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Abstract

Acoustic imaging is a standard technique for mapping acoustic source powers and positions from limited observations

on microphone sensors, which often causes an ill-conditioned inverse problem. In this article, we firstly improve the

forward model of acoustic power propagation by considering background noises at the sensor array, and the propagation

uncertainty caused by wind tunnel effects. We then propose a robust super-resolution approach via sparsity constraint for

acoustic imaging in strong background noises. The sparsity parameter is adaptively derived from the sparse distribution

of source powers. The proposed approach can jointly reconstruct source powers and positions, as well as the background

noise power. Our approach is compared with the conventional beamforming, deconvolution and sparse regularization

methods by simulated, wind tunnel data and hybrid data respectively. It is feasible to apply the proposed approach for

effectively mapping monopole sources in wind tunnel tests.
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1. Introduction

Acoustic imaging is widely used for acoustic source

power reconstruction and localization. It can provide the

useful insights into acoustic performance, acoustic com-

fort and machinery security in automobile and aeronautic

industries for wind tunnel tests [1–4]. In this article, we

mainly focus on the signal processing techniques applied in

acoustic imaging, such as the Conventional BeamForming

(CBF), deconvolution and regularization methods. The

CBF method [5] is a direct, robust and rough estimation

of source powers and positions, since its spatial resolution

is limited due to the high side-lobes. The MUltiple SIgnal

IArticle partly based on that accepted at the IEEE International

Symposium on Signal Processing and Information Technology (IS-
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∗Corresponding author: Ning.CHU@lss.supelec.fr. Tel. : +33

(0)1 69 85 1743. Fax : 00 33 (0)1 69 85 17 65
1The author’s PhD study is financed by China Scholarship Coun-
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Classification (MUSIC) [6] can greatly improve the CBF

resolution, but original MUSIC requires the high signal-to-

noise ration (SNR) or the exact number of sources to make

the subspace separation. Besides, the MUSIC could not

directly reconstruct source powers due to its pseudo-power

optimization. Based on the CBF, the acoustic power prop-

agation can be modeled by a determined linear system of

equations, which could hardly be solved by direct inver-

sions due to the invertible propagation matrix. Therefore,

the deconvolution methods, like the CLEAN [7], can itera-

tively extract strong sources from the blurry beamforming

powers. But the CLEAN could leave out weak sources in-

terfered by strong background noises; and some important

parameters of CLEAN have to be empirically selected for

good performance. Recently, the Deconvolution Approach

for Mapping of Acoustic Source (DAMAS) [8] has become

a breakthrough and been effectively applied in acoustic

imaging for wind tunnel tests by the NASA. The DAMAS

Revised by Applied Acoustics August 9, 2013



can iteratively solve the acoustic power propagation model

under the non-negative constraint on source power vari-

ables. But the dominant drawback of the DAMAS is

the sensitivity to background noises. So that the Diag-

onal Removal (DR)-DAMAS [8] has been proposed for the

noise suppression; however, weak sources could be also

removed off by the DR-DAMAS. To overcome the decon-

volution drawbacks, the DAMAS with sparsity constraint

(SC-DAMAS) [9] can greatly improve the spatial resolu-

tion and improve the robustness, but SC-DAMAS could

cause overweening effects due to the sparsity parameter

selection. The Covariance Matrix Fitting (CMF) method

[10] can effectively improve the robustness by jointly es-

timating the source power covariance matrix and back-

ground noise power; however, the original CMF is not

feasible to use because of its huge dimensionality of vari-

ables in covariance matrix. For robust acoustic imaging,

the Spectral Estimation Method (SEM) and its exten-

sions [11, 12] are proposed to subtract the reference noise

power from the measured data; and this reference noise

power can be obtained beforehand by measuring the ob-

served signals without any object in wind tunnel. How-

ever, the estimated noise power might be different from

the case where the object is installed in the wind tunnel.

Furthermore, sparse regularization methods [13–15] have

been widely developed by using the ℓ1-norm. However,

some of them have to carefully select the regularization

parameter, or make necessary approximations on Singular

Value Decomposition (SVD). More recently, the Bayesian

inference approaches [16–19] have been investigated and

achieve more robust and better acoustic imaging results.

However, the Bayesian framework often causes very time-

consuming computation costs for real applications.

To summarize, all the above state-of-the-art methods

have excellent performance on their own applications, but

there is no one-fits-all methods; and most of them suffer

one of the following drawbacks: coarse spatial resolution,

sensitivity to background noises and high computational

cost. In addition, most of them need to set some important

parameters for good performance.

In this article, our main contributions can be: 1) We

firstly improve the robust forward propagation model of

acoustic power propagation by considering both the back-

ground noises at the microphone sensors, and the prop-

agation uncertainty caused by multi-path propagation in

the wind tunnel. 2) We jointly estimate source powers

and positions, as well as the background noise power. 3)

For acoustic imaging with super-resolution, we investigate

an adaptive sparsity parameter estimation procedure. 4)

Furthermore, its computational cost maintains feasible to

use.

This article is organized as follows: Section 2 intro-

duces the forward model of acoustic signal propagation.

Then the improved model of acoustic power propagation

is proposed in Section 3. The classical methods are pre-

sented in Section 4. Our proposed approach is investigated

in Section 5. Then method comparisons are shown on sim-

ulations in Section 6 and real data in Section 7. To further

confirm the effectiveness of proposed approach, Section 8

demonstrates the performance comparisons on the hybrid

data, in which, some known synthetic sources are added

to the real data. Finally, Section 9 concludes this article.

2. Forward model of acoustic signal propagation

2.1. Assumptions

For acoustic imaging, a source is usually supposed to

be an uncorrelated monopole [7–9, 11, 20–22]. In this

article, we use the monopole model in order to simplify

the physical process and explicitly build up the acous-

tic propagation model. To approach real cases, we use

the complex source model which is composed of several

monopoles forming different spatial patterns. Moreover,

we suppose the background noise at the microphone sen-

sor to be Additive Gaussian White Noise (AGWN), mu-

tually independent and identically distributed (i.i.d), and
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Figure 1: Illustration of acoustic propagation in the wind tunnel [19].

also independent to sources. Sensors are assumed to be

omni-directional with unitary gain. Furthermore, com-

plex reverberations are negligible in wind tunnel, but we

consider the first order reflection on the ground, as well as

the refraction on the interface between the wind flow and

common air.

2.2. Acoustic signal propagation

Figure 1 illustrates the acoustic signal propagation from

the source plane to the microphone sensor array in the

wind tunnel, where sensors are installed outside the wind

flow. We consider M sensors at known positions P̄ =

[p̄1, · · · , p̄M ]T with (·)T denotes transpose operator. On

the source plane, we suppose K unknown original source

signals s∗ = [s∗1, · · · , s∗K ]T at unknown positions P∗ =

[p∗
1, · · · ,p∗

K ]T , where p∗
k denotes the 3D coordinates of s∗k.

