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HÖRMANDER FUNCTIONAL CALCULUS FOR

POISSON ESTIMATES

CHRISTOPH KRIEGLER

Abstract. The aim of the article is to show a Hörmander spectral
multiplier theorem for an operatorA whose kernel of the semigroup
exp(−zA) satisfies certain Poisson estimates for complex times z.

Here exp(−zA) acts on Lp(Ω), 1 < p < ∞, where Ω is a space of
homogeneous type with the additional condition that the measure
of annuli is controlled. In most of the known Hörmander type the-
orems in the literature, Gaussian bounds and self-adjointness for
the semigroup are needed, whereas here the new feature is that the
assumptions are the to some extend weaker Poisson bounds, and
H∞ calculus in place of self-adjointness. The order of derivation
in our Hörmander multiplier result is typically d

2
, d being the di-

mension of the space Ω. Moreover the functional calculus resulting
from our Hörmander theorem is shown to be R-bounded. Finally,
the result is applied to some examples.

1. Introduction

Let f be a bounded function on (0,∞) and u(f) the operator on

Lp(Rd) defined by [u(f)g ]̂ (ξ) = f(|ξ|2)ĝ(ξ). Hörmander’s theorem on
Fourier multipliers [9, Theorem 2.5] asserts that u(f) : Lp(Rd) →
Lp(Rd) is bounded for any p ∈ (1,∞) provided that for some inte-
ger N strictly larger than d

2

(1.1) sup
R>0

∫ 2R

R/2

∣

∣tkf (k)(t)
∣

∣

2 dt

t
<∞ (k = 0, . . . , N).

This theorem has many generalisations to similar contexts, for ex-
ample to elliptic and sub-elliptic differential operators A, including
sublaplacians on Lie groups of polynomial growth, Schrödinger oper-
ators and elliptic operators on Riemannian manifolds [5]: Note first
that the above u(f) equals f(−∆), the functional calculus of the self-
adjoint positive operator −∆. Now for a self-adjoint operator A, a
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Hörmander theorem states that the operator f(A) extends boundedly
to Lp(Ω), 1 < p < ∞ for any function f satisfying (1.1) with suitable
N. In most of the proofs for a Hörmander theorem in the literature,
the assumption of so called Gaussian bounds plays a crucial role. That
means the following. Suppose that A acts on Lp(Ω), 1 < p < ∞,
where (Ω, µ, ρ) is a space of homogeneous type. Then the semigroup
(exp(−tA))t≥0 generated by A has an integral kernel kt(x, y) such that
(1.2)

|kt(x, y)| ≤ Cµ(B(y,
√
t))−1 exp

(

−cρ(x, y)
2

t

)

(t > 0, x, y ∈ Ω).

This hypothesis includes many elliptic differential operators. How-
ever there are operators such that the integral kernel of the semigroup
satisfies only weaker estimates, see e.g. [8, 15, 19]. Establishing a
Hörmander theorem for these operators is the issue of the present arti-
cle. More precisely, let A act on Lp(Ω) such that (exp(−zA))Re z>0 has
an integral kernel kz(x, y) such that
(1.3)

|kz(x, y)| ≤ C(cos arg z)−β 1

µ(B(x, |z|))
1

|1 + ρ(x,y)2

z2
| d+1

2

(Re z > 0, x, y ∈ Ω)

holds for some C, β ≥ 0. If Ω = Rd and β = 0, the right hand side of
this estimate is (a constant times) the absolute value of the complex
Poisson kernel which obviously decays slower as ρ(x, y) → ∞ than the
Gaussian kernel above. Under a further hypothesis on the homogeneous
space Ω, see (2.2) and (2.3) below, and the presence of an H∞ calculus
of A on L2(Ω), we obtain a Hörmander theorem of the order N > d

2
+β

for operators A satisfying the above estimate. The proof relies on
the behaviour of the semigroup exp(−zA) generated by A when the
complex parameter z approaches the imaginary axis. Here simple norm
estimates are not sufficient but R-bounds of the semigroup are needed.
Our method does not need self-adjointness of A. This is new compared
to most of the spectral multiplier results in the literature. In particular,
we give a non-self-adjoint example of a Lamé operator to which our
main result applies. Note also that Gaussian estimates as in (1.2) and
self-adjointness in general yield only a Mihlin calculus [18, Theorem
7.23], i.e. bounded spectral multipliers f(A) for f satisfying

max
0≤k≤N

|tkf (k)(t)| <∞,

and N > d
2
, whereas we show that complex Poisson estimates give a

Hörmander functional calculus, i.e. f(A) is bounded for f satisfying
(1.1) with N > d

2
, if β = 0 in (1.3). This yields better estimates



HÖRMANDER FUNCTIONAL CALCULUS FOR POISSON ESTIMATES 3

for the Bochner-Riesz means (1 − A/λ)ν+ on Lp(Ω), see the discussion
in the introduction of [5]. The difficulty in assumption (1.3) is to
show an estimate for complex times z, something that for Gaussian
estimates one gets somehow for free out of an estimate like (1.2) and
self-adjointness.
In Section 2 we will introduce the necessary background and cite a

theorem which allows to pass from R-bounds on the semigroup to a
Hörmander functional calculus. In Section 3 we state and prove the
main result, Theorem 3.2 and Corollary 3.6 of this article. In Section 4,
an application to a concrete operator is given, for which a Hörmander
theorem was previously unknown, and two further examples entering
our context are discussed. Finally, in Section 5, two proofs of technical
lemmas are annexed.

2. Preliminaries

In this section, we provide the necessary background for the Main
Section 3. Let ω ∈ (0, π). A densely defined and closed operator A
on Lp(Ω), 1 < p < ∞, is called ω-sectorial if σ(A) ⊂ Σω where Σω =
{z ∈ C∗ : | arg z| < ω}, and ‖λ(λ − A)−1‖ ≤ Cθ for any λ ∈ Σθ

c

and any θ ∈ (ω, π). For an ω-sectorial operator A and a function f ∈
H∞

0 (Σθ) = {g : Σθ → C : g analytic and bounded, ∃C, ǫ > 0 : |g(z)| ≤
Cmin(|z|ǫ, |z|−ǫ)} where 0 < ω < θ < π, one defines the operator f(A)
by

f(A)x =
1

2πi

∫

Γ

f(λ)(λ−A)−1xdλ.

Here, Γ is the boundary of Σω+θ
2

oriented counterclockwise. This def-

inition coincides with the self-adjoint calculus if applicable. If there
is a constant C > 0 such that ‖f(A)‖ ≤ C sup| arg z|<θ |f(z)| for any
f ∈ H∞

0 (Σθ), then A is said to have a bounded H∞(Σθ) calculus, or
just bounded H∞ calculus. Let φ0 ∈ C∞

c (1
2
, 2) and for n ∈ Z put

φn = φ0(2
−n·). We can and do assume that

∑

n∈Z φn(t) = 1 for any
t > 0 [1, Lemma 6.1.7]. Now define

Hα = {f : [0,∞) → C : ‖f‖Hα = |f(0)|+sup
n∈Z

‖(φnf)◦exp ‖Wα
2
(R) <∞},

where W α
2 (R) is the usual Sobolev space. For α > 1

2
, the space Hα

is a Banach algebra endowed with the norm ‖ · ‖Hα . This class refines
condition (1.1) in the sense that f ∈ Hα =⇒ f satisfies (1.1) for
α > N and the converse holds for α < N. If ‖f(A)‖ ≤ C‖f‖Hα for any
f ∈ ⋂ω>0H

∞
0 (Σω) ∩ Hα, then there exists a bounded homomorphism

Hα → B(Lp(Ω)), f 7→ f(A), and A is said to have a bounded Hα

calculus. If A is moreover self-adjoint on L2(Ω) then for f ∈ Hα ⊆



4 CH. KRIEGLER

L∞(R+) for some α > 1
2
, f(A) is defined twice, but one can show

that the definition from the H∞ calculus plus density in Hα and the
definition from the self-adjoint spectral calculus coincide. In particular,
our notion of Hα calculus is the same as in most of the definitions in
the literature.
Let (ǫn)n∈N be a sequence of independent random variables such that

Prob(ǫn = 1) = Prob(ǫn = −1) = 1
2
, i.e. a sequence of independent

Rademacher variables. Let X be a Banach space. A subset τ ⊂ B(X)
is called R-bounded if there exists a constant C > 0 such that for any
choice of finite families T1, . . . , Tn ∈ τ and x1, . . . , xn ∈ X, one has



E

∥

∥

∥

∥

∥

n
∑

k=1

ǫkTkxk

∥

∥

∥

∥

∥

2

X





1

2

≤ C



E

∥

∥

∥

∥

∥

n
∑

k=1

ǫkxk

∥

∥

∥

∥

∥

2

X





1

2

.

The least possible constant is denoted by R(τ), and R(τ) = ∞, if no
such constant is admitted. Any R-bounded set τ is norm bounded, i.e.
supT∈τ ‖T‖ ≤ R(τ), but the converse is false in general. If X = Lp, 1 ≤
p <∞, then

(2.1)

(

E

∥

∥

∥

∥

∥

n
∑

k=1

ǫkxk

∥

∥

∥

∥

∥

X

)
1

2

∼=

∥

∥

∥

∥

∥

∥

(

n
∑

k=1

|xk|2
)

1

2

∥

∥

∥

∥

∥

∥

p

uniformly in n and x1, . . . , xn. A linear mapping u : Y → B(X), where
Y is a further Banach space is called R-bounded if R(u(y) : ‖y‖Y ≤
1) <∞. The following proposition gives a condition on the semigroup
generated by a sectorial operator A so that A has a Hβ calculus.

Proposition 2.1. Let A be an ω-sectorial operator for any ω > 0
defined on an Lp space for some 1 < p <∞, and let A have a bounded
H∞ calculus. Suppose that for some α > 0 the set {exp(−eiθ2ktA) : k ∈
Z} isR-bounded for any t > 0 and |θ| < π

2
, with R-bound. (cos(θ))−α .

Then for any β > α+ 1
2
, A has a bounded Hβ calculus. Moreover, this

calculus is an R-bounded mapping.

Proof. This is proved in the case that A has dense range in [11, Lemma
4.72 and Proposition 4.79], see also [12]. This proof for which we give
a sketch applies also here. First one deduces from the assumption of
R-boundedness of the semigroup that

{(1 + |t|)−α(1 + 2kA)−α exp(i2ktA) : t ∈ R}
is R-bounded with R-bound independent of t ∈ R. Then for g ∈
C∞

c (0,∞) a representation formula of g(2kA)(1 + 2kA)−α is available,
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namely

g(2kA)(1+2kA)−αx =
1

2π

∫

R

ĝ(t)(1+|t|)β(1+|t|)−β(1+2kA)−α exp(i2ktA)xdt.

If β > α+ 1
2
, then (1+|t|)−β‖(1+2kA)−α exp(i2ktA)‖ is dominated by a

function in L2(R), and if g belongs to W β
2 (R) then also ĝ(t)(1+ |t|)β ∈

L2(R). In fact, more can be said. By [10, Proposition 4.1, Remark 4.2],
the set

{g(2kA)(1 + 2kA)−α : g ∈ C∞
c (0,∞), ‖g‖W β

2
(R) ≤ 1, k ∈ Z}

is R-bounded. Next one gets rid of the factor (1 + 2kA)−α above by
using a function ψ(λ) = (1+λ)αφ(λ) where φ ∈ C∞

c (0,∞) and φ(λ) = 1
for λ ∈ [1

2
, 2]. The hypotheses of the proposition imply that {ψ(2kA) :

k ∈ Z} is R-bounded. Then

{g(2kA) : g ∈ C∞
c (0,∞), supp g ⊂ [

1

2
, 2], ‖g‖W β

2
(R) ≤ 1, k ∈ Z}

is R-bounded. The hypotheses imply moreover that there holds the
following equivalences of Paley-Littlewood type:

‖f‖p ∼=

∥

∥

∥

∥

∥

∥

(

∑

k∈Z
|φ(2kA)f |2

)
1

2

∥

∥

∥

∥

∥

∥

p

∼=

∥

∥

∥

∥

∥

∥

(

∑

k∈Z
|φ̃(2kA)φ(2kA)f |2

)
1

2

∥

∥

∥

∥

∥

∥

p

for a function φ ∈ C∞
c (0,∞), φ not vanishing identically zero, supp φ ⊂

[1
2
, 2] and φ̃ = φ(2−1·) + φ + φ(2·). Then one can show that g(A) is

bounded for ‖g‖Hβ <∞ :

‖g(A)f‖p ∼=

∥

∥

∥

∥

∥

∥

(

∑

k∈Z
|φ̃(2kA)g(A)φ(2kA)f |2

)
1

2

∥

∥

∥

∥

∥

∥

p

∼=

∥

∥

∥

∥

∥

∥

(

∑

k

|φ̃g(2−k·)(2kA)φ(2kA)f |2
)

1

2

∥

∥

∥

∥

∥

∥

p

. R({φ̃g(2−k·) : k ∈ Z})

∥

∥

∥

∥

∥

∥

(

∑

k∈Z
|φ(2kA)f |2

)
1

2

∥

∥

∥

∥

∥

∥

p

. ‖g‖Hβ‖f‖p.
Thus {g(A) : ‖g‖Hβ ≤ 1} is a bounded subset of B(Lp). In a simi-
lar manner to the calculation right above, using the fact that Lp has
Pisier’s property (α), one shows that this set is moreover R-bounded.

