I32 . (cos(θ))−β

∫

1−
√
2−r≤cos(θ),1+cos(θ)≤r≤2

(cos(θ))−
d+1

2 r
d
2
dr

r

. (cos(θ))−
d+1

2
−β

∫ 1+2 cos(θ)

1+cos(θ)

r
d
2
dr

r

∼= (cos(θ))−
d−1

2
−β,

where we have used that 1
2 (r − 1) ≤ 1 −

√
2− r, and thus r − 1 ≤ 2(1 −√

2− r) ≤ 2 cos(θ). Now summing up the three estimates, we get I2 .

(cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|), and thus, as for

∑Lmax

l=Lmin
I1, we deduce

∑Lmax

l=Lmin
I2 . (cos(θ))−

d−1

2
−β(1 + | log(cos(θ))|)2. In case II), we have by the

volume condition (2.3) and Lemma 3.4 2.,

I2 ∼= (cos(θ))−β t

cos(θ)2lt0

∫ 2

1+cos(θ)

(r − 1)−
d+1

2 r
d
2
dr

r

∼= (cos(θ))−β t

cos(θ)2lt0

[

−(r − 1)−
d−1

2

]2

1+cos(θ)
. (cos(θ))−

d−1

2
−β t

cos(θ)2lt0
.

Now summing over those l with cos(θ)2lt0 ≥ t, we obtain
∑

l: cos(θ)2lt0≥t I2 .

(cos(θ))−
d−1

2
−β
∫ 1

0
xdx

x = (cos(θ))−
d−1

2
−β.

It remains to estimate I3, for which we use part 3. of Lemma 3.4. Again
we distinguish the cases I) (cos(θ)2lt0 ≤ t) and II) (cos(θ)2lt0 ≥ t). In case I),

we decompose I3 .
∫ (cos(θ))−β

µ(B(x,2lt0))
(1+| log(cos(θ))|)dµ(x)+

∫

remainder dµ(x).

The first term is estimated by
∫

ρ(x,y)2/(2lt0)2∈[ 1
2
,1−cos(θ)]

(cos(θ))−β

µ(B(x, 2lt0))
(1 + | log(cos(θ))|)dµ(x)

.

∫ 1−cos(θ)

1
2

(cos(θ))−β(1 + | log(cos(θ))|)r d
2
dr

r

∼= (cos(θ))−β(1 + | log(cos(θ))|).
The remainder is decomposed into the following five integrals corresponding
to the first five cases in Lemma 3.4 3. We write again r = ρ(x, y)2/(2lt0)

2.
∫

1
2
≤r≤1−cos(θ),cos(θ)≤

√
2−r−1≤ 1

2
t

2lt0

+

∫

1
2
≤r≤1−cos(θ),max(cos(θ), 1

2
t

2lt0
)≤

√
2−r−1≤ t

2lt0

+

∫

1
2
≤r≤1−cos(θ),cos(θ)≤ t

2lt0
≤
√
2−r−1

+

∫

1
2
≤r≤1−cos(θ), 1

2
t

2lt0
≤
√
2−r−1≤cos(θ)≤ t

2lt0
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+

∫

1
2
≤r≤1−cos(θ),

√
2−r−1≤min(cos(θ), 1

2
t

2lt0

=: I13 + I23 + I33 + I43 + I53 .

We estimate the five integrals separately. For I13 , we have

(cos(θ))βI13 .

∫

1
2
≤r≤1−cos(θ),cos(θ)≤1−r≤1

2
1√
2−1

t

2lt0

(1− r)−
d+1

2 (1 + log
1− r

cos(θ)
)r

d
2
dr

r

+

∫

1
2
≤r≤1−cos(θ),cos(θ)≤

√
2−r−1≤ 1

2
t

2lt0

(1 − r)−
d+1

4
−1×

× (1 − r)(
√
1− r − (

√
2− r − 1))−

d+1

2 r
d
2
dr

r

. (cos(θ))−
d−1

2 (1 + | log(cos(θ))|) +
∫ 1−cos(θ)

1
2

(1− r)−
d+1

4
−1+1− d+1

4 dr

. (cos(θ))−
d−1

2 (1 + | log(cos(θ))|) + (cos(θ))−
d−1

2 ,

where we have used the mean value theorem to estimate

(
√
1− r − (

√
2− r − 1))−

d−1

2 − (
√
1− r − 1

2
(
√
2− r − 1)− cos(θ)

2
)−

d−1

2 .

(1− r)(
√
1− r − (

√
2− r − 1))−

d+1

2 .

For I23 , we have

(cos(θ))βI23 .

∫

1
2
≤r≤1−(cos(θ)),max(cos(θ), 1

2
t

2lt0
)≤

√
2−r−1≤ t

2lt0
{

1st term + 2nd term + (
t

2lt0
−
√
2− r + 1)(1− r)−

d+3

2

}

r
d
2
dr

r
,

where the 1st and 2nd term are given in Lemma 3.4 3., and can be controlled

as in I13 by (cos(θ))−
d−1

2 (1 + | log(cos(θ))|). The third term, we estimate by

.

∫

1
2
≤r≤1−cos(θ),max(cos(θ), 1

2
t

2lt0
≤
√
2−r−1≤ t

2lt0

(
t

2lt0
− (

√
2− r − 1))(1 − r)−

d+3

2 dr

.

∫

1
2
≤r≤1−cos(θ)

(1− r)(1 − r)−
d+3

2 dr . (cos(θ))−
d−1

2 .

For I33 , we apply exactly the same estimate as for I13 , to get (cos(θ))βI33 .

(cos(θ))−
d−1

2 (1 + | log(cos(θ))|), too. For I43 , we have again with 1st, 2nd and
3rd term given in the estimate in Lemma 3.4 3.,

(cos(θ))βI43 .

∫

1
2
≤r≤1−cos(θ), 1

2
t

2lt0
≤
√
2−r−1≤cos(θ)≤ t

2lt0

{

1st term + 2nd term + 3rd term
}

r
d
2
dr

r
.

The 1st and 2nd term can be controlled as in I13 , whereas the 3rd term can

be controlled as in I23 . We get (cos(θ))βI43 . (cos(θ))−
d−1

2 (1 + | log(cos(θ))|).
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Eventually, we estimate I53 by

(cos(θ))βI53 .

∫

1
2
≤r≤1−cos(θ),

√
2−r−1≤min(cos(θ), 1

2
t

2lt0
)

(1− r)−
d+1

2 r
d
2
dr

r

. (cos(θ))−
d−1

2 .

Now summing up we obtain as for I2,
∑Lmax

l=Lmin
I3 ≤∑Lmax

l=Lmin
I13 + I23 +

I33 + I43 + I53 . (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2.

In case II), we have

(cos(θ))βI3 .

∫

1
2
≤r≤1−cos(θ)

t

cos(θ)2lt0
(1 − r)−

d+1

2 r
d
2
dr

r

.
t

cos(θ)2lt0
(cos(θ))−

d−1

2 .

Summing over l with cos(θ)2lt0 ≥ t, we obtain as for I2,
∑

l: cos(θ)2lt0≥t I3 .

(cos(θ))−
d−1

2
−β .

We have shown that
Lmax
∑

l=Lmin

I1 + I2 + I3 . (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2,

and thus (3.4) and hence the theorem follows. �

Remark 3.5. We have proved in Theorem 3.2 that the semigroup is R-
bounded when taking dyadic arguments of the form eiθ2jt0, t0 ∈ [1, 2] fixed.
It is unclear whether one gets also an R-bounded set when this argument
is replaced by a continuous variant, i.e. if R(exp(−eiθt0A) : t0 > 0) .

(cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2 holds under the same hypotheses as in

Theorem 3.2, and at least the above proof does not seem to work. By the
method in [14, Last part of 2.16 Example], which passes from dyadic argu-
ments to continuous ones, one only gets a cruder estimate for the continuous
variant involving an additional factor (cos(θ))−2.

Corollary 3.6. Let (Ω, µ, ρ) be a space of homogeneous type of either finite or
infinite measure, satisfying (2.2) and (2.3). Let Tt = exp(−tA) a semigroup
which acts on all Lp(Ω), 1 < p <∞. Assume that Tz is analytic on L2(Ω) on
z ∈ C+ and that Tz has an integral kernel kz(x, y) which satisfies the Poisson
estimate

|kreiθ (x, y)| ≤ C(cos(θ))−β 1

µ(B(x, r))

1
∣

∣

∣1 +
ρ(x,y)2

(reiθ)2

∣

∣

∣

d+1

2

for any x, y ∈ Ω, r > 0, θ ∈ (−π
2 ,

π
2 ) and some C, β ≥ 0. Assume moreover

that A has a bounded H∞(Σω) calculus on L2(Ω) for some ω ∈ (0, π), and
that for r > 0, θ ∈ (−π

2 ,
π
2 ),

‖ exp(−reiθA)‖B(L2(Ω)) ≤ C(cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2,
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both of which are satisfied e.g. when A is self-adjoint. Then A has a bounded
Hα calculus on Lp(Ω) for any 1 < p <∞ and α > d

2 . Moreover this calculus
is an R-bounded mapping, i.e.

