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Hormander Functional Calculus for Poisson
Estimates

Christoph Kriegler

Abstract. The aim of the article is to show a Hérmander spectral multi-
plier theorem for an operator A whose kernel of the semigroup exp(—zA)
satisfies certain Poisson estimates for complex times z. Here exp(—zA)
acts on LP(2), 1 < p < oo, where 2 is a space of homogeneous type
with the additional condition that the measure of annuli is controlled.
In most of the known Hérmander type theorems in the literature, Gauss-
ian bounds for the semigroup are needed, whereas here the new feature
is that the assumption are the to some extend weaker Poisson bounds.
The order of derivation in our Hérmander multiplier result is % +1,d
being the dimension of the space 2. Moreover the functional calculus
resulting from our Hérmander theorem is shown to be R-bounded.

Mathematics Subject Classification (2010). 42A45, 47A60, 47D03.

Keywords. Functional calculus, Hérmander Type Spectral Multiplier
Theorems, Spaces of homogeneous type, Poisson Semigroup.

1. Introduction

Let f be a bounded function on (0,00) and u(f) the operator on LP(R?)
defined by [u(f)g] (€) = f(|€*)§(£). Hormander’s theorem on Fourier multi-
pliers [5, Theorem 2.5] asserts that u(f) : LP(RY) — LP(R?) is bounded for
any p € (1,00) provided that for some integer N strictly larger than %

2R 2 dt
sup/ }tkf(k)(t)} — <o (k=0,...,N). (1.1)
R>0JR/2 t

This theorem has many generalisations to similar contexts, for example
to elliptic and sub-elliptic differential operators A, including sublaplacians on
Lie groups of polynomial growth, Schrodinger operators and elliptic operators
on Riemannian manifolds [3]: Note first that the above u(f) equals f(—A),
the functional calculus of the self-adjoint positive operator —A. Now for
a self-adjoint operator A, a Hormander theorem states that the operator
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f(A) extends boundedly to LP(Q), 1 < p < oo for any function f satisfying
(1.1) with suitable N. In most of the proofs for a Hérmander theorem in the
literature, the assumption of so called Gaussian bounds plays a crucial role.
That means the following. Suppose that A acts on LP(Q), 1 < p < 0o, where
(Q, 1, p) is a space of homogeneous type. Then the semigroup (exp(—tA4))i>o0
generated by A has an integral kernel k;(z,y) such that

)] < CutBl VD) exp (<250 50,0y € )

This hypothesis includes many elliptic differential operators. However there
are operators such that the integral kernel of the semigroup satisfies only
weaker estimates, see e.g. [10]. Establishing a Hormander theorem for these
operators is the issue of the present article. More precisely, let A act as above
on LP(Q) such that (exp(—zA))rez>0 has an integral kernel k,(z,y) such
that

z
o) £ O Py (e >0,y € 9)
e+ plx,y P
and
_ |2 |2
|kz(x,y)—kz(x,y)| SC EES

|22+ p(a,y)? |5 |22+ (@, )% F
hold for Rez > 0, z,y,7 € Q. The right hand side of the first estimate is (a
constant times) the absolute value of the complex Poisson kernel which obvi-
ously decays slower as p(z,y) — oo than the Gaussian kernel above. Under a
further hypothesis on the homogeneous space {2 we obtain a Hérmander theo-
rem of the order N > % for operators A satisfying the above two estimates.
The proof relies on the behaviour of the semigroup exp(—zA) generated by A
when the complex parameter z approaches the imaginary axis. Here simple
norm estimates are not sufficient but R-bounds of the semigroup are needed.
In Section 2 we will introduce the necessary background and cite a the-
orem which allows to pass from R-bounds on the semigroup to a Hérmander
functional calculus. In Section 3 we state and prove the result of this article.