�
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The space Ω on which the operator A acts will be a space of homo-
geneous type. This means that (Ω, ρ) is a metric space endowed with
a nonnegative Borel measure µ which satisfies the doubling condition:
There exists a constant C > 0 such that for all x ∈ Ω and r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)) <∞,

where we set B(x, r) = {y ∈ Ω : ρ(x, y) < r}. Note that the doubling
condition implies the following strong homogeneity property: There
exists C > 0 and a dimension d > 0 such that for all λ ≥ 1, for all
x ∈ Ω and all r > 0 we have µ(B(x, λr)) ≤ Cλdµ(B(x, r)). We will
assume that the space of homogeneous type (Ω, µ, ρ) has the following
two additional properties

µ(B(x, r)) ∼= rd if diam(Ω) = ∞,

µ(B(x, r)) ∼= min(rd, 1) if diam(Ω) <∞
(2.2)

and

µ(B(x, r, R)) ≤ C(Rd − rd) (x ∈ Ω, R > r > 0) if diam(Ω) = ∞,

µ(B(x, r, R)) ≤ C(R− r)min(Rd−1, 1) (x ∈ Ω, R > r >
1

2
R > 0) if diam(Ω) <∞

(2.3)

where we denote diam(Ω) = sup{ρ(x, y) : x, y ∈ Ω} and B(x, r, R) =
B(x,R)\B(x, r). Note that if (2.2) holds, then diam(Ω) < ∞ if and
only if µ(Ω) <∞.

3. The Main Theorem

We let (Ω, µ, ρ) be a space of homogeneous type with the additional
properties (2.2) and (2.3). We further let Tz = exp(−zA) be a semi-
group on L2(Ω) with the properties: The generator A has a bounded
H∞(Σω) calculus for some ω ∈ (0, π) on L2(Ω), and Tz has an integral
kernel kz(x, y) for Re z > 0 i.e. (Tzf)(x) =

∫

Ω
kz(x, y)f(y)dµ(y) for

any f ∈ L2(Ω). We assume that
(3.1)

|kz(x, y)| ≤ C(cos arg z)−β 1

µ(B(x, |z|))
1

|1 + ρ(x,y)2

z2
| d+1

2

(z ∈ C+, x, y ∈ Ω).

Proposition 3.1. Let (Ω, µ, ρ) be a space of homogeneous type sat-
isfying (2.2) and (2.3) and Tt = exp(−tA) a semigroup which acts
on all Lp(Ω), 1 < p < ∞. Assume that Tz is analytic on L2(Ω) on
z ∈ C+ = {λ ∈ C : Reλ > 0} and bounded on each subsector Σω
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for ω ∈ (0, π
2
), and that Tz has an integral kernel which satisfies (3.1).

Assume moreover that A has a bounded H∞(Σω) calculus on L
2(Ω) for

some ω ∈ (0, π), which is the case e.g. when A is self-adjoint. Then
the operator A has an H∞(Σω) calculus on Lp(Ω) for any ω ∈ (0, π)
and 1 < p <∞.

Proof. The proposition follows from [6, Theorem 3.1]. Indeed, let θ ∈
(0, π

2
). The kernel kz(x, y) satisfies on z ∈ Σθ the bound

|kz(x, y)| .
(cos arg z)−β

µ(B(x, |z|))
1

∣

∣

∣

∣

1 +
(

ρ(x,y)
z

)2
∣

∣

∣

∣

d+1

2

.θ µ(B(x, |Re z|))−1

(

1 +

(

ρ(x, y)

Re z

)2
)− d+1

2

since |z| ∼= Re z for z ∈ Σθ and |1 +
(

ρ(x,y)
Re z

)2

| ≤ 1 +
∣

∣

∣

ρ(x,y)
Re z

∣

∣

∣

2

.

1 +
∣

∣

∣

ρ(x,y)
z

∣

∣

∣

2

.

∣

∣

∣

∣

1 +
(

ρ(x,y)
z

)2
∣

∣

∣

∣

. Then with Gt given by [6, (7)] and

g(x) = c(1 + x2)−
d+1

2 , we can deduce from [6, Theorem 3.1] that A
has a bounded H∞(Σω) calculus on Lp(Ω) for any p ∈ (1,∞) and
ω > π

2
− θ. �

The following is the main theorem of this article.

Theorem 3.2. Let (Ω, µ, ρ) be a space of homogeneous type satisfying
(2.2) and (2.3) and Tt = exp(−tA) a semigroup which acts on all
Lp(Ω), 1 < p <∞. Assume that Tz is analytic on L

2(Ω) on z ∈ C+ and
that Tz has an integral kernel which satisfies (3.1). Assume that for z ∈
C+, ‖ exp(−zA)‖B(L2(Ω)) . (cos(arg z))−

d−1

2
−β(1 + | log(cos(arg z))|)2,

which is the case e.g. when A is self-adjoint. Then the semigroup
exp(−zA) satisfies on X = Lp(Ω) for any 1 < p < ∞ the R-bound
estimate

R
(

exp(−eiθ2jtA) : j ∈ Z
)

. (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2.

For the proof of the theorem, we state two preliminary lemmas.

Lemma 3.3. Let kz(x, y) be analytic in z ∈ C+ and satisfy (3.1). Let
θ ∈ (−π

2
, π
2
) with |θ| sufficiently close to π

2
and 0 < t < t0 < ∞. Then

one has the estimate

|keiθt0+t(x, y)− keiθt0(x, y)| .
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(cos(θ))−β

µ(B(x, t0))

min(cos(θ)t0, t)

cos(θ)t0

[∣

∣

∣

∣

1− ρ(x, y)2

t20

∣

∣

∣

∣

+ cos(θ)

]− d+1

2

+



























(5.5) : t20 ≥ ρ(x, y)2 and 1√
2−ρ(x,y)2/t2

0
−1

≥ 2t0/t

(5.6) : t20 ≥ ρ(x, y)2 and 1√
2−ρ(x,y)2/t2

0
−1

≤ 2t0/t

(5.7) : t20 ≤ ρ(x, y)2 ≤ 2t20
(5.8) : ρ(x, y)2 ≥ 2t20,

where (5.5), (5.6), (5.7), (5.8) can be found in the proof of this lemma
in Section 5.

Lemma 3.4. Let (Ω, µ, ρ) be a space of homogeneous type satisfying
(2.2). Let kz(x, y) be analytic in z ∈ C+ and satisfy (3.1). Let t >
0, t0 ∈ [1, 2], l ∈ Z with l ≤ Lmax = max{j ∈ Z : 2jt0 ≤ diam(Ω)}+1 ≤
∞, θ ∈ (−π

2
, π
2
) with |θ| sufficiently close to π

2
and x, y ∈ Ω such that

ρ(x, y) ≥ 3t.

(1) If |ρ(x,y)2
(2lt0)2

− 1| ≤ cos(θ), then

sup
j∈Z:2jt0≥t

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)| .

1

µ(B(x, 2lt0))

min(cos(θ)2lt0, t)

cos(θ)2lt0
(cos(θ))−

d+1

2
−β.

(2) If ρ(x,y)2

(2lt0)2
∈ [1 + cos(θ), 2], then with r = ρ(x, y)2/(2lt0)

2,

sup
j∈Z:2jt0≥t

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)| .
(cos(θ))−β

µ(B(x, 2lt0))
×

×



























































(r − 1)−
d+1

2

(

1 + log 1−
√
2−r

cos(θ)

)

+
(

1−
√
2− r

)− d+1

2 −
(

t
2lt0

)− d+1

2

,

if cos(θ) ≤ 1−
√
2− r ≤ t

2lt0
;

(r − 1)−
d+1

2

(

1 + log t
2lt0 cos(θ)

)

+ | log cos(θ)|,
if cos(θ) ≤ t

2lt0
≤ 1−

√
2− r;

(cos(θ))−
d+1

2 , if 1−
√
2− r ≤ cos(θ) ≤ t

2lt0
; and

t
cos(θ)2lt0

(r − 1)−
d+1

2 , if cos(θ) ≥ t
2lt0

.

(3) If ρ(x,y)2

(2lt0)2
∈ [1

2
, 1− cos(θ)], then with r = ρ(x, y)2/(2lt0)

2,

sup
j∈Z:2jt0≥t

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)| .
(cos(θ))−β

µ(B(x, 2lt0))
×
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×











































































































































(1− r)−
d+1

2

(

1 + log 1−r
cos(θ)

)

+ (1− r)−
d+1

4
−1×

×
[

(
√
1− r −

√
2− r + 1)−

d−1

2 − (
√
1− r − 1

2

√
2− r + 1

2
− cos(θ)

2
)−

d−1

2

]

+| log(cos(θ))|, if cos(θ) ≤
√
2− r − 1 ≤ 1

2
t

2lt0
;

(1− r)−
d+1

2

(

1 + log 1−r
cos(θ)

)

+ (1− r)−
d+1

4
−1×

×
[

(
√
1− r −

√
2− r + 1)−

d−1

2 − (
√
1− r − 1

2

√
2− r + 1

2
− cos(θ)

2
)−

d−1

2

]

+( t
2lt0

−
√
2− r + 1)(1− r)−

d+3

2 + | log(cos(θ))|,
if max(cos(θ), 1

2
t

2lt0
) ≤

√
2− r − 1 ≤ t

2lt0
;

(1− r)−
d+1

2 (1 + log r−1
cos(θ)

) + (1− r)−
d+1

4
−1×

×
[

(
√
1− r −

√
2− r + 1)−

d+1

2 − (
√
1− r − 1

2

√
2− r + 1

2
− cos(θ)

2
)−

d−1

2

]

+| log(cos(θ))|, if cos(θ) ≤ t
2lt0

≤
√
2− r − 1;

(1− r)−
d+1

2 + ( t
2lt0

−
√
2− r + 1)(1− r)−

d+3

2 + | log(cos(θ))|,
if 1

2
t

2lt0
≤

√
2−R − 1 ≤ cos(θ) ≤ t

2lt0
;

(1− r)−
d+1

2 + | log(cos(θ))|,
if
√
2− r − 1 ≤ min(cos(θ), 1

2
t

2lt0
) and cos(θ) ≤ t

2lt0
;

t
cos(θ)2lt0

(1− r)−
d+1

2 if cos(θ) ≥ t
2lt0

.

The proofs of Lemmas 3.3 and 3.4 are technical and dereferred to
Section 5 due to their length.

Proof of Theorem 3.2. Let θ ∈ (−π
2
, π
2
), j ∈ Z, t0 ∈ [1, 2] and x, y ∈ Ω.

Write in short Tj = exp(−eiθ2jt0A). Recall that {Tj : j ∈ Z} is R-
bounded on Lp(Ω) with R-bound C <∞, if

∥

∥

∥

∥

∥

∥

(

∑

j∈F
|Tjfj |2

)
1

2

∥

∥

∥

∥

∥

∥

Lp(Ω)

≤ C

∥

∥

∥

∥

∥

∥

(

∑

j∈F
|fj|2

)
1

2

∥

∥

∥

∥

∥

∥

Lp(Ω)

for any finite index set F ⊆ Z and fj ∈ Lp(Ω), j ∈ F. To prove the
theorem, it thus suffices to show that
(3.2)
∥

∥

∥

∥

∥

T :

{

Lp(Ω, ℓ2(F )) → Lp(Ω, ℓ2(F ))

(fj)j∈F 7→ (Tjfj)j∈F

∥

∥

∥

∥

∥

. (cos(θ))−
d−1

2
−β(1+| log(cos(θ))|)2

independently of F. To show this, we apply the boundedness criterion
for singular integral operators with non-smooth kernels [4, Theorem 1]
in its vector-valued version [16, Theorem 2.3]. Note that the standing
assumption in [16] that µ(Ω) = ∞ is not needed in [16, Theorem
2.3]. First note that L2(Ω, ℓ2(F )) = ℓ2(F, L2(Ω)) isometrically, so that
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for p = 2, ‖T‖ ≤ supj∈Z ‖Tj‖B(L2(Ω)) and that the assumption of the
theorem gives that T : L2(Ω, ℓ2(F )) → L2(Ω, ℓ2(F )) has the norm
bound in (3.2). To conclude, it suffices to show that T is a vector-
valued singular integral operator with non-smooth kernel in the sense
of [16, Definition 2.1]. We choose the approximation to identity At =
A′

t = ((fj)j∈F 7→ (exp(−tA)fj)j∈F ). Note that (1.4), (1.5) and (1.6) in
[16] are satisfied for this choice due to the Poisson estimate (3.1) and
the volume control (2.2). Note that T − A′

tT = T − TAt : (fj)j∈F 7→
((Tj − Tj exp(−tA))fj)j∈F , that this operator has the B(ℓ2(F ))-valued
kernel with entry keiθ2jt0(x, y)− keiθ2jt0+t(x, y) on the diagonal, so that
its B(ℓ2(F ))-norm is controlled by supj∈Z |keiθ2jt0(x, y)−keiθ2jt0+t(x, y)|.
By [16, Definition 2.1 (i) and (ii)], we are reduced to show that

∫

ρ(x,y)≥3t

sup
j∈Z

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)|dµ(x) .

(cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2 (y ∈ Ω, t > 0).(3.3)

At first, we estimate the above integral by
∫

ρ(x,y)≥3t

sup
j: 2jt0≤t

| . . . |dµ(x) +
∫

ρ(x,y)≥3t

sup
j: 2jt0≥t

| . . . |dµ(x)

and start by estimating the first integral. Estimate crudely |keiθ2jt0+t(x, y)−
keiθ2jt0(x, y)| ≤ |keiθ2jt0+t(x, y)|+ |keiθ2jt0(x, y)| and consider both sum-

mands separately. For ρ(x, y) ≥ 3t ≥ 3
2
2jt0+

3
2
t, we have |1+ ρ(x,y)2

(eiθ2jt0+t)2
| ∼=

ρ(x,y)2

|eiθ2jt0+t|2 . Thus,
∫

ρ(x,y)≥3t

sup
j: 2jt0≤t

|keiθ2jt0+t(x, y)|dµ(x)

.

∫

ρ(x,y)≥3t

sup
j: 2jt0≤t

(cos(θ))−β

µ(B(x, |eiθ2jt0 + t|))
|eiθ2jt0 + t|d+1

ρ(x, y)d+1
dµ(x)

.

∫

ρ(x,y)≥3t

sup
j: 2jt0≤t

(cos(θ))−β

µ(B(x, t))

td+1

ρ(x, y)d+1
dµ(x)

.

∞
∑

k=0

∫

B(y,3t·2k ,3t·2k+1)

(cos(θ))−β

µ(B(x, t))
2−k(d+1)dµ(x)

.

∞
∑

k=0

Mk
∑

n=1

∫

B(ykn,t)

(cos(θ))−β

µ(B(x, t))
2−k(d+1)dµ(x)

.

∞
∑

k=0

2kd2−k(d+1)(cos(θ))−β . (cos(θ))−β,
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where B(y, 3t · 20, 3t · 20+1) should be replaced by B(y, 3t · 2), and we
used the two well-known facts on spaces of homogeneous type that
B(y, 3t · 2k, 3t · 2k+1) can be covered by Mk

∼= 2kd balls B(ykn, t) and
that supy∈Ω

∫

B(y,t)
1

µ(B(x,t))
dµ(x) ∼= 1. Note that if µ(Ω) < ∞, then the

above sum over k was finite.
Furthermore, for ρ(x, y) ≥ 3t ≥ 3 · 2jt0, we have |1 + ρ(x,y)2

(eiθ2jt0)2
| ∼=

ρ(x,y)2

(2jt0)2
. Thus, similarly to the above calculation, with Mk .

(

t·2k
2jt0

)d

this time,
∫

ρ(x,y)≥3t

sup
j: 2jt0≤t

|keiθ2jt0(x, y)|dµ(x)

.
∑

j: 2jt0≤t

∫

ρ(x,y)≥3t

(cos(θ))−β

µ(B(x, 2jt0))

(2jt0)
d+1

ρ(x, y)d+1
dµ(x)

.
∑

j: 2jt0≤t

∞
∑

k=0

∫

B(y,3t·2k ,3t·2k+1)

(cos(θ))−β

µ(B(x, 2jt0))

(2jt0)
d+1

(3t · 2k)d+1
dµ(x)

.
∑

j: 2jt0≤t

∞
∑

k=0

Mk
∑

n=1

∫

B(ykn,2
jt0)

(cos(θ))−β

µ(B(x, 2jt0))

(2jt0)
d+1

(3t · 2k)d+1
dµ(x)

.
∑

j: 2jt0≤t

∞
∑

k=0

(cos(θ))−β t
d2kd

2jdtd0

2j(d+1)td+1
0

td+12kd2k

.
∑

j: 2jt0≤t

∞
∑

k=0

(cos(θ))−βt−12−k2jt0 . (cos(θ))−β.

To conclude (3.3), it now suffices to show
∫

ρ(x,y)≥3t

sup
j: 2jt0≥t

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)|dµ(x) .

(cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2 (y ∈ Ω, t > 0).(3.4)

To this end, we use the estimates from Lemma 3.4. Therefore, as a
first step, we divide the integral in (3.4) into

∫

ρ(x,y)≥3t

≤
Lmax
∑

l=Lmin

∫

|ρ(x,y)2/(2lt0)2−1|≤cos(θ)

+

Lmax
∑

l=Lmin

∫

ρ(x,y)2/(2lt0)2∈[1+cos(θ),2]

+
Lmax
∑

l=Lmin

∫

ρ(x,y)2/(2lt0)2∈[ 12 ,1−cos(θ)]

=:
Lmax
∑

l=Lmin

I1 + I2 + I3,
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where Lmin = min{l ∈ Z : 2lt0 ≥ 3

2
√

1−cos(θ)
t} and Lmax = max{l ∈ Z :

2lt0 ≤ diam(Ω)}+1. For I1, we have by Lemma 3.4 1. and the volume
control (2.3),
∫

|ρ(x,y)2/(2lt0)2−1|≤cos(θ)

sup
j: 2jt0≥t

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)|dµ(x)

.

∫

...

1

µ(B(x, 2lt0))

min(cos(θ)2lt0, t)

cos(θ)2lt0
(cos(θ))−

d+1

2
−βdµ(x)

. 2ld cos(θ)2−ldmin(cos(θ)2lt0, t)

cos(θ)2lt0
(cos(θ))−

d+1

2
−β

∼= min(cos(θ)2lt0, t)

cos(θ)2lt0
(cos(θ))−

d−1

2
−β.

Now summing over l, we obtain

Lmax
∑

l=Lmin

min(cos(θ)2lt0, t)

cos(θ)2lt0
(cos(θ))−

d−1

2
−β

. (cos(θ))−
d−1

2
−β

(

∫ (cos(θ))−1

1

dx

x
+

∫ ∞

(cos(θ))−1

(cos(θ))−1x−1dx

x

)

∼= (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|).

Now for I2. We distinguish the cases I) (cos(θ)2lt0 ≤ t) and II)
(cos(θ)2lt0 ≥ t). In case I), we decompose I2 into three integrals ac-
cording to Lemma 3.4 2. We write r = ρ(x, y)2/(2lt0)

2.

I2 ≤
∫

cos(θ)≤1−
√
2−r≤ t

2lt0
,1+cos(θ)≤r≤2

+

∫

cos(θ)≤ t

2lt0
≤1−

√
2−r

+

∫

1−
√
2−r≤cos(θ)≤ t

2lt0

=: I12 + I22 + I32 .

Then by the volume condition (2.3) and Lemma 3.4 2.,

I12 .

∫

cos(θ)≤1−
√
2−r≤ t

2lt0
,1+cos(θ)≤r≤2

(cos(θ))−β(r − 1)−
d+1

2

(

1 + log
r − 1

cos(θ)

)

r
d
2

dr

r

. (cos(θ))−β

∫ 2

1+cos(θ)

(r − 1)−
d+1

2

(

1 + log
r − 1

cos(θ)

)

dr

. (cos(θ))−
d−1

2
−β

(

1 + max
cos(θ)≤r≤1

log
r

cos(θ)

)

∼= (cos(θ))−
d−1

2
−β(1 + | log(cos θ)|).
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Further,

I22 . (cos(θ))−β

∫

1+cos(θ)≤r≤2, t

2lt0
≤1−

√
2−r

(

(r − 1)−
d+1

2

(

1 + log
t

2lt0 cos(θ)

)

+| log(cos(θ))|) r d
2

dr

r

. (cos(θ))−β

(
∫ 2

1+cos(θ)

(r − 1)−
d+1

2 dr(1 + log
t

2lt0
+ | log(cos(θ))|) + | log(cos(θ))|

)

. (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|),

due to t
2lt0

≤ 1−
√
2− r ≤ r − 1 ≤ 1 in this case. Finally,

I32 . (cos(θ))−β

∫

1−
√
2−r≤cos(θ),1+cos(θ)≤r≤2

(cos(θ))−
d+1

2 r
d
2

dr

r

. (cos(θ))−
d+1

2
−β

∫ 1+2 cos(θ)

1+cos(θ)

r
d
2

dr

r

∼= (cos(θ))−
d−1

2
−β,

where we have used that 1
2
(r − 1) ≤ 1 −

√
2− r, and thus r − 1 ≤

2(1−
√
2− r) ≤ 2 cos(θ). Now summing up the three estimates, we get

I2 . (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|), and thus, as for

∑Lmax

l=Lmin
I1, we

deduce
∑Lmax

l=Lmin
I2 . (cos(θ))−

d−1

2
−β(1 + | log(cos(θ))|)2. In case II), we

have by the volume condition (2.3) and Lemma 3.4 2.,

I2 ∼= (cos(θ))−β t

cos(θ)2lt0

∫ 2

1+cos(θ)

(r − 1)−
d+1

2 r
d
2

dr

r

∼= (cos(θ))−β t

cos(θ)2lt0

[

−(r − 1)−
d−1

2

]2

1+cos(θ)
. (cos(θ))−

d−1

2
−β t

cos(θ)2lt0
.

Now summing over those l with cos(θ)2lt0 ≥ t, we obtain
∑

l: cos(θ)2lt0≥t I2 .

(cos(θ))−
d−1

2
−β
∫ 1

0
xdx

x
= (cos(θ))−

d−1

2
−β.

It remains to estimate I3, for which we use part 3. of Lemma 3.4.
Again we distinguish the cases I) (cos(θ)2lt0 ≤ t) and II) (cos(θ)2lt0 ≥
t). In case I), we decompose I3 .

∫ (cos(θ))−β

µ(B(x,2lt0))
(1+ | log(cos(θ))|)dµ(x)+

∫

remainder dµ(x). The first term is estimated by

∫

ρ(x,y)2/(2lt0)2∈[ 12 ,1−cos(θ)]

(cos(θ))−β

µ(B(x, 2lt0))
(1 + | log(cos(θ))|)dµ(x)
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.

∫ 1−cos(θ)

1

2

(cos(θ))−β(1 + | log(cos(θ))|)r d
2

dr

r

∼= (cos(θ))−β(1 + | log(cos(θ))|).
The remainder is decomposed into the following five integrals cor-
responding to the first five cases in Lemma 3.4 3. We write again
r = ρ(x, y)2/(2lt0)

2.
∫

1

2
≤r≤1−cos(θ),cos(θ)≤

√
2−r−1≤ 1

2

t

2lt0

+

∫

1

2
≤r≤1−cos(θ),max(cos(θ), 1

2

t

2lt0
)≤

√
2−r−1≤ t

2lt0

+

∫

1

2
≤r≤1−cos(θ),cos(θ)≤ t

2lt0
≤
√
2−r−1

+

∫

1

2
≤r≤1−cos(θ), 1

2

t

2lt0
≤
√
2−r−1≤cos(θ)≤ t

2lt0

+

∫

1

2
≤r≤1−cos(θ),

√
2−r−1≤min(cos(θ), 1

2

t

2lt0

=: I13 + I23 + I33 + I43 + I53 .

We estimate the five integrals separately. For I13 , we have

(cos(θ))βI13 .

∫

1

2
≤r≤1−cos(θ),cos(θ)≤1−r≤ 1

2

1√
2−1

t

2lt0

(1− r)−
d+1

2 (1 + log
1− r

cos(θ)
)r

d
2

dr

r

+

∫

1

2
≤r≤1−cos(θ),cos(θ)≤

√
2−r−1≤ 1

2

t

2lt0

(1− r)−
d+1

4
−1×

× (1− r)(
√
1− r − (

√
2− r − 1))−

d+1

2 r
d
2

dr

r

. (cos(θ))−
d−1

2 (1 + | log(cos(θ))|) +
∫ 1−cos(θ)

1

2

(1− r)−
d+1

4
−1+1− d+1

4 dr

. (cos(θ))−
d−1

2 (1 + | log(cos(θ))|) + (cos(θ))−
d−1

2 ,

where we have used the mean value theorem to estimate

(
√
1− r − (

√
2− r − 1))−

d−1

2 − (
√
1− r − 1

2
(
√
2− r − 1)− cos(θ)

2
)−

d−1

2 .

(1− r)(
√
1− r − (

√
2− r − 1))−

d+1

2 .

For I23 , we have

(cos(θ))βI23 .

∫

1

2
≤r≤1−(cos(θ)),max(cos(θ), 1

2

t

2lt0
)≤

√
2−r−1≤ t

2lt0
{

1st term + 2nd term + (
t

2lt0
−
√
2− r + 1)(1− r)−

d+3

2

}

r
d
2

dr

r
,
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where the 1st and 2nd term are given in Lemma 3.4 3., and can be

controlled as in I13 by (cos(θ))−
d−1

2 (1 + | log(cos(θ))|). The third term,
we estimate by

.

∫

1

2
≤r≤1−cos(θ),max(cos(θ), 1

2

t

2lt0
≤
√
2−r−1≤ t

2lt0

(
t

2lt0
− (

√
2− r − 1))(1− r)−

d+3

2 dr

.

∫

1

2
≤r≤1−cos(θ)

(1− r)(1− r)−
d+3

2 dr . (cos(θ))−
d−1

2 .

For I33 , we apply exactly the same estimate as for I13 , to get (cos(θ))
βI33 .