Then we discretize the source plane into N identical grids

at known discrete positions P = [p1, · · · ,pN ]T , where we

assume thatK original sources sparsely distribute on these

grids, supposing N>M>>K and P∗ ⊂ P. Finally we get

N discrete source signals s at known positions P as:

s = [0, · · · , s∗1, 0, · · · , s∗k, 0, · · · , s∗K , 0, · · · ]TN , (1)

where s∗k = sn for p∗
k = pn. Since K << N , thus s is a

sparse signal with K-sparsity in the spatial domain. There-

fore, to reconstruct original source signals s∗ is transferred

to reconstruct K-sparsity signals s. To be clear, we state

that s∗ = [s∗1, · · · , s∗K ]T denote the original source signals,

while s = [s1, · · · , sN ]T denotes the (discrete) source sig-

nals. In Eq.(1), source position p∗
k can be derived from

the position pn, where the source power of sn is not 0.

Based on the discrete source model in Eq.(1), we can

give the forward model of acoustic signal propagation. For

themth sensorm ∈ [1, · · · ,M ], received signals zi,m(t) are

divided into I sampling blocks with L samplings/block,

with sampling block i ∈ [1, · · · , I], sampling time t ∈
[(i− 1)L+ 1, · · · , i L] and total samplings T = I L. Since

acoustic signals usually have wide-band frequencies, we

apply the L-points Discrete Fourier Transform (DFT) in

each sampling block, so that we separate the wide-band

into L narrow frequency bins. Since the signal process-

ing is made independently at each frequency bin, we omit

the frequency notation fl, l ∈ [1, · · · , L] for simplicity. Fi-

nally in the sampling block i, the measured signals zi =

[zi,1, · · · , zi,M ]T at M senors can be modeled in the fre-

quency domain as [20]:

zi = A(P) si + ei , (2)

where si = [si,1, · · · , si,N ]T denotes N source signals at

the ith sampling block. After DFT, si still maintains the

sparsity in spatial domain; and ei = [ei,1, · · · , ei,M ]T de-

notes background noises at M sensors, and we suppose

ei ∼ N (0, σ2) to be the i.i.d AGWN distribution, where

σ2 = E[eHi ei] denotes the noise power, with E[·] denoting
expectation operator and (·)H conjugate transpose. M×N

complex matrix A(P) = [a(p1), · · · ,a(pN )] denotes the

signal propagation matrix, where a(pn) denotes the steer-

ing vector for the source sn at the position pn. As shown

in Fig.(1), we can modify the classical definition [20] of

a(pn) according to the ground reflection on the ground as

follows:

an = ad(pn) + ρar(p−n) , (3)

where ρ denotes the reflection coefficient (0 ≤ ρ ≤ 1),

whose value mainly depends on ground conditions at a
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given frequency. For the real data used in this article,

ρ = 0.8 is supposed to be fixed over the frequency band

[1600, 2600]Hz in the wind tunnel experiments, thanks to

the research contributions of Renault SAS [23].

ad(pn) =
[

1
rn,1

e−2π fl τn,1 , · · · , 1
rn,M

e−2π fl τn,M

]T

is

the direct steering vector, where rn,m =
√

||pn − p̄m||2

denotes the propagation distance from source n to sensor

m; and τn,m denotes the propagation time within rn,m; if

the media is uniform, rn,m is thus the geometry distance

and τn,m = rn,m/c0 with c0 being the acoustic speed.

ar(p−n) =
[

1
r−n,1

e−2πflτ−n,1 , · · · , 1
r−n,M

e−2πflτ−n,M

]T

denotes the reflect steering vector, where p−n denotes the

symmetric position of pn according to the ground. For

rn,m and τn,m on the real data in Section 7, we can apply

mirror sources to correct the ground reflection. Moreover,

since it is not an uniform media from source plane to sen-

sors in the wind tunnel as shown in Fig.1, we apply the

equivalent sources to correct the wind refraction as dis-

cussed in authors’ article [19]. Without corrections, the

imaging results of real data will have position shifts due to

the wind refraction, as well as ghost shadows due to the

ground reflection.

In short, the forward model of signal propagation in

Eq.(2) is a linear system of equations for discrete source

signals s, since the measured signals z are known and signal

propagation matrix A(P) can be calculated from Eq.(3)

based on source plane discretization. However, Eq.(2) is

under-determined, since the number of equations M is less

than the number N of unknown signals.

3. Proposed forward model of power propagation

As we have stated in the Introduction, acoustic imaging

mainly involves the source power reconstruction and local-

ization. According to Eq.(2), we can estimate source sig-

nals s from measured signals z, then we can calculate the

acoustic powers x = [x1, · · · , xN ]T of uncorrelated sources

by x = diag[Rs] withRs = E[ssH ] being the source covari-

ance matrix and diag[·] being diagonal items. However,

to solve the Eq.(2) confront two difficulties: 1). Multi-

solutions due to under-determined equations; 2). Source

signals s are complex, which contain both amplitude and

phase variables.

In order to overcome these obstacles and enhance the

solution robustness, we directly build up the forward model

of acoustic power propagation by considering the back-

ground noises at the sensor array, as well as the propaga-

tion uncertainty caused by multi-path propagation in the

wind tunnel. Based on the measured signals zi in Eq.(2), a

rough estimation of source powers can be directly obtained

by the CBF method [4] as:

yn = E[ãHn zi]
2 = ãHn Rãn , (4)

where yn denotes the beamforming power at the position

pn on the source plane; and yn can be an estimated source

power for xn; and ã denotes the beamforming steering

(back-projection) vector at the position pn, defined as

ãn =
an

||an||22
, (5)

where an is the signal propagation steering vector defined

in Eq.(3); || · ||2 denotes the vector ℓ2-norm; R denotes the

measured covariance matrix, defined as:

R = E
[

ziz
H
i

]

=

N
∑

n=1

xn ana
H
n + σ2IM , (6)

where xn ∈ x denotes the source power of sn at position

pn; and IM denotes the M×M identity matrix. In practice,

R is estimated by R̂, defined as

R̂ =
1

I

I
∑

i=1

ziz
H
i , (7)

where zi denotes measured signals at the ith sampling

block in Eq.(2); I is the total number of sampling blocks.

If the sampling block number I >> 1, we have R̂ ≈ R in

Eq.(7). Therefore, replacing R in Eq.(4) by R̂, we then

obtain the forward model of acoustic power propagation

in the vector form as follows:

y = Cx+ σ2 1a + ξ , (8)
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where y = [y1, · · · , yN ]T is the beamforming vector ob-

tained from Eq.(4). So that Eq.(8) becomes the deter-

mined linear system of equations for source powers x, com-

pared with the under-determined forward model of signal

propagation in Eq.(2). 1a = [ 1
‖a1‖2 , · · · , 1

‖aN‖2 ]
T is a con-

stant vector.

ξ = [ξ1, · · · , ξN ]T denotes the propagation uncertainty,

which represents the remaining unknown effects due to the

wind reflection and refraction happened at other positions

rather than the ground or wind tunnel boundary.

C = [cn,q] with n, q ∈ [1, · · · , N ] denotes power propa-

gation matrix [8], whose item cn,q is defined [19] as:

cn,q =
(

ãHn aq
)2

, (9)

where beamforming steering vector ãn and signal propa-

gation steering vector an are defined in Eq.(5) and Eq.(3)

respectively. In fact, cn,q represents the power contribu-

tion of the qth source to the nth position on the source

plane. If the microphone array is ideal enough, cn,q be-

comes the Dirac function as cn,q = δn,q with δn,q = 1 for

n = q; and δn,q = 0 for n 6= q. Then Eq.(8) becomes

y = x + σ2 1a + ξ, which reveals that the beamforming

powers y measured at the sensors is composed of source

powers x, background noise power σ2 and the unknown

powers due to propagation uncertainty.