R(f(A) : ‖f‖Hα ≤ 1) <∞.

Proof. This follows immediately from Propositions 2.1, 3.1 and Theorem 3.2.
�

4. Examples

In this section, we want to give some applications of Theorem 3.2 and Corol-

lary 3.6. Note first that in the most classical example, namely A = (−∆)
1
2 and

exp(−zA) the Poisson semigroup on Lp(Rd) for some 1 < p <∞ and d ∈ N,
Corollary 3.6 gives the sharp order of derivation of the classical Hörmander
multiplier theorem and strengthens it in that it includes the R-boundedness
of spectral multipliers whose associated functions have bounded Hα norm.

For a generalization, we consider the situation in [15]. Let M be a pos-
itive integer. Consider the constant coefficient second order, M ×M system,
differential operator

Lu =

M
∑

γ=1

d+1
∑

r,s=1

(∂r(a
αγ
rs ∂suβ))1≤α≤M ,

where aαβrs are real coefficients for r, s = 1, . . . , d + 1 and α, γ = 1, . . . ,M.

Here, u is a function defined on the upper half space R
d+1
+ = Rd × [0,∞).

Further, we assume as in [15] the ellipticity condition

M
∑

α,γ=1

d+1
∑

r,s=1

Re [aαγrs ξrξsηαηβ ] ≥ κ0|ξ|2|η|2

for every (ξr)1≤r≤d+1 ∈ Rd+1, (ηα)1≤α≤M ∈ CM and some κ0 > 0. Then in

[15] the following Dirichlet problem on R
d+1
+ is considered:

{

Lu = 0 in R
d+1
+

u|n.t.
∂Rd+1

+

= f ∈ Lp(Rd;CM ),

where ∂Rd+1
+ = Rd×{0}, n.t.means non-tangential trace of u, and f is a given

function in Lp(Rd;CM ), 1 < p <∞. If Adis
L 6= ∅, a certain condition, see [15,

(3.12)], which will be satisfied in our example, then this problem is well-posed
in Lp(Rd;CM ) [15, Theorem 4.1], so it possesses a unique solution u. As more-
over the coefficients defining L are constant, we have ∂r[u(· + (0, t))]|·=x =
(∂ru)(x + (0, t)), so that the expression Ttf(x) := u(x, t), x ∈ R

d, t ≥ 0
defines a semigroup on Lp(Rd;CM ). In the sequel, we are interested in the
Hörmander functional calculus of the negative generator of that semigroup.
Note that for some cases, this semigroup is given by a convolution kernel. We
now restrict to the following specific example.
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Lamé system of elasticity. Assume thatM = d+1 above. The so-called Lamé
operator in Rd+1 has the form

Lu = µ∆u+ (λ+ µ)∇ div u, u = (u1, . . . , ud+1), (4.1)

where the constants λ, µ ∈ R (typically called Lamé moduli) are assumed
to satisfy µ > 0 and 2µ + λ > 0. Then according to [15, Theorem 5.2],
Ttf(x) = u(x, t) is given by

(Ttf)α(x) =
4µ

3µ+ λ

1

ωd

∫

Rd

t

(|x− y|2 + t2)
d+1

2

fα(y)dy

+
µ+ λ

3µ+ λ

2(d+ 1)

ωd

d+1
∑

γ=1

∫

Rd

t(x− y, t))α(x− y, t)γ

(|x− y|2 + t2)
d+3

2

fγ(y)dy (α = 1, . . . , d+ 1),

(4.2)

where ωd is the area of the unit sphere Sd in Rd+1, and (x− y, t)α = xα − yα
if α ∈ {1, . . . , d} and (x− y, t)d+1 = t.

Proposition 4.1. The semigroup in (4.2) is strongly continuous on Lp(Rd;Cd+1)
for 1 < p < ∞, has an analytic extension for Re z > 0 and if kz(x, y) =

(kz;αγ)
d+1
α,γ=1(x, y) denotes its (d+ 1)× (d+ 1) matrix valued integral kernel,

then each of its components kz,αγ(x, y) satisfies the Poisson estimate (3.1)
with β = 1. Further, the negative generator A of the semigroup has an H∞

calculus on L2(Rd;Cd+1) and

‖ exp(−eiθtA)‖B(L2(Rd;Cd+1)) . (cos(θ))−1 max(1 + | log(cos(θ))|, (cos(θ))− d−1

2 )

. (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2

for t > 0 and |θ| < π
2 .

Proof. For the strong continuity of the semigroup, we show first that supt>0

‖Tt‖Lp(Rd;Cd+1)→Lp(R;Cd+1) < ∞. As Tt is given by a linear combination of

convolutions, we have ‖Tt‖p→p .
∫

Rd
t

(|y|2+t2)
d+1
2

dy +
∫

Rd t
|y|2+t2

(|y|2+t2)
d+3
2

dy =

2
∫

Rd
1

(|y/t|2+1)
d+1
2

dy
td
, which is clearly bounded independently of t > 0. Thus

it suffices to show the strong continuity ‖Ttf − f‖p → 0 as t → 0 for f
belonging to the dense subset of continuous functions with compact support.
In the following calculation, we use that the kernel kt(x, y) of Tt satisfies
∫

R
kt(x, y)dy = 1Md+1

, since Tt1ℓ2
d+1

= 1ℓ2
d+1

is the unique solution of the

Dirichlet problem with constant initial value, and we use Jensen’s inequality.

‖Ttf − f‖pp ∼=
d+1
∑

α=1

∫

Rd

∣

∣

∣

∣

∣

∫

Rd

c1
t

(|y|2 + t2)
d+1

2

fα(x− y)dy

+

d+1
∑

γ=1

∫

Rd

c2t
(y, t)α(y, t)γ

(|y|2 + t2)
d+3

2

fγ(x− y)dy − fα(x)

∣

∣

∣

∣

∣

p

dx
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=

d+1
∑

α=1

∫

Rd

∣

∣

∣

∣

∣

∫

Rd

c1
t

(|y|2 + t2)
d+1

2

[fα(x− y)− fα(x)]dy

+

d+1
∑

γ=1

∫

Rd

c2t
(y, t)α(y, t)γ

(|y|2 + t2)
d+3

2

[fγ(x− y)dy − fγ(x)]dy

∣

∣

∣

∣

∣

p

dx

.

d+1
∑

α=1

∫

Rd

{

c1t

∫

Rd

1

(|y|2 + t2)
d+1

2

|fα(x− y)− fα(x)|pdy

+c2t

d+1
∑

γ=1

∫

Rd

|(y, t)α(y, t)γ |
(|y|2 + t2)

d+3

2

|fγ(x− y)− fγ(x)|pdy
}

dx

=

d+1
∑

α=1

∫

Rd

{

c1

∫

Rd

1

(|y|2 + 1)
d+1

2

|fα(x− ty)− fα(x)|pdy

+c2

d+1
∑

γ=1

∫

Rd

|(y, 1)α(y, 1)γ |
(|y|2 + 1)

d+3

2

|fγ(x− ty)− fγ(x)|pdy
}

dx

∼=
∑

α

∫

|x|≤R

∫

Rd

. . . dy +
∑

γ

∫

Rd

. . . dydx+

∫

|x|≥R

∫

Rd

. . . dy +
∑

γ

∫

Rd

. . . dydx.

Now choose first ǫ > 0 and R >> 1 sufficiently large. Then there exists t0 <<
1 such that |fα(x− ty)−fα(x)|p < ǫ

µ(B(0,R)) for t ≤ t0 and α ∈ {1, . . . , d+1}.
Thus the integral over |x| ≤ R is . ǫ. Let supp f ⊂ B(0, r). Then the integral
over |x| ≥ R is .

∫

|y|≥1/t0(R−r)
1

(|y|2+1)
d+1
2

2p‖f‖ppdy → 0 as R → ∞.We have

proved the strong continuity of the semigroup.

For the analyticity, extend the definition of Tt from (4.2) by replac-
ing t > 0 by a complex z with Re z > 0 everywhere. Clearly, (4.2) is an
analytic expression in t, so that we get an analytic family Tz. The claimed
B(L2(Rd;Cd+1)) estimate of Tz follows from the integral kernel estimate of

z

(|·|2+z2)
d+1
2

, which is shown in [7, p. 348] and gives the estimate for the

first expression in (4.2), and also for the second expression by the pointwise

estimate
|z(y,z)α(y,z)γ |
||y|2+z2|

d+3
2

≤ (cos(arg z))−1 |z|
||y|2+z2|

d+1
2

, which is shown in the

following.