(cos(θ))−
d−1

2 (1+ | log(cos(θ))|), too. For I43 , we have again with 1st, 2nd

and 3rd term given in the estimate in Lemma 3.4 3.,

(cos(θ))βI43 .

∫

1

2
≤r≤1−cos(θ), 1

2

t

2lt0
≤
√
2−r−1≤cos(θ)≤ t

2lt0

{

1st term + 2nd term + 3rd term
}

r
d
2

dr

r
.

The 1st and 2nd term can be controlled as in I13 , whereas the 3rd term

can be controlled as in I23 . We get (cos(θ))βI43 . (cos(θ))−
d−1

2 (1 +
| log(cos(θ))|).
Eventually, we estimate I53 by

(cos(θ))βI53 .

∫

1

2
≤r≤1−cos(θ),

√
2−r−1≤min(cos(θ), 1

2

t

2lt0
)

(1− r)−
d+1

2 r
d
2

dr

r

. (cos(θ))−
d−1

2 .

Now summing up we obtain as for I2,
∑Lmax

l=Lmin
I3 ≤

∑Lmax

l=Lmin
I13 +I

2
3 +

I33 + I43 + I53 . (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2.

In case II), we have

(cos(θ))βI3 .

∫

1

2
≤r≤1−cos(θ)

t

cos(θ)2lt0
(1− r)−

d+1

2 r
d
2

dr

r

.
t

cos(θ)2lt0
(cos(θ))−

d−1

2 .

Summing over l with cos(θ)2lt0 ≥ t, we obtain as for I2,
∑

l: cos(θ)2lt0≥t I3 .

(cos(θ))−
d−1

2
−β.

We have shown that
Lmax
∑

l=Lmin

I1 + I2 + I3 . (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2,

and thus (3.4) and hence the theorem follows. �
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Remark 3.5. We have proved in Theorem 3.2 that the semigroup is
R-bounded when taking dyadic arguments of the form eiθ2jt0, t0 ∈ [1, 2]
fixed. It is unclear whether one gets also an R-bounded set when this
argument is replaced by a continuous variant, i.e. if R(exp(−eiθt0A) :
t0 > 0) . (cos(θ))−

d−1

2
−β(1 + | log(cos(θ))|)2 holds under the same

hypotheses as in Theorem 3.2, and at least the above proof does not
seem to work. By the method in [14, Last part of 2.16 Example],
which passes from dyadic arguments to continuous ones, one only gets
a cruder estimate for the continuous variant involving an additional
factor (cos(θ))−2.

Corollary 3.6. Let (Ω, µ, ρ) be a space of homogeneous type of either
finite or infinite measure, satisfying (2.2) and (2.3). Let Tt = exp(−tA)
a semigroup which acts on all Lp(Ω), 1 < p < ∞. Assume that Tz is
analytic on L2(Ω) on z ∈ C+ and that Tz has an integral kernel kz(x, y)
which satisfies the Poisson estimate

|kreiθ(x, y)| ≤ C(cos(θ))−β 1

µ(B(x, r))

1
∣

∣

∣
1 + ρ(x,y)2

(reiθ)2

∣

∣

∣

d+1

2

for any x, y ∈ Ω, r > 0, θ ∈ (−π
2
, π
2
) and some C, β ≥ 0. Assume

moreover that A has a bounded H∞(Σω) calculus on L2(Ω) for some
ω ∈ (0, π), and that for r > 0, θ ∈ (−π

2
, π
2
),

‖ exp(−reiθA)‖B(L2(Ω)) ≤ C(cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2,

both of which are satisfied e.g. when A is self-adjoint. Then A has a
boundedHα calculus on Lp(Ω) for any 1 < p <∞ and α > d

2
.Moreover

this calculus is an R-bounded mapping, i.e.

R(f(A) : ‖f‖Hα ≤ 1) <∞.

Proof. This follows immediately from Propositions 2.1, 3.1 and Theo-
rem 3.2. �

4. Examples

In this section, we want to give some applications of Theorem 3.2
and Corollary 3.6. Note first that in the most classical example, namely
A = (−∆)

1

2 and exp(−zA) the Poisson semigroup on Lp(Rd) for some
1 < p <∞ and d ∈ N, Corollary 3.6 gives the sharp order of derivation
of the classical Hörmander multiplier theorem and strengthens it in that
it includes the R-boundedness of spectral multipliers whose associated
functions have bounded Hα norm.
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For a generalization, we consider the situation in [15]. Let M be a
positive integer. Consider the constant coefficient second order,M×M
system, differential operator

Lu =
M
∑

γ=1

d+1
∑

r,s=1

(∂r(a
αγ
rs ∂suβ))1≤α≤M ,

where aαβrs are real coefficients for r, s = 1, . . . , d+1 and α, γ = 1, . . . ,M.
Here, u is a function defined on the upper half space Rd+1

+ = Rd×[0,∞).
Further, we assume as in [15] the ellipticity condition

M
∑

α,γ=1

d+1
∑

r,s=1

Re [aαγrs ξrξsηαηβ ] ≥ κ0|ξ|2|η|2

for every (ξr)1≤r≤d+1 ∈ R
d+1, (ηα)1≤α≤M ∈ C

M and some κ0 > 0. Then
in [15] the following Dirichlet problem on R

d+1
+ is considered:

{

Lu = 0 in R
d+1
+

u|n.t.
∂Rd+1

+

= f ∈ Lp(Rd;CM),

where ∂Rd+1
+ = Rd×{0}, n.t. means non-tangential trace of u, and f is

a given function in Lp(Rd;CM), 1 < p <∞. If Adis
L 6= ∅, a certain con-

dition, see [15, (3.12)], which will be satisfied in our example, then this
problem is well-posed in Lp(Rd;CM) [15, Theorem 4.1], so it possesses a
unique solution u. As moreover the coefficients defining L are constant,
we have ∂r[u(· + (0, t))]|·=x = (∂ru)(x + (0, t)), so that the expression
Ttf(x) := u(x, t), x ∈ R

d, t ≥ 0 defines a semigroup on Lp(Rd;CM).
In the sequel, we are interested in the Hörmander functional calculus
of the negative generator of that semigroup. Note that for some cases,
this semigroup is given by a convolution kernel. We now restrict to the
following specific example.
Lamé system of elasticity. Assume thatM = d+1 above. The so-called
Lamé operator in Rd+1 has the form

(4.1) Lu = µ∆u+ (λ+ µ)∇ div u, u = (u1, . . . , ud+1),

where the constants λ, µ ∈ R (typically called Lamé moduli) are as-
sumed to satisfy µ > 0 and 2µ+λ > 0. Then according to [15, Theorem
5.2], Ttf(x) = u(x, t) is given by

(Ttf)α(x) =
4µ

3µ+ λ

1

ωd

∫

Rd

t

(|x− y|2 + t2)
d+1

2

fα(y)dy
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+
µ+ λ

3µ+ λ

2(d+ 1)

ωd

d+1
∑

γ=1

∫

Rd

t(x− y, t))α(x− y, t)γ

(|x− y|2 + t2)
d+3

2

fγ(y)dy (α = 1, . . . , d+ 1),

(4.2)

where ωd is the area of the unit sphere Sd in Rd+1, and (x − y, t)α =
xα − yα if α ∈ {1, . . . , d} and (x− y, t)d+1 = t.

Proposition 4.1. The semigroup in (4.2) is strongly continuous on
Lp(Rd;Cd+1) for 1 < p < ∞, has an analytic extension for Re z > 0
and if kz(x, y) = (kz;αγ)

d+1
α,γ=1(x, y) denotes its (d+ 1)× (d+ 1) matrix

valued integral kernel, then each of its components kz,αγ(x, y) satisfies
the Poisson estimate (3.1) with β = 1. Further, the negative generator
A of the semigroup has an H∞ calculus on L2(Rd;Cd+1) and

‖ exp(−eiθtA)‖B(L2(Rd;Cd+1)) . (cos(θ))−1max(1 + | log(cos(θ))|, (cos(θ))− d−1

2 )

. (cos(θ))−
d−1

2
−β(1 + | log(cos(θ))|)2

for t > 0 and |θ| < π
2
.

Proof. For the strong continuity of the semigroup, we show first that
supt>0 ‖Tt‖Lp(Rd;Cd+1)→Lp(R;Cd+1) <∞. As Tt is given by a linear combi-

nation of convolutions, we have ‖Tt‖p→p .
∫

Rd
t

(|y|2+t2)
d+1
2

dy+
∫

Rd t
|y|2+t2

(|y|2+t2)
d+3
2

dy =

2
∫

Rd
1

(|y/t|2+1)
d+1
2

dy
td
, which is clearly bounded independently of t > 0.

Thus it suffices to show the strong continuity ‖Ttf − f‖p → 0 as
t → 0 for f belonging to the dense subset of continuous functions
with compact support. In the following calculation, we use that the
kernel kt(x, y) of Tt satisfies

∫

R
kt(x, y)dy = 1Md+1

, since Tt1ℓ2
d+1

= 1ℓ2
d+1

is the unique solution of the Dirichlet problem with constant initial
value, and we use Jensen’s inequality.

‖Ttf − f‖pp ∼=
d+1
∑

α=1

∫

Rd

∣

∣

∣

∣

∣

∫

Rd

c1
t

(|y|2 + t2)
d+1

2

fα(x− y)dy

+
d+1
∑

γ=1

∫

Rd

c2t
(y, t)α(y, t)γ

(|y|2 + t2)
d+3

2

fγ(x− y)dy − fα(x)

∣

∣

∣

∣

∣

p

dx

=

d+1
∑

α=1

∫

Rd

∣

∣

∣

∣

∣

∫

Rd

c1
t

(|y|2 + t2)
d+1

2

[fα(x− y)− fα(x)]dy

+
d+1
∑

γ=1

∫

Rd

c2t
(y, t)α(y, t)γ

(|y|2 + t2)
d+3

2

[fγ(x− y)dy − fγ(x)]dy

∣

∣

∣

∣

∣

p

dx
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.

d+1
∑

α=1

∫

Rd

{

c1t

∫

Rd

1

(|y|2 + t2)
d+1

2

|fα(x− y)− fα(x)|pdy

+c2t
d+1
∑

γ=1

∫

Rd

|(y, t)α(y, t)γ|
(|y|2 + t2)

d+3

2

|fγ(x− y)− fγ(x)|pdy
}

dx

=

d+1
∑

α=1

∫

Rd

{

c1

∫

Rd

1

(|y|2 + 1)
d+1

2

|fα(x− ty)− fα(x)|pdy

+c2

d+1
∑

γ=1

∫

Rd

|(y, 1)α(y, 1)γ|
(|y|2 + 1)

d+3

2

|fγ(x− ty)− fγ(x)|pdy
}

dx

∼=
∑

α

∫

|x|≤R

∫

Rd

. . . dy +
∑

γ

∫

Rd

. . . dydx+

∫

|x|≥R

∫

Rd

. . . dy +
∑

γ

∫

Rd

. . . dydx.

Now choose first ǫ > 0 and R >> 1 sufficiently large. Then there ex-
ists t0 << 1 such that |fα(x − ty)− fα(x)|p < ǫ

µ(B(0,R))
for t ≤ t0 and

α ∈ {1, . . . , d+1}. Thus the integral over |x| ≤ R is . ǫ. Let supp f ⊂
B(0, r).Then the integral over |x| ≥ R is.

∫

|y|≥1/t0(R−r)
1

(|y|2+1)
d+1
2

2p‖f‖ppdy →
0 as R→ ∞. We have proved the strong continuity of the semigroup.
For the analyticity, extend the definition of Tt from (4.2) by replac-

ing t > 0 by a complex z with Re z > 0 everywhere. Clearly, (4.2) is
an analytic expression in t, so that we get an analytic family Tz. The
claimed B(L2(Rd;Cd+1)) estimate of Tz follows from the integral ker-
nel estimate of z

(|·|2+z2)
d+1
2

, which is shown in [7, p. 348] and gives the

estimate for the first expression in (4.2), and also for the second expres-

sion by the pointwise estimate |z(y,z)α(y,z)γ |
||y|2+z2|

d+3
2

≤ (cos(arg z))−1 |z|
||y|2+z2|

d+1
2

,

which is shown in the following.
Now for the claimed Poisson estimate (3.1) with β = 1. Fix some

α, γ ∈ {1, . . . , d+ 1}. We have by (4.2),
(4.3)

kz,αγ(x, y) = c1δα=γ
z

(|x− y|2 + z2)
d+1

2

+ c2
z(x− y, z)α(x− y, z)γ

(|x− y|2 + z2)
d+3

2

.