2. Preliminaries

In this section, we provide the necessary background for the Main Section 3.
Let A be a self-adjoint positive operator on L?(Q2), where € is some o-finite
measure space. Then for any bounded measurable function f : [0,00) —
C, the operator f(A) € B(L?(f2)) is defined via the self-adjoint functional
calculus of A. In several situations, this functional calculus extends partially
to LP(Q) for 1 < p < co. Let ¢g € C2°(%,2) and for n € Z put ¢, = ¢o(27™).
We can and do assume that ) ., ¢,(t) = 1 for any ¢ > 0 [1, Lemma 6.1.7].
Now define

HE =41 [0,00) = C: [ f e = [FO)[ + 51 [(60f) © exP lwz @) < o0},
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where W3*(R) is the usual Sobolev space. For a > %, the space H® is a Banach
algebra endowed with the norm || - ||3«. This class refines condition (1.1) in
the sense that f € H* = f satisfies (1.1) for & > N and the converse holds
for &« < N. Then A is said to have a bounded H® calculus on LP () if for any
f € H?, the operator f(A) extends boundedly from LP(Q) N L2(Q)) — L%(Q)
to an operator in B(LP(Q)).

Let w € (0, 7). A densely defined and closed operator A on LP(Q2), 1 <
p < 00, is called w-sectorial if o(A) C X, where X, = {z € C* : |arg 2| < w},
and AN — A)7Y| < Cp for any A € Tp° and any 6 € (w,n). For an
w-sectorial operator A and a function f € H§(Xg) = {9 : X9 — C :
g analytic and bounded, 3 C,e > 0 : |g(z)| < Cmin(|z|¢, |z|7¢)} where
0 < w < 0 < 7, one defines the operator f(A) by

F(A)r = = /F FOVO — A)~Lzd).

2mi
Here, T' is the boundary of ¥ .+e oriented counterclockwise. This definition
coincides with the self-adjoint calculus if applicable. If there is a constant
C > 0 such that [|f(A)[| < Csup| g j<o |f(2)] for any f € H§"(Xp), then A
is said to have a bounded H*°(Xy) calculus, or just bounded H> calculus.
If |[f(A)]| < C|lfllpe for any f € (o HG(Ew) NH®, then there exists
a bounded homomorphism H* — B(LP(R)), f — f(A4), and A is said to
have a bounded H® calculus. If A is moreover self-adjoint on L?(Q2) then the
notion of a bounded H* calculus coincides with the one from the preceding
paragraph.

Let (eén)nen be a sequence of independent random variables such that
Prob(e, = 1) = Prob(e,, = —1) = 1, i.e. a sequence of independent Rademach-
er variables. Let X be a Banach space. A subset 7 C B(X) is called R-
bounded if there exists a constant C' > 0 such that for any choice of finite

families T1,...,T, € 7 and x1,...,x, € X, one has
. N et
E Z exlrxy <C|E Z €LTk
k=1 X k=1 X

The least possible constant is denoted by R(7), and R(7) = oo, if no such con-
stant is admitted. Any R-bounded set 7 is norm bounded, i.e. supyc, ||T|| <
R(7), but the converse is false in general. If X = L?, 1 < p < oo, then

<IE3 ) o (f: |xk|2> (2.1)
X k=1 »

uniformly in n and z1,...,2,. A linear mapping u : ¥ — B(X), where Y
is a further Banach space is called R-bounded if R(u(y) : |ylly < 1) < oo.
The following proposition gives a condition on the semigroup generated by a
sectorial operator A so that A has a H? calculus.

n

E €LTk

k=1
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Proposition 2.1. Let A be an w-sectorial operator for any w > 0 defined on
an LP space for some 1 < p < oo, and let A have a bounded H* calculus.
Suppose that for some a > 0 the set {exp(—e?2¥tA): k € Z} is R-bounded
for any t > 0 and 6] < Z, with R-bound < (3 — |9|)7a Then for any
B> « —|— 1 A has a bounded H? calculus. Moreover, this calculus is an
R- bounded mappmg.

Proof. This is proved in the case that A has dense range in [7, Lemma 4.72
and Proposition 4.79] and also in [9, Proposition 3.1 and Proposition 6.7].
This proof for which we give a sketch applies also here. First one deduces
from the assumption of R-boundedness of the semigroup that

{4 [t) (1 + 28 A) "> exp(i2¥tA) : t € R}

is R-bounded with R-bound independent of ¢t € R. Then for g € C°(0,0) a
representation formula of g(2%A)(1 + 2¥ A)~ is available, namely

g2 A (1425 A) e = / YLD ® (1)~ (142F A) = exp(i25t A)dt.