In brief, according to the improved forward model of

acoustic power propagation in Eq.(8), x can be estimated

from y by minimizing propagation uncertainty ξ.

4. Classical deconvolution and sparsity methods

In Eq.(8), unfortunately, C is usually a singular matrix

[8] and can not be invertible. But according to the defi-

nition of C in Eq.(9), equation (8) can be interpreted as

a kind of deconvolution problem. One of the recently de-

veloped deconvolution methods is the DAMAS [8], which

assumes σ2
e = 0 and ξ = 0 in Eq.(8) and tries to iteratively

solve x
(i+1)
n = yn−

∑n−1
q=1 cn,q x

(i+1)
q −∑N

q=n+1 cn,q x
(i)
q with

xn ≥ 0, where (i) denotes the ith iteration. However, sen-

sitivity to the noise could be the main drawback of the

DAMAS. Then the DR-DAMAS is proposed by setting

diag
[

R̂
]

= 0 in Eq.(7) so as to suppress the noises, but

DR technique inevitably harms weak sources whose powers

are lower than the noises.

To well solve Eq.(8), sparse regularization methods [9,

10, 13–15, 24] have been widely applied as follows:






x̂ = argmin(x)
{

||y −Cx||22 + α ||x||1
}

s.t. x � 0
, (10)

where the first ℓ2-norm || · ||2 represents the data fitting

part; the second ℓ1-norm || · ||1 enforces the sparsity so-

lution of x, and greatly improves the spatial resolutions;

ℓ2+ℓ1 optimization has been well solved by the LASSO

[25] and atomic decomposition via basis pursuit [22, 26];

the third term α denotes regularization parameter, which

has to be tuned carefully [26–28] for good performance.

The sparse regularization in Eq.(10) is equivalent to

the sparsity constraint as:






x̂ = argmin(x)
{

||y −Cx||22
}

s.t. ||x||1 = β, x � 0
, (11)

where β denotes the total source power; ||x||1 = β serves

the sparsity constraint; x � 0 denotes xn ∈ x ≥ 0. Re-

cently, many effective methods have been proposed to solve

Eq.(11), such as the DAMAS with sparsity constraint (SC-

DAMAS) [9]. But β selection is the key issue for good

performance. Similarly using the sparsity constraint, the

Covariance Matrix Fitting (CMF) method [10] can directly

estimate the signal covariance matrix as:






(x̂, σ2) = argmin(x,σ2)

{

||R̂−AXAH − σ2IM ||22
}

s.t. tr[X] = β, x � 0, σ2 ≥ 0
,

(12)

where R̂ is the measured covariance matrix in Eq.(7);

X = E[ssH ] denotes the source power covariance matrix;

tr[·] denotes the matrix trace. The CMF can estimate the

correlated sources, but it has much larger dimension of

variables to be estimated than the methods in Eq.(10–11).
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5. Proposed approach using sparsity constraint

Compared with classical sparse regularization method

in Eq.(10–12), we want to jointly estimate the source pow-

ers x and background noise power σ2 by minimizing the

propagation uncertainty ξ. In order to obtain super resolu-

tion in strong background noises, we adaptively estimate

the sparsity parameter β on total source power. There-

fore, our proposed robust super-resolution approach with

sparsity constraint (SC-RDAMAS) is expressed as:







(x̂, σ̂2) = argmin(x,σ2)

{

||y −Cx− σ2 1a||22
}

s.t. x � 0, ‖x‖1 = β, σ2 ≥ 0
, (13)

where sparsity parameter β is the total power of source

signals, so that β is defined as:

β =

K
∑

k=1

x∗
k = ‖x∗‖1 =

N
∑

n=1

xn = ‖x‖1 = tr[X] , (14)

where K is the total number of original source signals s∗;

and x∗ = diag
[

E[s∗s∗H ]
]

denotes the original source pow-

ers; x = diag
[

E[ssH ]
]

denotes the (discrete) source pow-

ers; X = E[ssH ] denotes the source power covariance ma-

trix. If β in Eq.(14) is modeled too large, the estimated x̂

from Eq.(13) would be more dispersed than expected; if β

too small, some of weak sources would be left out. There-

fore, the adaptive estimation of sparsity parameter β is an

essential issue in the proposed approach.

5.1. Adaptive estimation of sparsity parameter

According to the definition of measured covariance ma-

trix R in Eq.(6), we take the matrix trace as:

tr [R] = tr[AXAH ] +M σ2

=
∑N

n=1 ‖an‖2 xn +M σ2
, (15)

where an is the nth column of signal propagation matrix

A, defined in Eq.(3). Let ‖a‖min and ‖a‖max respectively

denote the minimum and maximum vector norms within

an, n = [1, · · · , N ]. From Eq.(15), we have

1

‖a‖2max

(

tr [R]−M σ2
)

≤ ‖x‖1 ≤ 1

‖a‖2min

(

tr [R]−M σ2
)

,

(16)

where ‖x‖1 =
∑N

n=1 xn and xn ≥ 0 in Eq.(14). Since R is

also a Hermitian matrix, it can be diagonalized as tr [R] =

tr [UΛUH ] = tr [Λ], where U is the unitary matrix, whose

columns are eigenvectors of R; and Λ is the eigenvalue

matrix of R. According to Eq.(14–16), we can obtain β

estimation as:

β̂ =
1

2
(

1

‖a‖2max

+
1

‖a‖2min

)
(

tr [Λ̂]−M σ̂2
)

, (17)

where Λ̂ is the eigenvalue matrix of R̂ in Eq.(7); and σ̂2

can be estimated as [10]:

σ̂2 =
1

M − K̂

M
∑

m=K̂+1

λ̂m , (18)

where λ̂m denotes the eigenvalue of R̂, satisfying λ̂1 ≥
· · · ≥ λ̂K ≥ λ̂K+1 = · · · = λ̂M = σ̂2; and M is the total

sensor number; K̂ denotes the estimated source number,

provided K̂ ∈ [1, · · · ,M ]. When K̂ = M , we have noise

power σ̂2 = 0.

In Eq.(17), source number K estimation plays an im-

portance role in determining β. There are many meth-

ods for source number estimation such the SVD[13] and

Bayesian framework [29]. Our paper [30] gives a fast and

rough estimation on K as: let F(λm) = F [λ1, · · · , λM ]

with m ∈ [1, · · · ,M ] denote the eigenvalue distribution

function, where F [·] denotes the interpolation. The first

K big eigenvalues should contain the K original source

powers, while the latter M −K eigenvalues just equal the

noise power σ2. So that F(λm) has a sparse distribution.