Clearly, the first summand admits the complex Poisson estimate (3.1)
even with β = 0. For the second summand, it clearly suffices to show
that |(x, z)α(x, z)γ | . (cos(θ))−1 ||x|2 + z2| , where arg z = θ. We dis-
tinguish the four cases α, γ ≤ d; α, γ = d + 1; α ≤ d, γ = d + 1
and α = d + 1, γ ≤ d. Suppose first α, γ ≤ d. If |x|2 ≥ 2|z|2, then
|xαxγ | ≤ 1

2
(x2α+x

2
γ) ≤ 1

2
|x|2 . ||x|2 + z2| . If |x|2 ≤ 1

2
|z|2, then |xαxγ | ≤

1
2
|x|2 ≤ 1

4
|z|2 ≤ 1

2
(|z|2 − |x|2) ≤ 1

2
|z2 + |x|2| . If 1

2
|z|2 ≤ |x|2 ≤ 2|z|2,
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then

|xαxγ | cos(θ) . cos(θ)|z|2 ≤ |z|2 cos(θ) +
∣

∣|z|2(cos2(θ)− sin2(θ) + |x|2
∣

∣

∼= |2(Re z)(Im z)|+
∣

∣(Re z)2 − (Im z)2 + |x|2
∣

∣

= | Im(z2)|+
∣

∣Re(z2) + |x|2
∣

∣ ∼=
∣

∣z2 + |x|2
∣

∣ .

The other three cases can be treated in the same manner.
We now show that the negative generator A of Tt has a bounded H∞

calculus on L2(Rd;Cd+1). According to [3, Theorem 2.4], it suffices to
show that both

(4.4)

∫ ∞

0

t‖Ae−tAf‖22dt . ‖f‖22 and

∫ ∞

0

t‖A′e−tA′
f‖22dt . ‖f‖22

hold. We have with F denoting the Fourier transform, using the
Plancherel formula and Fubini,

∫ ∞

0

t‖Ae−tAf‖2L2(Rd;Cd+1)dt =

∫ ∞

0

d+1
∑

α=1

t

∥

∥

∥

∥

∂

∂t
(e−tAf)α

∥

∥

∥

∥

2

L2(Rd)

dt

=

∫ ∞

0

d+1
∑

α=1

t

∥

∥

∥

∥

∥

d+1
∑

γ=1

∂

∂t
kt,αγ ∗ fγ

∥

∥

∥

∥

∥

2

2

dt

=

∫ ∞

0

d+1
∑

α=1

t

∥

∥

∥

∥

∥

d+1
∑

γ=1

∂

∂t
F [kt,αγ] · F [fγ]

∥

∥

∥

∥

∥

2

2

dt

.

d+1
∑

α,γ=1

∫

Rd

|F [fγ](ξ)|2
∫ ∞

0

t

∣

∣

∣

∣

∂

∂t
F [kt,αγ ](ξ)

∣

∣

∣

∣

2

dtdξ.

For the first estimate in (4.4), it thus suffices to show that

(4.5)

∫ ∞

0

t

∣

∣

∣

∣

∂

∂t
F [kt,αγ](ξ)

∣

∣

∣

∣

2

dt . 1

independently of ξ ∈ Rd. We decompose kt,αγ = k1t,αγ + k2t,αγ into the
two summands according to (4.3). For the first summand, we have
F [k1t,αγ(ξ)] = c1δα=γe

−t|ξ|. Thus,

∫ ∞

0

t

∣

∣

∣

∣

∂

∂t
F [k1t,αγ ](ξ)

∣

∣

∣

∣

2

dt = c21δα=γ

∫ ∞

0

t|ξ|2e−2t|ξ|dt

= c21δα=γ

∫ ∞

0

te−2tdt <∞.
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Next we claim that

(4.6) F

[

x 7→ t

(|x|2 + t2)
d+3

2

]

(ξ) = cd
|ξ|
t
e−t|ξ|(1 +

1

t|ξ|),

from which we shall easily deduce F [k2t,αγ ](ξ). First note that the func-
tion which we Fourier transform in (4.6) is invariant under rotation, so
also its Fourier transform is. Thus we can assume that ξ = (ξ1, 0, . . . , 0)
with ξ1 ≥ 0 and we get (l.h.s. of (4.6)) = c1

∫

R
. . .
∫

R

t

(x2
1
+x2

2
+...+x2

d
+t2)

d+3
2

e−ix1ξ1dx2 . . . dxddx1.

Note that
∫

R

t
(x2+s2)a

dx = ca
t

(s2)a−
1
2

for any a > 1
2
, so that by induc-

tion, we get by [17, p. 202], (l.h.s. of (4.6)) = c′d
∫

R

t
(x2

1
+t2)2

e−ix1ξ1dx1 =

c′d2t
√
πΓ(2)−1

(

ξ1
2t

)
3

2 K 3

2

(tξ1), where K 3

2

(x) =
√

π
2x
e−x(1 + 1

x
) is a mod-

ified Bessel function. This immediately gives (4.6). Now we calculate
∂
∂t
F [k2t,αγ](ξ) and distinguish the five cases α = γ = d + 1; α ≤ d and

γ = d + 1; α = d + 1 and γ ≤ d; α, γ ≤ d and α 6= γ; and finally
α = γ ≤ d.

If α = γ = d + 1, then ∂
∂t
F [k2t,αγ](ξ) = cd

∂
∂t

(

t|ξ|e−t|ξ|(1 + 1
t|ξ|)
)

=

cde
−t|ξ|(−t|ξ|2). Thus,

∫∞
0
t
∣

∣

∂
∂t
F [k2t,αγ](ξ)

∣

∣

2
dt = cd

∫∞
0
t2|ξ|2e−2t|ξ|(−t|ξ|)2 dt

t
<

∞ independently of |ξ|. If α ≤ d and γ = d + 1, then ∂
∂t
F [k2t,αγ](ξ) =

cdi
∂
∂t

∂
∂ξα

(

|ξ|e−t|ξ|(1 + 1
t|ξ|)
)

= cdie
−t|ξ|(tξα|ξ|−ξα). Thus,

∫∞
0
t
∣

∣

∂
∂t
F [k2t,αγ](ξ)

∣

∣

2
dt =

cd
∫∞
0
e−t(t2 ξα

|ξ|−t
ξα
|ξ|)

2 dt
t
<∞ independently of ξ. If α = d+1 and γ ≤ d,

one obtains the same as above, roles of α and γ interchanged. If α, γ ≤
d and α 6= γ, we have ∂

∂t
F [k2t,αγ](ξ) = −cd ∂

∂t
∂

∂ξα
∂

∂ξγ
(e−t|ξ|( |ξ|

t
+ 1

t2
)) =

−cde−t|ξ|(−tξαξγ+ ξαξγ
|ξ| ).Thus,

∫∞
0
t
∣

∣

∂
∂t
F [k2t,αγ ](ξ)

∣

∣

2
dt = cd

∫∞
0
e−2t(−t2 ξαξγ

|ξ|2 +

t ξαξγ|ξ|2 )
2 dt

t
<∞ independently of ξ. If finally α = γ ≤ d, then ∂

∂t
F [k2t,αγ](ξ) =

−cde−t|ξ|(−tξ2α + |ξ|+ ξ2α
ξ
), and again

∫∞
0
t
∣

∣

∂
∂t
F [k2t,αγ ](ξ)

∣

∣

2
dt <∞ inde-

pendently of ξ.
We have shown the first inequality in (4.4). The second one follows

by the same proof, there are only signs without further impact which
change. This shows that A has an H∞ calculus. �

Corollary 4.2. Let A be the negative generator of the Lamé semigroup
given in (4.2) on Lp(Rd;Cd+1) for some 1 < p < ∞. Then A has an
Hα calculus for any α > d

2
+ 1. Moreover, {f(A) : ‖f‖Hα ≤ 1} is

R-bounded on Lp(Rd;Cd+1) for these α.

Proof. The corollary follows immediately from Propositions 2.1 and 4.1
once we show that we can apply Proposition 3.1 and that {T (eiθ2kt0) :



22 CH. KRIEGLER

k ∈ Z} is R-bounded with

(4.7) R
({

T (eiθ2kt0) : k ∈ Z
})

. (cos(θ))−
d−1

2
−1(1 + | log(cos(θ))|)2.

For the application of Proposition 3.1, note that a careful inspection of
the proof of [6, Theorem 3.1] shows that a version in Lp(Rd;Cd+1)
also holds, more precisely that: if Tz is an analytic semigroup on
L2(Rd;Cd+1) for Re z > 0 such that its negative generator A has a
bounded H∞ calculus on L2(Rd;Cd+1) and each of the (d+1)× (d+1)
components of its matrix valued integral kernel kz,αγ(x, y) satisfies
(3.1), then A has a bounded H∞ calculus on Lp(Rd;Cd+1) for 1 < p <
∞. Note that we have shown the H∞ calculus on L2(Rd;Cd+1) and the
bounds (3.1) for kz,αγ(x, y) in Proposition 4.1. It remains to show (4.7),
which would follow immediately from Theorem 3.2, weren’t it for the
vector valued character. We give the adaption details now. First note

that
(

E ‖∑n
k=1 ǫkfk‖

2
Lp(Rd;Cd+1)

)
1

2 ∼=
∑d+1

α=1

∥

∥

∥
(
∑n

k=1 |fα,k|2)
1

2

∥

∥

∥

Lp(Rd)

∼=
∥

∥

∥

∥

(

∑d+1
α=1

∑n
k=1 |fα,k|2

)
1

2

∥

∥

∥

∥

Lp(Rd)

. Thus,

{T (eiθ2kt0) : k ∈ Z} is R-bounded on Lp(Rd;Cd+1) iff
∥

∥

∥

∥

∥

∥

(

d+1
∑

α=1

∑

k

|(T (eiθ2kt0A)fk)α|2
)

1

2

∥

∥

∥

∥

∥

∥

p

.

∥

∥

∥

∥

∥

∥

(

d+1
∑

α=1

∑

k

|fα,k|2
)

1

2

∥

∥

∥

∥

∥

∥

p

,

iff T ∈ B(Lp(Rd; ℓ2{1,...,d+1}×N
)), where T (fα,j)α,j = (T (eiθ2jt0)fj)α. In

view of [16, Definition 2.1], choose now the approximation of identity
At(fα,j)α,j = (Ttfj)α. Then TAt(fα,j) = T (Ttfj) = (T (eiθ2jt0)Ttfj) =
AtT (fα,j). Further, the kernel of At, called at satisfies

At(fα,j) =

∫

Rd

d+1
∑

γ=1

kt,αγ(x− y)fγ,j(y)dy

and

‖at(x− y)‖B(ℓ2{1,...,d+1}×N
) = sup

wα,j :
∑

α,j |wα,j |2≤1





∑

α,j

∣

∣

∣

∣

∣

d+1
∑

γ=1

kt,αγ(x− y)wγ,j

∣

∣

∣

∣

∣

2




1

2

.
d+1
sup
α,γ=1

|kt,αγ(x− y)| . 1

µ(B(x, t))

1
∣

∣

∣
1 + |x−y|2

t2

∣

∣

∣

d+1

2

,

so that At is indeed an approximation of identity in the sense of [16,
Definition 1.1]. If kT (x, y) and kTAt

(x, y) denote the B(ℓ2{1,...,d+1}×N
)
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valued kernels of T and TAt, then we have in view of the application
of [16, Theorem 2.3],

∫

|x−y|≥3t

‖kT (x, y)− kTAt
(x, y)‖B(ℓ2{1,...,d+1}×N

) .

d+1
sup
α,γ=1

∫

|x−y|≥3t

sup
j∈Z

|keiθ2jt0,αγ(x− y)− keiθ2jt0+t,αγ(x− y)|dµ(x).

Apply now the Poisson estimate and analyticity of kz,αγ(x−y) in z, for
fixed α and γ, exactly as in the proof of Theorem 3.2, to deduce (4.7)
as wanted. �

Remark 4.3. Let us compare Corollary 4.2 with known Hörmander
functional calculi for “Lamé operators” in the literature. Let L denote
the operator as in (4.1), i.e. Lu = µ∆u+(λ+µ)∇ divu, where u : Ω →
Rd+1 and Ω ⊂ Rd is an open subset satisfying the interior ball condition,
i.e. there exists a positive constant c such taht for all x ∈ Ω and all
r ∈ (0, 1

2
diam(Ω)), µ(B(x, r)) ≥ crd. Let further A denote the negative

generator of the semigroup in (4.2), so that if Ω = Rd, for functions
u : Rd+1

+ → Cd+1 and f ∈ Lp(Rd;Cd+1), we have Lu = 0, u|n.t.
∂Rd+1

+

= f

if and only if u(x, t) = e−tAf(x). If Ω is bounded, the operator −L on
Lp(Ω;Cd+1) for p ∈ (q′Ω, qΩ) where qΩ > 2 is some constant, has a Hα

calculus for α > d|1
p
− 1

2
| + 1

2
[13, Theorem 5.1]. In contrast, for A

we get a Hörmander functional calculus on the full range p ∈ (1,∞),
but with a worse derivation exponent α > d

2
+ 1. Note that A is not

self-adjoint on L2(Rd;Cd+1), in contrast to L on L2(Ω;Cd+1), so that
A and L are of a quite different nature.