If 8> a+ 3, then (1+ [t))77|(1+ 2kA) “exp(i2¥tA)|| is dominated by a
function in L?(R), and if g belongs to W2 (R) then also §(¢)(1+t))? € L2(R).
In fact, more can be said. By [6, Proposition 4.1, Remark 4.2], the set

{92 A)(1+254)™" 1 g € C2(0,00), llglyse) < 1. k €2}

is R-bounded. Next one gets rid of the factor (1 4+ 2¥A)~® above by using
a function Y(A) = (1 + A\)*@(N\) where ¢ € C°(0,00) and ¢(\) = 1 for
A € [1,2]. The hypotheses of the proposition imply that {1)(2¥A4) : k € Z} is
R-bounded. Then

1
{9(2"4) : g€ C(0,00), suppg C [5,2), ey < 1. k € 2}

is R-bounded. The hypotheses imply moreover that there holds the following
equivalences of Paley-Littlewood type:

1fllp = <Z |¢(2’“A)f|2>

keZ

2

I

(z|qz<zm>¢<zm>f|2)

kEZ
p

for a function ¢ € C2°(0, 00), ¢ not vanishing identically zero, supp ¢ C [%, 2]
and ¢ = ¢(27 1) + ¢ + ¢(2-). Then one can show that g(A) is bounded for
19ll3s < o0

1

(Z |¢3(2’“A)9(A)¢(2kz4)f|2>

kEZ

1%

lg(A)flp

[N

1%

<Z |<5g(2"“-)(2kA)¢(2kA)fl2>
k
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R({dg(2™") ke@-<§]¢ﬁ ﬂﬁ

keZ
p

S llgllags 1 £ 1lp-

Thus {g(A) : ||g|lys < 1} is a bounded subset of B(L?). In a similar manner
to the calculation right above, using the fact that LP has Pisier’s property
(), one shows that this set is moreover R-bounded. O

The space 2 on which the operator A acts will be a space of homoge-
neous type. This means that (Q, p) is a metric space endowed with a nonneg-
ative Borel measure p which satisfies the doubling condition: There exists a
constant C' > 0 such that for all x € Q and r > 0,

p(B(x,2r)) < Cp(B(x, 1)) < o0,

where we set B(z,7) = {y € Q : p(z,y) < r}. Note that the doubling
condition implies the following strong homogeneity property: There exists
C > 0 and a dimension d > 0 such that for all A > 1, for all x €  and all
r > 0 we have u(B(z, \r)) < CAu(B(z,r)). We will assume that the space
of homogeneous type (£, 1, p) has the additional property

w(B(z,mR)) <C(R*—r?) (x€Q, R>r>0), (2.2)
where we denote B(z,r, R) = B(x, R)\B(z,r).

3. The Main Theorem

We let (€, i1, p) be a space of homogeneous type with the additional property
(2.2). We further let T, = exp(—zA) be a semigroup on L?(Q) with the prop-
erties: The generator A is belfadjoint and T has an integral kernel k,(x,y)
for Rez > 0 i.e. = Jo k- (y)du(y) for any f € L3*(Q). We
assume that

t
9 = d+1 3 IE, ) .
o) S Oz (6> 0.0y e ®) (3.1)
t
|k1f(xay)| S C|t2—p(|a;‘|y)2|% (tERa Z‘,yEQ), (32)

and

|2]

|k (2,y)| < o exp(max(|z[*, [2[7%)) (3.3)

C
|22+ p(, 9)? =
for some ¢ < 7. Then (3.1), (3.2) and (3.3) imply
Ed
k.(x,y z€Cq, z,y ). 3.4
o) S O Py (€T L (34

d+
Indeed, define f(z) = k,(x, y)w for z,y € Q fixed and Rez >
0, z# 0. Then | f(z)| < C for z € R4 and z € iR\{0}. Moreover, f is analytic



6 Ch. Kriegler

and of admissible growth in the sectors {z € C* : Rez > 0, Imz > 0} and
{z € C*: Rez >0, Imz < 0} in the sense of [11]. By [11] it follows from a
variant of the three lines lemma that |f(z)| < C for Rez > 0, which shows
(3.4). We further assume in the sequel that

_ E 2]
kx(2,y) — ks (2,9)| < C - (3.5)
22 4 plz, )25 |22+ p(2,7)2

holds for Rez > 0, z,y,7 € Q.