Suppose F(λm) to be second derivative, when its curva-

ture κ(K̂) ≈ 0 within K̂ ∈ [1, · · · ,M ], we can thus get

K ≈ K̂. However, since the under-estimation of source

number could eliminate the weak sources, it is better to

initialize K as a relative big value. Therefore, we can use

the upper bound of source number as discussed in com-

pressed sensing [31–33] as:

K = ||x||0 ≤ 1

2
(1 +

1

µ
) , (19)
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Algorithm 1 Proposed adaptive estimation procedure

1. Input:

Signal propagation matrix A in Eq.(2);

measured signal covariance matrix R̂ in Eq.(7);

measured beamforming powers y in Eq.(4);

power propagation matrix C in Eq.(9);

2. Initialization:

Iteration number i=1;

source number K̂(1) = 1
2 (1 +

1
µ
) in Eq.(19);

variables x̂(1)=0; σ̂2
(1)

=0;

criterion J (x̂(1), σ̂2
(1)

)=0, J (x̂(2), σ̂2
(2)

)=1;

3. Iterations:

While |J (x̂(i+1), σ̂2
(i+1)

)− J (x̂(i), σ̂2
(i)
)| is not

small enough; Else: Steps 4;

3.1 Update: σ̂2
(i)

by Eq.(18), β̂(i) by Eq.(17);

3.2 Optimize:

Solve Eq.(13) by interior point algorithm [34]:

(x̂(i+1), σ̂2
(i+1)

) = argmin(x,σ2)

{

J (x̂(i), σ̂2
(i)
)

}

s.t. ||x||1 ≤ β̂(i), x̂(i+1) ≥ 0, σ̂2
(i+1) ≥ 0;

3.3 Iterate: K̂(i+1) = K̂(i) − 1, i=i+1;

4. Output: x̂, σ̂2, K̂, β̂, then Stop.

where µ = max(1≤i 6=j≤M)
R̂H

i R̂j

||R̂i|| ||R̂j ||
denotes the incoher-

ence of the measured covariance matrix R̂, where R̂i de-

notes its ith column vector. According to Eq.(6) and in-

dependence assumption between sources and noises, µ can

reflect the incoherence of source power covariance matrix

X.

5.2. Proposed adaptive estimation procedure

In Eq.(13), our proposed approach is a convex quadratic

minimization under linear matrix constraints, which can

be solved by interior point algorithms using MATLAB

toolbox SeMuDi [34]. In order to improve the robustness

to background noises σ2 and sparsity parameter β, we pro-

pose an adaptive estimating algorithm as depicted in Algo-

rithm 1: Let J (x, σ2) = ||y−Cx−σ2 1a||22 define the cost

function ; we firstly initialize source number K by using

the matrix incoherence µ of Eq.(19); then σ̂2 is obtained

from Eq.(18) and β̂ from (17); and then we simultaneously

estimate source powers x and σ2 by using the interior point

algorithm [34]; finally we update K̂(i+1) = K̂(i) − 1 for a

new estimation.

5.3. Power estimation of wide-band acoustic signals

In wind tunnel tests, acoustic sources are usually gen-

erated by wind frictions against the car surface. Differ-

ent car parts produce different characteristic frequencies.

Therefore, acoustic signals have the wide frequency band.

In Section 2, we have taken DFT transformation and sep-

arated the wide-band into L independent frequency bins,

then we have engaged signal processing in each frequency

bin. Using the proposed SC-RDAMAS approach in Eq.(13),

we can obtain x̂(fl) as the estimation of source power x(fl)

at lth frequency bin. Finally, total power xwb over the

wide-band [fmin, fmax] can be estimated by averaging the

summation of estimated result in each frequency bin as:

x̂wb =
1
L

∑fmax

fl=fmin
x̂(fl).

6. Simulations on uncorrelated source imaging

This section shows the typical simulations on source

power reconstruction and localization of monopole sources.

The proposed SC-RDAMAS approach is compared with 5

classical methods in the poor SNR cases. Reconstruction

results are presented via images which can directly show

the estimated source powers (dB) and positions. Then we

use 3 criteria to quantitatively evaluate estimation perfor-

mance. The first one is the averaged estimation error of

original source powers, defined as ∆x∗ = 1
K

∑K
k=1 |x̂∗

k−x∗
k|,

where original source powers x∗ = [x∗
1, · · · , x∗

K ]T are de-

fined as x∗ = diag
[

E[s∗s∗H ]
]

. The second is the recon-

struction error of source power image, defined as δ2 =

‖x̂−x‖2

2

‖x‖2

2

. Compared with ∆x∗, the value of δi not only de-

pends on the estimated positions and powers, but also on

the suppression of background noise power. The last is the

averaged position error, defined as ∆p∗ =

√∑
K
k=1

(‖p∗

k
−p̂∗

k
‖)√∑

K
k=1

‖p∗

k
‖

,
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where p̂∗
k denotes the estimated positions of kth original

source.

In Fig.1, simulation configurations are almost the same

as the wind tunnel experiments carried out by Renault

SAS [35]. For example, D = 4.50m is the distance between

the sensor plane and source plane. There are M = 64

non-uniform sensors locating on the vertical plane. This

Non-Uniform sensor Array (NUA) has a longer horizontal

size than the vertical [35]. And it has the d = 2m av-

eraged size. The advantage of NUA array is that it can

yield almost the same performance but less computation

burden than the uniform array with the same sensors as

discussed in Ref.[36]. c0 ≈ 340m/s is the acoustic speed

in the common air. T = 10000 is the total number of

samplings, which is large enough to meet the important

condition for the bearforming in Eq.(4) and improved for-

ward model of power propagation in Eq.(8). To focus on

method comparisons, we do not consider the ground re-

flection and wind refraction in simulations. But we should

reconsider the multi-path propagation effects in wind tun-

nel experiments in Section 7.

For the simulated sources in Fig.2a, we have simulated

4 monopoles and 5 complex sources with different pat-

terns. And these source are spaced at least 20cm. We

take K ∈ [9, 23] as the value range of the total source

number. Original source powers x∗ are within [0.08,2] ([-

10.3,3.7]dB) and 14dB dynamic range. For the image re-

sult on Fig.2a, there are 4 parts: the center image shows

the source positions, patterns and powers; on its right, the

colormap shows the dynamic range of source powers, in

which, the dark-red colors represent strong powers, while

light white colors represent the weak; on the left and bot-

tom, two profile figures reveal the positions of 4 monopoles

and complex monopole source on the center. To simulate

the very noisy background, the noise power is set σ2 = 0.86

(-0.7dB), thus the averaged SNR is 0dB.

In order to make a fair comparison with other classical

methods, some simulation parameters should be selected

Table 1: Power estimations of 4 monopole sources by average power

estimation error ∆x∗, relative errors of power image reconstruction

δ2 and estimated noise power σ̂2 at 2500Hz, SNR=0dB, simulated

σ2 = 0.86; ’-’ means unavailable.