Dirichlet-to-Neumann operator. Another application of Theorem 3.2
and Corollary 3.6 is the following operator from [19]. There the authors

suppose that Ω is the smooth boundary of an open connected subset Ω̃
of Rd+1 and A is the Dirchlet-to-Neumann operator defined as follows:
Given φ ∈ L2(Ω) solve the Dirichlet problem

∆u = 0 weakly on Ω̃

u|Ω = φ

with u ∈ W 1
2 (Ω̃). If u has a weak normal derivative ∂u

∂ν
in L2(Ω), then

φ ∈ D(A) and Aφ = ∂u
∂ν
. This operator is a pseudodifferential opera-

tor, self-adjoint on L2(Ω). Then in [19] it is shown that the semigroup
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satisfies the complex Poisson estimate:

|kz(x, y)| ≤ C(cos(θ))−2(d−1)d min(|z|, 1)−d

(

1 + |x−y|
|z|

)d+1

. (cos(θ))−2(d−1)d 1

µ(B(x, |z|))
1

∣

∣

∣
1 + |x−y|2

z2

∣

∣

∣

d+1

2

for all x, y ∈ Ω and Re z > 0, where θ = arg z. Further a Hα calculus
for A with α > d

2
is derived in [19, Section 7]. Suppose that Ω satisfies

(2.2) and (2.3). Then since A is self-adjoint on L2(Ω), we can apply
Corollary 3.6 to deduce that A has an R-bounded Hα calculus for
α > d

2
+ 2(d − 1)d. Note that our derivation order in this functional

calculus is worse than the one obtained in [19, Section 7], but since it
is R-bounded, it contains square function estimates like

∥

∥

∥

∥

∥

∥

(

n
∑

j=1

|gj(A)fj|2
)

1

2

∥

∥

∥

∥

∥

∥

p

.
n

max
j=1

‖gj‖Hα

∥

∥

∥

∥

∥

∥

(

n
∑

j=1

|fj |2
)

1

2

∥

∥

∥

∥

∥

∥

p

.

Pseudodifferential operators on compact manifolds without boundary.
Let Ω be a compact closed (i.e. without boundary) d-dimensional Rie-
mannian C∞-manifold and A a classical, self-adjoint, strongly elliptic
pseudodifferential operator on Ω of order 1 such that γ(A) = inf{Re z :
z ∈ σ(A)} ≥ 0. Then according to [8, Theorem 3.14], the semigroup
generated by −A has an integral kernel satisfying

|kz(x, y)| . (cos(θ))−βe−γ(A) Re z |z|
ρ(x, y) + |z|((ρ(x, y)+|z|)−d+1) (Re z > 0)

with θ = arg z and β = 7
2
d+ 11. If Ω satisfies (2.2), then this estimate

readily gives (3.1). Thus if Ω also satisfies (2.3), we can appeal to
Corollary 3.6 and deduce that A has an R-bounded Hα calculus for
α > d

2
+ 7

2
d + 11 on Lp(Ω), 1 < p < ∞. The order of this calculus is

worse than what is known in the literature for this kind of operator
(α > d

2
, see [20]), but at least, our result includes the R-boundedness

of the calculus.

5. Proofs of Lemmas 3.3 and 3.4

Proof of Lemma 3.3. Since kz(x, y) is analytic in z, one has

|keiθt0+t(x, y)− keiθt0(x, y)| ≤
∫ t

0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds
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≤
∫ t

0

1

2π

∫

Γ
eiθt0+s

∣

∣

∣

∣

kz(x, y)

(z − eiθt0 − s)2

∣

∣

∣

∣

dzds,

where Γeiθt0+s is the contour of the circle centered at eiθt0 + s with
radius r(cos(θ)t0 + s), where r > 0 is some small constant determined
later on in this proof. The rest of the proof is the rather long task
to exploit (3.1) in the above double integral. Let z ∈ Γeiθt0+s. Then

cos(arg z) ∼= min(|Re z
Im z

|, 1) ∼= min( cos(θ)t0+s
sin(θ)t0+s

, 1) ∼= cos(arg(eiθt0 + s)) ≥
cos(θ). Also, |z| ∼= |eiθt0 + s|. We divide the integral over s in

∫ t

0

. . . ds =

∫ min(cos(θ)t0,t)

0

. . . ds+

∫ t

min(cos(θ)t0,t)

. . . ds.

1st case: cos(θ)t0 ≥ s.
We show that

(5.1)

∣

∣

∣

∣

1 +
ρ(x, y)2

[eiθt0 + s+ reiφ(cos(θ)t0 + s)]2

∣

∣

∣

∣

∼=
∣

∣

∣

∣

1 +
ρ(x, y)2

(eiθt0)2

∣

∣

∣

∣

.

First note that (5.1) is equivalent to |wl| ∼= |wr|, where wl = [eiθt0 +
s+ reiφ(cos(θ)t0 + s)]2 + ρ(x, y)2 and wr = (eiθt0)

2 + ρ(x, y)2. We have
Rewr = cos(2θ)t20+ρ(x, y)

2 = −t20+ρ(x, y)2+o(π2−|θ|)t20 and | Imwr| ∼=
cos(θ)t20. This gives |wr| ∼= |Rewr|+ | Imwr| ∼= |ρ(x, y)2− t20|+cos(θ)t20.
On the other hand, | Imwl| = 2(cos(θ)t0 + s)(1 + r cos(φ))| sin(θ)t0 +
r sin(φ)(cos(θ)t0 + s)| ∼= cos(θ)t20 and Rewl = ρ(x, y)2 − t20 + t20(1 −
sin2(θ)) − r2 sin2(φ)(cos(θ)t0 + s)2 − 2r sin(θ)t0 sin(φ)(cos(θ)t0 + s) +
(cos(θ)t0 + s)2(1 + r cos(φ))2. This gives

|Rewl| ≥ |ρ(x, y)2 − t20| −
[

(
π

2
− |θ|)2 + o((

π

2
− |θ|)2)

]

t20

− 4r2t20(
π

2
− |θ|)2(1 + o(1))− 2r · 2 · (π

2
− |θ|)t20

≥ |ρ(x, y)2 − t20| − c1(
π

2
− |θ|)t20,

where c1 << 1 is some small constant if r is sufficiently small and |θ| is
sufficiently close to π

2
. Similarly, |Rewl| ≤ |ρ(x, y)2− t20|+ c1(π2 −|θ|)t20.

Thus, |wl| ∼= |Rewl| + | Imwl| ∼= |ρ(x, y)2 − t20| + cos(θ)t20
∼= |wr|, and

(5.1) follows. Now we can estimate

∫ min(cos(θ)t0,t)

0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds .

(cos(θ))−β

µ(B(x, t0))

∫ min(cos(θ)t0,t)

0

1

cos(θ)t0

{

|ρ(x, y)2 − t20|+ cos(θ)t20
}− d+1

2 td+1
0 ds
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=
(cos(θ))−β

µ(B(x, t0))

min(cos(θ)t0, t)

cos(θ)t0

{

|1− ρ(x, y)2

t20
|+ cos(θ)

}− d+1

2

.

(5.2)

2nd case: cos(θ)t0 ≤ s.
We show that

(5.3)

∣

∣

∣

∣

1 +
ρ(x, y)2

[eiθt0 + s+ reiφ(cos(θ)t0 + s)]2

∣

∣

∣

∣

&

∣

∣

∣

∣

1 +
ρ(x, y)2

(s+ it0)2

∣

∣

∣

∣

.

Put wl = [eiθt0 + s + reiφ(cos(θ)t0 + s)]2 + ρ(x, y)2 and wr = [s +
it0]

2 + ρ(x, y)2, so that (5.3) ⇐⇒ |wl| & |wr|. We have Rewr =
s2 − t20 + ρ(x, y)2 and Imwr = 2st0. On the other hand, Rewl =

[cos(θ)t0 + s+ r cos(φ)(cos(θ)t0 + s)]2−[sin(θ)t0 + r sin(φ)(cos(θ)t0 + s)]2+
ρ(x, y)2, and

| Imwl| = 2 |[cos(θ)t0 + s+ r cos(φ)(cos(θ)t0 + s)] ×
× [sin(θ)t0 + r sin(φ)(cos(θ)t0 + s)]| ∼= st0,

if r < 1
4
. This gives

Rewl = cos2(θ)t20 + s2 + r2 cos2(φ)(cos(θ)t0 + s)2 + 2s cos(θ)t0

+ 2 · r(cos(θ)t0 + s) cos(φ)(cos(θ)t0 + s)− sin2(θ)t20

− r2 sin2(φ)(cos(θ)t0 + s)− 2 · r sin(θ)t0 sin(φ)(cos(θ)t0 + s) + ρ(x, y)2.

Now we distinguish the two cases that st0 is bigger or smaller than
|s2 − t20 + ρ(x, y)2|. In the first case, we have |wl| ≥ | Imwl| ∼= st0 &
|Rewr| + | Imwr| ∼= |wr|. In the second case, we have with constants
c1 < 1 arbitrarily close to 1 and c2 > 0 arbitrarily close to 0 if r is
sufficiently small, and c3 > 0 such that (cos(θ))−1 ≤ c3(

π
2
− |θ|)−1

|Rewl| ≥ |c1s2 + cos(2θ)t20 + ρ(x, y)2| − c2t0s

≥ |s2 − t20 + ρ(x, y)2| − (1− c1)s
2 − (1 + cos(2θ))t20 − c2t0s

≥ |s2 − t20 + ρ(x, y)2| − (1− c1)s
2 − (2(

π

2
− |θ|)2 + o((

π

2
− |θ|)3))×

× (cos(θ))−1c3st0 − c2t0s

≥ |s2 − t20 + ρ(x, y)2| − st0[(1− c1) + 2c3(
π

2
− |θ|) + o((

π

2
− |θ|)2) + c2]

& |s2 − t20 + ρ(x, y)2|.

Thus, |wl| ≥ |Rewl| & |s2 − t20 + ρ(x, y)2|+ st0 & |Rewr|+ | Imwr| ∼=
|wr|. This shows (5.3).
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It follows that if cos(θ)t0 ≤ t, then
(5.4)
∫ t

cos(θ)t0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds .
(cos(θ))−β

µ(B(x, t0))

∫ t

cos(θ)t0

1

s

∣

∣

∣

∣

1 +
ρ(x, y)2

(s+ it0)2

∣

∣

∣

∣

− d+1

2

ds.

We have

∣

∣

∣

∣

1 +
ρ(x, y)2

(s+ it0)2

∣

∣

∣

∣

− d+1

2 ∼= |s+ it0|d+1|(s+ it0)
2 + ρ(x, y)2|− d+1

2

∼= td+1
0

[

max(|s2 − t20 + ρ(x, y)2|, 2st0)
]− d+1

2 .

Next we determine the value of the above maximum of two terms. A
simple calculation shows that the two terms are the same iff s takes
one of the four values s±,± = ±t0 ±

√

2t20 − ρ(x, y)2. We distinguish
three cases i) - iii).

Case i) t20 ≥ ρ(x, y)2.

Then out of s±,±, only s−,+ = −t0 +
√

2t20 − ρ(x, y)2 lies in [0, t0].
If s ≤ s−,+, then |s2 − t20 + ρ(x, y)2| ≥ 2st0 and if s ≥ s−,+, then
|s2− t20 + ρ(x, y)2| ≤ 2st0. Now divide the integral in (5.4) accordingly.
We get

∫ t

cos(θ)t0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds .

(cos(θ))−β

µ(B(x, t0))

∫ t0(
√

2−ρ(x,y)2/t2
0
−1)

cos(θ)t0

1

s
td+1
0 |s2 − t20 + ρ(x, y)2|− d+1

2 ds

+
(cos(θ))−β

µ(B(x, t0))

∫ t

t0(
√

2−ρ(x,y)2/t2
0
−1)

1

s
td+1
0 (st0)

− d+1

2 ds

∼= (cos(θ))−β

µ(B(x, t0))

{

∫ t0(
√

2−ρ(x,y)2/t2
0
−1)

cos(θ)t0

1

s
[(
√

t20 − ρ(x, y)2 − s)×

×(
√

t20 − ρ(x, y)2 + s)]−
d+1

2 td+1
0 ds+

(
√

2− ρ(x, y)2

t20
− 1

)− d+1

2

− (t0/t)
d+1

2







.

(5.5)

The last integral above, with lower and upper bound abbreviated by
a and b, can be further estimated by
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∫ b

a

1

s
td+1
0 (t20 − ρ(x, y)2)−

d+1

4

[

1

(
√

t20 − ρ(x, y)2 − s)
d+1

2

+
1

(
√

t20 − ρ(x, y)2 + s)
d+1

2

]

ds

.

∫ b/t0

a/t0

(

1− ρ(x, y)2

t20

)− d+1

4 1

(
√

1− ρ(x,y)2

t2
0

− s)
d+1

2

ds

s
.

Case ia) 1√
2−ρ(x,y)2/t2

0
−1

≥ 2t0/t.

Then the term after the integral in (5.5) can be simplified to

(
√

2− ρ(x, y)2

t20
− 1

)− d+1

2

∼=
(

1− ρ(x, y)2

t20

)− d+1

2 ∼=
(

1− ρ(x, y)

t0

)− d+1

2

.

Case ib) 1√
2−ρ(x,y)2/t2

0
−1

≤ 2t0/t.

Then we obtain

∫ t

cos(θ)t0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds .

(cos(θ))−β

µ(B(x, t0))







(1− ρ(x, y)2

t20
)−

d+1

4





(
√

1− ρ(x, y)2

t20

)− d+1

2

×

× log

(

1
2
[
√

2− ρ(x, y)2/t20 − 1 + cos(θ)]

cos(θ)

)

+ [
√

2− ρ(x, y)2/t20 − 1 + cos(θ)]−1×




(
√

1− ρ(x, y)2

t20
−
√

2− ρ(x, y)2

t20
+ 1

)− d−1

2

−
(
√

1− ρ(x, y)2

t20
− 1

2

√

2− ρ(x, y)2

t20
+

1

2
− cos(θ)

2

)− d−1

2









+

(

t

t0
−
√

2− ρ(x, y)2

t20
+ 1

)

(

1− ρ(x, y)2

t20

)− d+3

2

}

.