Now for the claimed Poisson estimate (3.1) with β = 1. Fix some α, γ ∈
{1, . . . , d+ 1}. We have by (4.2),

kz,αγ(x, y) = c1δα=γ
z

(|x− y|2 + z2)
d+1

2

+ c2
z(x− y, z)α(x− y, z)γ

(|x− y|2 + z2)
d+3

2

. (4.3)

Clearly, the first summand admits the complex Poisson estimate (3.1) even
with β = 0. For the second summand, it clearly suffices to show that |(x, z)α(x, z)γ | .
(cos(θ))−1

∣

∣|x|2 + z2
∣

∣ , where arg z = θ. We distinguish the four cases α, γ ≤
d; α, γ = d + 1; α ≤ d, γ = d + 1 and α = d + 1, γ ≤ d. Suppose first
α, γ ≤ d. If |x|2 ≥ 2|z|2, then |xαxγ | ≤ 1

2 (x
2
α + x2γ) ≤ 1

2 |x|2 .
∣

∣|x|2 + z2
∣

∣ . If
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|x|2 ≤ 1
2 |z|2, then |xαxγ | ≤ 1

2 |x|2 ≤ 1
4 |z|2 ≤ 1

2 (|z|2 − |x|2) ≤ 1
2

∣

∣z2 + |x|2
∣

∣ . If
1
2 |z|2 ≤ |x|2 ≤ 2|z|2, then

|xαxγ | cos(θ) . cos(θ)|z|2 ≤ |z|2 cos(θ) +
∣

∣|z|2(cos2(θ) − sin2(θ) + |x|2
∣

∣

∼= |2(Re z)(Im z)|+
∣

∣(Re z)2 − (Im z)2 + |x|2
∣

∣

= | Im(z2)|+
∣

∣Re(z2) + |x|2
∣

∣ ∼=
∣

∣z2 + |x|2
∣

∣ .

The other three cases can be treated in the same manner.

We now show that the negative generator A of Tt has a bounded H∞

calculus on L2(Rd;Cd+1). According to [3, Theorem 2.4], it suffices to show
that both

∫ ∞

0

t‖Ae−tAf‖22dt . ‖f‖22 and

∫ ∞

0

t‖A′e−tA′
f‖22dt . ‖f‖22 (4.4)

hold. We have with F denoting the Fourier transform, using the Plancherel
formula and Fubini,

∫ ∞

0

t‖Ae−tAf‖2L2(Rd;Cd+1)dt =

∫ ∞

0

d+1
∑

α=1

t

∥

∥

∥

∥

∂

∂t
(e−tAf)α

∥

∥

∥

∥

2

L2(Rd)

dt

=

∫ ∞

0

d+1
∑

α=1

t

∥

∥

∥

∥

∥

d+1
∑

γ=1

∂

∂t
kt,αγ ∗ fγ

∥

∥

∥

∥

∥

2

2

dt

=

∫ ∞

0

d+1
∑

α=1

t

∥

∥

∥

∥

∥

d+1
∑

γ=1

∂

∂t
F [kt,αγ ] · F [fγ ]

∥

∥

∥

∥

∥

2

2

dt

.

d+1
∑

α,γ=1

∫

Rd

|F [fγ ](ξ)|2
∫ ∞

0

t

∣

∣

∣

∣

∂

∂t
F [kt,αγ ](ξ)

∣

∣

∣

∣

2

dtdξ.

For the first estimate in (4.4), it thus suffices to show that

∫ ∞

0

t

∣

∣

∣

∣

∂

∂t
F [kt,αγ ](ξ)

∣

∣

∣

∣

2

dt . 1 (4.5)

independently of ξ ∈ R
d. We decompose kt,αγ = k1t,αγ + k2t,αγ into the two

summands according to (4.3). For the first summand, we have F [k1t,αγ(ξ)] =

c1δα=γe
−t|ξ|. Thus,

∫ ∞

0

t

∣

∣

∣

∣

∂

∂t
F [k1t,αγ ](ξ)

∣

∣

∣

∣

2

dt = c21δα=γ

∫ ∞

0

t|ξ|2e−2t|ξ|dt

= c21δα=γ

∫ ∞

0

te−2tdt <∞.

Next we claim that

F

[

x 7→ t

(|x|2 + t2)
d+3

2

]

(ξ) = cd
|ξ|
t
e−t|ξ|(1 +

1

t|ξ| ), (4.6)
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from which we shall easily deduce F [k2t,αγ ](ξ). First note that the function
which we Fourier transform in (4.6) is invariant under rotation, so also its
Fourier transform is. Thus we can assume that ξ = (ξ1, 0, . . . , 0) with ξ1 ≥ 0
and we get (l.h.s. of (4.6)) = c1

∫

R
. . .
∫

R

t

(x2
1
+x2

2
+...+x2

d
+t2)

d+3
2

e−ix1ξ1dx2 . . . dxddx1.

Note that
∫

R

t
(x2+s2)a dx = ca

t

(s2)a− 1
2

for any a > 1
2 , so that by induc-

tion, we get by [17, p. 202], (l.h.s. of (4.6)) = c′d
∫

R

t
(x2

1
+t2)2

e−ix1ξ1dx1 =

c′d2t
√
πΓ(2)−1

(

ξ1
2t

)
3
2

K 3
2
(tξ1), where K 3

2
(x) =

√

π
2xe

−x(1 + 1
x ) is a modified

Bessel function. This immediately gives (4.6). Now we calculate ∂
∂tF [k

2
t,αγ ](ξ)

and distinguish the five cases α = γ = d+1; α ≤ d and γ = d+1; α = d+1
and γ ≤ d; α, γ ≤ d and α 6= γ; and finally α = γ ≤ d.

If α = γ = d + 1, then ∂
∂tF [k

2
t,αγ ](ξ) = cd

∂
∂t

(

t|ξ|e−t|ξ|(1 + 1
t|ξ| )

)

=

cde
−t|ξ|(−t|ξ|2). Thus,

∫∞
0
t
∣

∣

∂
∂tF [k

2
t,αγ ](ξ)

∣

∣

2
dt = cd

∫∞
0
t2|ξ|2e−2t|ξ|(−t|ξ|)2 dt

t <

∞ independently of |ξ|. If α ≤ d and γ = d + 1, then ∂
∂tF [k

2
t,αγ ](ξ) =

cdi
∂
∂t

∂
∂ξα

(

|ξ|e−t|ξ|(1 + 1
t|ξ|)

)

= cdie
−t|ξ|(tξα|ξ|−ξα). Thus,

∫∞
0
t
∣

∣

∂
∂tF [k

2
t,αγ ](ξ)

∣

∣

2
dt =

cd
∫∞
0 e−t(t2 ξα

|ξ| − t ξα|ξ| )
2 dt

t < ∞ independently of ξ. If α = d + 1 and γ ≤ d,

one obtains the same as above, roles of α and γ interchanged. If α, γ ≤
d and α 6= γ, we have ∂

∂tF [k
2
t,αγ ](ξ) = −cd ∂

∂t
∂

∂ξα
∂

∂ξγ
(e−t|ξ|( |ξ|t + 1

t2 )) =

−cde−t|ξ|(−tξαξγ+ ξαξγ
|ξ| ). Thus,

∫∞
0 t

∣

∣

∂
∂tF [k

2
t,αγ ](ξ)

∣

∣

2
dt = cd

∫∞
0 e−2t(−t2 ξαξγ

|ξ|2 +

t
ξαξγ
|ξ|2 )2 dt

t <∞ independently of ξ. If finally α = γ ≤ d, then ∂
∂tF [k

2
t,αγ ](ξ) =

−cde−t|ξ|(−tξ2α + |ξ|+ ξ2α
ξ ), and again

∫∞
0
t
∣

∣

∂
∂tF [k

2
t,αγ ](ξ)

∣

∣

2
dt < ∞ indepen-

dently of ξ.
We have shown the first inequality in (4.4). The second one follows by

the same proof, there are only signs without further impact which change.
This shows that A has an H∞ calculus. �

Corollary 4.2. Let A be the negative generator of the Lamé semigroup given
in (4.2) on Lp(Rd;Cd+1) for some 1 < p <∞. Then A has an Hα calculus for
any α > d

2 +1.Moreover, {f(A) : ‖f‖Hα ≤ 1} is R-bounded on Lp(Rd;Cd+1)
for these α.