Source power 0.08 0.18 0.98 0.50 ∆x∗ δ2 σ̂2

CBF 1.57 11.28 3.51 2.02 69.64 121.9 -

DAMAS - - - 0.44 3.14 1.33 -

CLEAN - 0.25 0.44 0.28 0.87 0.67 -

SC-DAMAS - - - - 1.03 0.58 -

DR-DAMAS - - 0.77 0.23 0.30 0.08 -

CMF 0.09 - 0.80 0.40 0.31 0.10 0.89

Proposed 0.09 0.10 1.05 0.43 0.06 0.06 0.85

carefully. In order to avoid the spatial aliasing problem

as discussed in the DAMAS [8], the discrete grid is set

∆p = 5cm and the frequency should be f < 3100Hz, so

that they satisfy ∆p
δCBF
p

< 0.2, where δCBF
p = D c0

d f
denotes

the spatial resolution of the CBF. To simulate a sparse

distribution of discrete source signals, ∆p = 5cm is used

to discretize the 100 × 150 cm2 source plane, so that the

power image is of 21× 31 pixels. Since total grid number

N = 651 is much more larger than original source number

K = 23, the discrete source signals s and their source

powers x are both K-sparsity signals.

6.1. Method comparisons

Firstly we show the method comparisons at 2500Hz,

since this frequency is very sensitive to human hearing

and affect acoustic comfort. In Fig.2, the CBF gives an

obscure image of source power distributions; the DAMAS

with 5000 iterations (5000i), CLEAN and SC-DAMAS well

detect some of strong sources, but they do not provide

reliable estimation of weak sources in strong background

noises; the DR-DAMAS effectively removes the noise in-

terference, but some of weak sources are also removed off;

the CMF achieves better estimation on the noise power

and distinguishes most of sources; however, it fails to re-

construct some patterns of weak sources.

In Fig.2h, proposed SC-RDAMAS approach not only

detects most of the complex sources, but also well recon-
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Figure 2: Simulation on monopole sources with 14dB power dynamic range at 2500Hz, σ2 = 0.86, SNR=0dB and 15dB display: (a) Monopole

sources (b) CBF (c) DAMAS with 5000 iterations (5000i) (d) CLEAN (e) SC-DAMAS (f) DR-DAMAS (5000i) (g) CMF and (h) Proposed

SC-RDAMAS
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Table 2: Position estimations of 4 monopole sources by averaged

position errors ∆p∗ at 2500Hz, SNR=0dB; ’-’ means unavailable.

Position (-0.9,1) (-0.6,0.75) (-0.3,1) (-0.6,1.3) ∆p∗

CBF - - - - 1

DAMAS - (-0.6,0.85) (-0.3,1) (-0.6,1.25) 0.28

CLEAN (-0.95,1) (-0.6,0.75) (-0.3,1) (-0.6,1.3) 0.01

SC-DAMAS - - - (-0.6,1.2) 0.63

DR-DAMAS - - (-0.3,1) (-0.6,1.3) 0.43

CMF - (-0.6,0.9) (-0.3,1) (-0.6,1.3) 0.29

Proposed (-0.9,1) (-0.6,0.75) (-0.3,1) (-0.6,1.3) 0

Table 3: Power estimations of the complex monopole source on

the center of image by power estimation error ∆x∗ at 2500Hz,

SNR=0dB; ’-’ means unavailable.

Source power 2.00 2.00 2.00 2.00 2.00 2.00 ∆x∗

CBF 2.64 9.60 9.70 9.64 11.34 9.77 6.78

DAMAS 4.50 1.25 0.48 2.54 0.49 1.88 1.15

CLEAN 2.29 0.37 1.69 - 0.27 0.34 1.27

SC-DAMAS 1.68 2.49 1.16 0.10 2.23 0.65 0.75

CMF 1.36 2.86 2.07 2.09 1.92 1.05 0.45

DR-DAMAS 2.15 2.05 1.82 1.83 2.50 1.45 0.27

Proposed 1.83 2.00 2.05 1.72 2.16 1.95 0.12

structs source powers and positions in poor SNR situation.

According to the adaptive estimation procedure in Algo-

rithm 1, K̂ = 25 is better initialized owing to µ ≈ 0.02

from Eq.(19). According to the three quantitative crite-

ria ∆x∗, ∆p∗ and δ2 in the Table 1, 2 and 3 respectively,

the proposed approach works much better than the others:

1) Compared with the low spatial resolutions of the CBF

(δCBF
p = 31cm at 2500Hz), proposed approach makes good

use of sparse distribution of source powers and it achieves

the resolution as high as 5cm in both horizontal and verti-

cal directions. Since the horizontal aperture of NUA array

is larger than the vertical, all the results of classical meth-

ods obtain better horizontal resolution. But our proposed

approach still achieves the super resolution in vertical di-

rection. 2) Compared with the sensitiveness of deconvo-

lution methods, proposed approach greatly improves the

robustness by jointly estimating the background noise as

well as the source powers. 3) Compared with sparse reg-
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Figure 3: Performance comparison for relative errors of power image

reconstruction δ2 versus SNR [-6,18]dB on simulations at 2500Hz.

ularization methods, we adaptively estimate the sparsity

parameter on the total source power, so that fits well for

the strong i.i.d AGWN noise. To make a fair compari-

son, we realize the CMF, SC-DAMAS and proposed SC-

RDAMAS based on Matlab toolbox SeMuDi [34].

In Fig.3, we show the relative error of power image

reconstruction δ2 of mentioned methods within SNR [-6,

18]dB at 2500Hz. Proposed approach is more robust to

background noises than other classical methods.
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Figure 4: Performance comparison for relative errors of power image

reconstruction δ2 versus [1600, 2600]Hz on simulations at SNR=3dB.

In Fig.4, we show reconstruction errors δ2 versus dif-

ferent frequency bins within [1600, 2600]Hz which affects
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the acoustic comfort of human being. The SNR is set 3dB.

At high frequencies, proposed approach provides the most

significant improvements. At low frequencies, proposed

approach still maintains small reconstruction errors.

6.2. Overweening effects of proposed approach
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Figure 5: Sparsity parameter influence caused by estimated source

number K̂ versus power image reconstruction error δ2 between the

SC-DAMAS and proposed SC-RDAMAS at 0dB and 2500Hz.

One of the common limitations in the SC-DAMAS,

CMF and proposed SC-RDAMAS, is the overweening ef-

fect which is well known in the compressed sensing[31–

33]: the sparse results are often composed of discontinuous

and unstructured (shapeless) points rather than continu-

ous source distributions. Though these shapeless points

could represent the monopole source power to some ex-

tent, they could hardly present distributed sources. Tak-

ing Fig.2(e)(g) for example, the SC-DAMAS and CMF can

only obtain discontinuous monopoles for complex sources.

In Fig.2(h), though proposed SC-RDAMAS well detects

most of the sources, it could barely discover one complex

source whose continuous pattern is a vertical line. More-

over, the artifacts on the three figures are always monopole

points which are near to sources.

The first reason for the above overweening effects is the

sparsity parameter influence. In Fig.5, we compare the

sparsity parameter influence on δ2 error between the SC-

DAMAS and proposed SC-RDAMAS at 0dB and 2500Hz.