(5.6)

Hereby, the last summand only exists for
√

2− ρ(x, y)2/t20−1 ≤ t/t0
and if ρ(x, y)/t0 is so close to 1 that

√

2− ρ(x, y)2/t20−1 ≤ cos(θ) then
√

2− ρ(x, y)2/t20−1 in the last summand has to be replaced by cos(θ).
Furthermore, everything before the last summand has to be replaced
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by 0 if cos(θ) ≥
√

2− ρ(x, y)2/t20 − 1.

Case ii) t20 ≤ ρ(x, y)2 ≤ 2t20.

Then only s+,− lies in [0, t0]. If s ≤ s+,−, then |s2−t20+ρ(x, y)2| ≥ 2st0
and if s ≥ s+,−, then |s2 − t20 + ρ(x, y)2| ≤ 2st0. Then we obtain

∫ t

cos(θ)t0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds .

(cos(θ))−β

µ(B(x, t0))

[

∫ t0(1−
√

2−ρ(x,y)2/t2
0
)

cos(θ)t0

[s2 − t20 + ρ(x, y)2]−
d+1

2 td+1
0

ds

s

+

∫ t

t0(1−
√

2−ρ(x,y)2/t2
0
)

td+1
0 (st0)

− d+1

2

ds

s

]

∼= (cos(θ))−β

µ(B(x, t0))

{[

log
1−

√

2− ρ(x, y)2/t20
cos(θ)

]

+

(

ρ(x, y)2

t20
− 1

)− d+1

2

+

[

(

1−
√

2− ρ(x, y)2/t20

)− d+1

2

− (t/t0)
− d+1

2

]

+

}

,

(5.7)

where [x]+ = max(x, 0). Note that in the last expression above, in the

first summand, 1−
√

2− ρ(x, y)2/t20 has to be replaced by t/t0 if t/t0 ≤
1−
√

2− ρ(x, y)2/t20. In the second summand, 1−
√

2− ρ(x, y)2/t20 has

to be replaced by cos(θ) if 1−
√

2− ρ(x, y)2/t20 ≤ cos(θ).

Case iii) ρ(x, y)2 ≥ 2t20.

Then none of s±,± is real. We always have |s2− t20+ ρ(x, y)
2| ≥ 2st0.

Then we obtain

∫ t

cos(θ)t0

∣

∣

∣

∣

∂

∂s
keiθt0+s(x, y)

∣

∣

∣

∣

ds .
(cos(θ))−β

µ(B(x, t0))

∫ t

cos(θ)t0

td+1
0 |s2 − t20 + ρ(x, y)2|− d+1

2

ds

s

.
(cos(θ))−β

µ(B(x, t0))

[

log

(

t

t0 cos(θ)

)]

+

(

ρ(x, y)2

t20
− 1

)− d+1

2

.

(5.8)

Summarizing (5.2), (5.5), (5.6), (5.7), (5.8), we finally obtain the
claimed estimate of the lemma. �
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Proof of Lemma 3.4. We start with estimating K := |keiθ2jt0+t(x, y)−
keiθ2jt0(x, y)| for a fixed j ∈ Z such that 2jt0 ≥ t, hereby using Lemma
3.3. Write in short R = ρ(x, y)2/(2jt0)

2. We distinguish the follow-
ing fifteen cases Iai), Iaii), Iaiii), Iaiv), Iav), Ibi), Ibii), Ic), Idi), Idii),
Idiii), Ie), IIa), IIb+c), IId+e), which depend on the values of θ, 2jt0, t
and ρ(x, y). Here, case I stands for cos(θ)2jt0 ≤ t, case II stands for
cos(θ)2jt0 ≥ t, case a stands forR ≤ 1−cos(θ), b for 1−cos(θ) ≤ R ≤ 1,
c for 1 ≤ R ≤ 1 + cos(θ), d for 1 + cos(θ) ≤ R ≤ 2 and e for 2 ≤ R.

Case Iai) cos(θ)2jt0 ≤ t, R ≤ 1 − cos(θ) and cos(θ) ≤
√
2− R − 1 ≤

1
2

t
2jt0

.
Then with Lemma 3.3,

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(1− R)−
d+1

2

(

1 + log

(

1
2
[
√
2−R− 1 + cos(θ)]

cos(θ)

))

+ [
√
2− R− 1 + cos(θ)]−1

[

(
√
1− R−

√
2− R + 1)−

d−1

2

−
(√

1−R− 1

2

√
2−R +

1

2
− cos(θ)

2

)− d−1

2

]

(1− R)−
d+1

4 + (1−R)−
d+1

2

}

.

Case Iaii) cos(θ)2jt0 ≤ t, R ≤ 1 − cos(θ) and max(cos(θ), 1
2

t
2jt0

) ≤√
2−R− 1 ≤ t

2jt0
.

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(1− R)−
d+1

2

(

1 + log

(

1
2
[
√
2−R− 1 + cos(θ)]

cos(θ)

))

+ (1−R)−
d+1

4
−1
[

(
√
1− R−

√
2− R + 1)−

d−1

2

−
(√

1−R − 1

2

√
2−R +

1

2
− cos(θ)

2

)− d−1

2

]

+

(

t

2jt0
−

√
2−R + 1

)

(1− R)−
d+3

2

}

Case Iaiii) cos(θ)2jt0 ≤ t, R ≤ 1−cos(θ) and max(cos(θ), t
2jt0

) = t
2jt0

≤√
2−R− 1.

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(1− R)−
d+1

2

(

1 + log

(

1
2
[
√
2−R− 1 + cos(θ)]

cos(θ)

))

+ (1−R)−
d+1

4
−1
[

(
√
1− R−

√
2− R + 1)−

d−1

2
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−
(√

1−R− 1

2

√
2−R +

1

2
− cos(θ)

2

)− d−1

2

]}

.

Case Iaiv) cos(θ)2jt0 ≤ t, R ≤ 1 − cos(θ) and 1
2

t
2jt0

≤
√
2− R − 1 ≤

cos(θ).

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(1− R)−
d+1

2 +

(

t

2jt0
−

√
2− R + 1

)

(1− R)−
d+3

2

}

Case Iav) cos(θ)2jt0 ≤ t, R ≤ 1−cos(θ) and
√
2− R−1 ≤ min(cos(θ), 1

2
t

2jt0
).

K .
(cos(θ))−β

µ(B(x, 2jt0))
(1− R)−

d+1

2

Case Ib) cos(θ)2jt0 ≤ t and 1− cos(θ) ≤ R ≤ 1.

In this case, we have
√
2− R − 1 ≤ 1

2
cos(θ) + o(cos(θ)), so that

always
√
2−R − 1 ≤ cos(θ) if |θ| is sufficiently close to π

2
.

Case Ibi) cos(θ)2jt0 ≤ t, 1− cos(θ) ≤ R ≤ 1 and 1
2

t
2jt0

≤
√
2− R− 1.

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(cos(θ))−
d+1

2 + (cos(θ))−
d+1

2 −
(

t

2jt0

)− d+1

2

}

.
(cos(θ))−β

µ(B(x, 2jt0))
(cos(θ))−

d+1

2

Case Ibii) cos(θ)2jt0 ≤ t, 1− cos(θ) ≤ R ≤ 1 and
√
2− R− 1 ≤ 1

2
t

2jt0
.

K .
(cos(θ))−β

µ(B(x, 2jt0))
(cos(θ))−

d+1

2

Case Ic) cos(θ)2jt0 ≤ t, 1 ≤ R ≤ 1 + cos(θ).

In this case, we have 0 ≤ 1−
√
2−R ≤ 1

2
cos(θ) + o(cos(θ)). Then

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(cos(θ))−
d+1

2 + (cos(θ))−
d+1

2 −
(

t

2jt0

)− d+1

2

}

.
(cos(θ))−β

µ(B(x, 2jt0))
(cos(θ))−

d+1

2

Case Id) cos(θ)2jt0 ≤ t and 1 + cos(θ) ≤ R ≤ 2.

In this case, −1 ≤ 1 − R ≤ − cos(θ), so that 1 − (R − 1) ≤
√

1 + (1− R) ≤ 1− 1
2
(R−1) and thus 1

2
(R−1) ≤ 1−

√
2− R ≤ R−1.
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Case Idi) cos(θ)2jt0 ≤ t, 1+cos(θ) ≤ R ≤ 2 and cos(θ) ≤ 1−
√
2−R ≤

t
2jt0

.

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(R − 1)−
d+1

2

(

1 + log

(

1−
√
2− R

cos(θ)

))

+(1−
√
2−R)−

d+1

2 −
(

t

2jt0

)− d+1

2

}

∼= (cos(θ))−β

µ(B(x, 2jt0))
(R− 1)−

d+1

2

(

1 + log

(

R− 1

cos(θ)

))

Case Idii) cos(θ)2jt0 ≤ t, 1 + cos(θ) ≤ R ≤ 2 and max(cos(θ), t
2jt0

) =
t

2jt0
≤ 1−

√
2−R.

K .
(cos(θ))−β

µ(B(x, 2jt0))
(R− 1)−

d+1

2

(

1 + log

(

t

2jt0 cos(θ)

))

Case Idiii) cos(θ)2jt0 ≤ t, 1+cos(θ) ≤ R ≤ 2 and 1−
√
2− R ≤ cos(θ).

K .
(cos(θ))−β

µ(B(x, 2jt0))

{

(R− 1)−
d+1

2 + (cos(θ))−
d+1

2 −
(

t

2jt0

)− d+1

2

}

∼= (cos(θ))−β

µ(B(x, 2jt0))
(cos(θ))−

d+1

2

Case Ie) cos(θ)2jt0 ≤ t and R ≥ 2.

K .
(cos(θ))−β

µ(B(x, 2jt0))
(R− 1)−

d+1

2

(

1 + log

(

t

2jt0 cos(θ)

))

Case IIa) cos(θ)2jt0 ≥ t and R ≤ 1− cos(θ).

K .
(cos(θ))−β

µ(B(x, 2jt0))

t

cos(θ)2jt0
(1− R)−

d+1

2

Case IIb+c) cos(θ)2jt0 ≥ t and 1− cos(θ) ≤ R ≤ 1 + cos(θ).

K .
(cos(θ))−β

µ(B(x, 2jt0))

t

cos(θ)2jt0
(cos(θ))−

d+1

2

Case IId+e) cos(θ)2jt0 ≥ t and R ≥ 1 + cos(θ).
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K .
(cos(θ))−β

µ(B(x, 2jt0))

t

cos(θ)2jt0
(R− 1)−

d+1

2

Now we want to prove part 1. of the lemma, i.e. to estimate

(5.9) sup
j∈Z: 2jt0≥t

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)|

in the case that |ρ(x, y)2/(2lt0)2 − 1| ≤ cos(θ) for some l ≤ Lmax. We
claim that in (5.9), the supremum is essentially attained for j = l, more
precisely, that (5.9) can be estimated by the above estimate for j = l
(which has to be in one of the four cases I or II, b or c).

For j < l, we have ρ(x,y)2

(2j t0)2
= ρ(x,y)2

(2lt0)2
22l−2j ≥ (1 − cos(θ)) · 4, so

that case e applies. We note again R = ρ(x,y)2

(2jt0)2
, and moreover Kj =

|keiθ2jt0+t(x, y)− keiθ2jt0(x, y)|, and Ml the right hand side of the esti-
mate obtained forKl. Note that since j < l < Lmax, we have µ(B(x, 2jt0)) ∼=
(2jt0)

d by (2.2). For cos(θ)2jt0 ≤ t, we have by case Ie),

Kj .
(cos(θ))−β

µ(B(x, 2jt0))
(R − 1)−

d+1

2

(

1 + log

(

t

2jt0 cos(θ)

))

.
(cos(θ))−β

(2jt0)d
(2jt0)

d+1

ρ(x, y)d+1

(

1 + log

(

t

2jt0 cos(θ)

))

∼= (cos(θ))−β2j−l(2lt0)
−d

(

1 + log

(

t

2jt0 cos(θ)

))

.

If cos(θ)2jt0 ≤ t ≤ cos(θ)2lt0, then we have Kj . Ml ⇐= 2j−l(1 +

log t
2jt0 cos(θ)

) . t
t0
2−l(cos(θ))−

d+3

2 ⇐⇒ 2jt0 cos(θ)/t(1+log t
2jt0

+| log cos(θ)|) .
(cos(θ))−

d+1

2 , which is true, since 2jt0 cos(θ)/t ≤ 1 and log t
2jt0

≤ 0. If

cos(θ)2lt0 ≤ t, then we have Kj . Ml ⇐= 2j−l(1 + log t
2jt0 cos(θ)

) .

(cos(θ))−
d+1

2 ⇐⇒ 2j−l(1 + log t
2jt0

+ | log cos(θ)|) . (cos(θ))−
d+1

2 , which

is true, since 2j−l ≤ 1 and log t
2jt0

≤ 0.