Proposition 3.1. Let (€, i, p) be a space of homogeneous type satisfying (2.2)
and T, = exp(—zA) a semigroup satisfying (3.4) and (3.5) with self-adjoint
A. Then the operator A has an H* calculus on LP(2) for 1 < p < oc.

Proof. The proposition follows from [4, Theorem 3.1]. Indeed, let 6 € (0, %).
Then T, is analytic on L?(Q) in the sector Yy, and since A is self-adjoint,
it has a bounded H*(X,) calculus for any 4 > % — 6. The kernel k. (z,y)
satisfies on z € Yy the bound

2|4 Rez|~¢
) s — L g R
’1+ (p(mz,y)) (1+( I(Dig)) >

w(B(z,|Rez|))~ < Rez )
2

since |z] & Rez for z € Xy, |1—|—((Iy)) |<1—|—’ ’” <1—|—’ (my)‘

1+ (p(T y)) ‘ and p(B(z,t)) < td by (2.2). Then with Gy given by [4, (7)]

and g(z) = c(1 + 2%)~ “* | we can deduce from [4, Theorem 3.1] that A has

a bounded H>(X,,) calculm on LP(Q2) for any p € (1,00) and o > 5 —6¢. [

For later use we state the following lemma.

Lemma 3.2. Let (9, u, p) be a space of homogeneous type satisfying (2.2).
Let || < Z,a>0,b> & and y € Q. Then

[ 14+ (apta, )Pl atduto) < (G - 6)
Q

Proof. We split the integral over (2 into four parts

],
/ /B(y“ V1=(3-101) (y,a=14/1=(5—=10]),a=1/1+Z—10])

+/ +/ .
B(y,a='/1+5-10],2a71) B(y,2a1,00)
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For the first integral, we have |e? + (ap(z,y))?| > | cos(20)+ (ap(z,y))?| and
thus,

€% + (ap(z,y))*|~Pa’du(z)
/B(yﬂl\/l—(;'—lel))

<

| cos(26) + (ap(z,y))?|~"adp(x)
/B@,al\/l—(g—e))

-1

o= \/I=(5-TOD) i
< / | cos(26) + (ar)2|7badrd7r
0

1—(Z—6
:/ e | cos(26) —|—7‘2|*brdﬁ
0 T
m —b+1
<G -y
Note that after the second inequality, the factor 7%~1 follows from assumption
(2.2). For the second integral, we have |e* + (ap(z,y))?| > |sin(20)| = Z —|6|
and thus,

e + (ap(z,y))?|Padu(x)

/B(yﬁalx/l(’z’@)’al\/lyél@l)

S (G~ 16D atu(Bly, a1 = (5 —18).a7y 14+ 5 — 10])
G-I+ G - 18 - (- (5 - o))
S G-l

For the third integral, we have | + (ap(z,y))?| > |cos(20) + (ap(z,y))?|
and therefore,

€% + (ap(x,y))*| *a’du(x)
L(y,a‘% /14+5—0],2a—1)

2q~ 1t d
.
< / | cos(20) + (ar)2|*badrd—
a=1\/1+Z 6] r
2
d
< / | cos(26) + r2|_brdl
VI+Z 0] r

™ _
<G -lo)h,

Finally, for the fourth integral, we have |2 4 (ap(z,))?| = (ap(z,y))? and
therefore,

i _ _ dr
/ 162 1 (ap(z, y))?|Patdu(z) < / (ar)~20+a
B(y,2a=,00)

2q—1 T

oo

<1

since b > % Now summing up the four estimates proves the lemma. O
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The following is the main proposition of this section.

Proposition 3.3. Let A be self-adjoint positive such that (3.4) and (3.5) are
satisfied. Then the semigroup exp(—zA) satisfies on X = LP(Q) for any
1 < p < oo the R-bound estimate

. —(d+1)/2

R (exp(—€e™27tA) : j€Z) < (g - |0|) .