Proof. The corollary follows immediately from Propositions 2.1 and 4.1 once
we show that we can apply Proposition 3.1 and that {T (eiθ2kt0) : k ∈ Z} is
R-bounded with

R
({

T (eiθ2kt0) : k ∈ Z
})

. (cos(θ))−
d−1

2
−1(1 + | log(cos(θ))|)2. (4.7)

For the application of Proposition 3.1, note that a careful inspection of
the proof of [6, Theorem 3.1] shows that a version in Lp(Rd;Cd+1) also
holds, more precisely that: if Tz is an analytic semigroup on L2(Rd;Cd+1)
for Re z > 0 such that its negative generator A has a bounded H∞ cal-
culus on L2(Rd;Cd+1) and each of the (d + 1) × (d + 1) components of
its matrix valued integral kernel kz,αγ(x, y) satisfies (3.1), then A has a
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bounded H∞ calculus on Lp(Rd;Cd+1) for 1 < p < ∞. Note that we have
shown the H∞ calculus on L2(Rd;Cd+1) and the bounds (3.1) for kz,αγ(x, y)
in Proposition 4.1. It remains to show (4.7), which would follow immedi-
ately from Theorem 3.2, weren’t it for the vector valued character. We give

the adaption details now. First note that
(

E ‖∑n
k=1 ǫkfk‖

2

Lp(Rd;Cd+1)

)
1
2 ∼=

∑d+1
α=1

∥

∥

∥

(
∑n

k=1 |fα,k|2
)

1
2

∥

∥

∥

Lp(Rd)

∼=
∥

∥

∥

∥

(

∑d+1
α=1

∑n
k=1 |fα,k|2

)
1
2

∥

∥

∥

∥

Lp(Rd)

. Thus,

{T (eiθ2kt0) : k ∈ Z} is R-bounded on Lp(Rd;Cd+1) iff
∥

∥

∥

∥

∥

∥

(

d+1
∑

α=1

∑

k

|(T (eiθ2kt0A)fk)α|2
)

1
2

∥

∥

∥

∥

∥

∥

p

.

∥

∥

∥

∥

∥

∥

(

d+1
∑

α=1

∑

k

|fα,k|2
)

1
2

∥

∥

∥

∥

∥

∥

p

,

iff T ∈ B(Lp(Rd; ℓ2{1,...,d+1}×N
)), where T (fα,j)α,j = (T (eiθ2jt0)fj)α. In view

of [16, Definition 2.1], choose now the approximation of identity At(fα,j)α,j =
(Ttfj)α. Then TAt(fα,j) = T (Ttfj) = (T (eiθ2jt0)Ttfj) = AtT (fα,j). Further,
the kernel of At, called at satisfies

At(fα,j) =

∫

Rd

d+1
∑

γ=1

kt,αγ(x− y)fγ,j(y)dy

and

‖at(x − y)‖B(ℓ2{1,...,d+1}×N
) = sup

wα,j :
∑

α,j |wα,j|2≤1





∑

α,j

∣

∣

∣

∣

∣

d+1
∑

γ=1

kt,αγ(x− y)wγ,j

∣

∣

∣

∣

∣

2




1
2

.
d+1
sup

α,γ=1
|kt,αγ(x− y)| . 1

µ(B(x, t))

1
∣

∣

∣1 +
|x−y|2

t2

∣

∣

∣

d+1

2

,

so that At is indeed an approximation of identity in the sense of [16, Definition
1.1]. If kT (x, y) and kTAt

(x, y) denote the B(ℓ2{1,...,d+1}×N
) valued kernels of

T and TAt, then we have in view of the application of [16, Theorem 2.3],
∫

|x−y|≥3t

‖kT (x, y)− kTAt
(x, y)‖B(ℓ2{1,...,d+1}×N

) .

d+1
sup

α,γ=1

∫

|x−y|≥3t

sup
j∈Z

|keiθ2jt0,αγ(x− y)− keiθ2jt0+t,αγ(x − y)|dµ(x).

Apply now the Poisson estimate and analyticity of kz,αγ(x − y) in z, for
fixed α and γ, exactly as in the proof of Theorem 3.2, to deduce (4.7) as
wanted. �

Remark 4.3. Let us compare Corollary 4.2 with known Hörmander functional
calculi for “Lamé operators” in the literature. Let L denote the operator as in
(4.1), i.e. Lu = µ∆u+(λ+µ)∇ div u, where u : Ω → Rd+1 and Ω ⊂ Rd is an
open subset satisfying the interior ball condition, i.e. there exists a positive
constant c such taht for all x ∈ Ω and all r ∈ (0, 12 diam(Ω)), µ(B(x, r)) ≥ crd.
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Let further A denote the negative generator of the semigroup in (4.2), so that

if Ω = Rd, for functions u : Rd+1
+ → Cd+1 and f ∈ Lp(Rd;Cd+1), we have

Lu = 0, u|n.t.
∂Rd+1

+

= f if and only if u(x, t) = e−tAf(x). If Ω is bounded, the

operator −L on Lp(Ω;Cd+1) for p ∈ (q′Ω, qΩ) where qΩ > 2 is some constant,
has a Hα calculus for α > d| 1p − 1

2 | + 1
2 [13, Theorem 5.1]. In contrast, for

A we get a Hörmander functional calculus on the full range p ∈ (1,∞), but
with a worse derivation exponent α > d

2 + 1. Note that A is not self-adjoint

on L2(Rd;Cd+1), in contrast to L on L2(Ω;Cd+1), so that A and L are of a
quite different nature.

Dirichlet-to-Neumann operator. Another application of Theorem 3.2 and
Corollary 3.6 is the following operator from [19]. There the authors suppose

that Ω is the smooth boundary of an open connected subset Ω̃ of Rd+1 and
A is the Dirchlet-to-Neumann operator defined as follows: Given φ ∈ L2(Ω)
solve the Dirichlet problem

∆u = 0 weakly on Ω̃

u|Ω = φ

with u ∈ W 1
2 (Ω̃). If u has a weak normal derivative ∂u

∂ν in L2(Ω), then φ ∈
D(A) and Aφ = ∂u

∂ν . This operator is a pseudodifferential operator, self-

adjoint on L2(Ω). Then in [19] it is shown that the semigroup satisfies the
complex Poisson estimate:

|kz(x, y)| ≤ C(cos(θ))−2(d−1)d min(|z|, 1)−d

(

1 + |x−y|
|z|

)d+1

. (cos(θ))−2(d−1)d 1

µ(B(x, |z|))
1

∣

∣

∣1 +
|x−y|2

z2

∣

∣

∣

d+1

2

for all x, y ∈ Ω and Re z > 0, where θ = arg z. Further a Hα calculus for
A with α > d

2 is derived in [19, Section 7]. Suppose that Ω satisfies (2.2)

and (2.3). Then since A is self-adjoint on L2(Ω), we can apply Corollary 3.6
to deduce that A has an R-bounded Hα calculus for α > d

2 + 2(d − 1)d.
Note that our derivation order in this functional calculus is worse than the
one obtained in [19, Section 7], but since it is R-bounded, it contains square
function estimates like

∥

∥

∥

∥

∥

∥

∥





n
∑

j=1

|gj(A)fj |2




1
2

∥

∥

∥

∥

∥

∥

∥

p

.
n

max
j=1

‖gj‖Hα

∥

∥

∥

∥

∥

∥

∥





n
∑

j=1

|fj |2




1
2

∥

∥

∥

∥

∥

∥

∥

p

.

Pseudodifferential operators on compact manifolds without boundary. Let Ω
be a compact closed (i.e. without boundary) d-dimensional Riemannian C∞-
manifold and A a classical, self-adjoint, strongly elliptic pseudodifferential
operator on Ω of order 1 such that γ(A) = inf{Re z : z ∈ σ(A)} ≥ 0.



22 Ch. Kriegler

Then according to [8, Theorem 3.14], the semigroup generated by −A has an
integral kernel satisfying

|kz(x, y)| . (cos(θ))−βe−γ(A)Re z |z|
ρ(x, y) + |z| ((ρ(x, y)+|z|)−d+1) (Re z > 0)

with θ = arg z and β = 7
2d + 11. If Ω satisfies (2.2), then this estimate

readily gives (3.1). Thus if Ω also satisfies (2.3), we can appeal to Corollary
3.6 and deduce that A has an R-bounded Hα calculus for α > d

2 +
7
2d+11 on

Lp(Ω), 1 < p < ∞. The order of this calculus is worse than what is known
in the literature for this kind of operator (α > d

2 , see [20]), but at least, our
result includes the R-boundedness of the calculus.

5. Proofs of Lemmas 3.3 and 3.4

Proof of Lemma 3.3. Since kz(x, y) is analytic in z, one has

|keiθt0+t(x, y)− keiθt0(x, y)| ≤
∫ t

0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds

≤
∫ t

0

1

2π

∫

Γ
eiθt0+s

∣

∣

∣

∣

kz(x, y)

(z − eiθt0 − s)2

∣

∣

∣

∣

dzds,

where Γeiθt0+s is the contour of the circle centered at eiθt0 + s with radius
r(cos(θ)t0 + s), where r > 0 is some small constant determined later on in
this proof. The rest of the proof is the rather long task to exploit (3.1) in the
above double integral. Let z ∈ Γeiθt0+s. Then cos(arg z) ∼= min(|Re z

Im z |, 1) ∼=
min( cos(θ)t0+s

sin(θ)t0+s , 1)
∼= cos(arg(eiθt0 + s)) ≥ cos(θ). Also, |z| ∼= |eiθt0 + s|. We

divide the integral over s in
∫ t

0

. . . ds =

∫ min(cos(θ)t0,t)

0

. . . ds+

∫ t

min(cos(θ)t0,t)

. . . ds.