The sparsity constraint is interpreted by the total source

power β so as to regularize data fitting errors in Eq.(11)

and Eq.(13) respectively. And β in Eq.(17) mainly de-

pends on the source number K estimation, when back-

ground noise is supposed to be i.i.d AGWN. Therefore, to

evaluate the sparsity parameter is equivalent to evaluate

the source number estimation. Since complex sources in

Fig.2(a) are supposed to be made of uncorrelated monopoles,

it is reasonable to take K ∈ [9, 23]. In Fig.5, when K̂ < 9

is under-estimated, it is clear to see that δ2 error of the

two methods are both very sensitive to K̂, so that nei-

ther of them could obtain a good reconstruction. When

9 ≤ K̂ ≤ 23, proposed approach can obtain smaller δ2

errors, but both of the two methods could hardly achieve

stable results. When K̂ > 23 is over-estimated, proposed

SC-RDAMAS steadily keeps much smaller δ2 than the SC-

DAMAS. Above all, proposed SC-RDAMAS can well ini-

tialize source number K and adaptively estimate sparsity

parameter β compared with the SC-DAMAS.

Secondly, the sparsity constraint on total source power

could not appropriately model the source sparse distribu-

tions nor source structures. Suppose two different source

power distributions: x1 = [1, 2, 3, 0, 0, 0, 0, 0, 0]T and x2 =

[3, 2, 1, 0, 0, 0, 0, 0, 0] which have the same total source power

β = 6. To reconstruct x1 and x2 from their beamforming

data y1 and y2 respectively in the case of very strong back-

ground noises, it is highly necessary to investigate other

sparsity prior models [19, 33, 37] instead of only using spar-

sity constraint β = 6. Therefore, in Fig.2(h), our approach

can hardly detect all the complex sources with different

sparse distributions.

The last but not least, the monopole assumption on

acoustic model is too simple to model the complex sources

with different patterns. Therefore, in Fig.2(h), our ap-

proach tends to generate unexpected monopole artifacts

near to sources, especially when the SNR is as small as

11



Figure 6: Wind tunnel S2A [35] in France.

0dB. For the real data in Section 7, this drawback will be-

come the dominant reason, and more obvious overweening

effects will be seen.

7. Wind tunnel experiments

Figure 6 shows the static vehicle (no engine noise), mi-

crophone sensor array and the wind flow at the speed of

160km/h in the wind tunnel S2A [35]. One of objects of

this wind tunnel is to detect acoustic powers and positions

on the car surface. This wind tunnel can simulate a travel-

ing car on the high-way and measure its acoustic comfort

to the passengers-by.

7.1. Experiment configurations

We suppose that all acoustic sources locate on the same

2D plane, since the curvature of the car side is relatively

small compared with the distance D=4.5m between the

car and array plane. The surface of car side is of 150× 500

cm2, and we discretize this source plane into 31×101 pixels

by using identical grid ∆p = 5cm; and we also focus on a

small region of the rear-view mirror: 1×1.5m2 (21×31 pix-

els). In the real data, there are T=524288 samplings with

the sampling frequency fs=2.56×104 Hz. As discussed in

Section 2, we separate these samplings into I = 204 blocks

with L = 2560 samplings per block. The working fre-

quency band is chosen as [2400,2600]Hz, which is sensitive

to acoustic comfort of human being. The image results

are shown by normalized dB images with 10dB span. For

the acoustic imaging on the vehicle surface in wind tun-

nel tests in Fig.(6), acoustic sources often sparsely locate

on the rear-view mirrors and around the wheels, while on

the rest parts, there are few significant sources. There-

fore, the discrete source signals s and their powers x are

both sparse signals. But unfortunately, we do not know

the exact source number or SNR beforehand. Therefore,

it is necessary to investigate the adaptive estimation pro-

cedure in Algorithm 1 for robust acoustic imaging in wind

tunnel tests. Moreover, we consider the ground reflection

in Eq.(3) and wind refraction [19] in both synthetic and

real data.

7.2. Results of single frequency at 2500Hz

Figure.7 illustrates the estimated power images of men-

tioned methods at 2500Hz. In Fig.7a, the CBF merely

gives a blurred image of strong sources around the front

wheel, rear-view mirror and back wheel. In Fig.7b, the

DAMAS well deconvolves the beamforming image, and dis-

covers weak sources on the front light, front cover and side

window; however, many false targets are also detected in

the air. In Fig.7c, DR-DAMAS eliminates most of the

artifacts, but it also removes off some of weak sources.

Figure.7d shows that the CLEAN overcomes the draw-

backs of the DAMAS, but we have to carefully select the

parameters for this good performance. In Fig.7e, the SC-

DAMAS has a better noise suppression than the DAMAS

and CLEAN owing to the sparsity parameter selection, but

SC-DAMAS overwhelms too much both the noises and the

sources, so that it does not provide a wide dynamic range

of source power estimations.

Finally in Fig.7f, proposed SC-RDAMAS not only man-

ages to distinguish the strong sources around the two wheels,

rear-view mirror and side window, but also successfully re-

constructs the week ones on the front cover and light. In

fact, the proposed adaptive estimation procedure in Algo-

rithm 1 inevitably increases more computational cost than
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Figure 7: Acoustic imaging of real data on the whole car side at 2500Hz: (a) CBF (b) DAMAS (5000i) (c) DR-DAMAS (5000i) (d) CLEAN

(e) SC-DAMAS and (f) Proposed SC-RDAMAS.

Table 4: Computational cost for treating whole car: image 30×100 pixels, at 2500Hz, based on CPU:3.33GHz, ’-’ means unavailable.

Methods CBF DAMAS (5000i) DR-DAMAS (5000i) CLEAN Proposed SC-DAMAS CMF

Time (s) 1 10 11 45 852 1254 Very Long

the deconvolution methods such as DAMAS and CLEAN.

But our approach still remains a moderate complexity

compared with sparse regularization methods such as the

SC-DAMAS as shown in Table 4. Due to the high dimen-

sion of variables in source power covariance matrix, we can

not realize the original CMF method on real data.

Based on the acoustic imaging on the car side, we inves-

tigate a small part of the rear-view mirror. In Fig.8a, the

CBF detects strong sources on the corner of the front wheel

and rear-view mirror. The DAMAS in Fig.8b improves the

spatial resolutions, but it causes some unexpected spots.

In Fig.8c, the DR-DAMAS eliminates most of false spots.

In Fig.8e-f, the CMF, SC-DAMAS and proposed approach

achieve much better resolutions and offer more details of

source power distributions on the rear-view mirror.

7.3. Overweening effects of proposed approach

The overweening effects caused by the sparsity con-

straint in Fig.7(e)(f) are more obvious than the simula-
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Figure 9: Sparsity parameter influence of proposed SC-RDAMAS on

real data at 2500Hz: (a) Under-estimated β̂ (b) Over-estimated β̂.

tions in Fig.2(e)(g)(h). This phenomenon on the real data

could be explained by the following facts:

Source model problem. Some of acoustic sources on

the car surface (wheels and rearview mirrors) might be

distributed sources which have structures and patterns.

Thus the monopole source model used in this article could

not fit any more. Since the sparsity constraint (ℓ1 norm)

13



on total source power enforces the monopole reconstruc-

tions and neglects source structures to some extent, the

mentioned sparsity methods prefer to offer the discontinu-

ous point results, as typically shown on the back wheel in

Fig.7(e)(f).