Proof. Write in short k;(z,y) = keieoss(x,y). According to [12, p. 19, Theo-
rem 3 and p. 28, Section 6.4], see also [2, p. 74, Théoreme 2.4], it suffices to
show that

B T —(d+1)/2
/ sup k; (2,9) — ks o, Pldu(e) < © (5~ 10]) - (36)
p(@,y)>3p(y,y) JEL
Indeed, then it follows from the self-adjointness of A and, with B; = By =
¢% in [12, p. 28, Section 6.4], that for any 1 < p < 2 and f; € LP(Q),
1 1
3 . —(d+1)/2 3 )
1(SZ) s+ 3) o < € (5 - 10) | (3 1£[2)" ll,- The same in-

equality holds then for 2 < p < oo by duality which shows the claimed
R-boundedness by (2.1). At first, we have

/’ sup k; (z,y) — k; (@, 7)ldu(x)

p(x,y)>3p(y,y) J

> / i (2, 9) — b (2, D)l ds() (3.7)
J:2i <ply.g) ” P@Y)230(y.7)

_— / hi(@.y) — k(@ Dldu(@).  (38)
§:29 > p(y,y) Y P@Y)230(47)

We estimate (3.7) and (3.8) separately. For (3.7), we assume without loss of
generality that ¢ € [3,1]. Then

/ ) = o )l
p(z,9)>3p(y,y)

s/ e (2, )| + [k (2 7))
p(x,y)>3p(y,7)

</ - + i dul)
e s o (2962 + pla, y)2| @072 T [(21e9)2 + p(a, )2 @072
S 2jtr*d*1rd*1dr+/ 27t d1pd= gy

2p(y,9) (y,9)

< 2tp(y,y) "t + 2tp(y, )

Here, in the second inequality, we have used assumption (3.4). In the third
inequality we have used that [27te?| < p(y,7), so that |(27te?®)? + p(z, y)?| =
p(x,y)? and [(27te™)? + p(z,7)?| = p(z,7)?. Then the two integrals after
the third inequality are concentric around y and g, with » = p(x,y) and
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r = p(z,7), and the factor 7?1 follows from assumption (2.2). Replacing
this in (3.7) and summing up we obtain

/ B ) —k@Dldu@ S Y Pt n) Tt S 1
p(x,y)>3p(y, y)

3:29<p(y,7) 7129 <p(y,7)

Let us turn to (3.8) and pick a j € Z such that 2/ > p(y,7), and a t € [, 1].
Using (3.5), we get

/ i (2, ) — (o, D))
p(z,y)>3p(y,7)

< j 1 1
~ 2t 0N e - 0 df1
p(z,y)>3p(y,7) |(27te®®)2 + p(z,y)?| > [(27te?®)? + p(z,7)?| >

- / 29t ||(27te)? + p(a, 72T — (27te®)? + pla, y)2|F | x
p(z,y)>3p(y,7)

dp(z)

X |(276e)? + p(a, y)?|~ T (27t + pla, )% F dp(x)

5/ 29t ||(27te)? + p(2, )2|2 — [(27te™)? + p(x,y)?|?|
p(x,y)>3p(y,Y)

d

ST 1(@16) 4 pla )2 T2 1) + pla, )2 x
=0

X |(2766)? + p(a, y)?|~ T |(27te)? + pla,7)%| T dp(x)

< / Ptlp(z, 1) — plar.y)?| - [(296)? + pla,)?| ¥
p(x,y)>3p(y,y)

d
ST 1@16) 4 pla 72 T2 1) + pla, )2 x
=0
X |(276e)? + p(a, y)?|~ T (27t + pla, )% dp(x)

210 4 p(x,y) 2
27t

</ s (AL, A2D)
p(,y)23p(y,7) 27t 27t
d

- 2i0 | ffy) B 240 p(x,y) 2|2
xz(;e 27t e + —th

1=

) _d+1 _d+1
2i0 P(xvy)
e +(—2Jt ) ’

We divide this integral into the two terms

/{1(%)211%9} " /{1(%)211>%|e|} |

Q200 (%)2’ 2 (27t)~dp(x).