For cos(θ)2jt0 ≥ t, we have by case IIe),

Kj .
(cos(θ))−β

µ(B(x, 2jt0))

t

cos(θ)2jt0
(R− 1)−

d+1

2

∼= (cos(θ))−β

(2jt0)d
t

cos(θ)2jt0

(2jt0)
d+1

ρ(x, y)d+1

∼= (cos(θ))−β

µ(B(x, 2lt0))

t

cos(θ)2lt0
.
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This is indeed majorized by Ml, since cos(θ)2lt0 ≥ t, and thus,

Ml =
(cos(θ))−β

µ(B(x, 2lt0))

t

cos(θ)2lt0
(cos(θ))−

d+1

2 .

For j > l, we have ρ(x,y)2

(2j t0)2
= ρ(x,y)2

(2lt0)2
·22l−2j ≤ (1+cos(θ))· 1

4
, so that case

a applies. We have 1−R ∼= 1,
√
2− R−1 ∼= 1,

√
1− R−(

√
2−R−1) ∼=

1,
√
1−R − 1

2

√
2− R + 1

2
− cos(θ)

2
∼= 1. Thus, in case Iai),

Kj .
(cos(θ))−β

µ(B(x, 2jt0))
(1 + | log cos(θ)|)

.
(cos(θ))−β

µ(B(x, 2lt0))
(cos(θ))−

d+1

2 ∼=Ml.

In case Iaii),

Kj .
(cos(θ))−β

µ(B(x, 2jt0))
(1 + | log cos(θ)|+ t

2jt0
− (

√
2−R − 1))

.
(cos(θ))−β

µ(B(x, 2lt0))
(cos(θ))−

d+1

2 ∼=Ml.

In case Iaiii), Kj .
(cos(θ))−β

µ(B(x,2j t0))
(1 + | log cos(θ)|) .Ml.

Cases Iaiv) and Iav) cannot appear here, since
√
2− R− 1 > cos(θ).

In case IIa),

Kj .
(cos(θ))−β

µ(B(x, 2jt0))

t

cos(θ)2jt0
· 1

.
(cos(θ))−β

µ(B(x, 2lt0))
min(1,

t

cos(θ)2lt0
)(cos(θ))−

d+1

2 ∼=Ml.

Looking up Ml in the four cases I or II, b or c, now yields part 1. of
the lemma.

Now for the proof of part 2. Suppose first that 1+cos(θ) ≤ ρ(x,y)2

(2lt0)2
≤

2. Then Ml is given by one of the four cases Idi),Idii),Idiii) and IId).

We will show that supj∈Z: 2jt0≥tKj . Ml +
(cos(θ))−β

µ(B(x,2lt0))
(1 + | log cos(θ)|),

the logarithmic term only appearing in case Idii).
Suppose first that Ml is given by case Idi). Consider a j < l. Then

ρ(x,y)2

(2jt0)2
= ρ(x,y)2

(2lt0)2
· 22l−2j ≥ 4, so that for Kj , case Ie) or IIe) applies. In

fact, one is never in the case IIe), since then cos(θ)2lt0 ≤ t, cos(θ)2jt0 ≥
t and j < l. In case Ie), we have

Kj .
(cos(θ))−β

µ(B(x, 2jt0))
R− d+1

2

(

1 + log

(

t

2jt0 cos(θ)

))
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∼= (cos(θ))−β2jt0ρ(x, y)
−(d+1)

(

1 + log

(

t

2jt0 cos(θ)

))

∼= (cos(θ))−β2j−l(2lt0)
−d

(

1 + log

(

t

2jt0 cos(θ)

))

.

On the other hand,

Ml =
(cos(θ))−β

µ(B(x, 2lt0))

{

(

ρ(x, y)2/(2lt0)
2 − 1

)− d+1

2

(

1 + log

(

1−
√

2− ρ(x, y)2/(2lt0)2

cos(θ)

))

+
(

1−
√

2− ρ(x, y)2/(2lt0)2
)− d+1

2 −
(

t

2lt0

)− d+1

2

}

.

Now we have Kj . Ml if

1+| log(cos(θ))| .
(

ρ(x, y)2/(2lt0)
2 − 1

)− d+1

2

(

1 + log
ρ(x, y)2/(2lt0)

2 − 1

cos(θ)

)

.

An elementary calculation shows that the minimum of the right hand

side for 1 + cos(θ) ≤ ρ(x,y)2

(2lt0)2
≤ 2 is equivalent to 1 + | log(cos(θ))|. Thus

Kj .Ml for j < l. Now consider j > l. Then ρ(x,y)2

(2j t0)2
= ρ(x,y)2

(2lt0)2
22l−2j ≤ 1

2
,

so that case a) applies for Kj . Now we have 1−R ∼= 1,
√
2− R− 1 ∼=

1,
√
1−R−(

√
2− R−1) ∼= 1, and

√
1− R− 1

2
(
√
2−R−1)− cos(θ)

2
∼= 1.

With this, we obtain easily in case Iai) that Kj . (cos(θ))−β

µ(B(x,2j t0))
(1 +

| log(cos(θ))|) . (cos(θ))−β

µ(B(x,2lt0))
(1 + | log(cos(θ))|) . Ml. In case Iaii), we

also have Kj .
(cos(θ))−β

µ(B(x,2j t0))
(1 + | log(cos(θ))|) .Ml, and the cases Iaiii),

Iaiv) and Iav) can be handled in the same way. In case IIa), we have

Kj .
(cos(θ))−β

µ(B(x,2j t0))
t

cos(θ)2j t0
. Ml. Thus supj:2jt0≥tKj . Ml if Ml is given

by case Idi).

Now suppose that Ml is given by case Idii). Take first a j < l. Then
ρ(x, y)2/(2jt0)

2 ≥ 4, so that for Kj , case e) applies. In case Ie), we
have

Kj .
(cos(θ))−β

µ(B(x, 2jt0))

(

ρ(x, y)2

(2jt0)2

)− d+1

2
(

1 + log
t

2jt0 cos(θ)

)

. (cos(θ))−β2j−l(2lt0)
−d

(

1 + log
t

2jt0 cos(θ)

)

. (cos(θ))−β(2lt0)
−d

(

1 + log
t

2lt0 cos(θ)

)

∼=Ml.
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Again, case IIe) cannot appear since then, cos(θ)2lt0 ≤ t, cos(θ)2jt0 ≥ t
and j < l.
Now consider a j > l. We have ρ(x, y)2/(2jt0)

2 ≤ 1
2
, so that case a)

applies for the estimate of Kj. In case Iai), we have Kj .
(cos(θ))−β

µ(B(x,2j t0))
(1+

| log(cos(θ))|) . (cos(θ))−β

µ(B(x,2lt0))
(1 + | log(cos(θ))|). The same estimate holds

in the cases Iaii) and Iaiii). In case Iaiv), we have Kj .
(cos(θ))−β

µ(B(x,2j t0))
.

Ml, and similarly, also in the cases, Iav) and IIa), Kj . Ml holds. We

thus have supj:2jt0≥tKj . Ml +
(cos(θ))−β

µ(B(x,2lt0))
(1 + | log(cos(θ))|), if Ml is

given by case Idii).

Suppose now thatMl is given by case Idiii). ThenMl
∼= (cos(θ))−β

µ(B(x,2lt0))
(cos(θ))−

d+1

2 .

Consider a j < l. Again, for the estimate of Kj , case e) applies, and
case IIe) is ruled out by the constraints on j and l. We have as above

Kj . (cos(θ))−β2j−l(2lt0)
−d

(

1 + log
t

2jt0 cos(θ)

)

.
(cos(θ))−β

µ(B(x, 2lt0))
(1 + log

t

2jt0
+ | log(cos(θ))|) .Ml.

Consider now a j > l. Again ρ(x, y)2/(2jt0)
2 ≤ 1

2
, so that for Kj,

case a) applies, and again, several expressions involving R appearing
in this case are equivalent to 1. This gives in case Iai), Iaii) and Iaiii),

Kj .
(cos(θ))−β

µ(B(x,2lt0))
(1 + | log(cos(θ))|) . Ml, and in case Iaiv) and Iav),

Kj .
(cos(θ))−β

µ(B(x,2lt0))
.Ml. In case IIa), we have Kj .

(cos(θ))−β

µ(B(x,2lt0))
t

cos(θ)2j t0
.

Ml. Thus supj:2jt0≥tKj .Ml if Ml is given by case Idiii).

Suppose now that Ml is given by case IId). Then

Ml =
(cos(θ))−β

µ(B(x, 2lt0))

t

cos(θ)2lt0

(

ρ(x, y)2

(2lt0)2
− 1

)− d+1

2

.

Consider j < l, so that for Kj, the estimate in case e) applies. In case
Ie), we have

Kj .
(cos(θ))−β

µ(B(x, 2lt0))
2(l−j)d

(

ρ(x, y)2

(2jt0)2

)− d+1

2
(

1 + log
t

2jt0 cos(θ)

)

.
(cos(θ))−β

µ(B(x, 2lt0))
2−l+j

(

1 + log
t

2jt0 cos(θ)

)

.
(cos(θ))−β

µ(B(x, 2lt0))

t

cos(θ)2lt0
.Ml.
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In case IIe), we have

Kj . (cos(θ))−β(2jt0)
−d t

cos(θ)2jt0

(

2l

2j

)−(d+1)

∼= (2lt0)
−d2j−l t

cos(θ)2jt0
.Ml.

Consider now j > l, so that for Kj, the estimate in case a) applies. The
cases Iai) - Iav) cannot appear due to restrictions on j, l and cos(θ)t0/t

similar as before. In case IIa), we have Kj . (cos(θ))−β

µ(B(x,2jt0))
t

cos(θ)2jt0
.

(cos(θ))−β

µ(B(x,2lt0))
. Ml. Thus supj:2jt0≥tKj . Ml if Ml is given by case IId).

We have proved part 2. of the lemma.

Now for the proof of part 3. of the lemma. We proceed similarly as
before. The expression Ml is given by one of the six cases Iai) - Iav) or
IIa). Suppose first that case Iai) applies. Consider j < l. Then R ≥ 2,
so that for Kj, case e) applies. In case Ie), we have

Kj . (cos(θ))−β(2jt0)
−d (2

lt0)
−(d+1)

(2jt0)−(d+1)

(

1 + log
t

2jt0 cos(θ)

)

. (cos(θ))−β(2lt0)
−d(1 + | log(cos(θ))|).

Case IIe) cannot appear. Now consider j > l. Then for Kj , case
a) applies. As several times before, diverse terms in R are equiva-

lent to 1. In cases Iai), Iaii) and Iaiii), we have Kj . (cos(θ))−β

µ(B(x,2j t0))
(1 +

| log(cos(θ))|) ≤ (cos(θ))−β

µ(B(x,2lt0))
(1 + | log(cos(θ))|). In cases Iaiv) and Iav),

we have Kj .
(cos(θ))−β

µ(B(x,2j t0))
. Ml, and in case IIa), we have Kj .

(cos(θ))−β

µ(B(x,2j t0))
t

cos(θ)2jt0
.

(cos(θ))−β

µ(B(x,2lt0))
. Thus, if Ml is given by Iai), we have

supj:2jt0≥tKj .Ml +
(cos(θ))−β

µ(B(x,2lt0))
(1 + | log(cos(θ))|).

Suppose that Ml is given by case Iaii). Consider a j < l. Then
Kj is estimated by case Ie), and we have Kj . (cos(θ))−β(2lt0)

−d(1 +
| log(cos(θ))|). Consider a j > l. Then Kj is estimated by case a), and

we have Kj .
(cos(θ))−β

µ(B(x,2lt0))
(1+ | log(cos(θ))|). Thus, ifMl is given by Iaii),

we have again supj:2jt0≥tKj .Ml +
(cos(θ))−β

µ(B(x,2lt0))
(1 + | log(cos(θ))|).

Similarly, we obtain in the cases that Ml is given by Iaiii), Iaiv) or

Iav) that supj:2jt0≥tKj .Ml +
(cos(θ))−β

µ(B(x,2lt0))
(1 + | log(cos(θ))|).

IfMl is given by IIa), we haveMl =
(cos(θ))−β

µ(B(x,2lt0))
t

cos(θ)2lt0

(

1− ρ(x,y)2

(2lt0)2

)− d+1

2

.

Consider a j < l. Then R ≥ 2, so that case Ie) or IIe) applies for Kj.
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In case Ie), we have

Kj . (cos(θ))−β(2jt0)
−d (2

jt0)
d+1

(2lt0)d+1

(

1 + log
t

2jt0 cos(θ)

)

. (cos(θ))−β(2lt0)
−d2j−l

(

1 + log
t

2jt0 cos(θ)

)

.Ml.

In case IIe), we have Kj . (2lt0)
−d2j−l t

cos(θ)2j t0
. Ml. Consider now a

j > l. Then for Kj, case a) applies. Cases Iai) - Iav) cannot occur due
to restrictions on j, l and cos(θ)t0/t as several times before. In case

IIa), we have Kj .
(cos(θ))−β

µ(B(x,2j t0))
t

cos(θ)2j t0
. (cos(θ))−β

µ(B(x,2lt0))
t

cos(θ)2lt0
. Ml. Thus

if Ml is given by IIa), we have supj:2jt0≥tKj .Ml. �
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