1st case: cos(θ)t0 ≥ s.
We show that

∣

∣

∣

∣

1 +
ρ(x, y)2

[eiθt0 + s+ reiφ(cos(θ)t0 + s)]2

∣

∣

∣

∣

∼=
∣

∣

∣

∣

1 +
ρ(x, y)2

(eiθt0)2

∣

∣

∣

∣

. (5.1)

First note that (5.1) is equivalent to |wl| ∼= |wr|, where wl = [eiθt0+s+
reiφ(cos(θ)t0 + s)]2 + ρ(x, y)2 and wr = (eiθt0)

2 + ρ(x, y)2. We have Rewr =
cos(2θ)t20 + ρ(x, y)2 = −t20 + ρ(x, y)2 + o(π2 − |θ|)t20 and | Imwr| ∼= cos(θ)t20.

This gives |wr| ∼= |Rewr |+ | Imwr| ∼= |ρ(x, y)2 − t20|+ cos(θ)t20. On the other
hand, | Imwl| = 2(cos(θ)t0+s)(1+r cos(φ))| sin(θ)t0+r sin(φ)(cos(θ)t0+s)| ∼=
cos(θ)t20 and Rewl = ρ(x, y)2 − t20 + t20(1 − sin2(θ)) − r2 sin2(φ)(cos(θ)t0 +
s)2−2r sin(θ)t0 sin(φ)(cos(θ)t0+s)+(cos(θ)t0+s)

2(1+r cos(φ))2. This gives

|Rewl| ≥ |ρ(x, y)2 − t20| −
[

(
π

2
− |θ|)2 + o((

π

2
− |θ|)2)

]

t20

− 4r2t20(
π

2
− |θ|)2(1 + o(1))− 2r · 2 · (π

2
− |θ|)t20
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≥ |ρ(x, y)2 − t20| − c1(
π

2
− |θ|)t20,

where c1 << 1 is some small constant if r is sufficiently small and |θ| is
sufficiently close to π

2 . Similarly, |Rewl| ≤ |ρ(x, y)2 − t20| + c1(
π
2 − |θ|)t20.

Thus, |wl| ∼= |Rewl| + | Imwl| ∼= |ρ(x, y)2 − t20| + cos(θ)t20
∼= |wr |, and (5.1)

follows. Now we can estimate

∫ min(cos(θ)t0,t)

0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds .

(cos(θ))−β

µ(B(x, t0))

∫ min(cos(θ)t0,t)

0

1

cos(θ)t0

{

|ρ(x, y)2 − t20|+ cos(θ)t20
}− d+1

2 td+1
0 ds

=
(cos(θ))−β

µ(B(x, t0))

min(cos(θ)t0, t)

cos(θ)t0

{

|1− ρ(x, y)2

t20
|+ cos(θ)

}− d+1

2

. (5.2)

2nd case: cos(θ)t0 ≤ s.
We show that

∣

∣

∣

∣

1 +
ρ(x, y)2

[eiθt0 + s+ reiφ(cos(θ)t0 + s)]2

∣

∣

∣

∣

&

∣

∣

∣

∣

1 +
ρ(x, y)2

(s+ it0)2

∣

∣

∣

∣

. (5.3)

Put wl = [eiθt0+s+re
iφ(cos(θ)t0+s)]

2+ρ(x, y)2 and wr = [s+it0]
2+ρ(x, y)2,

so that (5.3) ⇐⇒ |wl| & |wr|.We have Rewr = s2−t20+ρ(x, y)2 and Imwr =

2st0. On the other hand, Rewl = [cos(θ)t0 + s+ r cos(φ)(cos(θ)t0 + s)]
2 −

[sin(θ)t0 + r sin(φ)(cos(θ)t0 + s)]
2
+ ρ(x, y)2, and

| Imwl| = 2 |[cos(θ)t0 + s+ r cos(φ)(cos(θ)t0 + s)] ×
× [sin(θ)t0 + r sin(φ)(cos(θ)t0 + s)]| ∼= st0,

if r < 1
4 . This gives

Rewl = cos2(θ)t20 + s2 + r2 cos2(φ)(cos(θ)t0 + s)2 + 2s cos(θ)t0

+ 2 · r(cos(θ)t0 + s) cos(φ)(cos(θ)t0 + s)− sin2(θ)t20

− r2 sin2(φ)(cos(θ)t0 + s)− 2 · r sin(θ)t0 sin(φ)(cos(θ)t0 + s) + ρ(x, y)2.

Now we distinguish the two cases that st0 is bigger or smaller than |s2− t20+
ρ(x, y)2|. In the first case, we have |wl| ≥ | Imwl| ∼= st0 & |Rewr |+| Imwr| ∼=
|wr|. In the second case, we have with constants c1 < 1 arbitrarily close to
1 and c2 > 0 arbitrarily close to 0 if r is sufficiently small, and c3 > 0 such
that (cos(θ))−1 ≤ c3(

π
2 − |θ|)−1

|Rewl| ≥ |c1s2 + cos(2θ)t20 + ρ(x, y)2| − c2t0s

≥ |s2 − t20 + ρ(x, y)2| − (1− c1)s
2 − (1 + cos(2θ))t20 − c2t0s

≥ |s2 − t20 + ρ(x, y)2| − (1− c1)s
2 − (2(

π

2
− |θ|)2 + o((

π

2
− |θ|)3))×

× (cos(θ))−1c3st0 − c2t0s

≥ |s2 − t20 + ρ(x, y)2| − st0[(1− c1) + 2c3(
π

2
− |θ|) + o((

π

2
− |θ|)2) + c2]
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& |s2 − t20 + ρ(x, y)2|.

Thus, |wl| ≥ |Rewl| & |s2 − t20 + ρ(x, y)2|+ st0 & |Rewr| + | Imwr | ∼= |wr|.
This shows (5.3).

It follows that if cos(θ)t0 ≤ t, then

∫ t

cos(θ)t0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds .
(cos(θ))−β

µ(B(x, t0))

∫ t

cos(θ)t0

1

s

∣

∣

∣

∣

1 +
ρ(x, y)2

(s+ it0)2

∣

∣

∣

∣

− d+1

2

ds.

(5.4)
We have

∣

∣

∣

∣

1 +
ρ(x, y)2

(s+ it0)2

∣

∣

∣

∣

− d+1

2 ∼= |s+ it0|d+1|(s+ it0)
2 + ρ(x, y)2|− d+1

2

∼= td+1
0

[

max(|s2 − t20 + ρ(x, y)2|, 2st0)
]− d+1

2 .

Next we determine the value of the above maximum of two terms. A simple
calculation shows that the two terms are the same iff s takes one of the four
values s±,± = ±t0 ±

√

2t20 − ρ(x, y)2. We distinguish three cases i) - iii).

Case i) t20 ≥ ρ(x, y)2.

Then out of s±,±, only s−,+ = −t0 +
√

2t20 − ρ(x, y)2 lies in [0, t0]. If
s ≤ s−,+, then |s2 − t20 + ρ(x, y)2| ≥ 2st0 and if s ≥ s−,+, then |s2 − t20 +
ρ(x, y)2| ≤ 2st0. Now divide the integral in (5.4) accordingly. We get

∫ t

cos(θ)t0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds .

(cos(θ))−β

µ(B(x, t0))

∫ t0(
√

2−ρ(x,y)2/t2
0
−1)

cos(θ)t0

1

s
td+1
0 |s2 − t20 + ρ(x, y)2|− d+1

2 ds

+
(cos(θ))−β

µ(B(x, t0))

∫ t

t0(
√

2−ρ(x,y)2/t2
0
−1)

1

s
td+1
0 (st0)

− d+1

2 ds

∼= (cos(θ))−β

µ(B(x, t0))

{

∫ t0(
√

2−ρ(x,y)2/t2
0
−1)

cos(θ)t0

1

s
[(
√

t20 − ρ(x, y)2 − s)×

×(
√

t20 − ρ(x, y)2 + s)]−
d+1

2 td+1
0 ds+

(
√

2− ρ(x, y)2

t20
− 1

)− d+1

2

− (t0/t)
d+1

2











.

(5.5)

The last integral above, with lower and upper bound abbreviated by a
and b, can be further estimated by

∫ b

a

1

s
td+1
0 (t20 − ρ(x, y)2)−

d+1

4

[

1

(
√

t20 − ρ(x, y)2 − s)
d+1

2

+
1

(
√

t20 − ρ(x, y)2 + s)
d+1

2

]

ds
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.

∫ b/t0

a/t0

(

1− ρ(x, y)2

t20

)− d+1

4 1

(
√

1− ρ(x,y)2

t2
0

− s)
d+1

2

ds

s
.

Case ia) 1√
2−ρ(x,y)2/t2

0
−1

≥ 2t0/t.

Then the term after the integral in (5.5) can be simplified to

(
√

2− ρ(x, y)2

t20
− 1

)− d+1

2

∼=
(

1− ρ(x, y)2

t20

)− d+1

2 ∼=
(

1− ρ(x, y)

t0

)−d+1

2

.

Case ib) 1√
2−ρ(x,y)2/t2

0
−1

≤ 2t0/t.

Then we obtain

∫ t

cos(θ)t0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds .

(cos(θ))−β

µ(B(x, t0))











(1 − ρ(x, y)2

t20
)−

d+1

4







(
√

1− ρ(x, y)2

t20

)− d+1

2

×

× log

(

1
2 [
√

2− ρ(x, y)2/t20 − 1 + cos(θ)]

cos(θ)

)

+ [
√

2− ρ(x, y)2/t20 − 1 + cos(θ)]−1×






(
√

1− ρ(x, y)2

t20
−
√

2− ρ(x, y)2

t20
+ 1

)− d−1

2

−
(
√

1− ρ(x, y)2

t20
− 1

2

√

2− ρ(x, y)2

t20
+

1

2
− cos(θ)

2

)− d−1

2













+

(

t

t0
−
√

2− ρ(x, y)2

t20
+ 1

)

(

1− ρ(x, y)2

t20

)−d+3

2

}

. (5.6)

Hereby, the last summand only exists for
√

2− ρ(x, y)2/t20 − 1 ≤ t/t0
and if ρ(x, y)/t0 is so close to 1 that

√

2− ρ(x, y)2/t20 − 1 ≤ cos(θ) then
√

2− ρ(x, y)2/t20 − 1 in the last summand has to be replaced by cos(θ). Fur-
thermore, everything before the last summand has to be replaced by 0 if

cos(θ) ≥
√

2− ρ(x, y)2/t20 − 1.

Case ii) t20 ≤ ρ(x, y)2 ≤ 2t20.

Then only s+,− lies in [0, t0]. If s ≤ s+,−, then |s2− t20+ρ(x, y)2| ≥ 2st0
and if s ≥ s+,−, then |s2 − t20 + ρ(x, y)2| ≤ 2st0. Then we obtain

∫ t

cos(θ)t0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds .
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(cos(θ))−β

µ(B(x, t0))

[

∫ t0(1−
√

2−ρ(x,y)2/t2
0
)

cos(θ)t0

[s2 − t20 + ρ(x, y)2]−
d+1

2 td+1
0

ds

s

+

∫ t

t0(1−
√

2−ρ(x,y)2/t2
0
)

td+1
0 (st0)

− d+1

2
ds

s

]

∼= (cos(θ))−β

µ(B(x, t0))

{[

log
1−

√

2− ρ(x, y)2/t20
cos(θ)

]

+

(

ρ(x, y)2

t20
− 1

)− d+1

2

+

[

(

1−
√

2− ρ(x, y)2/t20

)− d+1

2

− (t/t0)
− d+1

2

]

+

}

, (5.7)

where [x]+ = max(x, 0). Note that in the last expression above, in the

first summand, 1 −
√

2− ρ(x, y)2/t20 has to be replaced by t/t0 if t/t0 ≤
1 −

√

2− ρ(x, y)2/t20. In the second summand, 1 −
√

2− ρ(x, y)2/t20 has to

be replaced by cos(θ) if 1−
√

2− ρ(x, y)2/t20 ≤ cos(θ).

Case iii) ρ(x, y)2 ≥ 2t20.

Then none of s±,± is real. We always have |s2 − t20 + ρ(x, y)2| ≥ 2st0.
Then we obtain

∫ t

cos(θ)t0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds .
(cos(θ))−β

µ(B(x, t0))

∫ t

cos(θ)t0

td+1
0 |s2 − t20 + ρ(x, y)2|− d+1

2
ds

s

.
(cos(θ))−β

µ(B(x, t0))

[

log

(

t

t0 cos(θ)

)]

+

(

ρ(x, y)2

t20
− 1

)− d+1

2

. (5.8)

Summarizing (5.2), (5.5), (5.6), (5.7), (5.8), we finally obtain the claimed
estimate of the lemma. �

Proof of Lemma 3.4. We start with estimatingK := |keiθ2jt0+t(x, y)−keiθ2jt0(x, y)|
for a fixed j ∈ Z such that 2jt0 ≥ t, hereby using Lemma 3.3. Write in
short R = ρ(x, y)2/(2jt0)

2. We distinguish the following fifteen cases Iai),
Iaii), Iaiii), Iaiv), Iav), Ibi), Ibii), Ic), Idi), Idii), Idiii), Ie), IIa), IIb+c),
IId+e), which depend on the values of θ, 2jt0, t and ρ(x, y). Here, case I
stands for cos(θ)2jt0 ≤ t, case II stands for cos(θ)2jt0 ≥ t, case a stands for
R ≤ 1 − cos(θ), b for 1 − cos(θ) ≤ R ≤ 1, c for 1 ≤ R ≤ 1 + cos(θ), d for
1 + cos(θ) ≤ R ≤ 2 and e for 2 ≤ R.

Case Iai) cos(θ)2jt0 ≤ t, R ≤ 1− cos(θ) and cos(θ) ≤
√
2−R− 1 ≤ 1

2
t

2jt0
.

Then with Lemma 3.3,

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(1−R)−
d+1

2

(

1 + log

(

1
2 [
√
2−R− 1 + cos(θ)]

cos(θ)

))

+ [
√
2−R− 1 + cos(θ)]−1

[

(
√
1−R−

√
2−R+ 1)−

d−1

2
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−
(√

1−R− 1

2

√
2−R +

1

2
− cos(θ)

2

)−d−1

2

]

(1−R)−
d+1

4 + (1−R)−
d+1

2

}

.

Case Iaii) cos(θ)2jt0 ≤ t, R ≤ 1− cos(θ) and max(cos(θ), 12
t

2jt0
) ≤

√
2−R−

1 ≤ t
2jt0

.

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(1−R)−
d+1

2

(

1 + log

(

1
2 [
√
2−R− 1 + cos(θ)]

cos(θ)

))

+ (1−R)−
d+1

4
−1
[

(
√
1−R−

√
2−R+ 1)−

d−1

2

−
(√

1−R− 1

2

√
2−R+

1

2
− cos(θ)

2

)− d−1

2

]

+

(

t

2jt0
−
√
2−R+ 1

)

(1 −R)−
d+3

2

}

Case Iaiii) cos(θ)2jt0 ≤ t, R ≤ 1 − cos(θ) and max(cos(θ), t
2jt0

) = t
2j t0

≤√
2−R− 1.

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(1−R)−
d+1

2

(

1 + log

(

1
2 [
√
2−R− 1 + cos(θ)]

cos(θ)

))

+ (1−R)−
d+1

4
−1
[

(
√
1−R−

√
2−R+ 1)−

d−1

2

−
(√

1−R− 1

2

√
2−R+

1

2
− cos(θ)

2

)− d−1

2

]}

.

Case Iaiv) cos(θ)2jt0 ≤ t, R ≤ 1− cos(θ) and 1
2

t
2jt0

≤
√
2−R− 1 ≤ cos(θ).

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(1−R)−
d+1

2 +

(

t

2jt0
−
√
2−R + 1

)

(1−R)−
d+3

2

}

Case Iav) cos(θ)2jt0 ≤ t, R ≤ 1−cos(θ) and
√
2−R−1 ≤ min(cos(θ), 12

t
2jt0

).

K .
(cos(θ))−β

µ(B(x, 2jt0))
(1−R)−

d+1

2

Case Ib) cos(θ)2jt0 ≤ t and 1− cos(θ) ≤ R ≤ 1.

In this case, we have
√
2−R− 1 ≤ 1

2 cos(θ) + o(cos(θ)), so that always√
2−R− 1 ≤ cos(θ) if |θ| is sufficiently close to π

2 .

Case Ibi) cos(θ)2jt0 ≤ t, 1− cos(θ) ≤ R ≤ 1 and 1
2

t
2jt0

≤
√
2−R− 1.

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(cos(θ))−
d+1

2 + (cos(θ))−
d+1

2 −
(

t

2jt0

)− d+1

2

}
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.
(cos(θ))−β

µ(B(x, 2jt0))
(cos(θ))−

d+1

2

Case Ibii) cos(θ)2jt0 ≤ t, 1− cos(θ) ≤ R ≤ 1 and
√
2−R − 1 ≤ 1

2
t

2jt0
.

K .
(cos(θ))−β

µ(B(x, 2jt0))
(cos(θ))−

d+1

2

Case Ic) cos(θ)2jt0 ≤ t, 1 ≤ R ≤ 1 + cos(θ).

In this case, we have 0 ≤ 1−
√
2−R ≤ 1

2 cos(θ) + o(cos(θ)). Then

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(cos(θ))−
d+1

2 + (cos(θ))−
d+1

2 −
(

t

2jt0

)− d+1

2

}

.
(cos(θ))−β

µ(B(x, 2jt0))
(cos(θ))−

d+1

2

Case Id) cos(θ)2jt0 ≤ t and 1 + cos(θ) ≤ R ≤ 2.

In this case,−1 ≤ 1−R ≤ − cos(θ), so that 1−(R−1) ≤
√

1 + (1−R) ≤
1− 1

2 (R− 1) and thus 1
2 (R− 1) ≤ 1−

√
2−R ≤ R− 1.