Sparsity parameter problem. In proposed approach,

the estimated sparsity parameter β̂ in Eq.(17) depends on

the source number and background noise power. On real

data, however, it is hard to estimate source number K on

the car surface. Moreover, background noises in the wind

tunnel are not always i.i.d AGWN noises. Consequently,

it is not easy to exactly derive β̂ from Eq.(17). In Fig.9a,

if β̂ is under-estimated, some weak sources would be in-

evitably lost on the headlight, top antenna and side win-

dow; and source patterns on the rearview mirror and back

wheel would be roughly expressed by several discontinu-

ous points. If β̂ is over-estimated, both weak sources and

source patterns could be better detected, but the artifacts

would be produced in the air and under the car body. Sim-

ilarly overweening effects can also be seen in Fig.8(d)(e)(f)

and Fig.10(c)(d). But according to the adaptive sparsity

parameter estimation procedure in Algorithm 1, our pro-

posed approach try to avoid under-estimate β.

7.4. Results of wide-band data

Based on the imaging results at single frequency, we

show performance comparisons of wide-band data within

[2400, 2600]Hz which affects the acoustic comfort. In Fig.10,

each method obtains a clearer result than the correspon-

dent one at 2500Hz in Fig.7. This is because that source

powers are enforced, but flashing false targets are sup-

pressed over the wide-band average. The reconstruction of

DAMAS in Fig.10a is reasonable, but its spatial resolution

is not high enough on the front wheel and rear-view mirror.

Figure.10b shows that the CLEAN greatly ameliorates the

resolution, but unexpected points under the car caused

by the ground reflection should be further eliminated; the

SC-DAMAS in Fig.10c has the advantages of the CLEAN,

but it could not detect the weak sources around the back

wheel due to the sparsity parameter selection. Finally in

Fig.10d, the proposed approach provides the more accept-

able reconstructions of source positions and powers for the

strong sources on the mirror and the front wheel, as well

as weak ones on the back wheel.

8. Hybrid data

Even though our proposed approach obtains good per-

formance on real data from wind tunnel experiments, it is

not sufficient for method validation. This is because the

exact acoustic source distributions on the vehicle caused

by wind flow are not known beforehand. To further verify

the proprosed method, we use the hybrid data which com-

poses of known synthetic sources and the real data. In

order to avoid overlapping the original sources, the syn-

thetic sources are set on the region where there are no sig-

nificant sources powers. In Fig.11a, five synthetic complex

sources with different patterns are generated at 2500Hz,

whose powers are within [−4.5, 0]dB. We expect that our

proposed approach can detect both the synthetic and orig-

inal source powers from the hybrid data. If these known

synthetic sources are successfully recovered, the proposed

approach can be able to effectively reconstruct the original

acoustic sources on the vehicle surface.

For the synthetic sources, figure.11f shows that pro-

posed approach successfully detects most of the source

powers and patterns. For the original sources in hybrid

data, the proposed approach better discovers both strong

and weak sources on two wheels and rearview mirrors, as

well as obtains a better noise suppression compared with

mentioned methods in Fig.11b-e.

9. Conclusions and perspectives

In this article, we have proposed a robust super reso-

lution approach with sparsity constraint for the acoustic

imaging on the vehicle surface in wind tunnel experiments.

14



For the robustness to background noises, we have im-

proved the forward model of power propagation by con-

sidering the noises at the sensors, as well as the propa-

gation uncertainty caused by wind fraction and ground

reflection in wind tunnel. For the super spatial resolution,

we have adaptively estimated the sparsity parameter on

source powers in the proposed Algorithm 1.

For the approach validation, we have presented per-

formance comparisons with classical methods. The simu-

lations have shown that proposed approach obtained the

5cm super resolution compared with the beamforming res-

olution 31cm at 2500Hz. It achieved 15dB dynamic range

of power estimations, and well detected complex sources

with different patterns. The Real data results have demon-

strated that proposed approach effectively reconstructed

strong sources on front wheels and rear-view mirrors, as

well as the weak sources on back wheels. The hybrid data

experiments have furthermore confirmed the effectiveness

for reconstructing the known synthetic sources and original

sources in the real data. We have also shown the moder-

ate computational cost of our approach for the acoustic

imaging in wind tunnel tests.

The main drawback of proposed approach is the over-

weening effect existed in the compressed sensing methods.

Due to the same sparsity constraint, it sometimes just ob-

tains many unstructured or shapeless points and could not

to reconstruct the true source distribution, especially when

acoustic sources could not be modeled by monopoles. To

overcome this limitation, it is worthwhile to investigate

a hierarchical Bayesian inference with the group sparsity

prior [37, 38] which enforces the sparsity and model the

source distributions. Furthermore, we should consider the

(in)coherent distributed source model that is modeled by

a parametric angular cross-correlation kernel [39, 40].
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[13] D. Malioutov, M. Çetin, A. Willsky, A sparse signal reconstruc-

tion perspective for source localization with sensor arrays, IEEE

Transactions on Signal Processing 53 (8) (2005) 3010–3022.

[14] N. P. Galatsanos, A. K. Katsaggelos, Methords for choosing

the regularization parameters and estimating the noise variance

in image restoration and thier relation, IEEE Transactions on

Image Processing 1 (3) (1992) 332–336.

[15] T. Suzuki, L1 generalized inverse beam-forming algorithm re-

15



solving coherent/incoherent, distributed and multipole sources,

Journal of Sound and Vibration 330 (24) (2011) 5835 – 5851.

[16] A. Massa, G. Oliveri, Bayesian compressive sampling for pat-

tern synthesis with maximally sparse non-uniform linear arrays,

IEEE Transactions on Antennas and Propagation 59 (10) (2011)

467–681.

[17] G. Oliveri, P. Rocca, A. Massa, A bayesian-compressive-

sampling-based inversion for imaging sparse scatterers, IEEE

Transactions on Geoscience and Remote Sensing (99) (2011)

3993–4006.

[18] J. Antoni, A Bayesian approach to sound source reconstruction:

optimal basis, regularization, and focusing, The Journal of the

Acoustical Society of America 131 (2012) 2873–2890.

[19] N. Chu, A. Mohammad-Djafari, J. Picheral, Robust Bayesian

super-resolution approach via sparsity enforcing a priori for

near-field aeroacoustic source imaging, Journal of Sound and

Vibration 332 (18) (2013) 4369–4389.

[20] Y. Wang, J. Li, P. Stoica, M. Sheplak, T. Nishida, Wideband

RELAX and wideband CLEAN for aeroacoustic imaging, Jour-

nal of Acoustical Society of America 115 (2) (2004) 757–767.

[21] E. Sarradj, A fast signal subspace approach for the determina-

tion of absolute levels from phased microphone array measure-

ments, Journal of Sound and Vibration 329 (9) (2010) 1553–

1569.

[22] P. Simard, J. Antoni, Acoustic source identification: Experi-

menting the l1 minimization approach, Applied Acoustics 74 (7)

(2013) 974 – 986.

[23] J.-L. Adam, D. Ricot, C. Lambourg, A. Menoret, Correlated

Beamforming Method for Relevant Aeroacoustic Sources Iden-

tification, in: SAE 2009 Noise and Vibration Conference and

Exhibition, SAE, St. Charles, Illinois, United States, 20-23 May

2009, pp. 2009–01–2234.

[24] Q. Leclère, Acoustic imaging using under-determined inverse

approaches: Frequency limitations and optimal regularization,

Journal of Sound and Vibration 321 (3-5) (2009) 605–619.