X
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For the first integral, we have 2 (T y) +p(277ty) <1,

2
20 1 (2l ‘ > |sin(20)] 2

Z —10] and e

240 4 (%) ' > |sin(20)| 2 § — 0. Therefore,
_ 2
voin-t1 (L&) p@Y)\ | s (P:Y)
oy, 7)(27¢ 1( L —— | e + -
/{|(P;?z”)21|<%9} S g
Z 219 ( y))
27t

=0

€2i9+ p(z,y) 2T
27t

Soly.p)@)~ (— — 10D~ (27~ ({

1

2

X

(52) =5-0)

< oly D)0 — 1) T @0 (B, 2t — 52715 — 10l), P+ 52715~ Jo])

1 7 1.7

< ply,m)(27t) 7" (— — o)~ T @)@ N1+ 2(5 — o) — (1= =(5 —10])%
Sply, )27t~ (5 —lo)—F

For the second integral, if (”(;ty)) 1’ > & — |0], then ”(gjty) <1+
20 pz,y) 2|2 -3 | 210 plz,y) 2 2i6 p(z,y) <
e+ (BE) | < (G-lo)7F e+ (SR) |+ (e + (2p) | S

(5161

IIZ

o200 | (p(;]ty)) ‘ . Since p(z,y) > 3p(y,7), we also have 2 (T D)

i0 (z,y)
20 4 (/’27tJ )

s for r,s,a,b > 0. Then

1
2

2 S (5 - lol)

. Note also that r—%s=0 < p—a=b 4

[N

_ 2
/ 72711 p(@,y) +p(x;y) 20 p(z,y)
{’(p(?y) _1’> ‘9‘} 29t 27t 2t
27t
L
T 212
26 p(x,7) 26 p(x,y)
X e~ + (—2Jt ) +( 2t X
1=0
_d+1 _d+1
o (P@)\| T | e, (@B y
210 ’ % ) e\ —
X |e +(21t) e +(23't) (27t) " %du(x)

in-1/T _ -1
/{’ )t _y|sg 7‘9‘} ,7)(27t) (2 |6])~2 x
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d+2
; @\’
62l0+ <p ) ) +

X -
27t

TS
Q20 (p(;vj,ty)) } (27t)~dpu(z).

Now apply Lemma 3.2 with a = (27¢)~!, b = 92, and for y and 7 in place

2
of y. This gives the estimate
d+2
2

<Pl D@07 )T = ol )07 (G - o)

Now summing up the estimates for j gives the desired estimate of (3.8):

ki (2, y) — k;j (2, 9)|dp ()

§:20 > p(y,g)  P@¥)230(y,7)

eia—1,T _ds1 _ T _d+1
S Y wnEn G-l s G-
3:29>p(y,9)

O

Remark 3.4. For the Poisson semigroup 7, = exp(—(—A)zz) on X = LP(R?),

a better estimate than Proposition 3.3 has been obtained in [8, Theorem 5.1],
1

where it is shown that R({exp(—e"2"t(—A)z): k € Z}) < (5 —|0])~* for

any o > %. In the above proof, if in place of (3.5) one has the better
. — — i\ —d— i T,y 2 _an
estimate [k (z.) — k;(2.7)] < p(u. 7)) 112 + (26D)" |75 then

with Lemma 3.2, one can show the better bound R({exp(—e?2¥tA) : k €
Z}) < (5 — o=@/,

Corollary 3.5. Let A be self-adjoint positive on L2(£2) with Q a space of
homogeneous type satisfying (2.2) such that the Poisson estimates (3.4) and
(3.5) are satisfied. Then A has a bounded H® calculus on LP(Q2) for any
l1<p<ooand a> % Moreover this calculus is an R-bounded mapping,

i.e.

R(f(A) 2 [ fllne 1) < o0

Proof. This follows immediately from Propositions 2.1, 3.1 and 3.3. (]

Remark 3.6. Let us compare our corollary to the results in [10]. There the
authors suppose that 2 is the smooth boundary of an open connected subset
Q of R¥*1 and A is the Dirchlet-to-Neumann operator defined as follows:
Given ¢ € L?(2) solve the Dirichlet problem

Au = 0 weakly on €

ulo = ¢
with u € W} (). If u has a weak normal derivative % in L?(Q2), then ¢ €
D(A) and A¢p = %. This operator is a pseudodifferential operator, selfadjoint
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on L?(Q). Then in [10] it is shown that the semigroup satisfies the following
variant of the complex Poisson estimate:

o(d_ min(|z|,1)_d
b, 9)] < Cleos g) 200 TEL D

2]

for all z,y € 2 and Rez > 0, where 6 = arg z. Further a H® calculus for A
with o > g is derived from the complex Poisson bounds in [10, Section 7].
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