Case Idi) cos(θ)2jt0 ≤ t, 1+cos(θ) ≤ R ≤ 2 and cos(θ) ≤ 1−
√
2−R ≤ t

2jt0
.

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(R− 1)−
d+1

2

(

1 + log

(

1−
√
2−R

cos(θ)

))

+(1−
√
2−R)−

d+1

2 −
(

t

2jt0

)− d+1

2

}

∼= (cos(θ))−β

µ(B(x, 2jt0))
(R − 1)−

d+1

2

(

1 + log

(

R− 1

cos(θ)

))

Case Idii) cos(θ)2jt0 ≤ t, 1 + cos(θ) ≤ R ≤ 2 and max(cos(θ), t
2jt0

) = t
2j t0

≤
1−

√
2−R.

K .
(cos(θ))−β

µ(B(x, 2jt0))
(R− 1)−

d+1

2

(

1 + log

(

t

2jt0 cos(θ)

))

Case Idiii) cos(θ)2jt0 ≤ t, 1 + cos(θ) ≤ R ≤ 2 and 1−
√
2−R ≤ cos(θ).

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(R − 1)−
d+1

2 + (cos(θ))−
d+1

2 −
(

t

2jt0

)− d+1

2

}

∼= (cos(θ))−β

µ(B(x, 2jt0))
(cos(θ))−

d+1

2

Case Ie) cos(θ)2jt0 ≤ t and R ≥ 2.
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K .
(cos(θ))−β

µ(B(x, 2jt0))
(R− 1)−

d+1

2

(

1 + log

(

t

2jt0 cos(θ)

))

Case IIa) cos(θ)2jt0 ≥ t and R ≤ 1− cos(θ).

K .
(cos(θ))−β

µ(B(x, 2jt0))

t

cos(θ)2jt0
(1 −R)−

d+1

2

Case IIb+c) cos(θ)2jt0 ≥ t and 1− cos(θ) ≤ R ≤ 1 + cos(θ).

K .
(cos(θ))−β

µ(B(x, 2jt0))

t

cos(θ)2jt0
(cos(θ))−

d+1

2

Case IId+e) cos(θ)2jt0 ≥ t and R ≥ 1 + cos(θ).

K .
(cos(θ))−β

µ(B(x, 2jt0))

t

cos(θ)2jt0
(R − 1)−

d+1

2

Now we want to prove part 1. of the lemma, i.e. to estimate

sup
j∈Z: 2jt0≥t

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)| (5.9)

in the case that |ρ(x, y)2/(2lt0)2 − 1| ≤ cos(θ) for some l ≤ Lmax. We claim
that in (5.9), the supremum is essentially attained for j = l, more precisely,
that (5.9) can be estimated by the above estimate for j = l (which has to be
in one of the four cases I or II, b or c).

For j < l, we have ρ(x,y)2

(2jt0)2
= ρ(x,y)2

(2lt0)2
22l−2j ≥ (1− cos(θ)) · 4, so that case

e applies. We note again R = ρ(x,y)2

(2jt0)2
, and moreover Kj = |keiθ2jt0+t(x, y) −

keiθ2jt0(x, y)|, and Ml the right hand side of the estimate obtained for Kl.

Note that since j < l < Lmax, we have µ(B(x, 2jt0)) ∼= (2jt0)
d by (2.2). For

cos(θ)2jt0 ≤ t, we have by case Ie),

Kj .
(cos(θ))−β

µ(B(x, 2jt0))
(R − 1)−

d+1

2

(

1 + log

(

t

2jt0 cos(θ)

))

.
(cos(θ))−β

(2jt0)d
(2jt0)

d+1

ρ(x, y)d+1

(

1 + log

(

t

2jt0 cos(θ)

))

∼= (cos(θ))−β2j−l(2lt0)
−d

(

1 + log

(

t

2jt0 cos(θ)

))

.

If cos(θ)2jt0 ≤ t ≤ cos(θ)2lt0, then we haveKj .Ml ⇐= 2j−l(1+log t
2jt0 cos(θ)) .

t
t0
2−l(cos(θ))−

d+3

2 ⇐⇒ 2jt0 cos(θ)/t(1+log t
2jt0

+| log cos(θ)|) . (cos(θ))−
d+1

2 ,

which is true, since 2jt0 cos(θ)/t ≤ 1 and log t
2jt0

≤ 0. If cos(θ)2lt0 ≤ t,

then we have Kj . Ml ⇐= 2j−l(1 + log t
2jt0 cos(θ)) . (cos(θ))−

d+1

2 ⇐⇒
2j−l(1 + log t

2j t0
+ | log cos(θ)|) . (cos(θ))−

d+1

2 , which is true, since 2j−l ≤ 1

and log t
2jt0

≤ 0.
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For cos(θ)2jt0 ≥ t, we have by case IIe),

Kj .
(cos(θ))−β

µ(B(x, 2jt0))

t

cos(θ)2jt0
(R− 1)−

d+1

2

∼= (cos(θ))−β

(2jt0)d
t

cos(θ)2jt0

(2jt0)
d+1

ρ(x, y)d+1

∼= (cos(θ))−β

µ(B(x, 2lt0))

t

cos(θ)2lt0
.

This is indeed majorized by Ml, since cos(θ)2lt0 ≥ t, and thus,

Ml =
(cos(θ))−β

µ(B(x, 2lt0))

t

cos(θ)2lt0
(cos(θ))−

d+1

2 .

For j > l, we have ρ(x,y)2

(2jt0)2
= ρ(x,y)2

(2lt0)2
· 22l−2j ≤ (1 + cos(θ)) · 1

4 , so that

case a applies. We have 1−R ∼= 1,
√
2−R−1 ∼= 1,

√
1−R− (

√
2−R−1) ∼=

1,
√
1−R − 1

2

√
2−R+ 1

2 − cos(θ)
2

∼= 1. Thus, in case Iai),

Kj .
(cos(θ))−β

µ(B(x, 2jt0))
(1 + | log cos(θ)|)

.
(cos(θ))−β

µ(B(x, 2lt0))
(cos(θ))−

d+1

2 ∼=Ml.

In case Iaii),

Kj .
(cos(θ))−β

µ(B(x, 2jt0))
(1 + | log cos(θ)|+ t

2jt0
− (

√
2− R− 1))

.
(cos(θ))−β

µ(B(x, 2lt0))
(cos(θ))−

d+1

2 ∼=Ml.

In case Iaiii), Kj .
(cos(θ))−β

µ(B(x,2jt0))
(1 + | log cos(θ)|) .Ml.

Cases Iaiv) and Iav) cannot appear here, since
√
2−R− 1 > cos(θ).

In case IIa),

Kj .
(cos(θ))−β

µ(B(x, 2jt0))

t

cos(θ)2jt0
· 1

.
(cos(θ))−β

µ(B(x, 2lt0))
min(1,

t

cos(θ)2lt0
)(cos(θ))−

d+1

2 ∼=Ml.

Looking up Ml in the four cases I or II, b or c, now yields part 1. of the
lemma.

Now for the proof of part 2. Suppose first that 1+ cos(θ) ≤ ρ(x,y)2

(2lt0)2
≤ 2.

Then Ml is given by one of the four cases Idi),Idii),Idiii) and IId). We will

show that supj∈Z: 2jt0≥tKj .Ml+
(cos(θ))−β

µ(B(x,2lt0))
(1+ | log cos(θ)|), the logarith-

mic term only appearing in case Idii).
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Suppose first that Ml is given by case Idi). Consider a j < l. Then
ρ(x,y)2

(2jt0)2
= ρ(x,y)2

(2lt0)2
· 22l−2j ≥ 4, so that for Kj, case Ie) or IIe) applies. In fact,

one is never in the case IIe), since then cos(θ)2lt0 ≤ t, cos(θ)2jt0 ≥ t and
j < l. In case Ie), we have

Kj .
(cos(θ))−β

µ(B(x, 2jt0))
R−d+1

2

(

1 + log

(

t

2jt0 cos(θ)

))

∼= (cos(θ))−β2jt0ρ(x, y)
−(d+1)

(

1 + log

(

t

2jt0 cos(θ)

))

∼= (cos(θ))−β2j−l(2lt0)
−d

(

1 + log

(

t

2jt0 cos(θ)

))

.

On the other hand,

Ml =
(cos(θ))−β

µ(B(x, 2lt0))

{

(

ρ(x, y)2/(2lt0)
2 − 1

)− d+1

2

(

1 + log

(

1−
√

2− ρ(x, y)2/(2lt0)2

cos(θ)

))

+

(

1−
√

2− ρ(x, y)2/(2lt0)2
)−d+1

2

−
(

t

2lt0

)− d+1

2

}

.

Now we have Kj .Ml if

1+| log(cos(θ))| .
(

ρ(x, y)2/(2lt0)
2 − 1

)− d+1

2

(

1 + log
ρ(x, y)2/(2lt0)

2 − 1

cos(θ)

)

.