[25] R. Tibshirani, Regression shrinkage and selection via the

LASSO, Journal of the Royal Statistical Society. Series B

(Methodological) 58 (1) (1996) 267–288.

[26] S. Chen, D. Donoho, M. Saunders, Atomic decomposition by ba-

sis pursuit, SIAM journal on scientific computing 20 (1) (1999)

33–61.

[27] J. Fuchs, Multipath time-delay detection and estimation, IEEE

Transactions on Signal Processing 47 (1) (1999) 237–243.

[28] Y. Kim, P. Nelson, Optimal regularisation for acoustic source

reconstruction by inverse methods, Journal of sound and vibra-

tion 275 (3-5) (2004) 463–487.

[29] B. M. Radich, K. M. Buckley, Single-snapshot DOA estimation

and source number detection, IEEE Signal Processing Letters

4 (4) (1997) 109–111.

[30] N. Chu, J. Picheral, A. Mohammad-Djafari, A robust super-

resolution approach with sparsity constraint for near-field wide-

band acoustic imaging, in: IEEE International Symposium on

Signal Processing and Information Technology, Bilbao, Spain,

Dec.14-17,2011, pp. 310–315.

[31] D. L. Donoho, M. Elad, V. N. Temlyakov, Stable recovery of

sparse overcomplete representations in the presence of noise,

IEEE Transactions on Information Theory 52 (1) (2006) 6–18.

[32] E. Candes, J. Romberg, Sparsity and incoherence in compressive

sampling, Inverse problems 23 (3) (2007) 969.

[33] Z. Ben-Haim, Y. C. Eldar, M. Elad, Coherence-based perfor-

mance guarantees for estimating a sparse vector under random

noise, IEEE Transactions on Signal Processing 58 (10) (2010)

5030–43.

[34] J. Sturm, Using sedumi 1.02, a matlab toolbox for optimiza-

tion over symmetric cones, Optimization methods and software

11 (1-4) (1999) 625–653.

[35] A. Menoret, N. Gorilliot, J.-L. Adam, Acoustic imaging in wind

tunnel S2A, in: 10th Acoustics conference (ACOUSTICS2010),

Lyon, France, 2010.

[36] C. E. Kassis, J. Picheral, C. Mokbel, Advantages of nonuniform

arrays using root-music, Signal Processing 90(2) (2010) 689–

695.

[37] J. Huang, T. Zhang, The benefit of group sparsity, The Annals

of Statistics 38 (4) (2010) 1978–2004.

[38] R. Jenatton, J.-Y. Audibert, F. Bach, Structured variable se-

lection with sparsity-inducing norms, The Journal of Machine

Learning Research 12 (2011) 2777–2824.

[39] S. Shahbazpanahi, S. Valaee, A. B. Gershman, A covariance

fitting approach to parametric localization of multiple incoher-

ently distributed sources, IEEE Transactions on Signal Process-

ing 52 (3) (2004) 592–600.

[40] J. Lee, I. Song, H. Kwon, S. Ro Lee, Low-complexity estimation

of 2D DOA for coherently distributed sources, Signal processing

83 (8) (2003) 1789–1802.

16



List of Figures

1 Illustration of acoustic propagation in the

wind tunnel [19]. . . . . . . . . . . . . . . . 3

2 Simulation on monopole sources with 14dB

power dynamic range at 2500Hz, σ2 = 0.86,

SNR=0dB and 15dB display: (a) Monopole

sources (b) CBF (c) DAMAS with 5000 iter-

ations (5000i) (d) CLEAN (e) SC-DAMAS

(f) DR-DAMAS (5000i) (g) CMF and (h)

Proposed SC-RDAMAS . . . . . . . . . . . 9

3 Performance comparison for relative errors

of power image reconstruction δ2 versus SNR

[-6,18]dB on simulations at 2500Hz. . . . . . 10

4 Performance comparison for relative errors

of power image reconstruction δ2 versus [1600,

2600]Hz on simulations at SNR=3dB. . . . 10

5 Sparsity parameter influence caused by es-

timated source number K̂ versus power im-

age reconstruction error δ2 between the SC-

DAMAS and proposed SC-RDAMAS at 0dB

and 2500Hz. . . . . . . . . . . . . . . . . . . 11

6 Wind tunnel S2A [35] in France. . . . . . . 12

7 Acoustic imaging of real data on the whole

car side at 2500Hz: (a) CBF (b) DAMAS

(5000i) (c) DR-DAMAS (5000i) (d) CLEAN

(e) SC-DAMAS and (f) Proposed SC-RDAMAS. 13

9 Sparsity parameter influence of proposed SC-

RDAMAS on real data at 2500Hz: (a) Under-

estimated β̂ (b) Over-estimated β̂. . . . . . 13

8 Acoustic imaging of rear-view mirror at 2500Hz:

(a) CBF (b) DAMAS (5000i) (c) DR-DAMAS

(5000i) (d) CMF (e) SC-DAMAS and (f)

Proposed SC-RDAMAS . . . . . . . . . . . 19

10 Wide-band data over [2400,2600]Hz: (a) DAMAS

(b) CLEAN (c) SC-DAMAS and (d) Proposed

SC-RDAMAS . . . . . . . . . . . . . . . . . 19

11 Acoustic imaging of hybrid data on the whole

car side at 2500Hz: (a) Synthetic sources

(b) CBF (c) DAMAS (5000i) (d) CLEAN

(e) SC-DAMAS and (f) Proposed SC-RDAMAS. 19

17



List of Tables

1 Power estimations of 4 monopole sources by

average power estimation error ∆x∗, rela-

tive errors of power image reconstruction δ2

and estimated noise power σ̂2 at 2500Hz,

SNR=0dB, simulated σ2 = 0.86; ’-’ means

unavailable. . . . . . . . . . . . . . . . . . . 8

2 Position estimations of 4 monopole sources

by averaged position errors ∆p∗ at 2500Hz,

SNR=0dB; ’-’ means unavailable. . . . . . . 10

3 Power estimations of the complex monopole

source on the center of image by power es-

timation error ∆x∗ at 2500Hz, SNR=0dB;

’-’ means unavailable. . . . . . . . . . . . . 10

4 Computational cost for treating whole car:

image 30×100 pixels, at 2500Hz, based on

CPU:3.33GHz, ’-’ means unavailable. . . . . 13

18



(a)  

 

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(b)  

 

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(c)  

 

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(d)  

 

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(e)  

 

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(f)  

 

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Figure 8: Acoustic imaging of rear-view mirror at 2500Hz: (a) CBF (b) DAMAS (5000i) (c) DR-DAMAS (5000i) (d) CMF (e) SC-DAMAS

and (f) Proposed SC-RDAMAS
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Figure 10: Wide-band data over [2400,2600]Hz: (a) DAMAS (b) CLEAN (c) SC-DAMAS and (d) Proposed SC-RDAMAS
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Figure 11: Acoustic imaging of hybrid data on the whole car side at 2500Hz: (a) Synthetic sources (b) CBF (c) DAMAS (5000i) (d) CLEAN

(e) SC-DAMAS and (f) Proposed SC-RDAMAS.
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