An elementary calculation shows that the minimum of the right hand side for

1 + cos(θ) ≤ ρ(x,y)2

(2lt0)2
≤ 2 is equivalent to 1 + | log(cos(θ))|. Thus Kj .Ml for

j < l. Now consider j > l. Then ρ(x,y)2

(2jt0)2
= ρ(x,y)2

(2lt0)2
22l−2j ≤ 1

2 , so that case a)

applies for Kj . Now we have 1−R ∼= 1,
√
2−R−1 ∼= 1,

√
1−R−(

√
2−R−

1) ∼= 1, and
√
1−R − 1

2 (
√
2−R − 1) − cos(θ)

2
∼= 1. With this, we obtain

easily in case Iai) that Kj .
(cos(θ))−β

µ(B(x,2jt0))
(1 + | log(cos(θ))|) . (cos(θ))−β

µ(B(x,2lt0))
(1 +

| log(cos(θ))|) .Ml. In case Iaii), we also haveKj .
(cos(θ))−β

µ(B(x,2jt0))
(1+| log(cos(θ))|) .

Ml, and the cases Iaiii), Iaiv) and Iav) can be handled in the same way. In

case IIa), we haveKj .
(cos(θ))−β

µ(B(x,2jt0))
t

cos(θ)2jt0
.Ml. Thus supj:2j t0≥tKj .Ml

if Ml is given by case Idi).

Now suppose that Ml is given by case Idii). Take first a j < l. Then
ρ(x, y)2/(2jt0)

2 ≥ 4, so that for Kj , case e) applies. In case Ie), we have

Kj .
(cos(θ))−β

µ(B(x, 2jt0))

(

ρ(x, y)2

(2jt0)2

)− d+1

2
(

1 + log
t

2jt0 cos(θ)

)

. (cos(θ))−β2j−l(2lt0)
−d

(

1 + log
t

2jt0 cos(θ)

)

. (cos(θ))−β(2lt0)
−d

(

1 + log
t

2lt0 cos(θ)

)

∼=Ml.
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Again, case IIe) cannot appear since then, cos(θ)2lt0 ≤ t, cos(θ)2jt0 ≥ t and
j < l.

Now consider a j > l. We have ρ(x, y)2/(2jt0)
2 ≤ 1

2 , so that case a)

applies for the estimate of Kj . In case Iai), we have Kj .
(cos(θ))−β

µ(B(x,2jt0))
(1 +

| log(cos(θ))|) .
(cos(θ))−β

µ(B(x,2lt0))
(1 + | log(cos(θ))|). The same estimate holds in

the cases Iaii) and Iaiii). In case Iaiv), we have Kj .
(cos(θ))−β

µ(B(x,2jt0))
. Ml,

and similarly, also in the cases, Iav) and IIa), Kj .Ml holds. We thus have

supj:2j t0≥tKj .Ml+
(cos(θ))−β

µ(B(x,2lt0))
(1+| log(cos(θ))|), ifMl is given by case Idii).

Suppose now thatMl is given by case Idiii). ThenMl
∼= (cos(θ))−β

µ(B(x,2lt0))
(cos(θ))−

d+1

2 .

Consider a j < l. Again, for the estimate of Kj, case e) applies, and case IIe)
is ruled out by the constraints on j and l. We have as above

Kj . (cos(θ))−β2j−l(2lt0)
−d

(

1 + log
t

2jt0 cos(θ)

)

.
(cos(θ))−β

µ(B(x, 2lt0))
(1 + log

t

2jt0
+ | log(cos(θ))|) .Ml.

Consider now a j > l. Again ρ(x, y)2/(2jt0)
2 ≤ 1

2 , so that for Kj, case a)
applies, and again, several expressions involving R appearing in this case are

equivalent to 1. This gives in case Iai), Iaii) and Iaiii), Kj .
(cos(θ))−β

µ(B(x,2lt0))
(1 +

| log(cos(θ))|) . Ml, and in case Iaiv) and Iav), Kj .
(cos(θ))−β

µ(B(x,2lt0))
. Ml. In

case IIa), we have Kj .
(cos(θ))−β

µ(B(x,2lt0))
t

cos(θ)2jt0
.Ml. Thus supj:2j t0≥tKj .Ml

if Ml is given by case Idiii).

Suppose now that Ml is given by case IId). Then

Ml =
(cos(θ))−β

µ(B(x, 2lt0))

t

cos(θ)2lt0

(

ρ(x, y)2

(2lt0)2
− 1

)− d+1

2

.

Consider j < l, so that for Kj , the estimate in case e) applies. In case Ie), we
have

Kj .
(cos(θ))−β

µ(B(x, 2lt0))
2(l−j)d

(

ρ(x, y)2

(2jt0)2

)−d+1

2
(

1 + log
t

2jt0 cos(θ)

)

.
(cos(θ))−β

µ(B(x, 2lt0))
2−l+j

(

1 + log
t

2jt0 cos(θ)

)

.
(cos(θ))−β

µ(B(x, 2lt0))

t

cos(θ)2lt0
.Ml.

In case IIe), we have

Kj . (cos(θ))−β(2jt0)
−d t

cos(θ)2jt0

(

2l

2j

)−(d+1)

∼= (2lt0)
−d2j−l t

cos(θ)2jt0
.Ml.
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Consider now j > l, so that for Kj , the estimate in case a) applies. The cases
Iai) - Iav) cannot appear due to restrictions on j, l and cos(θ)t0/t similar as

before. In case IIa), we have Kj .
(cos(θ))−β

µ(B(x,2jt0))
t

cos(θ)2jt0
.

(cos(θ))−β

µ(B(x,2lt0))
. Ml.

Thus supj:2j t0≥tKj .Ml if Ml is given by case IId). We have proved part 2.
of the lemma.

Now for the proof of part 3. of the lemma. We proceed similarly as
before. The expression Ml is given by one of the six cases Iai) - Iav) or IIa).
Suppose first that case Iai) applies. Consider j < l. Then R ≥ 2, so that for
Kj, case e) applies. In case Ie), we have

Kj . (cos(θ))−β(2jt0)
−d (2

lt0)
−(d+1)

(2jt0)−(d+1)

(

1 + log
t

2jt0 cos(θ)

)

. (cos(θ))−β(2lt0)
−d(1 + | log(cos(θ))|).

Case IIe) cannot appear. Now consider j > l. Then for Kj , case a) applies.
As several times before, diverse terms in R are equivalent to 1. In cases Iai),

Iaii) and Iaiii), we have Kj .
(cos(θ))−β

µ(B(x,2jt0))
(1+ | log(cos(θ))|) ≤ (cos(θ))−β

µ(B(x,2lt0))
(1+

| log(cos(θ))|). In cases Iaiv) and Iav), we have Kj .
(cos(θ))−β

µ(B(x,2jt0))
. Ml, and

in case IIa), we have Kj .
(cos(θ))−β

µ(B(x,2jt0))
t

cos(θ)2jt0
.

(cos(θ))−β

µ(B(x,2lt0))
. Thus, if Ml is

given by Iai), we have supj:2j t0≥tKj .Ml +
(cos(θ))−β

µ(B(x,2lt0))
(1 + | log(cos(θ))|).

Suppose that Ml is given by case Iaii). Consider a j < l. Then Kj is es-
timated by case Ie), and we have Kj . (cos(θ))−β(2lt0)

−d(1+ | log(cos(θ))|).
Consider a j > l. Then Kj is estimated by case a), and we have Kj .
(cos(θ))−β

µ(B(x,2lt0))
(1 + | log(cos(θ))|). Thus, if Ml is given by Iaii), we have again

supj:2j t0≥tKj .Ml +
(cos(θ))−β

µ(B(x,2lt0))
(1 + | log(cos(θ))|).

Similarly, we obtain in the cases that Ml is given by Iaiii), Iaiv) or Iav)

that supj:2jt0≥tKj .Ml +
(cos(θ))−β

µ(B(x,2lt0))
(1 + | log(cos(θ))|).

IfMl is given by IIa), we haveMl =
(cos(θ))−β

µ(B(x,2lt0))
t

cos(θ)2lt0

(

1− ρ(x,y)2

(2lt0)2

)− d+1

2

.

Consider a j < l. Then R ≥ 2, so that case Ie) or IIe) applies for Kj . In case
Ie), we have

Kj . (cos(θ))−β(2jt0)
−d (2

jt0)
d+1

(2lt0)d+1

(

1 + log
t

2jt0 cos(θ)

)

. (cos(θ))−β(2lt0)
−d2j−l

(

1 + log
t

2jt0 cos(θ)

)

.Ml.

In case IIe), we have Kj . (2lt0)
−d2j−l t

cos(θ)2jt0
. Ml. Consider now a

j > l. Then for Kj, case a) applies. Cases Iai) - Iav) cannot occur due to
restrictions on j, l and cos(θ)t0/t as several times before. In case IIa), we have
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Kj .
(cos(θ))−β

µ(B(x,2jt0))
t

cos(θ)2jt0
.

(cos(θ))−β

µ(B(x,2lt0))
t

cos(θ)2lt0
. Ml. Thus if Ml is given

by IIa), we have supj:2jt0≥tKj .Ml. �
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